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COMPUTING THE EQUIVARIANT EULER CHARACTERISTIC OF
ZARISKI AND ÉTALE SHEAVES ON CURVES

BERNHARD KÖCK

(communicated by Rick Jardine)

Abstract
We prove an equivariant Grothendieck-Ogg-Shafarevich formula.

This formula may be viewed as an étale analogue of well-known formu-
las for Zariski sheaves generalizing the classical Chevalley-Weil for-
mula. We give a new approach to those formulas (first proved by
Ellingsrud/Lønsted, Nakajima, Kani and Ksir) which can also be ap-
plied in the étale case.

Dedicated to Vic Snaith on the occasion of his 60th birthday

Introduction

This paper deals with the Riemann-Roch problem for equivariant Zariski sheaves and
equivariant étale sheaves on smooth projective curves, i.e. with the computation of their
(equivariant!) Euler characteristic. In the case of Zariski sheaves we give a new, very nat-
ural and quick approach to generalizations of the classical Chevalley-Weil formula proved by
Ellingsrud/Lønsted (see [EL]), Kani (see [Ka]) and Nakajima (see [Na]) in the 1980s and we
derive generalizations of a more recent result of Ksir (see [Ks]). In the case of étale sheaves
we develop and prove an equivariant Grothendieck-Ogg-Shafarevich formula by imitating our
new approach for Zariski sheaves.

Let X be a connected smooth projective curve over an algebraically closed field k and let
G be a finite subgroup of Aut(X/k) of order n. We assume throughout this paper that the
canonical projection π : X → Y := X/G is tamely ramified.

Using the coherent Lefschetz fixed point formula (see [Do1] or [BFQ] or [Kö1]) in conjunc-
tion with the Riemann-Roch formula and Hurwitz formula, we prove the following theorem
(see Theorem 1.1) which effectively implies all known formulas (see Corollaries 1.3, 1.4, 1.7
and 1.8) for the equivariant Euler characteristic

χ(G,X, E) := [H0(X, E)]− [H1(X, E)]

of a locally free G-sheaf E on X, considered as an element of the Grothendieck group K0(G, k)
of all k-representations of G.

Theorem 1.

χ(G,X, E) =
(

(1− gY )r +
1
n

deg(E)
)

[k[G]]− 1
n

∑

P∈X

eP−1∑

d=0

d[IndG
GP

(E(P )⊗ χd
P )].
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Here, r denotes the rank of E , E(P ) the fibre of E at P and χP the character of GP which
is given by the representation of GP on the cotangent space mP /m2

P .
We now pass to the étale world. We fix a prime l 6= char(k). Let F be a constructible

Fl-sheaf on the étale site Xét which carries a G-action compatible with the given G-action on
X. We are interested in computing the equivariant Euler characteristic

χét(G,X,F) := [H0
ét(X,F)]− [H1

ét(X,F)] + [H2
ét(X,F)]

considered as an element of the Grothendieck group K0(G,Fl) of Fl-representations of G.
In the extreme case that G is the trivial group, this problem is solved by the classical

Grothendieck-Ogg-Shafarevich formula (see Theorem 2.12 on p. 190 in [Mi]). In the extreme
case that F is the constant sheaf with trivial G-action, a satisfactory answer to this problem
follows from Remark 2.9 on p. 187 in [Mi] (see Remark 2.2(b)). By imitating our approach for
Zariski sheaves we prove the following result for an arbitrary group G and arbitrary sheaf F
(see Theorem 2.1):

Theorem 2. We assume that the characteristic of k does not divide n. Then we have:

χét(G,X,F) =

=

(
(2− 2gY ) dimFl

(Fη̄)− 1
n

α(F) +
∑

P∈X

ep

n
(dimFl

(FP )− dimFl
(Fη̄))

)
[Fl[G]]

−
∑

P∈X

eP

n
[IndG

GP
(FP ⊗ IP )].

Here, gY denotes the genus of Y := X/G, η the generic point of X, α(F) :=
∑

P∈X αP (F)
the sum of the wild conductors of F , eP the ramification index of the canonical projection
π : X → Y at P ∈ X and IP := ker(Fl[GP ] → Fl) the augmentation representation of the
decomposition group GP at P .

As a corollary, we obtain that α(F) is divisible by n (see Corollary 2.4). Furthermore, this
formula has the following simple shape, if π is étale (see Remark 2.2(a)):

χét(G, X,F) =
1
n

χét(X,F)[Fl[G]].

In fact, this formula is valid without the assumption that char(k) does not divide n. In par-
ticular, the (non-equivariant) Euler characteristic χét(X,F) is divisible by n.

