HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk



http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Domain Transformations for Optical
Telecommunications Signals

by
Trina Tsao-Tin Ng

A thesis submitted for the degree of Doctor of Philosophy

in the
FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

Optoelectronics Research Centre

February 2010



UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
OPTOELECTRONICS RESEARCH CENTRE

Doctor of Philosophy

Domain Transformations for Optical Telecommunications Signals

by Trina Tsao-Tin Ng

In this thesis, the transformation of optical telecommunication signal waveforms be-
tween the temporal and spectral domains is investigated. Temporal optical Fourier
transformations (TOFTs) are presented with the primary aim of mitigating distortions
in high repetition rate telecommunication signals, by transferring them from the tempo-
ral domain into the frequency domain. Development of TOFT is extended to aid their
suitability for other applications also.

The TOFT is based on inducing cross-phase modulation on the signal to be transformed,
using shaped parabolic pulses as the pump. To demonstrate the technique, various meth-
ods of generating parabolic pulses are investigated and considered for their suitability
for TOFTs. Firstly, parabolic pulses are generated in a nonlinear fashion exploiting
their natural evolution in a normally dispersive fibre. Compensation is performed on
timing jitter signals using this method. In another configuration, parabolic pulses are
generated with a superstructured fibre Bragg grating. The passive nature and the chirp
free parabolics generated by the grating enabled greater flexibility in the experimental
parameters thus improving the fidelity of the TOFT. Compensation of pulses distorted
by second and third order dispersion is demonstrated.

Unexpected results in the first two TOFT experiments led to further analysis and the
derivation of the conditions for a complete TOFT. Sophisticated reconfigurable filters
are used to convert an optical frequency comb (OFC) into one or more simultaneous
pulse sources, each with a configurable shape and phase profile. Pulses generated using
the OFC and reconfigurable filter are used to experimentally verify the new theory.
The thesis also includes a presentation of a linear frequency resolved optical gating tech-
nique. The versatility of the technique was demonstrated through the characterisation
of many of the pulses generated in this thesis, providing insight to their time-frequency

domain relationships.



Contents

List of Figures

List of Tables

Declaration of Authorship
Abbreviations
Acknowledgements

1 Introduction

2 Introduction to Temporal Optical Fourier Transforms
2.1 Space-Time Duality . . . . . .. . .. ...
2.2 Applications of Space-Time Duality . . .. .. .. ... ... ... ....
2.3 Implementation of Time Lenses . . . . . . . . . . .. ... ... ......
2.3.1 Linear Time Lenses . . . . . . . . . ... .. .. ... ...
2.3.2 Nonlinear Time Lenses . . . . . . . . . .. .. . ... ... .....
2.3.3 Time Lenses in Optical Fibres . . . . .. ... ... ... .....
2.3.4 Summary of Time Lensing Techniques . . . . . . . . .. ... ...
2.4  Temporal Optical Fourier Transforms . . . . . .. ... ... ... ....
2.5 Conclusions . . . . . . .. L

3 The Linear FROG
3.1 Background . . . . . ...
3.2 Characterization of Pulse Compression in a Bismuth-Oxide Fibre . . . . .
3.2.1 Background . . . . .. ..o
3.2.2 Experiments . . . . . .. ...
3.23 Conclusions . . . . . . . . .. e
3.3 Measurement of Semiconductor Optical Amplifier Responses . . . . . . . .
3.3.1 Background . . . . .. .. o
3.3.2 Experimental Setup . . . .. ... ... L.
3.3.3 Cross-Gain Modulation Measurements . . . . . . ... ... .. ..
3.3.4 Cross-Phase Modulation Measurements . . . . ... ... ... ..
3.3.5 Conclusions . . . . . . . . .. e
3.4 Conclusions . . . . . . . . . e

4 Timing Jitter Compensation using TOFTs
4.1 Nonlinearly Generated Parabolic Pulses . . . . .. .. ... ... .....

ii

iv

ix

xi

xiii

13
15
15
16
19
23
25
29

35
35
43
43
46
49
50
50
o1
52
95
o6
o6

61



CONTENTS

iii

4.1.1 Principle of Passive Two-Stage Parabolic Generation . . . . . . . .
4.2 Experiment Design . . . . . . . . ... Lo
4.2.1 TOFT Experiment Design . . . . . . ... ... ... ... .....
4.2.2 Parabolic Pulse Design. . . . . . . ... ... ... ... ...
4.2.3 The Nonlinear Fibre . . . . . . .. ... ... ... .. ... ...
4.24 Test Signal . . . . .. L Lo
4.3 Timing Jitter Compensation Experiment and Results. . . . . .. ... ..
4.4 Conclusions . . . . . . . e

5 TOFT using Parabolic Pulses Formed in a SSFBG
5.1 Fibre Bragg Gratings . . . . . . . .. .. . L
5.2  Superstructured Fibre Bragg Gratings . . . . . ... .. ... ... .. ..
5.3 TOFT Setup using a Superstructured Grating . . . . . . .. ... ... ..
5.4 Compensation of Group Velocity Dispersion using TOFT . . ... .. ..
5.5 Third Order Dispersion Compensation using TOFT . . . .. .. ... ..
5.6 Discussion . . . . . . . Lo e
5.7 Conclusions . . . . . . . . ..

6 Pulse Generation with an Optical Frequency Comb Generator
6.1 The Optical Frequency Comb Generator . . . . . . .. .. ... ... ...
6.1.1 Characterisation of the OFCG . . . . . ... ... ... .. ....
6.2 Variable Pulse Generator using a Tunable Flat Top Filter . . . . .. . ..
6.2.1 The Tuneable Flat-Top Filter . . . . . . . .. .. .. .. ... ...
6.2.2 Experimental Setup . . . .. .. .. ... ... ... ...
6.2.3 Results and Discussion . . . . . . . ... ... ... .........
6.3 Configurable Spectral Filtering for Creating Multiple Pulse Sources . . .
6.3.1 The Configurable Filter . . . . . . ... ... ... ... .....
6.3.2 Pulse Shaping . . . . . .. . ... .
6.4 Conclusions . . . . . . . . . . . e

7 Complete TOFTs using Dark Parabolic Pulses
7.1 Theory Revisited . . . . . . . . . . .
7.2 Practical Limitations . . . . . . . . ... oo
7.2.1 Dispersion Map Analysis . . . . .. .. ... ... ... ... .
7.2.2 Pulse Profile Analysis . . . . ... ... ... ... ... .....
7.3 Experimental Verification . . . . ... .. . .. ... ... ... ...,
7.3.1 Experimental Setup . . . .. .. ... ... ... .
7.3.2 Verification of the TOFT Operational Point . . . . . . . . ... ..
7.3.3 Verification of the Dispersion Map . . . . . ... ... ... ....
7.3.4 TOFT of a Square Spectrum . . . . . . . .. .. ... ... ....
7.4 Discussion and Conclusions . . . . . . . . . .. ... ...

8 Conclusions and Future Work
A The DFB Gain-Switched Laser

List of Publications

62
64
64
66
69
70
71
77

79
80
84
84
89
92
93
95

98

98
102
106
106
107
109

. 110

110
112
115

119
120
123
123
125
129
129
132
134
135
138

140

146

149



List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8
2.9

3.1
3.2
3.3
3.4

3.5

3.6
3.7
3.8

3.9

Space-time duality allows for an analogy to be drawn between spatial
optical Fourier transforms which give diffraction patterns and temporal
optical Fourier transforms. . . . . . . . . . . . . ... ... ... ...
Spatial matched filtering can be applied with a 4f correlator. Multiplica-
tion of the beam’s Fourier transform F'(k,, k) with the Fourier transform
of the shape to match G(k;, ky) with a mask is equivalent to the correla-
tion of the beam f(z,y) and the desired shape g(z,y). Ounly if f and g
are the same, will the filter be matched and give a high intensity peak. . .
Prism pairs in space (time) can be used to displace optical pulse in space
(time). (Edited from figurein [9]) . . . . . . . ...
Two different lenses are used at the correct separation such that a wave-
form is scaled by the ratio of the focal lengths. . . . . . . ... ... ...
Cross section of Godil’s multipass microwave optical modulator. A time
varying phase shift is induced as the refractive index of the LiNbOj is
modulated by a RF signal. Parts of this figure are obtained from [7]

Two waves combine in a x crystal to form SHG, SFG and DFG prod-
ucts. The SFG product can be selected by an aperture. . . . .. ... ..
Usable duty cycles over which (a) a sinusoid, (b) a Gaussian and (c) a
parabolic can induce a parabolic phase shift. . . . ... ... ... ....
Simulation of a double peaked pulse undergoing TOFT. . . . .. ... ..
Simulation of a square pulse undergoing TOFT. . . . . . .. ... ... ..

Basic layout of a spectrometer. . . . . . . ... ... ... ...
Basic layout of an autocorrelator . . . . . . .. ... ... L.
Operational concept of an optical sampling oscilloscope. . . . . . . . . ..
(a) A 3D object can be reconstructed using two 2D images viewed at
different angles. (b) Linearly chirping the pulse effectively ‘turns’ it in the
frequency-time plane so that it can be reconstructed from its projections.
Implementation of a SHG SPIDER: The pulse is duplicated with delay 7
in an interferometer so that each replica picks up a different spectral shift
when mixed with a dispersed pump in the SHG crystal. The two are then
measured with a spectrometer to get an interferogram. . . . . . . . .. ..
Layout of our L-FROG pulse characterization setup. . . . . . .. .. ...
The pulse compression setup. . . . . . . . . .. ...
(a) The pulse emerging from the amplifier is 1.3 ps in width with a near-
zero chirp. (b) The spectrum of the amplified pulse. . . . . .. ... ...
(a) The L-FROG retrieval of the signal pulse after the Bismuth fibre is
shown compared to simulation. (b) Good correlation is shown between
the simulated, retrieved and independently measured spectra. . . . . . . .

iv

39



LIST OF FIGURES v

3.10
3.11
3.12
3.13
3.14
3.15

3.16

4.1

4.2
4.3

4.4
4.5

4.6
4.7

4.8
4.9

4.10

4.11

5.1
5.2
5.3

5.4
5.5
5.6
5.7

5.8

The phase (dash-dot) and intensity (solid line) profile of the compressed
signal pulse as retrieved by (a) the MZM-FROG and (b) the EAM-FROG. 48
Comparison of the measured and retrieved spectra for the two modulators. 49
Experimental setup of the SOA-MZI characterisation. . . ... ... ... 52
Measured spectrogram for pump power = -10dBm. . . . .. .. ... .. 53
Measured intensity and phase for pump power = -10 dBm. . . . . .. .. 53
(a) Measured probe transmission pulses for different pump powers. (b)
Maximum (leading edge) chirp for XGM at different pump powers. . . . . 54
Measured SOA-MZI output pulses for different average pump powers.
(b). Maximum (leading edge) chirp of the output pulses for different
pump input pOwers. . . . . ...l e e e 55
Evolution of the misfit parameter by N and . The minimum misfit point
is indicated by the yellow diamond. (adapted from figure in [5]) . . . . . . 63
Basic setup for a TOFT experiment using XPM with parabolic pulses. . . 64
(a) Retrieved FROG trace and (b) spectrum of the GSL output pulse
(before filtering) . . . . . ... Lo 66
(a) Retrieved FROG trace and (b) spectrum of filtered GSL pulse. . . . . 67
(a) Lowest misfit parabolic simulated using P=5.5W and 55.6 m DCF (b)
Wider parabolic simulated using P=8W and 50 m DCF . .. ... .. .. 68
Setup of the TOFT experiment to compensate for timing jitter. . . . . . . 72
(a) The retrieved L-FROG trace of the nonlinearly generated parabolic
and (b) the spectrum of parabolic pulse, before and after the HNLF . . . 72
(a) Retrieved FROG trace and (b) spectrum of the 10 Gb/s signal . . . . 73
Waveform of the data (a) at 10 GB/s, (b) through the OMUX and (c)
after multiplexing to 40 Gb/s. . . . . . . ... Lo Lo 73
Timing jitter was quantified by taking a histogram of the samples in the
selected histogram area. A narrow intensity slice and a wide temporal
selection is used take a width measurement of the leading edge. . . . . . . 74
Jittered 40Gb/s signal: Eye (a) before TOFT and (b) after TOFT with
one channel regenerated (arrow). L-FROG (c) before TOFT and (d) after
TOFT with one channel regenerated (arrow). Spectrum (e) before TOFT
and (f) after TOFT. . . . . ... ... . . 76
Filtering by a fibre Bragg grating. . . . . ... ... ... ... ...... 80
Schematic of a grating writing rig. . . . . . . . .. ... ... L. 81
Some common fibre Bragg grating structures. Shown are (a) uniform, (b)
raised-cosine apodized, (c) chirped and (d) phase shifted grating profiles
and their corresponding spectra. Note that the grating period has been
greatly exaggerated in these figures. . . . . . ... ... ... ... ... 82
(a) Photo of the tunable TOD grating rig. (b) Characterisation of the
third order dispersion TOD grating at the setting used for experiment. . . 83
Flow chart of the steps in designing a SSFBG . . . . . . . ... ... ... 85
Experimental setup of the Fourier transform compensator using a SSFBG. 85
(a) L-FROG characterization of the MLL output pulse. (b) Spectrum of
the MLL output. . . . . . . . .. . . 86
(a) Temporal profile of the parabolic pulse as compared to an ideal 10 ps

parabola. (b) Spectral response of the SSFBG. . . . ... ... ... ... 86



LIST OF FIGURES vi

5.9

5.10

5.11

5.12

5.13

5.14

6.1
6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Operational principle of the NOLM. (a) The counter-propagating waves
are 7/2 out of phase. (b) After traversing the same path they interfere
destructively at the output and constructively at the input. (c) XPM
with a control pulse induces a phase shift in one wave which opens a gate
to produce a pulse similar to the control.. . . . . .. .. ... ... .... 88
(a) Temporal profile of the clean input signal measured at output of the
NOLM using the L-FROG and (b) its corresponding spectrum compared
tothe OSA. . . . . . . . . 89
Dependence of the output pulse width on the pump power for various
values of GVD distortion, indicating the correct operating point for TOFT 90
Autocorrelation traces of the three cases of GVD-distorted pulses at the
(a) input of the compensating system and (b) at the output of the com-
pensating system. Note that the labelled widths refer to the FWHM of
the autocorrelation traces rather than the FWHM of the pulse intensity
profiles. . . . . .. 91
Signal spectra (a) before the TOFT and after the TOFT for (b) no signal
dispersion, (c) dispersed by 100 m SMF and (d) dispersed by 200 m SMF. 91
Temporal profile (a) and spectrum (b) of the TOD-distorted pulses at the
input of the TOFT compensator. At the output of the TOFT compen-
sator, the temporal profile (¢) and spectrum (d) of the TOD-distorted
pulses have swapped. Shape of output spectrum imperfect due to leak-
age outside the parabolic window, but has expected shape compared to
simulation. . . . . . . ... e 92
Simulation of the TOFT assuming a wider parabolic. (a) The simulated
input pulse and wide parabolic pump. (b) The resulting spectrum after

