The University of Southampton
University of Southampton Institutional Repository

Consumer species richness and identity effects on marine macroalgal decomposition

Consumer species richness and identity effects on marine macroalgal decomposition
Consumer species richness and identity effects on marine macroalgal decomposition
Few manipulative experiments that explicitly test the relationship between biodiversity and ecosystem function have focussed on regenerative processes such as decomposition and nutrient cycling. Of the studies that have taken place, most have concentrated on the effects of leaf litter diversity rather than the effects of consumer diversity on decomposition. In the present study, we established an in-situ mesocosm experiment on an intertidal mudflat in the Ythan Estuary, Scotland, to investigate the interactive effects of consumer diversity, resource diversity and microbial activity on algal consumption and decomposition. We assembled communities of three commonly occurring macrofaunal species (Hediste diversicolor, Hydrobia ulvae and Littorina littorea) in monoculture and all possible combinations of two and three species mixtures and supplied them with single vs two-species mixtures of the algae Fucus spiralis and Ulva intestinalis. Further, we also investigated whether algal decomposition changes nutrient remineralisation within the sediment by determining the C:N ratio of the surficial sediment. Data were analysed using extended linear regression with generalized least squares estimation to characterise the variance structure. We found that consumer species diversity effects are best explained by compositional effects and that species richness per se may not be the single most important determinant of resource use and decomposition in this community. Algal identity and invertebrate identity effects underpin the observed response and reflect species-specific traits associated with algal consumption and processing. The role of the microbial community is comparatively weak, but strongly linked to faunal activities and behaviour. The C:N ratio of the sediment increased with consumer species richness, indicating increased mineralisation in more diverse communities. Overall, our results suggest that although consumer species richness effects per se are weak, decomposition and subsequent incorporation of resources is nevertheless dependent on the composition of the decomposer community, which, in turn, has important implications for biogeochemical nutrient cycling in marine coastal habitats.
0030-1299
77-86
Godbold, Jasmin A
df6da569-e7ea-43ca-8a95-a563829fb88a
Solan, Martin
c28b294a-1db6-4677-8eab-bd8d6221fecf
Killham, Ken
0331c809-c043-44fa-bb77-aa612ab641b4
Godbold, Jasmin A
df6da569-e7ea-43ca-8a95-a563829fb88a
Solan, Martin
c28b294a-1db6-4677-8eab-bd8d6221fecf
Killham, Ken
0331c809-c043-44fa-bb77-aa612ab641b4

Godbold, Jasmin A, Solan, Martin and Killham, Ken (2009) Consumer species richness and identity effects on marine macroalgal decomposition. Oikos, 118 (1), 77-86. (doi:10.1111/j.1600-0706.2008.17072.x).

Record type: Article

Abstract

Few manipulative experiments that explicitly test the relationship between biodiversity and ecosystem function have focussed on regenerative processes such as decomposition and nutrient cycling. Of the studies that have taken place, most have concentrated on the effects of leaf litter diversity rather than the effects of consumer diversity on decomposition. In the present study, we established an in-situ mesocosm experiment on an intertidal mudflat in the Ythan Estuary, Scotland, to investigate the interactive effects of consumer diversity, resource diversity and microbial activity on algal consumption and decomposition. We assembled communities of three commonly occurring macrofaunal species (Hediste diversicolor, Hydrobia ulvae and Littorina littorea) in monoculture and all possible combinations of two and three species mixtures and supplied them with single vs two-species mixtures of the algae Fucus spiralis and Ulva intestinalis. Further, we also investigated whether algal decomposition changes nutrient remineralisation within the sediment by determining the C:N ratio of the surficial sediment. Data were analysed using extended linear regression with generalized least squares estimation to characterise the variance structure. We found that consumer species diversity effects are best explained by compositional effects and that species richness per se may not be the single most important determinant of resource use and decomposition in this community. Algal identity and invertebrate identity effects underpin the observed response and reflect species-specific traits associated with algal consumption and processing. The role of the microbial community is comparatively weak, but strongly linked to faunal activities and behaviour. The C:N ratio of the sediment increased with consumer species richness, indicating increased mineralisation in more diverse communities. Overall, our results suggest that although consumer species richness effects per se are weak, decomposition and subsequent incorporation of resources is nevertheless dependent on the composition of the decomposer community, which, in turn, has important implications for biogeochemical nutrient cycling in marine coastal habitats.

Other
Godbold_et_al_Oikos_2009.PDF - Version of Record
Restricted to Repository staff only
Request a copy

More information

Published date: January 2009
Organisations: Ocean Biochemistry & Ecosystems

Identifiers

Local EPrints ID: 301266
URI: http://eprints.soton.ac.uk/id/eprint/301266
ISSN: 0030-1299
PURE UUID: 91edb885-6648-4f44-ba79-20586c7f4986
ORCID for Jasmin A Godbold: ORCID iD orcid.org/0000-0001-5558-8188
ORCID for Martin Solan: ORCID iD orcid.org/0000-0001-9924-5574

Catalogue record

Date deposited: 29 Feb 2012 13:47
Last modified: 15 Mar 2024 03:41

Export record

Altmetrics

Contributors

Author: Martin Solan ORCID iD
Author: Ken Killham

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×