Acknowledgments. I would like to thank Igor Zhukov for raising the equivariant Riemann-
Roch problem for étale sheaves and for drawing my attention to the paper [Do2]. Furthermore,
I would like to thank him and Victor Snaith for helpful and encouraging discussions, for reading
carefully a preliminary version of this paper and for suggesting several corrections.

1. The formulas of Ellingsrud/Lønsted, Nakajima, Kani and Ksir
revisited

The object of this section is to give a new approach to generalizations of the classical
Chevalley-Weil formula published by Ellingsrud/Lønsted, Nakajima and Kani and to derive
generalizations of a comparatively simple formula recently published by Ksir.

Let X be a connected smooth projective curve over an algebraically closed field k and let
G be a finite subgroup of Aut(X/k) of order n. We assume in this section that the canonical
projection π : X → Y := X/G is tamely ramified.

We denote the genus of X and Y by gX and gY , respectively. For any (closed) point P ∈ X,
let GP := {σ ∈ G : σ(P ) = P} denote the decomposition group and let eP denote the
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ramification index of π at P . It is well-known (see Corollaire 1 of Proposition 7, Chapitre IV
on p. 75 of [Se1]) that GP is a cyclic group of order eP and that

Hom(GP , k×) = {χ0
P , . . . , χeP−1

P }
where χP : GP → k× denotes the character which is given by the action of GP on the cotangent
space mP /m2

P . For Q ∈ Y we set eQ := eP where P ∈ π−1(Q).
We denote the Grothendieck group of all k-representations of G (of finite dimension) by

K0(G, k). It is free with basis Ĝ where Ĝ denotes the set of isomorphism classes of irreducible
k-representations of G.

Now, let E be a locally free G-module on X of rank r, i.e., we have OX -isomorphisms
g∗(E) → E , g ∈ G, which satisfy the usual composition rules. Then, the Zariski cohomology
groups Hi(X, E), i > 0, are k-representations of G. Let

χ(G,X, E) := [H0(X, E)]− [H1(X, E)] ∈ K0(G, k)

denote the equivariant Euler characteristic of X with values in E . For any P ∈ X, we view
the fibre E(P ) := EP /mPEP as a k-representation of GP .

The following theorem computes the equivariant Euler characteristic χ(G, X, E).

Theorem 1.1. We have in K0(G, k):

n · χ(G, X, E) = (n(1− gY )r + deg(E)) [k[G]]−
∑

P∈X

eP−1∑

d=0

d
[
IndG

GP
(E(P )⊗ χd

P )
]
. (1)

Proof. By classical representation theory (see Corollary (17.10) on p. 424 in [CR2]) it suf-
fices to show that the Brauer characters of both sides of formula (1) coincide. For any k-
representation V of G and for any σ ∈ G of order prime to char(k) we write Trace(σ|V ) for
the value of the Brauer character of V at σ. Recall that

Trace(σ|V ) =
dim(V )∑

i=1

ϕ(αi)

where αi, i = 1, . . . , dim(V ), are the eigenvalues of the k-linear map σ on V and ϕ : k× → K×

is the Teichmüller character from the group of invertible elements in k to the group of invertible
elements in the quotient field K := Q(W (k)) of the Witt ring W (k) of k. (We set K := k and
ϕ := id, if p = 0.)
Let σ ∈ G such that char(k) does not divide the order of σ and let Xσ := {P ∈ X : σ(P ) = P}
denote the set of points in X fixed by σ. Then we have:

∑

P∈X

eP−1∑

d=0

d · Trace
(
σ|IndG

GP
(E(P )⊗ χd

P )
)

=

=
∑

P∈X

eP−1∑

d=0

d

eP

∑

τ∈G, τ−1στ∈GP

Trace(τ−1στ |E(P )) · χd
P (τ−1στ)

(by Lemma (21.28) on p. 509 in [CR2])

=
∑

P∈X

eP−1∑

d=0

d

eP

∑

τ∈G, τ(P )∈Xσ

Trace(σ|E(τ(P ))) · χd
τ(P )(σ)

=
∑

P∈Xσ

n

eP
· Trace(σ|E(P )) ·

eP−1∑

d=0

d · χd
P (σ)

=





n · r · ∑
P∈X

eP−1
2 for σ = id

n · ∑
P∈Xσ

Trace(σ|E(P )) · (χP (σ)− 1)−1 for σ 6= id (see Lemma 1.2 below)
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For σ 6= id we have Trace(σ|k[G]) = 0, so the character value of the right hand side of
formula (1) at the place σ equals

n ·
∑

P∈Xσ

Trace(σ|E(P )) · (1− χP (σ))−1.