Principle of the optical frequency comb generator. . . . ... .. .. ... 99
Pulse generation in the OFCG. A pulse is produced every time the mod-
ulating chirp brings the beam through the cavity resonance. The up and
down chirps in each cycle generate a pair of oppositely chirped pulses per

period. . . . ..o 100
Theoretical temporal profile of the OFCG output with (a) no extra dis-
persion and (b) with dispersion. . . . . . . ... ... L. 102
(a) Measured spectrum of the OFC without amplification (b) Autocorre-
lation of the OFC . . . . . . . . . . . 103
Setup to characterise the OFCG output. . . . . . .. .. .. .. ... ... 103

Spectrogram of the OFCG showing the pulses offset by T/2. It is possible
to filter out just one of the pulses by filtering a portion from just one side
of the spectrum only (red shading). . . . . . . ... ... ... ... .... 104
(a) L-FROG retrieved profile of the OFCG output. (b) Spectrum of the
OFCG output. The inset shows the matching between the OSA measured
and the retrieved spectra in the central region. . . . . . . ... ... ... 104
Retrieved spectra of the two OFC pulses. The spectra are compared to
the OSA measured spectrum. . . . . . . . ... ... ... ... ..., 105
L-FROG retrieved profiles of the pulses on the (a) red side and (b) blue
side of the spectrum respectively. . . . . . . .. .. ... ... .. 105



LIST OF FIGURES vii

6.10

6.11
6.12

6.13
6.14

6.15
6.16

6.17

6.18

6.19

6.20

6.21

6.22

7.1

7.2

7.3

7.4

7.5

7.6

(a) Schematic of the Santec tunable filter (b) Bandwidth tuning is ob-
tained in the filter by moving the triangular mirror perpendicular to the
beam thus reflecting a slice of differing width. (c) Wavelength tuning
is obtained in the filter by changing the tilt angle of the mirror in the
wedge reflector, thus changing the portion of the spectrum reflected off

the triangular mirror. (Edited from figurein [8]) . . . .. ... ... ... 107
Setup of the variable pulse generator . . . . . . ... .. ... ... .... 107
Filtered output pulse profiles and corresponding spectra for bandwidths

of (a) 0.5 nm, (b) 3nmand (¢) 6nm . . . . ... ... ... ... 108
Simulated OFCG output without any additional dispersion. . . . . . . .. 109

(a) Spectral profile of a filter that provides apodised pulses, and the cor-
responding filtered output; (b) Output pulses from the compensating filter.110

Schematic of the WS 4000E.(Edited from figure in [9]) . . . . . . ... .. 111
Dark parabolic pulse designs with parabolic and abrupt truncated sides.
(a) Temporal (b) Spectral . . . . ... ... .. ... ... .. ... 112

The (a) spectral and (b) temporal effects of truncating the parabolic pulse
spectrum. Spectral apodization is shown to smooth out the temporal
ripples from the truncation. . . . . . . .. ... ... ... L. 113
The OFC spectrum before filtering (black) and after the pump port is
passed through the external filter (blue). The parabolic spectrum design
isshowninred. . . . . . . . . . ... 114
Attenuation and phase profiles configured on the WaveShaper. The dif-
ferent colours of the pump and signal indicate that they are set to exit

from separate ports. . . . . . . . ... 116
(a) Temporal and (b) Spectral profiles of the dark parabolic pulses char-
acterised with the L-FROG and compared to the design. . . . . . . .. .. 116
(a) Temporal and (b) Spectral profiles of the Gaussian signal pulses char-
acterised with the L-FROG and compared to the design. . . . . . . .. .. 116

(a) Temporal and (b) Spectral profiles of the square spectrum pulses gen-
erated by compensating for the OFCG spectral slope and characterised
with the L-FROG. . . . . . . . .. . . . 117

Dispersion maps of the (a) temporal widths in ps and (b) 3-dB spectral
widths in GHz of the output, as a function of perturbations in & and
& around the ideal TOFT condition. The simulated input pulses were
transform limited and had an input width of 2 ps. . . . . ... ... ... 122
Dispersion maps and spectra simulating XPM between the signal and (a)
a bright parabolic pump with 20 nm separation, (b) a bright parabolic
pump with 100 nm separation and (c) a dark parabolic pulse with 20 nm
separation. . . . . .. L L. 124
In the ideal case, a quadratic phase shift is applied across the whole signal
resulting in a perfect transform. . . . . . .. ... oo 0oL 126
Truncation of the parabolic reduces the transform window. This in turn
leads to ripples along the top edge of the transformed square. . . . . . . . 126
The square pulse is completely confined within the parabolic. However,
there are still ripples in the transformed profile. . . . . . . .. .. ... .. 127
The pre-dispersion causes the square pulse to leak out of the parabolic
window causing the ripples in the transform. A wider window reduces
the ripples significantly. . . . . . . . ... oo oo 128



LIST OF FIGURES viii

7.7

7.8

7.9

7.10

7.11

7.12
7.13
7.14

7.15
7.16
7.17
7.18

7.19

Al

The realistic, spectrally limited dark parabolic deviates from the ideal
in the centre. The change in chirp in the centre of the window gives a
corresponding distortion in the centre of the transformed pulse. . . . . . . 129
Experimental setup to study complete TOFTs. . . . . . ... ... .... 130
The dark parabolic pump and Gaussian signal were both carved out of
the same optical frequency comb. . . . . . .. ... 130
Profile of the input signal pulse compared to the dark parabolic pump
with and without the maximum applied pre-dispersion (4.8 ps?). . . . .. 131
Plot of output signal pulse width versus average pump power for three
input dispersions. The TOFT point can be found at the power where the

output pulse widths all match. . . . .. ... ... .. ... ... 132
Comparison of measured pump SPM compared with simulated SPM using

apeak power of 3.75 W. . . . . ... 133
(a) Pump and (b) Signal profiles before and after SPM. . . . ... .. .. 133

The simulated dispersion map of autocorrelation values. The red dots
and numbers indicate the temporal autocorrelation width of our mea-
surements I PS. . . . .. oo o e e e e e e e 135
Autocorrelations of output pulses along the lines (a) & = 1 and (b) & = 1.135
Spectral width variation. . . . . . . .. . ... ... 136
Spectral envelopes the of output pulses along the lines (a) £&; = 1 and (b)
N 136
(a) Autocorrelation and (b) spectral traces of the test signal before (red)
and after (blue) TOFT. The simulated traces are shown with dotted lines. 137
The (a) autocorrelation and (b) spectral traces of the sinc pulse before the
OFT (blue), after the OFT when there is no pre-dispersion used (red) and
after the OFT when the pre-dispersion equals the post-dispersion (black) 137

Gain switching laser time characteristics (from [1]). . . . . . . . ... . .. 147



List of Tables

2.1 Summary of time lensing techniques . . . . . .

4.1 Parameters for the 220 m HNLF used for XPM

5.1 Parameters for the 490 m HNLF used in the NOLM. . . .. ... ... ..

ix



Declaration of Authorship

I, Trina Tsao-Tin Ng
declare that the thesis entitled:
Domain Transformations for Telecommunications Applications

and the work presented in the thesis are both my own, and have been generated by me

as the result of my own original research. I confirm that:

e this work was done wholly or mainly while in candidature for a research degree at

this University;

e where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly

stated;

e where I have consulted the published work of others, this is always clearly at-

tributed;

e where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;
e [ have acknowledged all main sources of help;

e where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

e parts of this work have been published as: [See List of Publications].

Trina Tsao-Tin Ng February 2010



Abbreviations

CW  Continuous wave
DCF Dispersion compensating fibre
DFB Distributed feedback
DFG Difference frequency generation
DPSK Differential phase-shift keying
EAM Electroabsorption modulator
EDFA  Erbium doped fibre amplifier
EOM Electro-optic modulator
FBG Fibre Bragg grating
FP-EOM Fabry-Perot electro-optic modulator
FROG Frequency resolved optical gating
FWHM Full width at half maximum
FWM four wave mixing
GSL  Gain switched laser
GVD  Group velocity dispersion
HNLF Highly nonlinear fibre
LCoS Liquid crystal on silicon
L-FROG Linear frequency resolved gating technique
MLL Mode locked laser
MZI Mach-Zehnder interferometer
MZM Mach-Zender modulator
NOLM Nonlinear optical loop mirror
O-E-O Optical electrical optical
OFC Optical frequency comb
OFCG Optical frequency comb generator
OMUX Optical multiplexer

xi



ABBREVIATIONS

OSA
OTDM
PMD
PRBS
RZ
SFG
SHG
SMF
SPIDER
SPM
SOA
SSFBG
TOD
TOFT
WDM
XGM
XPM

Optical spectrum analyzer

Optical time division multiplexing
Polarization mode dispersion
Pseudo-random bit sequence
Return to zero

Sum frequency generation

Second harmonic generation

Single mode fibre

Spectral phase interferometry for direct electric-field reconstruction
Self-phase modulation
Semiconductor optical amplifiers
Superstructured fibre Bragg grating
Third order dispersion

Temporal optical Fourier transform
Wavelength division multiplexing
Cross-gain modulation

Cross-phase modulation



Acknowledgements

It’s been a long journey, but one which has taught me something every step of the way.
Although I am deeply grateful to all the people who have helped and accompanied me
along the way, I will probably never be able to thank some of them enough.

First and foremost, I want to thank my supervisors Dr. Periklis Petropoulos and Prof.
David Richardson. Thank you Periklis for having been there throughout offering me
guidance, encouragement, a lot of patience and sometimes to firmly prod me into action.
Although I have seen Dave sparingly in these years, he has always found time to talk
to me when I knocked on his door and discussions with him have always been insightful
and frequently inspiring.

The other person who has had the greatest influence on my PhD is my friend, colleague
and mentor Francesca Parmigiani. For all the lab know-how and assistance, the honest
opinions, the questions I was too scared to ask other people and the wealth of general
advice she gave me, I thank her a thousand times over.

I also want to thank to Dr. Morten Ibsen who made the gratings for me, and the many
people who have shared their knowledge, wisdom and sometimes equipment with me.
These include but not limited to Dr. Neil Broderick, Dr. Radan Slavik, Dr. Andrew
Ellis, Dr. James Gates, Dr. Cesar Jauregui, Dr. Michaél Roelens and Dr. Symeon
Asimakis. Thanks also to Eve Smith, Tanya Morrow, Kevin Sumner and Marta Betran
for all their administrative help and for helping me to stay in the country and stay fed.
However it hasn’t all been about work. A huge thanks to Angela Camerlingo, Laura
Lagonigro, Adriana Salgado, Christian Vollmert, Hazel Hung, James Bateman, Dave
Banks, the “lunch crowd” and all the other friends I have made here. You've kept
me going in the hard times and made the journey so much fun that I actually miss
Southampton!

Finally, I would like to thank Joel Thakker for all the love and support he has given
me and all the patience it must be taking to put up with me as I tie up the last of my

student days (maybe!).

xiii



“Experience is a grindstone;
and it is lucky for us, if we can get brightened by it,
and not ground”

- Josh Billings -

Xiv



XV

To my Mum and Dad



Chapter 1

Introduction

Optical networks have revolutionized modern communications enabling massive amounts
of data to be rapidly transmitted around the globe. As demand has increased, so has
the transmission capacity of optical networks bringing “commercial” data rates from 2.5
Gb/s to 40 Gb/s in just 6 years [1]. This has largely been possible due to the devel-
opment of low loss silica fibres [2], the Erbium doped fibre amplifier (EDFA) [3] and
wavelength division multiplexing (WDM) [4]. EDFA’s provide effective and cheap am-
plification, which coupled with low loss fibres increases the distance that optical signals
can be transmitted without regeneration, thus making optical transmission economical.
Meanwhile, WDM has greatly increased the carrying capacity of optical networks by
spectrally multiplexing together temporally encoded light and thus using more of the
available bandwidth. However to facilitate this push for higher capacity, it is not enough
to just maximise bandwidth, one also has to manage it. Increasing the signal repetition
rate for telecommunications systems necessarily reduces the degredation which can be
tolerated in the data. Thus to maintain signal quality, strict control of optical signal

propagation and evolution during transmission is becoming ever more important.

