Gravitational waves from pulsating stars: evolving the perturbation equations for a relativistic star


Allen, Gabrielle, Andersson, Nils, Kokkotas, Kostas D. and Schutz, Bernard F. (1998) Gravitational waves from pulsating stars: evolving the perturbation equations for a relativistic star. Physical Review D, 58, (12), 1-12. (doi:10.1103/PhysRevD.58.124012).

Download

Full text not available from this repository.

Description/Abstract

We consider the perturbations of a relativistic star as an initial-value problem. Having discussed the formulation of the problem (the perturbation equations and the appropriate boundary conditions at the center and the surface of the star) in detail, we evolve the equations numerically from several different sets of initial data. In all the considered cases, we find that the resulting gravitational waves carry the signature of several of the star’s pulsation modes. Typically, the fluid f mode, the first two p modes, and the slowest damped gravitational w mode are present in the signal. If such mode signals, from coalescing neutron stars or following a supernova, can be detected by future gravitational-wave antennae, one can hope to infer detailed information about neutron stars. Since a perturbation evolution should adequately describe the late time behavior of a dynamically excited neutron star, the present work can also be used as a benchmark test for future fully nonlinear simulations.

Item Type: Article
Additional Information: Received 8 April 1997; published 17 November 1998.
ISSNs: 1550-7998 (print)
Related URLs:
Subjects: Q Science > QB Astronomy
Q Science > QA Mathematics
Q Science > QC Physics
Divisions: University Structure - Pre August 2011 > School of Mathematics > Applied Mathematics
ePrint ID: 29425
Date Deposited: 23 Feb 2007
Last Modified: 27 Mar 2014 18:17
URI: http://eprints.soton.ac.uk/id/eprint/29425

Actions (login required)

View Item View Item