By the Lefschetz fixed point formula (see Example 3 in [Kö1] or [BFQ] or [Do1]; here we use
the assumption that char(k) does not divide ord(σ)), this equals the character value of the
left hand side at the place σ.
For σ = id we have:

(n(1− gY )r + deg(E)) · Trace(σ|k[G]) =
= n(n(1− gY )r + deg(E))

= n

(
(1− gX)r + deg(E) + r

∑

P∈X

eP − 1
2

)

by the Hurwitz formula (see Corollary 2.4 on p. 301 in [Ha]). Hence, the character value of
the right hand side of formula (1) at the place σ = id equals

n((1− gX)r + deg(E)).

By the Riemann-Roch formula (see §1 in Chapter IV of [Ha] and Exercise 6.11 on p. 149 in
[Ha]), this equals the character value of the left hand side at the place σ = id.
Thus, the proof of Theorem 1.1 is complete.

Lemma 1.2. Let m ∈ N and ζ 6= 1 an m-th root of unity. Then we have:

m(ζ − 1)−1 =
m−1∑

d=1

dζd.

Proof. (
∑m−1

d=1 dζd)(ζ − 1) =
∑m−1

d=1 dζd+1 −∑m−1
d=1 dζd = (m− 1)ζm −∑m−1

d=1 ζd = m.

Remark. A generalization of Theorem 1.1 and the subsequent Corollary 1.4 to the so-called
weakly ramified case can be found in [Kö2].

The following corollary is the main result of the paper [EL] by Ellingsrud and Lønsted; it
computes the multiplicity of any irreducible representation V ∈ Ĝ in the equivariant Euler
characteristic χ(G,X, E), if char(k) does not divide n. While the proof of Ellingsrud and
Lønsted is based on the study of the cokernel of the natural embedding π∗(πG

∗ (E)) ↪→ E , we
derive it from Theorem 1.1 and hence from the Lefschetz fixed point formula.

Corollary 1.3 (Formula (3.7) in [EL]). We assume that char(k) does not divide n. For
Q ∈ Y , d ∈ N and V ∈ Ĝ, let nd,Q,E,V denote the multiplicity of χd

P in E(P ) ⊗ ResG
GP

(V )
where P ∈ π−1(Q). Then we have in K0(G, k)Q:

χ(G,X, E) =
(

1
n

deg(E) + (1− gY )r
)

[k[G]]−
∑

V ∈Ĝ

∑

Q∈Y

eQ∑

d=1

(
1− d

eQ

)
nd,Q,E,V̌ [V ].

Proof. Let 〈 , 〉 : K0(G, k) ×K0(G, k) → Z denote the usual character pairing. Then, for all
P ∈ X and d ∈ {0, . . . , eP − 1}, we have:

∑

V ∈Ĝ

〈[χd
P ], [E(P )⊗ ResG

GP
(V̌ )]〉[V ] =

=
∑

V ∈Ĝ

〈〈[IndG
GP

(E(P )⊗ χ−d
P )], [V ]〉[V ]

= [IndG
GP

(E(P )⊗ χ−d
P )] in K0(G, k).
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Hence we have:
∑

V ∈Ĝ

∑

Q∈Y

eQ∑

d=1

(
1− d

eQ

)
nd,Q,E,V̌ [V ] =

=
∑

P∈X

eP

n

eP−1∑

d=1

(
1− d

eP

) ∑

V ∈Ĝ

〈[χd
P ], [E(P )⊗ ResG

GP
(V̌ )]〉[V ]

=
1
n

∑

P∈X

eP−1∑

d=1

(eP − d)[IndG
GP

(E(P )⊗ χ−d
P )]

=
1
n

∑

P∈X

eP−1∑

d=1

d[IndG
GP

(E(P )⊗ χd
P )].

Thus, Corollary 1.3 follows from Theorem 1.1.

The following corollary is the main result of the paper [Na] by Nakajima. Part (a) of it
has also been proved by Kani (see Theorem 2 in [Ka]). In addition to Theorem 1.1 we use
the facts that the Euler characteristic χ(G,X, E) is an element of the Grothendieck group
K0(k[G]) of projective k[G]-modules (see Theorem 1 in [Na] or Remark 1.5(a) below) and
that the Cartan homomorphism K0(k[G]) → K0(G, k) is injective. The corollary expresses the
Euler characteristic χ(G,X, E) as an integral linear combination of certain projective k[G]-
modules. Our proof shortens the somewhat lengthy calculations in [Na].

Corollary 1.4 (Theorem 2 in [Na])). .