To efficiently manage these high repetition rate signals, signal processing and regener-
ation has been extensively researched through many approaches. Traditionally it has
been optical-electronic-optical (O-E-O) techniques, where the optical signal is detected,
processed electronically and then retransmitted, which have been preferred for their
lower cost. Being able to process a signal electronically comes with all the benefits of us-
ing a mature technology, such as the ability to perform sophisticated processes in small,

mass producible modules which ultimately makes signal processors cheaper. However,
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there is an intrinsic impracticality with using electronics to process optical signals. Op-
tical bandwidths far exceed those available from electronics meaning that bandwidth
optimising transmission techniques such as WDM and optical time division multiplex-
ing (OTDM) must constantly be multiplexed and demultiplexed to enable O-E-O to
take place. Indeed, although current O-E-O regenerators (or repeaters) are able to per-
form 40 Gb/s retiming and reshaping electronically and use forward-error-correction to
improve performance [5], the increased cost of requiring 40 Gb/s detectors, electron-
ics and modulator components render these modules uneconomical when compared to
their 10 Gb/s predecessors [6]. Consequently, state-of-the-art repeater technology are

increasing incorporating more optics [7].

Alternatively, all-optical signal processing techniques [8—15] eliminate the need for O-E-
O and offer the possibility of high repetition rate, multi-wavelength regeneration without
the need to demultiplex signals. If all-optical processing could be developed, it could
become more economical to install just a small number of optical regenerators over nu-
merous electronic ones. As optical capacities increase, it is essential that corresponding

all-optical technologies are developed to meet this eventuality.

Among the various functions required to effectively process communication signals, the
capability to transform a signal from one form to another can beneficially be employed in
several applications. Fourier transforms are routinely used throughout the sciences, from
mathematics and physics to their multitude of applications within engineering and even
economics. Fourier transforms provide gateways between linked domains (eg. frequency-
time, frequency-space) giving a new perspective though which to consider any given
pattern of behaviour. Knowledge of a signal’s phase profile is thus important in linking
the intensity profiles of different domains. The reverse is also true. Knowing about
the temporal and spectral intensity of a signal we can deduce the phase relationships
in the signal. In electronics, the phase of a signal is easily detected and performs an
important part in the processing of electrical signals. But despite the example set
by electronic processing, optical signal processing has until recently often neglected to
use phase information. The reason for this is that the much shorter wavelengths of
optical signals make direct phase detection incredibly difficult. Instead, techniques have
been developed to exploit the phase link between the temporal and spectral domains
to deduce signal phases. The frequency resolved optical gating (FROG) technique of

pulse characterization is probably the most widely used of these techniques [16]. By
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measuring optical signals in multiple domains, it can provide a complete picture of a
signal’s characteristics and thus lend information not only to the current state of the

measured pulse but also to how it will evolve in propagation.

But Fourier transforms can have a greater role in signal processing than just in pulse
characterization. Linked domains means that functions which are too difficult to carry
out in one domain can often be applied in another to achieve a desired effect. Spectral
noise filtering and spectral pulse shaping are prime examples of this [17]. Further, the
ability to move data between domains would present a gateway to achieving a whole

host of new signal processing functions that exploit these relationships.

In recent years, M. Nakazawa et al. have proposed and demonstrated the use of time-
domain optical Fourier transformations as a method of signal regeneration in itself.
Nakazawa’s device is based on the premise that many distortions frequently suffered
by telecommunications signals such as dispersion, timing jitter and polarisation mode
dispersion, do not effect the signal’s spectral envelope. By performing a Fourier trans-
form on the signal, this un-distorted spectral envelope is transferred into the temporal
domain thus replacing the distorted temporal pulse with a clean one. Temporal optical
Fourier transforms (TOFT) have since attracted a lot of attention for their ability to
simultaneously mitigate multiple distortions in signals without prior knowledge of the
distortion suffered. The technique however, does not come without its own drawbacks
which (among others to be discussed later in the thesis) includes the limited time window
over which it can operate. Although some of these drawbacks are intrinsic to the TOFT
concept, others can be potentially alleviated through better understanding of TOFTs

and improved experimental implementation.

The work described in this thesis focuses on the transformation of optical signals be-
tween the temporal and spectral domains. It is primarily motivated by Nakazawa’s
TOFT-based distortion compensator, but in the course of developing it, expanded to
consider the time-frequency relationship more generally. That is, the work presented
focusses not only on the regenerative capability of the TOFT, but also on improving
the fidelity of the transformation itself. Greater fidelity of the TOFT was achieved
in two ways. In the first instance, an improved time lens with which to obtain the
TOFT was developed. In this work we have used cross-phase modulation (XPM) with
parabolic pulses to create the time lens, a method motivated by Refs [18] and [19]. The
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XPM-based time lenses were refined by investigating several solutions for generating
high quality parabolic pulses, such as using sophisticated spectral shaping techniques.
These parabolic pulses enabled the demonstration of TOFT-based compensation of tim-
ing jitter and dispersion in 10 Gb/s optical signals. The development of the XPM-based
time lens was complemented by a theoretical study of the TOFT process. By deriving
the occurrence of TOFT analytically, greater understanding of the conditions required
to maintain phase preservation in the TOFT process was obtained. Coupled with the
improved time lens, we were able to demonstrate a true TOFT complete in both the
time and frequency domains, and with greater fidelity than previously demonstrated in
compensation-only schemes. A significant part of this work is also centred on a linear
form of the FROG pulse characterization technique (L-FROG). This has proven to be
an invaluable tool in understanding the relationship between the temporal and spec-
tral domains of the signals I have been working with, including but not limited to the

parabolic pulses mentioned above.

This thesis is not presented chronologically, but structured as a journey. It describes
the journey of my investigations into performing a perfect TOFT by using XPM with
parabolic pulses, from my study of the underlying theory to its implementation and

application in high repetition rate telecommunications experiments.

Outline

Chapter 2 provides the background and setting to the main thrust of this thesis. It
begins with the history of investigations into the dual natures of time and space. The
analogous way in which light behaviour can be viewed in these two domains allows
many of the concepts and tools that have been long familiar in the spatial domain to be
borrowed for use in the time domain. This leads to the concept of the time lens through
which we hope to achieve a TOFT. The theory of TOFTs is developed here and the
conditions under which it can be achieved is discussed. The nonlinear processes in fibres
are also detailed with particular attention to XPM which is used throughout this work

as a method of implementing a time lens.

Chapter 3 regards pulse characterization work performed with the L-FROG technique.
The technique is a variation of the commonly used FROG but addresses some of the

short-comings of the FROG technique and improves its suitability for low peak power
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telecommunications signals. The chapter begins with a review of earlier pulse charac-
terization techniques, such as the autocorrelator and the FROG and then covers the
operational theory behind the L-FROG. Finally, it presents two experiments which

demonstrate the wide applicability of L-FROG characterisations.

The next two chapters apply the TOFT technique to distorted telecommunications sig-
nals. The implementation of the TOFT differs in the two chapters, demonstrating two
methods of generating the parabolic pulses that are responsible for providing the time

lens.

Chapter 4 documents the application of nonlinearly generated parabolic pulses to time
lensing. Parabolic pulses are generated from Gaussian pulses through their nonlinear
evolution in anomalously dispersive fibre. The parameters which govern the evolution
of the pulses into a parabolic shape are discussed with relation to its use as a time lens.
The nonlinearly generated parabolic pulses were used to perform TOFTs on signals with
severe timing jitter. The swapping of temporal and spectral domains by the TOFT is

shown to reduce the timing jitter in the signal.

Superstructured fibre Bragg gratings (SSFBG) were used to generate the parabolic pulses
in Chapter 5. These gratings, were used to spectrally shape short sech? pulses into good
quality parabolic pulses. The parabolic pulses generated by these gratings were used to

demonstrate the compensation of second and third order dispersion by using TOFTs.

In Chapter 6 we take a break from TOFTs to consider a new and very flexible way of
generating the pulses that we want. These are made using a very stable and broadband
optical frequency comb (OFC) which is spectrally carved to form the desired pulses.
The generation of the optical frequency comb itself gives rise to some very interesting
characteristics, which are investigated in this section. We filter the OFC using two types
of tunable filter. The first is a diffraction grating filter which is independently tuneable
in both wavelength and bandwidth. The second is based on liquid crystal phase shifters
and allows for the spectral phase and intensity to be arbitrarily and dynamically defined
by the user [20]. We look at some of the pulse options presented to us by these filters
and how the latter can be used to help improve the TOFT.

In the final experimental chapter, Chapter 7, we review the theoretical background to

TOFTs which was derived in Chapter 2. The theory is revised to address some of the



BIBLIOGRAPHY 6

observations made in Chapters 4 and 5. A greater understanding of TOFT behaviour

is attained in this chapter by mapping out a dispersion space of outcomes representing

potential perturbations in the TOFT relationship. We also explore the limitations in

the experimental execution of the TOFT. These relationships and our revised analysis

of TOFTs are verified experimentally.

Chapter 8 concludes this thesis with a summary of the main findings of this work and a

discussion of further investigations that this work could lead to.
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Chapter 2

Introduction to Temporal Optical
Fourier Transforms

This chapter concerns the background information leading to the development of a
linear distortion compensator based on temporal optical Fourier transforms (TOFT).
A TOFT causes the temporal and spectral envelopes of a signal to swap such that its
spectral profile is transferred to the temporal domain and vice versa. Thus, a signal with
a pulse like spectral envelope such as a Gaussian or sech? can restore its original shape
by taking on the shape of its spectrum which is unchanged by linear distortions. We
begin by reviewing the history of TOFT from initial investigations of the phenomenon
to its recent applications. The mathematical theory behind TOFTs is developed giving
us insight to the conditions under which we expect it to occur and how the TOFT can
be optimised. Having established the theoretical grounding to TOFT, we consider the
requirements for its experimental implementation. In aid of this, the latter part of this
chapter overviews some of the implementations of time lenses and the nonlinear processes
that enable some of them. The x(®) nonlinear processes that occur in optical fibres such
as self-phase modulation (SPM), cross-phase modulation (XPM) and four-wave mixing
(FWM) are especially highlighted for their relevance to our application. The review of
these processes allows for understanding of how we can design experiments to maximise

the desired nonlinear effects while minimising the undesired nonlinear effects.

2.1 Space-Time Duality

Optical Fourier transformation is not a new concept. It has long been observed in

Gaussian optics that a beam focussed through a lens forms a diffraction pattern in the

9
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FIGURE 2.1: Space-time duality allows for an analogy to be drawn between spatial
optical Fourier transforms which give diffraction patterns and temporal optical Fourier
transforms.

focal plane, as shown in Fig. 2.1(a) [1]. Diffraction patterns give the Fourier transform
of the aperture placed before the lens, or in the absence of one, the lens’ own pupil
function. The size of the diffraction pattern is controlled by changing the curvature and
focal length of the lens which define its numerical aperture. Understanding diffraction
patterns has enabled advances in signal processing in Gaussian optics, such as the use
of matched filtering to enable character recognition [1]. Fig. 2.2 shows the principle of
using a spatial matched filter in a 4 f correlator. A beam reflected off the target character

f(z,y) at one focal length from lens 1 will form its Fourier transform F'(k;,k,) at the

transform  matched

Input plane plane filter Output plane
f(x.y) A F(kx@ 1 Glkxky) I f(x.y)*9(x.y)

FIGURE 2.2: Spatial matched filtering can be applied with a 4 f correlator. Multiplica-

tion of the beam’s Fourier transform F'(k;, k,) with the Fourier transform of the shape

to match G(k, k,) with a mask is equivalent to the correlation of the beam f(z,y) and

the desired shape g(x,y). Only if f and g are the same, will the filter be matched and
give a high intensity peak.
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back focal plane of the lens. A mask G(kg,k,) which is the Fourier transform of the
shape to match g(x,y) can be placed in this plane to spectrally multiply with F. This
is the equivalent of applying a cross-correlation between f and g. In most cases this
would yield a noisy output, however if the character and mask match (f = g), the

cross-correlation will give a high intensity peak in its centre signalling the match.

In 1968, A. Papoulis noted in his book “Systems and Transforms in Optics” that an
analogy could be drawn between optical plane propagation and passing electrical signals
in time [2]. He used this to consider a range of electronic systems which through mim-
icking optical systems would be able to perform various signal processing functions. His
comparison to electrical rather than optical signals is not surprising since mode-locked
lasers and the ability to generate short optical pulses was still a new technology at the
time. The connection with optical pulses in time was noted instead by Akhmanov et
al. that same year [3]. Akhmanov highlighted this interesting analogy while studying
the nonlinear optical effects recently exposed by the arrival of mode-locked lasers which
enabled pulses to have higher peak powers. However even at this point, the spatial
spread of the beams in question meant that not much would be made of his observation
in optics. It was not until 1981 after single mode fibres became available and signal
propagation could effectively be described as one dimensional, that the concept was re-
vived again by T. and J. Jannson [4]. Jannson and Jannson considered the propagation
of pulses in highly dispersive fibre in analogy to Fresnel diffraction. As Papoulis had
done, Jannson naturally developed his theory to include other optical processes from
which analogies could be drawn, such as optical Fourier transforms. By using an input
with a quadratic phase modulation, a real-time Fourier transform could be obtained at
a specific focal (dispersive) length after the modulation [5], as shown in Fig. 2.1(b). The
focal length through which the signal needed to propagate, was dependent on the disper-
sion experienced by the signal through that propagation. However at this time Jannson
noted that they were unable to generate a stable quadratic phase modulation, and any
near-quadratic phase modulation would have such a low chirping ability to require the

focal length to be very large.

