DNS of aircraft wake vortices: the effect of stable stratification on the development of the Crow instability

Coleman, G.N., Johnstone, R., Yorke, C.P. and Castro, I.P. (2010) DNS of aircraft wake vortices: the effect of stable stratification on the development of the Crow instability. In, Armenio, Vincenzo, Geurts, Bernard and Frolich, Jochen (eds.) Direct and Large-Eddy Simulation VII. Proceedings of the Seventh International ERCOFTAC Workshop on Direct and Large-Eddy Simulation Heidelberg, DE, Springer, 519-525. (ERCOFTAC, 13 7). (doi:10.1007/978-90-481-3652-0_75).


Full text not available from this repository.


A numerical experiment is performed to determine the likelihood that the Crow instability will mitigate the potentially hazardous effects of the buoyancy-induced rebound of initially parallel line vortices. Parameters are chosen to correspond to wake vortices downstream of an elliptically loaded wing with large span (typical of the A380) landing in very stable conditions. The DNS is initiated by perturbing the vortex pair into the shape of the linearly most unstable Crow eigenmode, with a maximum displacement of 1% of the initial distance between the pair. Under these conditions, the Crow instability progresses fast enough to break the two dimensionality of the vortex system before it returns to its original elevation. This suggests that in many cases the Crow instability will prevent the rebounding vorticity from being a serious danger to following aircraft. Whether or not this will always happen in practice is an open question, requiring further investigation

Item Type: Book Section
Digital Object Identifier (DOI): doi:10.1007/978-90-481-3652-0_75
ISBNs: 9789048136520
Subjects: T Technology > TL Motor vehicles. Aeronautics. Astronautics
Divisions : Faculty of Engineering and the Environment > Aeronautics, Astronautics and Computational Engineering > Aerodynamics Flight Mechanical Research Group
ePrint ID: 300658
Accepted Date and Publication Date:
Date Deposited: 29 Feb 2012 09:23
Last Modified: 04 May 2016 13:19
URI: http://eprints.soton.ac.uk/id/eprint/300658

Actions (login required)

View Item View Item