(a) There is a projective k[G]-module NG,X (which is unique up to isomorphism) such that

n⊕NG,X
∼= ⊕

P∈X

eP−1⊕
d=0

d⊕ IndG
GP

(χd
P ).

(b) For any P ∈ X, let lP,1, . . . , lP,r ∈ {0, . . . , eP − 1} be given by the equation

[E(P )] =
r∑

i=1

[χ−lP,i

P ] in K0(GP , k);

furthermore, for any Q ∈ Y , we fix a point Q̃ ∈ X with π(Q̃) = Q. Then we have:

χ(G, X, E) ≡ −r[NG,X ] +
∑

Q∈Y

r∑

i=1

lQ̃,i∑

d=1

[IndG
GQ̃

(χ−d

Q̃
)] in K0(k[G]) mod Z[k[G]].

Proof. .

(a) Applying Theorem 1.1 to the sheaf E = OX with trivial G-action, we obtain the following
equality in K0(G, k) and hence in K0(k[G]):

n · χ(G,X,OX) = n(1− gY )[k[G]]−
∑

P∈X

eP−1∑

d=0

d[IndG
GP

(χd
P )].

This equality shows that the class of the projective k[G]-module ⊕eP−1
d=0 ⊕d IndG

GP
(χd

P ) is divisi-
ble by n in K0(k[G]). Writing the quotient as a linear combination of classes of indecomposable
projective modules we see that the quotient is in fact the class of a projective k[G]-module,
say NG,X . This immediately implies part (a).
(b) We first prove the following congruence:

deg(E) ≡
∑

P∈X

r∑

i=1

lP,i mod n.
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For this, we may obviously assume that r = 1. We write lP for lP,1. Let K denote the sheaf of
meromorphic functions on X, i.e., the constant sheaf associated with the function field K(X)
of X. Then E is a G-subsheaf of the constant sheaf E ⊗ K. But E ⊗ K is isomorphic to K as
a G-sheaf since the twisted group ring K(X)G is isomorphic to the ring Mn(K(Y )) of n× n-
matrices over the function field K(Y ) by Galois theory and since there is (up to isomorphism)
only one module of K(Y )-dimension n over Mn(K(Y )). So, we may assume that E = OX(D)
for some equivariant Weil divisor D =

∑
P∈X nP [P ]. Now it is easy to see that lP ≡ np mod

eP for all P . So, for any Q ∈ Y we have:
∑

P∈π−1(Q) lP = n
eP

lP ≡ n
eP

nP =
∑

P∈π−1(Q) nP

mod n. Thus, the congruence above is proved.
Hence, by Theorem 1.1, we have in K0(G, k)/nZ[k[G]]:

n · χ(G,X, E) =

=
∑

P∈X

r∑

i=1

lP,i[k[G]]−
∑

P∈X

r∑

i=1

eP−1∑

d=1

d[IndG
GP

(χd−lP,i

P )]

=
∑

P∈X

r∑

i=1

IndG
GP

(
eP−1∑

d=0

lP,i[χd
P ]−

eP−1∑

d=0

d[χd−lP,i

P ]

)

=
∑

P∈X

r∑

i=1

IndG
GP

(
eP−1∑

d=0

αP,i,d[χd
P ]

)

where αP,i,d :=
{ −d for d = 0, . . . , eP − lP,i − 1
−d + eP for d = eP − lP,i, . . . , eP − 1.

On the other hand, we have:

−n · r · [NG,X ] + n
∑

Q∈Y

r∑

i=1

lQ̃,i∑

d=1

[IndG
GQ̃

(χ−d

Q̃
)] =

= −r
∑

P∈X

eP−1∑

d=0

d[IndG
GP

(χd
P )] +

∑

P∈X

eP

r∑

i=1

lP,i∑

d=1

[IndG
GP

(χ−d
P )]

=
∑

P∈X

r∑

i=1

IndG
GP


−

eP−1∑

d=0

d[χd
P ] +

lP,i∑

d=1

eP [χeP−d
P ]




=
∑

P∈X

r∑

i=1

IndG
GP

(
eP−1∑

d=0

αP,i,d[χd
P ]

)
.

Thus, Corollary 1.4 is proved.

Remark 1.5. .