Kolner followed in 1989, comparing Jannson’s quadratic phase modulation to a classical
lens and calling it a time lens [6]. That is, instead of having the spatial phase modulation

k(z? + 4?)

(z,y) = 27,
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where fr, is the focal length and k is constant, he made the temporal analogy

. on2

o) =5

(2.1)

where fr is now the focal time equivalent to the temporal focal distance described by
Jannson. Theoretically, Kolner applied the time lens to a temporal imaging system by
adding a dispersive element (a length of fibre) before the time lens. This enabled him to
obtain a scaled image of the input instead of its Fourier transform. As in spatial imaging,
the scaling factor is adjustable by the parameters of the lens and the focal time preceding
and following it. A careful choice of parameters can therefore yield pulse compression or
stretching. Technology had finally started to catch up to the time-space duality theories
in this period causing a revival of interest. Time-space duality began to be regarded for
its potential in optical signal processing and while Kolner continued to apply the time
lens to imaging [6], Kauffman et al. had also begun to demonstrate its Fourier transform
applications such as timing jitter compensation [7, 8]. Use of electro-optic modulators
also enabled other instruments to be created from the time-space analogy such as time
prisms. The concept of the prism pair analogy is shown in Fig. 2.3. Time prisms (like
spatial prisms) apply a linear phase ramp across the pulse thus frequency shifting the
pulse. To achieve a time prism, the linear portion of the sinusoidal phase modulation is
used and given appropriate temporal alignment, the pulse can be chosen to be upshifted

or downshifted in frequency [10]. Such time prism pairs have applications in technologies
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FIGURE 2.3: Prism pairs in space (time) can be used to displace optical pulse in space
(time). (Edited from figure in [9])
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requiring optical delay lines, just as spatial prism pairs can be used to offset a pulse in

space.

These concepts of space-time duality were formalized by Kolner in 1994, with particular
focus on the use of electro-optic modulators in temporal imaging [11]. Since then,
investigations into applications of the space-time duality have dramatically increased
[9]. In the simplest configuration, Muriel et al. demonstrated a TOFT without the
use of a time lens, but instead based their transformer on the analogy with Fraunhofer
diffraction [12, 13]. The large dispersion required to enter this regime is applied with
a linearly chirped fibre grating after which the highly dispersed signal will have taken
the form of its spectral profile. However, while this scheme is attractive in its passive
simplicity and robustness, it produced output pulses which were significantly wider than
their inputs making it unsuitable for the applications we will discuss below. In Ref [12]
the authors did not suggest an application for the transform and noted that the device

was restricted to use with transform limited pulses only.

2.2 Applications of Space-Time Duality

As with the earlier work, more recent space-time duality based schemes also address
the applications of pulse compression, pulse characterisation and signal regeneration.
Pulse compression is achieved through temporal imaging using one time lens as Kolner
had done [11] or with two time lenses in a telescopic configuration [14]. The telescopic
configuration, as illustrated with the spatial analogy in Fig. 2.4, uses time lenses of
differing chirp to achieve time scaling by transforming the waveform through the spectral
domain, and then transforming it back with a different scaling factor. When applied

with matching dispersions, this method has the advantage of producing a scaled output

transform
Input plane Scaled

e Ty
=,

f f

FIGURE 2.4: Two different lenses are used at the correct separation such that a wave-
form is scaled by the ratio of the focal lengths.
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which preserves the phase information of the input, a quality which is not achieved using
the single lens. The issue of phase preservation is one which we will encounter again
later in this thesis (Sections 2.4 and 7.1). In Ref [14] Foster et al. demonstrated also,
that the telescopic signal compression technique was suitable for compression of not only

pulses, but entire data packets.

Signal characterisation of ultrashort pulses using space-time analogies is usually achieved
in one of two regimes. In the first instance, both of the imaging techniques used to
compress pulses in the previous paragraph can also be used in reverse to expand the
signal. The idea is that by expanding short signals drastically, they can be more easily
and more accurately detected on slow electronic detectors [15]. Signal characterisation
can also be achieved using time lenses in a TOFT configuration. Rather than expanding
the signal, it is Fourier transformed such that its temporal form resides in the spectral
domain. This enables the signal waveform to be viewed using a spectrometer thus

completely eliminating the need for electronics with fast response times [8, 16, 17].

This brings us to the family of applications that is of greatest interest to this thesis, that
is signal regeneration. The principle behind using space-time analogies to achieve signal
regeneration rests on the premise that many common impairments to optical pulses are
linear in nature and do not alter the spectral content of the pulse. In addition, since
common RZ pulse shapes such as Gaussian and sech? have spectra of the same form (i.e.
Gaussian and sech? respectively), the preserved spectral form of the signals can be used
to replace the distorted temporal signals when a TOFT is performed. Although this ap-
plication was only investigated sparingly early on [7], the increasing capacity of optical
networks and increasing importance of all-optical processing has brought it to the fore
in the last decade. Romagnoli et al. used this type of TOFT compensation scheme to
demonstrate mitigation of polarisation mode dispersion (PMD) in 10 Gb/s signals [18].
Timing jitter compensation similar in concept to Kauffman’s, was also demonstrated by
Jiang et al. [19] and by Parmigiani et al. [20], even if neither of these works mentioned
their correlation to space-time duality. However, it is Nakzawa and Hirooka et al. who
have led much of the literature in this application [21-32]. Although the nature of TOFT
compensation enables it to be relatively indifferent to the type of (spectrum-preserving)
linear distortion suffered by the signal, Nakazawa and Hirooka’s work has mainly fo-
cussed on the mitigation of dispersion in transmission systems. As such, these works

have brought space-time duality truly to telecommunications by demonstrating their
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compensator’s performance in transmission experiments. From reporting mitigation of
a 10 Gb/s signal after 197 km transmission length in 2004 [21], they have scaled their
device’s performance to enable compensation of 160 Gb/s transmission over 600 km
in 2006 [22]. Furthermore, they have shown that TOFT compensation devices can be
applied to advanced transmission formats such as differential phase shift keyed (DPSK)
signals [23-25].

All of the applications above use time lenses in either an imaging or Fourier transform
configuration to manipulate the signals. The difference being the number of lenses and
amount of dispersion before and after each lens. Since dispersion is fairly easy to come by
in fibre, the question falls as to how the time lensing action is achieved. This incidently,
is sometimes the most interesting aspect of some of the mentioned works. We will look

more closely at the technologies which enable time lensing next.

2.3 Implementation of Time Lenses

The greatest challenge in performing a TOFT or temporal imaging is the difficulty in
implementing a time lens. Unlike its spatial counterpart which can be fashioned from
transparent materials, the temporal domain is somewhat less tangible. Most impor-
tantly, whatever component or process is used to implement the time lens must be time
varying and synchronised with the signal such that the phase shift ¢(7") imposed would
be parabolic in the reference frame of the signal. In this section, we review some of the

ways in which time lenses have been implemented in experiment.

2.3.1 Linear Time Lenses

The first practical implementation of a time lens was presented by Godil et al. who
modulated a lithium-niobate crystal (LiNbO3) in a microwave waveguide to create an
electro-optical phase modulator [33]. A schematic of Godil’s phase modulator is shown
in Fig. 2.5. The microwaves sustained in the waveguide gave the crystal a refractive
index that varied with time. By synchronising the modulation with the optical signal, a
sinusoidal phase shift is applied to the signal which will be parabolic-like near its crests
and troughs, thus acting like a time lens. The modulator was placed in a non-resonant

cavity such that it would make 24 passes through the cavity, providing constructive
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F1GURE 2.5: Cross section of Godil’s multipass microwave optical modulator. A time
varying phase shift is induced as the refractive index of the LiNbOj3 is modulated by a
RF signal. Parts of this figure are obtained from [7]

modulation with each pass before exiting. The sinusoidal phase modulation imparted
by the modulator was parabolic enough around its crest to act as a time lens while the
multiple passes through the modulator provided enough phase shift to allow Godil to
generate pulses from CW light (temporal focussing). Synchronised phase modulators
such as Godil’s (typically no longer multipass) have been the most common implemen-
tation of time lenses due to their simplicity in application [8, 11, 18, 21]. However,
while phase modulators are simple to implement and synchronise, the sinusoid is only
quadratic-like in a small window of time around its crest. The time lens can therefore
only operate within that time window, limiting its applicability to signals with low duty
cycles. Furthermore, phase modulators are also limited in the amount of phase shift
they are able to induce, limiting the transform quality for signals with high spectral

content, as we will see in Eqn. 2.23.

2.3.2 Nonlinear Time Lenses

Alternatively, nonlinear processes such as sum-frequency generation (SFG), cross-phase
modulation (XPM) or four-wave mixing (FWM) have also been used to implement time
lenses. To understand how each of these are able to impart a quadratic phase shift,
let us consider what causes the nonlinear behaviour of light in dielectric media. The
x® nonlinearity responsible for SFG and the x(® nonlinearity responsible for XPM and

FWM both arise from the polarization equation given by [34]

1 2 3
Pi=co | D i B+ Y XEi B+ Y XGuE B E + - (2.2)
j ik ki
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where y (@ is the i*" order susceptibility and is an (i+1)"" rank tensor. Eqn. 2.2 relates the
i*" component of the polarization to the components of the electric field, thus describing
the effect of an electric field on the medium in which it propagates. The linear portion,
X(l), is related to the linear refractive index, ng, of the medium. For example in a linear
isotropic media, n3 = 1+ Xgll). When the intensity of the electric field is low, the system

is generally linear and this term dominates.

If the intensity of the electric field is increased beyond the linear region, the second order

nonlinearity, ¥, starts to become significant and Eqn. 2.2 can now be rewritten as
P=P;+Puny, (2.3)

where P; = eox(l)E and Pyp = eox(z)E2 are the linear and nonlinear parts of the
polarization respectively. The higher order nonlinear terms have been omitted here due
to the dominance of x(?). We can then see the effect of the nonlinearity in Pyz, by

expressing the electric field as a sum of waves [35]
E(r,t) =) Apeltrr=end 4 e, (2.4)
n

where A, is the slowly varying amplitude of the n'* wave with carrier frequency wp,
wave vector k, and c.c. denotes the complex conjugate. That is by substituting Eqn. 2.4
into Py, we find that for two input waves w; for the signal and w, for the pump we

obtain

Py, ((Apei(k?"r_wpt)+As€i(k5'r_w5t))—}—c.c.)2

_ ((A§€2i(kp-r—wpt) —i—AgeQi(kST_wst)) +C.C.) +ApA;+AsA:

We can see that the first two terms (solid underline) are oscillating in 2w, and 2w;
respectively, showing that they are at twice their original frequencies. Hence these terms
describe the second harmonic generation (SHG) process. The last two terms (dashed
underline) are oscillating at wy, + ws and w, — w, respectively and are thus the terms
describing sum frequency generation (SFG) and difference frequency generation (DFG)
respectively. The remaining terms are DC terms and are of no interest to us. Note
that the SFG and DFG terms are created in the directions (k, + k) and (k, — k)

respectively. This directionality can be used to separate the terms desired for use from
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the undesired terms.

A scheme using these relationships to implement a time lens was demonstrated by Ben-
nett and Kolner to demonstrate the use of temporal imaging in signal characterisation
[15]. The test signal was a 4-bit, 100 Gb/s data packet of 2.1 ps pulses. Both the signal
and the pump were generated in a Nd:YAG laser and spectrally broadened, although
the signal was also patterned and compressed. To induce the x(2 nonlinearity, they
combined the compressed signal with the strongly dispersed pump in a 500 pm thick
lithium iodate (LilOs) crystal. Since they were operating in the degenerate case when
wp = ws, the DFG product could be neglected and the remaining three terms were sep-
arated by setting the two waves to approach the crystal at opposing angles, as shown
in Fig. 2.6. Only the SFG term which had contributions from both the incoming waves
will not emerge from the crystal at an angle and can be selected with an aperture and
measured. The measured SFG term is thus a sum of the characteristics of its parents
and the linear chirp of the pump is imparted onto the signal. Since the pump is strongly
dispersed and broadened, its intensity will be slowly varying with respect to the signal

pulse and have little effect on the shape of the output.

SHG
Crystal ®p-®s

(D\SA 2Mp
O /_,w R
sTWp

Nt

M®s-Wp

FIGURE 2.6: Two waves combine in a x® crystal to form SHG, SFG and DFG prod-
ucts. The SFG product can be selected by an aperture.

However there are several drawbacks to using SFG as a time lens, especially in the
context of signal processing for telecommunication systems. Firstly, SFG necessarily
places the desired signal at a wavelength very far from the signal’s original wavelength
which is often practically inconvenient for further use or processing. Although the large
wavelength shift can be reduced to some degree by using DFG [36], the high intensities
normally required of the signal to achieve SFG and DFG are problematic for many

applications including telecommunications which normally use low intensity signals to
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minimise undesirable nonlinear effects in transmission. Finally and most importantly, in
all media with inversion symmetry, such as silica, we require that electric fields pointing

in opposite directions will induce equal and opposite reactions in the medium. That is

Therefore in optical fibres, the polarization equation must be an odd function, making
the x® nonlinearity neccessarily zero. Therefore, the implementation of SFG and DFG
time lenses usually takes place in nonlinear crystals exhibiting second order nonlineari-

ties, making incorporation of the device into fibre systems cumbersome.

