Gravitational self force and gauge transformations

Barack, Leor and Ori, Amos (2001) Gravitational self force and gauge transformations. Physical Review D, 64, (12), 124003-[13pp]. (doi:10.1103/PhysRevD.64.124003).


Full text not available from this repository.


We explore how the gravitational self-force (or “radiation reaction” force), acting on a pointlike test particle in curved spacetime, is modified in a gauge transformation. We derive the general transformation law, describing the change in the self-force in terms of the infinitesimal displacement vector associated with the gauge transformation. Based on this transformation law, we extend the regularization prescription by Mino et al. and Quinn and Wald (originally formulated within the harmonic gauge) to an arbitrary gauge. Then we extend the method of mode-sum regularization (which provides a practical means for calculating the regularized self-force and was recently applied to the harmonic-gauge gravitational self-force) to an arbitrary gauge. We find that the regularization parameters involved in this method are gauge-independent. We also explore the gauge transformation of the self-force from the harmonic gauge to the Regge-Wheeler gauge and to the radiation gauge, focusing attention on the regularity of these gauge transformations. We conclude that the transformation of the self-force to the Regge-Wheeler gauge in Schwarzschild spacetime is regular for radial orbits and irregular otherwise, whereas the transformation to the radiation gauge is irregular for all orbits.

Item Type: Article
ISSNs: 1550-7998 (print)
Related URLs:
Subjects: Q Science > QB Astronomy
Q Science > QA Mathematics
Divisions: University Structure - Pre August 2011 > School of Mathematics > Applied Mathematics
ePrint ID: 29363
Date Deposited: 12 May 2006
Last Modified: 06 Aug 2015 02:29

Actions (login required)

View Item View Item