(a) In order to prove that χ(G,X, E) is in K0(k[G]) for all locally free G-modules E , it suffices
to show that the element 1

n

∑
P∈X

∑ep−1
d=0 d[IndG

GP
(χd

P )] is in K0(k[G]) which in turn follows
from the fact that χ(G,X,L) is in K0(k[G]) for one invertible G-module L on X. (Apply twice
the formula in part (b) of Corollary 1.4). If deg(L) > 2gX − 2, a nice and short proof of this
fact using equivariant cohomology can be found in Borne’s thesis (see Corollaire 3.14 on p. 61
in [Bo]).
(b) The equation

χ(G,X,OX) = (1− gY )[k[G]]− [NG,X ]

occurring in the proof of part (a) may be considered as an equivariant version of the classical
Hurwitz formula, see Théorème 3.16 on p. 62 in Borne’s thesis [Bo]. He gives a proof of this
formula and of part (a) of Corollary 1.4 which does not use the work of Nakajima or Kani
either and whose main ingredient is the coherent Lefschetz fixed point formula as well.
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The following example illustrates part (a) of Corollary 1.4; it has been proved in [Bo]
directly using Hilbert 90 (see Proposition 3.7 on p. 56 in [Bo]).

Example 1.6. We assume that eP = n for all P ∈ Xram := {P ∈ X : eP 6= 1}. Let
χ : G → k× be a character. We write χ = χaP

P for some aP ∈ N (for all P ∈ Xram). Then we
have: ∑

P∈Xram

aP ≡ 0 mod n.

The following corollary is a main result of the paper [Ka] by Kani; it generalizes the classical
Chevalley-Weil formula.

Corollary 1.7 (Corollary of Theorem 2 in [Ka]). Let Ω denote the sheaf of holomorphic
differentials on X. Then we have in K0(G, k):

[H0(X, Ω)] = [k] + (gY − 1)[k[G]] + [ŇG,X ].

Proof. It is well-known that deg(Ω) = 2gX − 2 and that Ω(P ) is k[GP ]-isomorphic to mP /m2
P

for all P ∈ X. Hence, by Theorem 1.1, we have in K0(G, k):

n · χ(G,X, Ω) =

= (n(1− gY ) + (2gX − 2)) [k[G]]−
∑

P∈X

eP−1∑

d=0

d[IndG
GP

(χd+1
P )]

= (n(1− gY ) + n(2gY − 2)) [k[G]]−
∑

P∈X

eP−1∑

d=0

(d + 1− eP )[IndG
GP

(χd+1
P )]

= n(gY − 1)[k[G]] + n[ŇG,X ].

Since H1(X, Ω) is isomorphic to the trivial representation k, this proves Corollary 1.7.

The following corollary generalizes a recently published result of Ksir (see [Ks]). While we
derive it from the previous corollary, her proof is much more elementary. To be more precise:
While our proof is based on the Lefschetz fixed point formula (see the proof of Theorem 1.1),
her proof uses only the Riemann-Roch and Hurwitz theorem and some elementary character
theory. However, her proof seems to work only in the case that not only the representation V ,
but all (irreducible) k-representations of G are rationally valued. Here, we call a k[G]-module
rationally valued if its (Brauer) character takes only rational values. For each point Q ∈ Y ,
we fix a point Q̃ ∈ X in the fibre π−1(Q).

Corollary 1.8. We assume that char(k) does not divide n. Let V be a non-trivial rationally
valued irreducible k-representation of G. Then the multiplicity of V in the k-representation
H0(X, ΩX) is equal to

dim(V )(gY − 1) +
1
2

∑

Q∈Y

(
dim(V )− dim(V GQ̃)

)
.

Proof. This follows from Corollary 1.7, the following Proposition 1.9 and the well-known fact
that the multiplicity of V in the regular representation k[G] is equal to dim(V ).

Proposition 1.9. We assume that char(k) does not divide n. Let V be a rationally valued
irreducible k-representation of G. Then the multiplicity of V in NG,X and in its dual ŇG,X is
equal to

1
2

∑

Q∈Y

(
dim(V )− dim(V GQ̃)

)
.
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Proof. As in the proof of Corollary 1.3 we write 〈 , 〉 for the usual character pairing. Then we
have:

〈[V ], [NG,X ]〉 =
1
n

∑

P∈X

eP−1∑

d=0

d 〈[V ], [IndG
GP

(χd
P )]〉

=
1
n

∑

P∈X

eP−1∑

d=0

d 〈[ResG
GP

(V )], [χd
P ]〉 (by Frobenius reciprocity)

=
1
n

∑

P∈X

eP

2
(
dim(V )− dim(V GP )

)
(by Lemma 1.10 below)

=
1
2

∑

Q∈Y

(
dim(V )− dim(V GQ̃)

)

since over any point Q ∈ Y there are precisely n
eQ̃

points in the fibre π−1(Q) and since GQ̃′

is conjugate to GQ̃ for any other point Q̃′ in π−1(Q). This proves the Proposition for NG,X .
The same argument applies to ŇG,X .