2.3.3 Time Lenses in Optical Fibres

If we want time lenses that are implemented in optical fibres for easy integration, we
must consider x(?) = 0. Our attention then falls to the x(®) nonlinearity which is the
dominating nonlinear term in silica optical fibres. FWM and XPM are some of the
effects induced by the x(®) nonlinearity. Looking back at Eqn 2.3, we must now have
Py1 = eox®E3 as the dominating nonlinear part. Additionally, because we now assume
one dimensional propagation in single mode fibre, we can remove the spatial dependence
of the electric field in Eqn. 2.4 and simplify it to E(z,t) = A(z,t)e!**~Y) 4 c.c.. We

can now substitute these into the wave equation given by

1 0’E >°P
B = pg—— 2.
VB 2 %m = (2:6)
to obtain the nonlinear Schrédinger equation [34]
0A  « _OA B 02A 9
L S e v T @7)

where o is the linear loss, and 1 2 arise from the coefficients of the propagation constant
1. 5 1. 4
k(w) = Bo + frw + 562w + 663&) + ..

when Taylor expanded around wg. Then for three input waves wp, w,s and w; into a fibre,
we can express them together as

N
A= ZAn(z)ei((kn_ko)z_(wn_wf))t)

n=1
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and substitute it into Eqn 2.7 to derive the how the waves mix as they propagate along
the fibre (similarly to Eqn 2.5). By separating the mixing terms with respect to their
frequencies, we can then obtain three coupled equations, each describing the growth of

one of the waves. These are

dAs

= A AP 24,147 + A ) + AT Bk (2.8)

dA ,

TP _ —i'y{Ap]Ap\Q + 2Ap(’Ai‘2 + ‘As‘Q) _i_AiASA;el(kerki*Qkp)z} (2.9)
z

dA; : .

= A AP+ 24(| A7 + A7) + AT AT PRz (2.10)

Considering the first equation governing the signal (Eqn. 2.8) we can see that it contains
a term in |A|?, a term in |4p|? and a mixed term. Since we have actually only input
the signal and pump waves, the term in |4;|? is small and can be disregarded. To see
how the first term affects the signal, we momentarily look at it in isolation. That is, we

have
dA,
dz

= —iy| A2 A, (2.11)

which is an ordinary differential equation with the solution
Ay = Age™ APz — g e—i0s (2.12)

We can see then that this first term describes the dependence of the signal phase on
its own intensity or self-phase modulation (SPM). Similarly, the second term can be

isolated to give the solution

Ay = Age 20 Ael*z = Apemids (2.13)

describing the dependence of the signal phase on the pump’s intensity or cross-phase
modulation (XPM). The final term is a mixed term arising from FWM and describes the
amplification of the signal by the annihilation of two pump photons to create a signal
and idler photon. That is, 2w, — ws + w;. Similar elements can also be seen in the

equations governing the pump and idler waves.
FWM time lens

The FWM process has been used to implement time lensing in a fashion very similar to
the SFG time lenses. A linearly chirped and broadened pump pulse is coupled with the

target signal in a nonlinear medium to generate an idler as described by Eqn 2.10. The
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FWM term in this expression shows that if the pump and signal are efficiently phase
matched, then the growth of the new idler wave will be related to the pump and signal
by the relationship A4; AZQ,A:. As a result, the idler phase will be given by the phase
of the input signal minus twice the pump’s phase, which for the linearly chirped pump
is quadratic. If the pump is also significantly broadened, then its amplitude will be
slowly varying with respect to the signal pulse leaving the idler essentially a replica of
the signal with only the extra quadratic phase added. The idler can then be filtered out
and used as a wavelength converted signal. The FWM time lens has been demonstrated
by Foster et al. on a 1 cm long embedded silicon-on-insulator nanowaveguide [37]. The
group had previously demonstrated other FWM devices in these silicon waveguides such
as wavelength conversion and parametric amplification [38, 39]. The silicon waveguide
is pumped with a pump pulse dispersed to twice the desired focal time of the time
lens, which can then be used in many of the applications previously described. So
far, pulse characterisation with both the pulse expansion and TOFT methods have been
reported [17, 37], as well as data packet compression for up to 270 Gb/s transmission in a
telescopic configuration [14]. In addition, FWM has the benefit of involving wavelengths
over a far narrower spectral range than SFG and also a much lower signal power. These
qualities recommend the FWM time lens above the SFG approach. However, both these
processes still put the output pulse at a different wavelength to the original which can

be undesirable.
XPM time lens

This brings us to XPM. We saw from Eqn 2.13 that XPM creates the phase shift not
from the strong pump’s phase profile (as was the case with SFG and FWM), but from
its intensity profile onto the weaker signal. Furthermore, the phase is created directly
rather than being incorporated into the generation of a new wave, thus it preserves the
signal’s input wavelength. By observation of Eqn. 2.9, we can see that if the intensity
of the signal is high, the reverse can also occur and both wavelengths can also undergo
SPM. To get a good parabolic phase shift, these latter effects of reverse XPM and of
SPM are undesired and can be avoided by keeping the intensity of the target signal low.
XPM was used by Mouradian et al. to implement a time lens for application to pulse
characterisation by TOFT [16]. The XPM was induced in a nonlinear single mode fibre
by a Gaussian pump pulse, which was amplified up to a peak power of 1 kW. Like the
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FIGURE 2.7: Usable duty cycles over which (a) a sinusoid, (b) a Gaussian and (c) a
parabolic can induce a parabolic phase shift.

sinusoid, the Gaussian shape is parabolic-like in the region around its peak and thus can
be used to apply a parabolic phase shift for time lensing. By having such a high peak
power, the pump shape is steepened which in turn increases the chirp applied to the
signal. This simultaneously highlights one of the benefits and also one of the drawbacks
of using XPM compared to the other methods. While it is beneficial to be able to tune
the chirp of the time lens through simple amplification and without sacrificing any of
the duty cycle, the requirement for high power in itself is not desirable nor are the other
nonlinear effects it induces such as SPM. Note that the duty cycle here refers to the
percentage of the pump period which can be used for time lensing, and should not be
confused with the duty cycle of the signal which refers to the percentage of the signal
period which is occupied by the signal pulse (FWHM).

All the time lenses mentioned so far have a common downside. The large dispersion
required by the pump in the SFG and FWM schemes and the limited parabolic-like
region of Gaussians means that like the phase modulator, only signals with low duty
cycles are appropriate for these time lenses. The applicability of time lenses would be far
greater if a parabolic phase shift could be applied to the signal pulse that could cover a
greater portion of its duty cycle as shown in Fig. 2.7. The extended coverage is especially
important for telecommunications systems in which high duty cycles are essential for
maximising the capacity of each channel. One method to achieve the parabolic phase
shift, as suggested by M. Nakazawa, is to generate a time lens by using XPM with a
parabolic pulse [32]. As with Mouridian’s scheme mentioned above, the intensity of the
pump pulse would be imparted onto the signal without generation of another wave. But

the parabolic profile of the pump pulse in this case would extend over all or almost all
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of the entire period of the signal pulse and thus enable the time lens to operate over the
entire time slot. As well as catering to the higher duty cycles of telecoms signals, the
wider time window would also increase the time lens’ capability to regenerate greater

distortions in a data signal.

Parabolic pulses have recently received a lot of attention for the linear chirp they can
impart through nonlinear effects. This has various applications in pulse amplification
[40], supercontiuum generation [41] and optical signal processing [20]. In this latter
reference, Parmigiani et al. have used XPM with parabolic pulses to demonstrate a
timing jitter compensator, similar in concept to the one previously presented by Jiang
et al. [19]. Although not explicitly discussed as a TOFT, Parmigiani showed that a
linear chirp imposed though XPM with a parabolic pulse and followed with dispersion
could be used to mitigate timing jitter in a 10 Gb/s data stream. Furthermore, the steep
sides of her parabolic pulses made them suitable for multiplexing up to higher bit rates
and thus potentially useful for high duty cycle, high repetition rate telecommunications
signals. However despite the many benefits of parabolic pulse time lenses, this technique
has so far not been well investigated due to the difficulty in generating suitable parabolic

pulses.

2.3.4 Summary of Time Lensing Techniques

I have reviewed in this section the wide variety of techniques that have been previously
used to implement time lenses. A summary of the main types of time lenses is given
in Fig 2.1 along with a breakdown of their main advantages (green) and disadvantages
(red). In particular the characteristics which are of relevance to telecommunications
systems have been considered. It can be seen that each of the time lensing methods
listed have characteristics which make them suitable for a particular application. While
the large majority of research in this area has used the electro-optic phase modulator
for its simplicity, optical signal processing would ultimately benefit from the high duty
cycle of using XPM with parabolic pulses. This is the only method shown that could
potentially be used with high repetition rate telecommunications signals without the
need for demultiplexing, which is one of the main motivations for developing all-optical
signal processing. However as stated above, much of the challenge in implementing this

technique is in generating parabolic pulses with which XPM time lenses can be induced.
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In this thesis, I use three different ways of generating parabolic pulses and use them as
time lenses to demonstrate TOFTs. In the first scheme described in Chapter 4, parabolic
pulses are generated nonlinearly through propagation in normally dispersive fibre. This
is the most widely known method of generating parabolic pulses and depends on the
natural evolution of Gaussian pulses in such media. The balance between dispersion and
SPM is crucial here to the development of an accurate parabolic shape. However due to
the constraints of the parabolic generation process, we found that this method was not
ideal for time lensing which had different power and dispersion requirements. In Chapter
5 we try a different approach and generate parabolic pulses by using a superstructured
fibre Bragg grating (SSFBG). SSFBGs have modulated intensity envelopes was well as
the rapid refractive index modulation of normal Bragg gratings. They can be designed
to perform pulse shaping, by changing the phase and intensity of the spectral content
of the signal [44]. Using such a grating, Parmigiani et. al. were able to demonstrate the
generation of 10 ps wide parabolic pulses at 10 GHz [20]. While these parabolic pulses
are not wide enough to cover the entire period of the signal, we demonstrate in Chapter
5 that they are indeed suitable for time lensing and TOFT. In our final demonstration
in Chapter 7, parabolic pulses were generated using a newly available programmable
spectral filter. The flexibility of the filter makes it a valuable experimental tool, especially
when coupled with the optical frequency comb source described in Chapter 6. The
combination of the programmable filter and the frequency comb allows for a flexible and
stable experimental setup with which we can further explore the behaviour of pulses

propagating through a time lens.

2.4 Temporal Optical Fourier Transforms

Having reviewed space-time duality and the implementation of time lenses, we consider
now the specific case of TOFTs. To thoroughly understand the theory underpinning
TOFTs we begin by inspecting the processes applied to the input signal to achieve the
transform. That is, the effect of a time lens followed by a dispersive element. Let us
consider then an arbitrary input pulse A;,(T), where T' = t — 31z is the time variable
shifted to be in the reference frame of the initial pulse. The application of a time lens

as defined in Eqn 2.1 and the dispersion following it can be expressed as the operators

,wOTQ]

H(T) = exp {z 2 and G(w) = exp [ing] (2.14)
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respectively, where £ = fB3z. Thus the signal pulse after the dispersive medium would
have the form

Aout(T) = F~H{F{Ap(T)H(T)}G(w)}. (2.15)

Using the convolution theorem [45], Eqn. 2.15 can be simplified to
Aot (T) = (Ai(T)H(T)) * G(T) = / A (TYH(THG(T — T"dT". (2.16)

where G(T) is the time domain form of the dispersion operator G(w) given by

= 1 w)t = ! ex ZT—Z
G(T) = FHGW) = e p[%]. (2.17)

The operators H(T') and G(T') can then be substituted into Eqn. 2.16 to obtain

— = (7! W0 2 1 ‘(T_T/)2 '
Aaa®) = [ @ 157 ey [ or

1 T21 [ woT?  T7? —2TT'
= I~ A (T ' ar’,
Nz [7’25}/_00 n(T)exp Hm AT )]

which can then be written in the form

2 o]
= g ] [ 5+ 3) o (2
(2.18)

Thus if we let
T

Ev

the output waveform can be seen to resemble the Fourier transform of the input waveform

w = (2.19)

with a chirp. Eqn. 2.19 defines the transform scaling that would apply to transfer the
spectrum into the time domain. For example, the temporal width of the resulting field

will be given by Aty = Awé, where Aw is the spectral width of the initial pulse.

Secondly to preserve the initial spectral shape, we require the phase shift in 7' to be

equal to zero. Noting that % = ‘J‘i—g, we obtain the condition
Py 1
- 2.20

where K is the chirp rate associated with the phase shift. When the required conditions

hold, the output waveform becomes

2
Aput(T) = \/2177,§Am(w — T/¢)exp VQJ (2.21)

Even so, it can be seen that Eqn. 2.21 is not a perfect scaled Fourier transform of the
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input. The residual phase term means that even when the above conditions are met,
a Fourier transform is only obtained in the temporal domain and not in the spectral
domain. Instead if we follow the same process as above and apply the same conditions,

we obtain for the output spectrum

Agut(w) = \/; / Z Ajn(w')exp [z;;] exp [—i(T = w&)w'] du'. (2.22)

Thus, to also obtain a Fourier transform in the spectral domain, we require the residual

phase term to be negligible. That is,
|K| >> w?. (2.23)

This shows that we need to induce a greater chirp to properly Fourier transform pulses
with a high spectral content. This can be clearly seen in the examples shown in Figs. 2.8
and 2.9. Fig. 2.8 shows the numerical simulation of TOFT being applied with a parabolic
phase shift to a double peaked Gaussian pulse when K = —1.48 ps—2. Fig. 2.9 shows the
numerical simulation now being applied to a square pulse. It can be seen that although
the two pulses have similar peak powers and pulse widths, the high spectral content of
the square pulse renders the Fourier transform in the frequency domain quite poor. By
contrast, the Fourier transform in the temporal domains are both very good since the

temporal waveform is unaffected by the residual phase term.