Lemma 1.10. Let C be a cyclic group of order c coprime to char(k), let V be a rationally
valued k[C]-module, and let χ : C → k× be a primitive character of C. Then we have:

c−1∑

d=0

d 〈[χd], [V ]〉 =
c

2
(
dim(V )− dim(V C)

)
in Q.

Proof. It obviously suffices to consider the case k = C. Since V is rationally valued and C is
abelian, the class [V ] of V in K0(C[C]) belongs to the image of the canonical homomorphism
K0(Q[C]) → K0(C[C]), see the Corollary of Proposition 35, §12.2, on p. 93 in Serre’s book
[Se2]. By Exercise 13.1 on pp. 104-105 in [Se2], the permutation representations IndC

H(1H),
H a subgroup of C, form a Z-basis of K0(Q[G]). Since both sides of the formula in the Lemma
are additive in V , it therefore suffices to prove the Lemma in the case V = IndC

H(1H) where
H is any subgroup of C. Let h denote the order of H. Then we obviously have:

〈[χd], [IndC
H(1H)]〉 = 〈[ResC

H(χd)], [1H ]〉 =
{

1, if h|d
0, else.

Thus we obtain:
c−1∑

d=0

d 〈[χd], [IndC
H(1H)]〉

= h + 2h + . . . +
( c

h
− 1

)
h

= h
(
1 + 2 + . . . +

( c

h
− 1

))

= h
( c

h − 1) c
h

2
=

c

2

( c

h
− 1

)

=
c

2

(
dim(IndC

H(1H))− dim
(
(IndC

H(1H))C
))

,

as was to be shown.

Similarly to the deduction of Corollary 1.8 from Corollary 1.7 we deduce the following
corollary from Corollary 1.4. An alternative approach to the following corollary based on
Ksir’s paper [Ks] and Borne’s thesis [Bo] can be found in the recent preprint [JK] by Ksir
and Joyner.
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Corollary 1.11. We assume that char(k) does not divide n. Let D =
∑

P∈X nP [P ] be a G-
equivariant divisor on X and let V be a rationally valued irreducible k-representation of G.
Then the multiplicity of V in the Euler characteristic χ(G,X,OX(D)) is equal to

dim(V ) (1− gY )+

∑

Q∈Y


dim(V )mQ̃ −

1
2

(
dim(V )− dim(V GQ̃)

)
+

lQ̃∑

d=1

〈
[χ−d

Q̃
], [ResG

GQ̃
(V )]

〉



where lP ∈ {0, . . . , eP − 1} and mP ∈ Z are given by nP = lP + mP eP for any P ∈ X.

Proof. By Corollary (1.4)(b) we have the congruence

χ(G,X,OX(D)) ≡ −[NG,X ] +
∑

Q∈Y

lQ̃∑

d=1

[IndG
GQ̃

(χ−d
P )]

in K0(k[G]) mod Z[k[G]]. By the Riemann-Roch theorem and the Riemann-Hurwitz formula
this congruence becomes an equality in K0(k[G]) after adding the term


1− gY +

∑

Q∈Y

mQ̃


 [k[G]]

on the right hand side. Now using the Proposition 1.9 and Frobenius reciprocity we obtain
Corollary 2.11.

Notice that the multiplicity 〈[χ−d

Q̃
], [ResGQ̃

(V )]〉 of the character χ−d

Q̃
of the cyclic group

GQ̃ in the restricted representation ResG
GQ̃

(V ) can easily be computed. For instance, if eQ̃ is
a power of a prime, the following lemma can be applied.

Lemma 1.12. Let C be a cyclic group of prime power order lr, let V be a rationally valued
k-representation of C, let χ : C → k× be a primitive character and let d = lsm ∈ Z with
s ∈ {0, . . . , r−1} and m ∈ Z coprime to l. Then the multiplicity 〈[χd], [V ]〉 of χd in V is equal
to

dim(V H)− dim(V H′
)

lr−s−1(l − 1)

where H and H ′ are the (unique) subgroups of C of order ls and ls+1, respectively.

Proof. Easy.

2. The equivariant Grothendieck-Ogg-Shafarevich formula

The goal of this section is to prove an equivariant Grothendieck-Ogg-Shafarevich formula.
Let X be a connected smooth projective curve over an algebraically closed field k and let

G be a finite subgroup of Aut(X/k) of order n. We assume in this section that char(k) does
not divide n. Let π : X → Y , gX , gY , GP and eP be defined as in §1. Furthermore, we denote
the generic point of X by η.