We can find the relationship between the parabolic pump pulse and the signal phase by

first defining the profile of the parabolic pump pulse as

2
|A,(0,7)]> =P, |1 — (‘/57) (2.24)

Tw

with P, being the peak power of the parabolic pulse and 7, its full width at half max-
imum (FWHM). Note that this is only valid for —v/27,, < 7 < v/27,, since the pump
power must be zero elsewhere. XPM of this pump with the signal pulse A;,(T") will
cause it to gain a phase shift given by [34]

L
o(r) =7 <L]Am(T)\2 + 2/0 |Ap(0, 7 — zd)\gdz) (2.25)

where ~ is the nonlinear coefficient of the fibre in which the XPM occurs and L is its
length. d is the walk-off parameter between the group velocities, vy, of the two pulses

and is given by d = 1/v42 — 1/v41. We can choose to make d negligible by choosing a
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nonlinear medium in which the zero-dispersion wavelength is centred exactly between
the signal and pump wavelengths. In this case vg2 ~ v41 and d will be small. Since
the pump pulse will have a much higher intensity than the signal, we can make the
assumptions |A;,|? + 2|A,|? ~ 2|A4,[?, and also |Ay(e, 7)|? & |4,(0,7)|? if the dispersion

is low. Thus the total phase shift experienced by the signal due to XPM will be

2
2
¢(r) = 2yLP, |1 — <f7> : (2.26)
Tw
from which we can find
L
K= 8%13,,. (2.27)
T’LU

Thus we can easily tune the scaling of the TOFT by varying the power of the pump

pulse, which in turn will increase K.

2.5 Conclusions

In this chapter an introduction to the concept of space-time duality is given, leading to
an understanding of how time lenses can be used to produce a TOFT. Applications using
temporal analogues of classical optical components to achieve useful signal processing
functions have been described with particular emphasis on systems to using TOFTs.
As with spatial systems, time lenses play a large role in temporal systems. We review
the non-trivial implementation of these time lenses beginning with a discussion on the
nonlinear optical phenomena on which many of them are based. The use of XPM with
parabolic pulses is of particular interest, since it is the most appropriate time lens for
use with high repetition rate telecommuncations signals. It will thus be the method by

which we will demonstrate and analyze TOFTs in this thesis.

With the aim of using TOFTs as a distortion compensator in telecommunications sys-
tems, the following chapters present three methods of generating parabolic pulses for
high duty cycle time lensing. Chapter 4 explores parabolic pulses generated in a length
of normally dispersive fibre, Chapter 5 explores parabolic pulses generated in a super-
structured fibre Bragg grating (SSFBG) and Chapter 6 we use the combination of a

reconfigurable filter and an optical frequency comb to shape dark parabolic pulses.

But before we look at these three approaches to performing TOFT, we must first de-

scribe some of the tools we will use, the most important being the linear frequency
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resolved gating (L-FROG) pulse characterisation technique. The description of the L-
FROG technique along with its background and similar techniques is presented next in
Chapter 3. This chapter also includes some examples of experiments in which I have
used the L-FROG to characterize some particularly interesting signals. The L-FROG
presents a complete and clear representation of the signals in a way that cannot be

achieved with more traditional pulse characterisation methods.
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Chapter 3

The Linear FROG

In the development of a TOFT, it is important to be able to map signals in both the
temporal and spectral domains and the relationship between them. This relationship,
expressed in the phase of the signal, is acted on by various processes in TOFT such as
time lensing. A pulse characterisation tool that gives us knowledge of the signal phase is
clearly crucial. In this chapter we look at some different types of pulse characterisation
techniques. In particular we will focus on the frequency resolved optical gating (FROG)
technique and a variation of it which uses linear rather than nonlinear gating. This is
the preferred pulse phase measurement technique used in this thesis and we call this the
L-FROG even though its gating mechanism is not actually optical. The first part of this
chapter reviews some traditional pulse characterisation techniques which do not measure
signal phase but are also routinely used in the experiments in this thesis. We then move
on to reviewing signal phase measurement techniques before describing the FROG and
L-FROG. The latter part of the chapter presents some examples of experiments in which
the L-FROG was used to either measure some interesting pulse types or to characterise
an active component (a semiconductor optical amplifier (SOA) in this case), showing its

versatility.

3.1 Background

Pulse characterization is important and useful for the development of many optical
applications. Of most interest is normally the size, shape and spectral content of a
given signal. The simplest of these is the spectral measurement. A diagram of a basic

spectrometer is shown in Fig. 3.1. A reflection grating is used to separate frequency

35
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components of the signal which are then selected and measured with a scanning aperture
and photodetector. A photodetector-array would also suffice here instead of scanning,

but the resolution would be limited to the array resolution rather than the aperture size.

Input grating

sca nI Detector

il

F1GURE 3.1: Basic layout of a spectrometer

The size and shape of a pulse are somewhat more difficult to measure. For long pulses,
photodiodes or sampling oscilloscopes with sufficient bandwidth may be used to map
the pulse intensity profile. However these methods often have insufficient bandwidth to
measure very short pulses of picosecond or subpicosecond scale. For these short pulses
the difficulty comes in finding an event shorter than the pulse duration with which to

measure it.

Autocorrelators solve this dilemma by using the short pulse itself as the measuring tool.
The basic layout of an autocorrelator is shown in Fig. 3.2. The short pulse is directed
onto a beamsplitter to produce two identical copies of itself. One of these passes through
a variable path length introducing a delay between itself and its twin. When they are
recombined again in the SHG crystal, the overlapping section of the two pulses will form

a new pulse at twice the original frequency and with an intensity given by [1],

ISHC (1) oc T()I(t — 7) (3.1)

sig



Chapter 3 The Linear FROG 37

where 7 is the delay introduced between the two pulses. As the delay is varied, we scan
through 7 giving rise to the detected function
0o
A(r) = / I(t)I(t —7)dt (3.2)
—o0
which is incidently the autocorrelation of the input pulse. Since this is based on the
overlap between the two pulses, it can be used to calculate the width of the pulses
involved (given that we know the pulse shape). Autocorrelators have proven massively
useful, successfully measuring pulses down to the femtosecond scale [2, 3]. However
unique pulse shape solutions cannot be deduced from autocorrelations, meaning that
the pulse width can only be accurately determined if the pulse shape is already known.
In many situations this is not a great limitation as we frequently have some idea what
pulse shape is expected. But in other situations, the pulse may have a complicated
structure or a fine width measurement is required. For example, if a pulse is measured
to have an autocorrelation width of 10 ps, then a Gaussian pulse assumption leads to

a deduced pulse width of 7.07 ps, but a sech? pulse shape assumption will result in the

measured width of 6.48 ps, a 9% difference!

Input

Beamsplitter

A SHG
A Crystal  Detector
Delay ! *;.
T

N

FIGURE 3.2: Basic layout of an autocorrelator

Alternatively, optical sampling oscilloscopes are suitable for more precise determination
of pulse shapes. Optical sampling oscilloscopes reduce the bandwidth requirement of
detectors by scanning the pulse features over many periods [4]. The concept is shown
in Fig. 3.3. A short probe pulse is propagated with the test signal and slightly unsyn-

chronized such that it aligns with a different part of the test signal with each successive
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period. A nonlinear process such as SFG or FWM between the signal and probe would
thus generate a wave at a new frequency, which traces out the signal waveform as the
probe walks through it. Slow detection and re-scaling of the new frequency would sub-
sequently reveal the test signal waveform. However, even optical sampling oscilloscopes
can only give knowledge of the signal intensity and provides no information as to its

phase profile.

dt~ATfif, 2

“HH““ -
=

F1GURE 3.3: Operational concept of an optical sampling oscilloscope.

A group of pulse characterization techniques have demonstrated the capability to not
only measure the temporal and spectral intensity of pulses, but also their phase [5-9].
These are clearly of immense interest since we have already established that the phase of
a signal links its temporal and spectral domains. This means that knowledge of a signal’s
intensity and phase in one domain automatically allows one to determine the signal’s
intensity and phase in the other domain. We can consider pulse phase characterization
schemes to fall into 3 general categories: tomographic, interferometric and spectroscopic

techniques.

Tomographic techniques are similar in concept to reconstructing a three dimensional
object by taking photos of it (a two dimensional projection) from different angles, as
shown in Fig. 3.4(a). Fig. 3.4(b) shows the time-frequency equivalent. In this case,
the pulse (object) is contained in the time-frequency domains rather than the spatial
domain, and is projected from two dimensions (time-frequency) to one (frequency) which
can then be measured by a spectrometer. While the use of spectrometers simplify the
measurement of the projections, the ‘turning’ or rotation of the pulse in time-frequency
is much less trivial than its spatial analogy. Rotation of a pulse in time-frequency space
is achieved by applying a linear chirp similar to a time lens and can be implemented

with the same array of techniques as time lenses including phase modulation, XPM, etc.
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Then by measuring the spectrum of the signal before and after application of the linear
chirp, the initial phase of the signal can be calculated from knowledge of the applied
chirp. However, as this technique required a linear chirp, it suffers from some of the
same limitations as time lenses, such as having a restricted time window into which the
test pulse must fit, thus limiting the applicability of the technique to pulses greater than
20 ps [5].

Interferometric techniques use temporal or spectral interference between two pulses to
obtain an interferogram which reflects the phase differences between them. Thus the
phase of one pulse can be deduced from knowledge of the other pulse. This scheme is
advantageous in that the phase differences are directly measured in the interferogram.
Unfortunately, precise knowledge of the probe pulse is not always easily available. To get
around this, some interferometric techniques such as Spectral Phase Interferometry for
Direct Electric-field Reconstruction (SPIDER) uses self referencing [6]. Fig. 3.5 shows a
diagram of how a SHG SPIDER is implemented. An interferometer is used to split the
test pulse and recombine it after introducing a delay, 7, to one arm. However, since tem-
poral shearing would produce an interferogram which oscillates too rapidly to be easily
measured, the temporal shear needs to be converted into a spectral shear to simplify the
measurement. This can be achieved in one of two ways. In a SHG SPIDER, a strongly
dispersed pump pulse is coupled with the ‘double pulse’ and propagated through a x
crystal such that each of the pulses interacts with a different frequency in the pump.
The two emerging pulses are thus spectrally sheared replicas of each other [6]. Alter-
natively, the temporal-to-spectral shear conversion can also be achieved using the rising
and falling linear portions of a sinusoidal phase modulation to oppositely chirp the two
Frequency 4 Linear chirp is
the same as

“turning” in
frequency-time

left vieyyﬂp v right view
A
\ ) projection
& (b) >

Time

FIGURE 3.4: (a) A 3D object can be reconstructed using two 2D images viewed at
different angles. (b) Linearly chirping the pulse effectively ‘turns’ it in the frequency-
time plane so that it can be reconstructed from its projections.
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pulses [10]. The spectrally sheared pulses are then detected on a spectrometer forming
an interferogram from which the spectral phase is calculated. While the latter technique
significantly simplifies the SPIDER, and makes it more suitable for telecommunications
signals, the necessity of the imparted phase shift to be very linear requires the duty
cycle of the measured pulse to be very low. Because of the need for a very dispersed
pump or a very linear phase shift, the use of SPIDER for telecommunications signals
usually requires the pulse to be gated down to a lower repetition rate. Interferometric
techniques are thus often limited, depending on implementation, to regimes that are not

practical for telecommunications applications.

Signal

allll,

Spectrometer

FIGURE 3.5: Implementation of a SHG SPIDER: The pulse is duplicated with delay

7 in an interferometer so that each replica picks up a different spectral shift when

mixed with a dispersed pump in the SHG crystal. The two are then measured with a
spectrometer to get an interferogram.

Spectroscopic techniques are the most widely used of the three types, despite requiring
an iterative deconvolution process to retrieve the signal phase. FROG is perhaps the
most common implementation of this technique and was first demonstrated by Kane and
Trebino in 1993 [7]. The FROG combines an autocorrelator and an optical spectrum
analyzer, both of which individually, can only give information about the temporal or
spectral profile of the pulse. However, since phase changes in a signal must manifest
in either the temporal or the spectral profile of the pulse, the combination of these
two techniques can allow also the pulse phase to be indirectly measured. Instead of
just measuring the signal with a detector as a conventional autocorrelator would do,
the second harmonic signal in the FROG is detected by a spectrometer, such that the
spectral content of the pulses at each delay 7 in the autocorrelation is also measured
and not just the overlap power. This can be displayed as a spectrogram which shows the

pulse intensity as contours on a time versus frequency map, thus indirectly capturing
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the pulse phase information. The phase information can then be extracted from the
spectrogram by performing a two dimensional deconvolution of the spectrogram [1]. The
deconvolution algorithm compares the spectrogram from a predicted pulse field to the
measured one to calculate an improved pulse field, which is then used as the predicted
pulse field in the next iteration. The algorithm can be very effective in recovering not
just the pulse shape and spectrum of the pulse, but also its phase information. This
retrieval of the signal phase information makes the FROG an essential diagnostic tool
when investigating phase manipulation techniques. One drawback to the FROG is its use
of the autocorrelation. An autocorrelation is not in general an accurate representation
of the actual pulse shape. For instance, it is by definition symmetric while many pulses

are not, thus creating ambiguity in the time direction of the retrieved pulses.

To reduce some of these limitations, it was proposed that cross correlation rather than
autocorrelation be used in the FROG technique [11]. The retrieval process from cross
correlated pulses is more involved requiring a blind deconvolution to retrieve the pulse
shapes of two different pulses. That is, the deconvolution is based on initial ‘blind’
guesses of the two pulses and performed iteratively to converge to a solution. The
deconvolution algorithm we used was a variation of the principle components generalized
projection algorithm detailed in [12]. Although more involved, the retrieval of the cross
correlation can result in a better recovery of both the pulse shapes. This is because the
deconvolution of two pulses allows the algorithm more flexibility in prediction, so it is
easier to converge to a lower error. Additionally, the detected cross correlation between
two different pulses is not necessarily symmetric as in the autocorrelation case, hence
removing the direction of time ambiguity. Note that it is also possible to implement
cross correlation in a SHG crystal [11], in which case the same recovery algorithm could
be used for deconvolution, as long as the differing transfer functions applicable to SHG

and EOMs are taken into account.

While the cross-correlation can be implemented in a SHG crystal, using two different
pulses gives us the flexibility to consider other gating options. The use of electro-
optic modulators (EOM), such as electroabsorption modulators (EAM) or electro-optic
Mach-Zehnder modulators (MZM), are one such option [13]. EAMs are semiconductors
which use the Franz-Keldysh effect or the quantum-confined stark effect to cause photon
absorption that is dependent on applied voltage. Electro-optic MZMs are essentially

interferometers which use interference effects to cancel the optical output rather than
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photon absorption in a semiconductor. Electro-optic crystals such as the commonly
used lithium-niobate (LiNbOs) change their refractive indices with applied voltage, and
are used in one arm of the interferometer to change the optical path length in that
arm. This in turn changes the phase difference between the interferometric arms and
cause constructive or destructive interference when they are recombined. Both these
mechanisms allow electrical signals to modulate continuous optical waves. If optical
pulses are used instead of a continuous wave, the modulator acts to gate the input
pulses. Varying the delay of the optical pulses relative to the electrical gate can then
be used to form a cross correlation of the two. Since EOMs directly gate the signals
without the use of nonlinearities, they have the benefit of being suitable for low power

signals. Furthermore, fiberized EOMs are readily commercially available.

Sampled
Input -/\f(t) ﬂ=3(t-T)E(f)

N~ Eom—osA
Delay EDFA RF Amp |
>—Photodiodd - SV
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F1GURE 3.6: Layout of our L-FROG pulse characterization setup.

This technique of linearly gating the pulses to make a FROG measurement was originally
developed and built at the ORC by M. Roélens, a previous student [14]. I refer to it
as the L-FROG to differentiate it from the more commonly used SHG-FROG which
uses signal autocorrelation in a SHG crystal. The basic layout of the L-FROG is shown
in Fig. 3.6. The pulse to be measured is split with a coupler to obtain a test pulse
E(t), and a separate gate pulse. The gate pulse is passed through a delay line which
facilitates the scanning of the gate through the signal and a constant output EFDA
to equalise any attenuation fluctuations in the delay line, before being detected with a
20 GHz bandwidth photodetector. The photodetector converts the gate pulse into an
electrical gate G(t) which after amplification is used to drive the EOM which actually
samples the test pulse. Finally, the sampled signal is measured on a high resolution
OSA to form slices of the measured spectrogram. This L-FROG setup is used in the
remainder of the thesis for pulse phase characterization and is a valuable tool in our lab.

However, alterations are often made to this setup when measuring unconventional or
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complicated pulses. In almost all cases, the alteration is simply to obtain a gate pulse
which is simpler than the test signal. For example, gate pulses are often split from a
signal before it enters the system under test or from an entirely different source which

is synchronized with the source of the test signal.

The rest of this chapter presents experiments we have performed which use the L-FROG
to measure interesting pulses. They have been selected to show the versatility of our
L-FROG setup to measuring a wide range of signals from sub-picosecond widths in the
first experiment which is a pulse compression scheme (Section 3.2) to dark pulses in
the second experiment that were tens of picoseconds long and generated using a semi-
conductor optical amplifier based wavelength converter (Section 3.3). Other interesting
pulse types have also been characterized throughout this work, in particular the output

of a frequency comb generator studied in Chapter 6 is of great interest.

3.2 Characterization of Pulse Compression in a Bismuth-
Oxide Fibre

In this section we present a pulse compression experiment using a highly nonlinear
Bismuth-Oxide fibre. Two main aims are addressed in this experiment. The first is
to demonstrate strong pulse compression resulting in sub-picosecond transform limited
pulses at 10 Gb/s. The second purpose is to test the L-FROG pulse measurement system
using different linear modulators. The pulse compression scheme presented here, uses
SPM occurring in the highly normally dispersive, nonlinear Bismuth-Oxide fibre to cause
spectral broadening. Pulse compression occurs at a second (linear) stage which removes
the pulse chirp by propagation in a piece of single mode fibre. These experiments were

taken in collaboration with S. Asimakis.

3.2.1 Background

The generation of short pulses has always been of interest, whether it be used to develop
ultrahigh bandwidth communications, measurement systems or for a range of other
applications [15-19]. While short pulse laser sources have been able to achieve extremely
short pulse durations at low repetition rates [20], obtaining sub-picosecond pulses at
GHz repetition rates simply, remains a challenge. Pulse compression schemes attempt

to achieve this by starting with wider pulses at the desired repetition rate and then
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nonlinearly compressing them down to narrower widths. Pulse compression can be
achieved using nonlinear effects such as FWM and SPM. FWM can be used to compress
pulses by providing an intensity dependent gain in a similar way to saturable absorbers in
lasers [21]. FWM occurring between a pulsed pump and a synchronized signal, provides
the signal a large gain at the peak of the pump pulses and much less gain at the sides.
This acts to ‘shave away’ the sides of the pulse leaving it narrower. While this scheme
has the advantage of also providing the signal large gains, it requires synchronization
and careful polarisation control between the signal and pump and requires the initial

pulse to already be short.

To avoid these complications, SPM methods of pulse compression are often preferred due
to their simplicity. No other signals are required and the signal acts as its own ‘pump’.
As we saw in Section 2.3.3, Pulses undergo SPM when their powers are high enough to
induce the nonlinear Kerr effect which, through analysis of the nonlinear Schrodinger
equation [22], can be shown to modulate the signal’s phase in an intensity dependent

manner. The SPM induced phase shift, ¢y, is given by [22]
onp(T) =~yRLI(T) (3.3)

where Py is the initial peak power of the pulse, I(T) is the normalised intensity profile of
the pulse. This intensity dependence of the phase causes a chirp to occur at the leading

and trailing edges of the pulse which is given by

do I

Thus for pulses which are initially already short with high peak powers, the intensity
gradient is steep giving rise to a large chirp and new frequencies are generated. SPM
schemes largely differ in their choice of nonlinear medium. These generally fall into two
categories, those with anomalous dispersion (2 < 0) and those using normal dispersion
(B2 > 0). If the nonlinear fibre in which SPM occurs has anomalous dispersion then the
blue-shift occurring at the leading edge of the pulse is delayed with respect to the red-
shifted components at the trailing edge thus keeping the pulse compressed without other
action. This self compression is the simplest scheme and is the same mechanism by which
solitons can be created. Dispersion decreasing fibers are often used as the nonlinear
medium in these regimes [23] to adiabatically guide the pulse into narrower soliton

solutions. However, the fabrication of such high quality dispersion decreasing fibers



Chapter 3 The Linear FROG 45

is non-trivial. Alternatively, fibers have been fabricated with sections of alternating
SMF and dispersion shifted fibers spliced together. These create sections of controlled
dispersion which are reduced in each subsequent section to effectively create the same

effect as the dispersion decreasing fibers with much simpler fabrication [24].

In the normal dispersion regime, the wavelengths generated at the leading and trailing
edges of the pulse actually move away from each other and so must be brought together
externally by a grating pair, a length of anomalously dispersive fibre or some other form
of controlled opposing dispersion. Although less simple than the anomalous dispersion
regime, the normal dispersion actually acts to stretch and linearize the chirp generated
by the SPM. The chirp is then able to be more completely compensated for by the
external dispersion resulting in better pulse quality at the output. The nonlinear media
chosen in this regime vary greatly from SMF or dispersion shifted fibers used in the
normal regime [2, 25, 26] to highly nonlinear doped fibers [27], microstructured fibers
[28, 29] and specialized gratings [30]. In Ref [31], Fu et al. used a chalcogenide soft
glass fiber to compress 6 ps pulses down to 420 fs. The external chirp compensation
here was achieved with a dispersive grating written for the purpose. Although very
good pulse quality was able to be achieved in this case, the compressed pulse train
was obtained at a 9 MHz repetition rate which is much lower than appropriate for
telecommunications applications. Furthermore, the use of chalcogenide fibre limits the
maximum input power into the fibre if the onset of two photon absorption is to be
avoided. Two photon absorption would increase the fibre losses, thus degrading the
performance of the compressor. Hence, the scheme is not suitable to be power scaled

for increased compression.

In this experiment, our aim was to produce short sub-picosecond pulses at high repeti-
tion rates. To do this, we chose to use a SPM-based compression scheme in the positive
GVD regime. Our nonlinear medium was a 2 m length of highly nonlinear Bismuth-
Oxide doped single mode fibre, chosen for its very high effective nonlinear coefficient of
7~ 1100W1km~! and high normal dispersion of D = —252 ps/nm/km at telecommu-
nications wavelengths [32]. The high nonlinear coefficient meant that we were able to
achieve significant pulse broadening with only a very short length of fibre, thus avoiding
possible synchronisation issues when using the resulting pulses in further applications.
Meanwhile, the large normal dispersion of the fiber at telecommunications wavelengths

is effective at linearizing the large chirp induced by this high nonlinearity, thus improving
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the final compressed pulse quality. Again, this makes the resulting pulses advantageous

for use in other applications.

3.2.2 Experiments

The SPM based pulse compression scheme was set up to operate at approximately
10 GHz. As well as demonstrating pulse compression, we wanted to test in this exper-
iment the ability of the L-FROG to measure very short pulses. The pulse compression

experimental setup is shown in Fig. 3.7. Our source was an erbium-doped mode locked
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FIGURE 3.7: The pulse compression setup.

laser (PriTel Ultrafast Optical Clock) driven by a 9.935 GHz clock to produce 2.5 ps
sech? pulses. The pulses were generated at a wavelength of 1549.3 nm and an average
power of 6 dBm. They were then amplified up to 25 dBm in a high power EDFA.
The resulting pulses were approximately 1.3 ps wide (FWHM) due to some initial neg-
ative GVD pulse compression occurring inside the amplifier. Fig. 3.8 shows the initial
pulse characteristics before propagation in the highly nonlinear fibre. It is evident from
Fig. 3.8(a) that the input pulse has a nearly zero chirp and is close to transform lim-
ited. Its corresponding spectrum is shown in Fig. 3.8(b) and is noted to have a 3-dB
bandwidth of 1 nm.
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FIGURE 3.8: (a) The pulse emerging from the amplifier is 1.3 ps in width with a
near-zero chirp. (b) The spectrum of the amplified pulse.
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By passing our amplified pulses through this highly nonlinear medium, they undergo
severe SPM, acquiring a large chirp and spectral broadening. The high dispersion of the
Bismuth fibre then stretches out the chirp, linearizing it as discussed in Section 3.2.1.
The resulting temporal pulse is shown in Fig. 3.9(a) and the output spectrum broadened
from 1 to 12 nm is shown in 3.9(b). The characterisation of the pulses was obtained with
L-FROG measurements and compared to both numerical simulations of our system and
independent measurements of the pulse spectra with an optical spectrum analyzer. The
temporal pulse can be seen to be square-ish as expected and that the emerging chirp is
indeed large and fairly linear, spanning £1000 GHz across the 8.5 ps width of the pulse.
However, the temporal pulse is also shown to exhibit large ripples along the top edge
and there are deeper oscillations in the spectrum that was predicted by our simulations
which are likely to be correlated to the temporal discrepancies. The origins of these
unexpected ripples were not able to be precisely determined. However, we suspect that
they could possibly result from back reflections at the Bismuth-SMF splice interfaces
which had ~ 3 dB loss each.
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FIGURE 3.9: (a) The L-FROG retrieval of the signal pulse after the Bismuth fibre is
shown compared to simulation. (b) Good correlation is shown between the simulated,
retrieved and independently measured spectra.

To compensate for the chirp and complete the compression of the pulse, the highly
chirped and spectrally broadened pulse was then passed through anomalously dispersive
SMEF fibre. The L-FROG system was valuable here to aid the optimisation of the system.
To obtain a transform limited output, the exact length of compensating SMF (to within
half a meter) had to be chosen. Being able to measure the phase of the output allowed us
to determine whether too much or too little SMF was being used. Through fine tuning
with the L-FROG, we found that 31 m of SMF gave the best pulse we could obtain for

this level of amplification. The resulting output pulse, shown in Fig. 3.10(a), was now
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FIGURE 3.10: The phase (dash-dot) and intensity (solid line) profile of the compressed
signal pulse as retrieved by (a) the MZM-FROG and (b) the EAM-FROG.

only 402 fs in duration and had an extremely flat chirp indicating that it was transform
limited. The L-FROG retrieval is again compared to numerical simulations and shown
to have a very good match. Thus, we believe we have successfully demonstrated the

compression of 1.3 ps pulses to 402 fs at 9.953 GHz.