Let l 6= char(k) be a prime and let F be a constructible Fl-sheaf on Xét with G-action, i.e.,
we have isomorphisms g∗(F) → F , g ∈ G, which satisfy the usual composition rules. Then
the étale cohomology groups Hi

ét(X,F), i > 0, are Fl-representations of G. Let

χét(G,X,F) := [H0
ét(X,F)]− [H1

ét(X,F)] + [H2
ét(X,F)] ∈ K0(G,Fl)
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denote the equivariant Euler characteristic; here, K0(G,Fl) is the Grothendieck group of Fl-
representations of G (of finite dimension). Furthermore, let

α(F) :=
∑

P∈X

αP (F) ∈ Z

denote the sum of the wild conductors of F (see p. 188 in [Mi]) and let IP := ker(Fl[GP ] → Fl)
denote the augmentation representation of GP (for P ∈ X).

The following theorem may be viewed as an analogue of Theorem 1.1; it computes the
equivariant Euler characteristic χét(G,X,F).

Theorem 2.1 (Equivariant Grothendieck-Ogg-Shafarevich formula). We have in K0(G,Fl)Q:

χét(G,X,F) =

=

(
(2− 2gY ) dimFl

(Fη̄)− 1
n

α(F) +
∑

P∈X

eP

n
(dimFl

(FP )− dimFl
(Fη̄))

)
[Fl[G]] (2)

−
∑

P∈X

eP

n
[IndG

GP
(FP ⊗ IP )].

Remark 2.2. Let dimFl
(FP ) = dimFl

(Fη̄) for all P ∈ X with eP 6= 1. Then formula (2) has
the following shape:

χét(G,X,F) =
(

(2− 2gY ) dimFl
(Fη̄)− 1

n
c(F)

)
[Fl[G]]−

∑

P∈X

eP

n
[IndG

GP
(FP ⊗ IP )];

here, c(F) =
∑

P∈X cP (F) is the sum of the conductors of F (see p. 188 in [Mi]). This formula
becomes particularly simple in the following two extreme cases.
(a) Let π : X → Y be étale. Then we have:

χét(G,X,F) =
(

(2− 2gY ) dimFl
(Fη̄)− 1

n
c(F)

)
[Fl[G]].

If G is the trivial group, this is the classical Grothendieck-Ogg-Shafarevich formula (see The-
orem 2.12 on p. 190 in [Mi]). In particular, we obtain the following formula for an arbitrary
group G:

χét(G, X,F) =
1
n
· χét(X,F) · [Fl[G]]

(notice that n(2− 2gY ) = (2 − 2gX) by the Hurwitz formula). This formula remains valid, if
we drop the assumption that char(k) does not divide n (see the proof below). In particular we
obtain that the (non-equivariant) Euler characteristic χét(X,F) is divisible by n. Finally, the
latter formula may be viewed as an analogue of Theorem 2.4 in [EL].
(b) Let F be the constant sheaf Fl with trivial G-action. Then we obtain the following formula:

χét(G,X,F) = (2− 2gY )[Fl[G]]−
∑

P∈X

eP

n
[IndG

GP
(IP )].

This is the Fl-version of the formula in Remark 2.9 on p. 187 in [Mi]. (Notice that the Artin
character is the character of the augmentation representation since char(k) does not divide
n.) It can be derived from the Ql-version by applying the decomposition homomorphism as in
lines 6 through 9 on p. 191 in [Mi].

Proof. (of Theorem 2.1) As in the proof of Theorem 1.1 we will show that the (Brauer)
character values of both sides of formula (2) coincide for all σ ∈ G. So let σ ∈ G. Then we
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have:
1
n

∑

P∈X

eP · Trace(σ|IndG
GP

(FP ⊗ IP )) =

=
1
n

∑

P∈X

∑

τ∈G, τ−1στ∈GP

Trace(τ−1στ |FP ⊗ IP )

(by Lemma (21.28) on p. 509 in [CR2])

=
1
n

∑

P∈X

∑

τ∈G, τ(P )∈Xσ

Trace(σ|Fτ(P ) ⊗ Iτ(P ))

=
∑

P∈Xσ

Trace(σ|FP ⊗ IP )

=
∑

P∈Xσ

(Trace(σ|FP ⊗ Fl[GP ])− Trace(σ|FP ))

=
∑

P∈Xσ

(dimFl
(FP ) · Trace(σ|Fl[GP ])− Trace(σ|FP )) (by Frobenius reciprocity)

=




− ∑

P∈Xσ

Trace(σ|FP ) for σ 6= id
∑

P∈X

dimFl
(FP ) · (eP − 1) for σ = id.

Hence, for σ 6= id, the character value of the right hand side of formula (2) at the place σ
equals

∑
P∈Xσ Trace(σ|FP ). By the Lefschetz fixed point formula (see Theorem 2 in [Do2] or

[Ve]; here, we use that char(k) does not divide n), this equals the character value of the left
hand side.
For σ = id, the character value of the right hand side at the place σ is

n(2− 2gY ) dimFl
(Fη̄)− α(F) +

∑

P∈X

dimFl
(FP )−

∑

P∈X

eP · dimFl
(Fη̄) =

= (2− 2gX) dimFl
(Fη̄)−

(
α(F) +

∑

P∈X

(dimFl
(Fη̄)− dimFl

(FP ))

)

by the Hurwitz formula. By the classical Grothendieck-Ogg-Shafarevich formula (see Theorem
2.12 on p. 190 in [Mi]), this equals the character value of the left hand side at the place σ = id.
Thus, the proof of Theorem 2.1 is complete.

The following corollary may be viewed as the analogue of Corollary 1.3; it computes the
multiplicity of any irreducible Fl-representation V of G in the equivariant Euler charac-
teristic χét(G, X,F). We write Irr(G,Fl) for the set of isomorphism classes of irreducible
Fl-representations and set sV := dimFl

(EndFl[G](V )) for V ∈ Irr(G,Fl). For Q ∈ Y and
V ∈ Irr(G,Fl), let mQ,F,V denote the multiplicity of the trivial representation Fl in FP ⊗IP ⊗
ResG

GP
(V ) where P ∈ π−1(Q).

Corollary 2.3. We assume that (l, ord(G)) = 1. Then we have in K0(G,Fl)Q:

χét(G,X,F) =

=

(
(2− 2gY ) dimFl

(Fη̄)− 1
n

α(F) +
∑

P∈X

eP

n
(dimFl

(FP )− dimFl
(Fη̄))

)
[Fl[G]]

−
∑

V ∈Irr(G,Fl)

1
sV

∑

Q∈Y

mQ,F,V̌ [V ].

Proof. Let 〈, , 〉 : K0(G,Fl) × K0(G,Fl) → Z denote the symmetric bilinear form given by
〈[V ], [W ]〉 := dimFl

(HomFl[G](V,W )) for any Fl-representations V , W of G. Then we obviously
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have:
(a) 〈[V ], [W̌ ⊗X]〉 = 〈[V ⊗W ], [X]〉 for any Fl-representations V , W , X of G.
(b)

∑
V ∈Irr(G,Fl)

1
〈[V ],[V ]〉 〈[V ], x〉[V ] = x for all x ∈ K0(G,Fl).

(c) 〈x, ResG
H(y)〉 = 〈IndG

H(x), y〉 for any subgroup H of G, x ∈ K0(H,Fl) and y ∈ K0(G,Fl).
Hence we have for all P ∈ X:

∑

V ∈Irr(G,Fl)

1
〈[V ], [V ]〉 〈[Fl], [FP ⊗ IP ⊗ ResG

GP
(V̌ )]〉[V ] =

=
∑

V ∈Irr(G,Fl)

1
〈[V ], [V ]〉 〈[V ], [IndG

GP
(FP ⊗ IP )]〉[V ]

= [IndG
GP

(FP ⊗ IP )] in K0(G,Fl).

Hence we have:
∑

V ∈Irr(G,Fl)

1
sV

∑

Q∈Y

mQ,F,V̌ [V ] =

=
∑

P∈X

eP

n

∑

V ∈Irr(G,Fl)

1
〈[V ], [V ]〉 〈[Fl], [FP ⊗ IP ⊗ ResG

GP
(V̌ )]〉[V ]

=
∑

P∈X

ep

n
[IndG

GP
(FP ⊗ IP )] in K0(G,Fl).

Thus, Corollary 2.3 follows from Theorem 2.1.

The analogue of the element [NG,X ] occurring in Corollary 1.4(a) is
∑

P∈X

eP

n
[IndG

GP
(IP )].

It is obviously an element of K0(G,Fl). More generally,
∑

P∈X
eP

n [IndG
GP

(FP ⊗ IP )] is an
element of K0(G,Fl), since IndG

GP
(FP ⊗IP ) is isomorphic to IndG

GP ′
(FP ′⊗IP ′) for any P, P ′ ∈

X with π(P ) = π(P ′). Furthermore,
∑

P∈X
eP

n (dimFl
(FP )− dimFl

(Fη̄)) is an integer. Thus,
Theorem 2.1 implies the following corollary.

Corollary 2.4. The sum α(F) of the wild conductors αP (F), P ∈ X, is divisible by n.

In particular, Theorem 2.1 expresses χét(G,X,F) as an integral linear combination of Fl-
representations; thus, the analogue of Corollary 1.4 is already built into Theorem 2.1.
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