To achieve our second aim of testing the capability of the L-FROG, the pulse was
measured using two different modulators, an EAM and a MZM. The EAM has typically
been the modulator of choice to use with the L-FROG [13]. It possesses a steeper gating
function than the MZM thus providing a narrower gate and better gate extinction. In
addition, it is largely polarisation insensitive which eliminates the need for a polarisation
controller, which is not the case with MZMs. However, the use of the MZM has its own
benefits as we see below. In the first instance, the pulse was measured using a lithium
niobate MZM in the L-FROG. This is the measurement retrieval seen in Fig. 3.10(a) and
has a good agreement with simulation as noted above. Fig. 3.10(b) shows the repeat
measurement taken with an EAM. It is clear that the EAM measurement retrieval
shows a poorer match to simulations. The inferiority of this measurement is even more
evident in Fig. 3.11 which compares the simulated and retrieved spectra to the spectrum
independently measured with the OSA. While the simulations and the MZM retrieval
both show a decent match to the OSA spectrum, the EAM retrieved spectrum can be
clearly seen to be skewed. The skewing corresponds to the cutoff of the semiconductor
in the modulator near 1540 nm. These measurements highlight the benefits of using a
MZM when measuring broadband signals. The femtosecond scale pulses measured here

are the shortest and most broadband pulses we have attempted with the L-FROG. As
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such we have found that for pulses of this type, our traditional choice of using EAMs to

perform gating in the L-FROG is inappropriate.
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FiGURrE 3.11: Comparison of the measured and retrieved spectra for the two modula-
tors.

3.2.3 Conclusions

We have successfully obtained 402 fs compressed pulses by use of SPM in a HNLF
and a length of anomalous dispersion fibre. The pulses were obtained at a 9.935 GHz
repetition rate and were shown to be very nearly transform limited. Furthermore, we
have used these compressed pulses to demonstrate the characterising capability of the L-
FROG system. Measurements of the pulses were taken with the L-FROG using different
modulators and show the superiority of the lithium niobate MZM over the EAM as a
result of its wider optical bandwidth. In practice, the MZM is advantageous because
it is more robust electrically and has a higher tolerance for excessive voltage increases.
However disadvantages of the MZM include its polarisation sensitivity, introducing the
need for polarisation control preceding the modulator. Care must be taken that the extra
dispersion in the polarisation controller is taken into account when choosing to use the
MZM. Additionaly the MZM is unable to provide as much extinction ratio (ER) in gating
as can be obtained from the EAM (ERpyzm ~ 20 dB compared to ERganm ~ 30 dB).
Nevertheless, we have used the MZM for all the L-FROG measurements presented in this
thesis (except for the parabolic pulses shown in Fig. 5.8), and although the polarisation

sensitivity was inconvenient, neither it nor the ER were found to be limiting.
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3.3 Measurement of Semiconductor Optical Amplifier Re-
sponses

In this section, we measure the response of semiconductor optical amplifiers (SOA) to
short optical pulses. This demonstration shows the applicability of L-FROG techniques
to the characterization of active devices and also of dark pulses. The work was carried out
in collaboration with A. Perez-Pardo and S. Sales from the ITEAM Research Institute
of the Universidad Politécnica de Valencia. The SOAs we measured were provided by
the ITEAM Research Institute and packaged into a Mach-Zehnder Interferometer (MZI)
device. Using the SOA-MZI in a pump-probe configuration, we have investigated both
the cross gain modulation (XGM) and cross-phase modulation (XPM) response to short
pump pulses. These experiments were undertaken at the ORC primarily by myself,
with the assistance of A. Perez. While we at the ORC provided the expertise on the
characterisation of the device, the majority of the expertise regarding analysis of SOA
gain dynamics was obtained from our collaborators at ITEAM. Together, we endeavored
to assist in the understanding of nonlinear behaviour of SOA devices by measuring their

response, which should aid the optimisation of these versatile devices.

3.3.1 Background

SOAs are of considerable interest as nonlinear optical processing devices, since they
can be used for operations such as signal regeneration and wavelength conversion. To
understand the response of SOA devices, we need to understand its gain dynamics,
which are determined by the movement of free carriers in the valence and conduction
bands of the SOA. The effects can largely be considered in terms of the quickly reacting
intraband transitions versus the slowly reacting interband transitions. Depending on the
width of the pulses we input into the SOA, the dominating effect changes, thus changing
the gain dynamics. When the SOA is operated using short pulses (on the order of a few
picoseconds), the intraband effects dominate and the saturation energy of the output
pulse becomes pulse width dependent [33]. The shorter the pump pulses, the larger the
compression associated with the intraband effects [34]. In the case of longer pulses, the
slow gain compression would be much larger because of the much higher contribution of
the interband effects on the SOA saturation [33]. In order to use the SOA intraband fast

dynamics for high speed applications, the slow gain compression should be kept as small
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as possible because of its slower dynamics. Using sub-picosecond pulses it is possible
to keep the slow gain compression small, even for input pulse energies higher than the

saturation energy.

All-optical processing of signals in SOAs usually employs either XGM or XPM. In the
latter case, it is common to use integrated SOA Mach-Zehnder interferometers (SOA-
MZI) in order to convert phase changes into intensity variations. As the signal repetition
rates approach the operating bandwidth of the SOA devices, precise knowledge of the
response of the devices (in both intensity and phase) becomes ever more crucial. Pre-
vious measurements of fast SOA phase responses have either involved measurements of
the alpha factor, which relates the refractive index change with any induced gain or
absorption changes in the SOA [33, 35|, or used interferometric set-ups [36]. While the
alpha characteristic is a useful indicator, it does not provide a detailed appreciation of
the phase profile of the SOA response. Interferometric setups on the other hand, can
be quite involved and are prone to environmental instabilities. The high sensitivity,
high stablility and all-fiberised implementation of the L-FROG, makes it particularly

attractive for the characteriastion of theses signals.

3.3.2 Experimental Setup

The SOA response measurements were made on two 1 mm long SOAs arranged in a five
port SOA-MZI (model 07.4059.LI1. WSPO08 from Heinrich Hertz Institut), as shown at
the top of Fig. 3.12. A gain-switched DFB laser (GSL) was used as the signal source to
produce 1551 nm pulses at 10 GHz followed by a length of dispersion compensating fibre
to compensate for the chirp of the generated pulses. Details of the GSL can be found in
Appendix A. A MZM driven with an alternating bit pattern was then used to halve the
repetition rate of the pulse train from 10 GHz down to 5 GHz. The lower repetition rate
was chosen to allow the SOAs sufficient recovery time and thereby to avoid patterning
effects. The 5 GHz pulse train was then split into two arms, one of which became the
pump signal into the SOA-MZI. At launch into the SOA-MZI, the pump pulses were
4.5 ps (FWHM) and had a time-bandwidth product of 0.66. A second CW laser signal
at 1540.6 nm acted as the probe to the SOA-MZI and its output was measured by the
L-FROG. Note that since the L-FROG performs a spectral measurement, we can choose
an appropriate wavelength range on the optical spectrum analyser (OSA) to measure

the signal without requiring an additional optical filter to remove the pump.
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FI1GURE 3.12: Experimental setup of the SOA-MZI characterisation.

3.3.3 Cross-Gain Modulation Measurements

We performed measurements of XGM in the SOA by illuminating only SOA1 of the
MZI-SOA (see Fig. 3.12). At the output, the amplitude and phase of the XGM carved
and converted probe pulses were measured using the L-FROG system. Fig. 3.13 shows
a measurement of the probe output for an average input power of -10 dBm. The 5 GHz
lines of our pulse train can be clearly seen stretching across the spectrogram as can the
broadened spectrum on the leading and trailing edges. Fig. 3.14 shows the intensity
and phase profile of the converted pulses when the pump pulses had an average power
of -10 dBm. An inverted converted signal, typical of the XGM process can clearly
be observed. The phase profile shows that there is a large red shift (negative chirp)
associated with the steep leading edge of the pulse and a smaller blue shift (positive
chirp) associated with the shallow trailing edge of the pulse as a result of the slow
response time. These phase changes arise from the nonlinear refractive index variations
in the amplifier, which result in a chirp [33]. Similar intensity and phase profiles were
obtained for different average pump input powers from -13 to -6 dBm (1.5, 2.5, 4, 6,
8 and 10 mW peak powers). The intensity profiles can be seen in Fig. 3.15(a). Note
that the plots are normalized with respect to the maximum power of the probe signal
at the output of the SOA. The total gain compression is the ratio of the unsaturated
probe level to the minimum of the probe transmission. As expected, both total and slow
gain compression increases with increasing pump energy which is in agreement with the

theory [33]. The increase in total gain compression is mainly due to the increase of the
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plasma temperature in the active region, which is caused by the increase in pump energy.
However, the slow gain compression increases because of the reduced carrier density due

to the increasing stimulated emission.
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FIGURE 3.15: (a) Measured probe transmission pulses for different pump powers. (b)
Maximum (leading edge) chirp for XGM at different pump powers.

After compression induced by the pump, the gain shows a fast recovery, resulting from
intraband effects, mainly carrier heating and spectral hole burning. Faster effects, like
two photon absorption would only play a main role for shorter pulses (fs). After the
fast gain recovery, the gain recovers slowly toward the unsaturated value as a result of
electrical pumping. This interband recovery becomes shorter for longer SOA devices and
for higher electrical bias currents [33]. Typical values for the 10%-90% recovery time
are less than 50 ps for 2500 pm long, strongly biased SOAs, and up to 1 ns for shorter
SOAs (250 pum). Since the period of the signal in our measurements was 200 ps, at low
powers, the gain was able to fully recover to its unsaturated value in the 1 mm long SOA
devices that we experimented with. Fig. 3.15(b) shows the peak chirp experienced by
the pulse for increasing pump powers. We note that the peak chirp gradually increased
from -30 GHz to -105 GHz due to carrier induced index changes. Since the recovery time
due to intraband effects is affected by the input power, we have a variation of 75 GHz in
the maximum observed chirp for 7 dB variation in power input. These and the previous
results are in agreement with characterisation measurements obtained using different

techniques [33].
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3.3.4 Cross-Phase Modulation Measurements

Having measured the response of a single SOA, we can measure the XPM characteristics
of the SOA by using the wavelength-converted pulses in a Mach-Zehnder interferometric
configuration. To do this, the input pulses were generated in the same way as for the
XGM case, but we now operate the SOA-MZI with both SOAs active. The XPM in
SOA1 can then interfere with the CW output from SOA2, and be converted to intensity
modulation. Thus at the output of the SOA-MZI we obtain pulses which are primarily
dependent on the XPM in SOAI1, but also receive some shaping from the gain compres-
sion. In this part of our experiment, SOAs 1 and 2 were operated at current values of
I; = 300 mA and Is = 160 mA, respectively. These currents were selected for out-of-
phase operation of the SOA-MZI to give inverted pulses. This mode of operation yields
an opposite sign in the frequency chirp of the converted signal to that obtained when
the device is operated in the in-phase operation mode. Fig. 3.16(a) shows the L-FROG
measured intensity profiles of the SOA-MZI output pulses. Average input peak powers
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FIGURE 3.16: Measured SOA-MZI output pulses for different average pump powers.
(b). Maximum (leading edge) chirp of the output pulses for different pump input
powers.

between -10 and -4 dBm (3.8, 4.5, 6, 8 and 10 mW peak powers) were used to see the
phase and amplitude dependence of the wavelength converted output on input pump
energy. We observe that as in the XGM case, both the total and slow gain compression
increase with increasing pump energy. Likewise in Fig. 3.16(b), the chirp of the output
pulses is shown to increase with increasing pump energy. Further, comparing the amount
of frequency chirp induced in the probe signal at the output of the SOA-MZI to that

measured after XGM only, we note that the chirp at the output is much lower than that

observed in XGM. This difference here is due to the interference at the output and is
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consistent with the theory presented in [37]. Since the output of the MZI is given by the
difference between the fields of the two arms, the maximum chirp excursion is reduced.
As a result, XPM in the Mach-Zehnder configuration produces pulses with lower chirp

than XGM alone and so is more favourable for switching applications.

3.3.5 Conclusions

We have performed XGM and XPM characterisation measurements of 1 mm long SOAs
operated in a single SOA and in Mach-Zehnder configurations respectively. We have
fully characterized the dynamic response of the SOA-MZI to short picosecond pulses
at 5 GHz using a L-FROG system employing a fast LiNbOs MZM as the sampling
gate. Our measurements demonstrate the applicability of the L-FROG technique for
the characterisation of the dynamic response of fast optical devices, providing full phase

and intensity profiling with good stability.

3.4 Conclusions

We have described in this chapter a complete signal characterization technique based
on the FROG technique. The technique uses linear gating in an EOM to achieve a
cross-correlation with the signal rather than an autocorrelation in a SHG crystal. The
fiberized form of this technique makes it more robust than its nonlinear parent. Addi-
tionally, the use of cross-correlation enables the measurement of more complex pulses
as was demonstrated in Section 3.3. However, the L-FROG is not without its limita-
tions and the choice of a particular L-FROG configuration is dependent on the signal
to be measured. These considerations include the choice of EOM as discussed in Sec-
tion 3.2 which depends on the bandwidth and dispersion sensitivity of the signal. Also,
the time and frequency resolutions of the measurement is traded-off against the mea-
surement time, which may be crucial for unstable or drifting signals. The magnitude
of this trade off is then dependent on the specifications of the spectrometer and delay
line used. Finally, the choice of the gate pulse is important in leading to a speedy and
accurate deconvolution. The gate pulse should ideally be simple in structure, stable
and have a pulse width significantly different from the pulse to be measured. While L-

FROG measurements can still be obtained for signal and gate pulses of similar widths,
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such a situation can ‘confuse’ the deconvolution process causing signal pulse features to

sometimes be found on the retrieved gate profile and vice versa.

The L-FROG technique has been demonstrated in this chapter to be useful in character-
izing pulses with unusual profiles. We have studied the characterisation of both sub-ps
pulses and dark pulses generated in SOA-MZIs. L-FROG has proven to be an essential
tool throughout this project for system optimisation, the analysis of phase manipulation
schemes and the characterisation of more exotic pulse shapes. Most notably, pulses with

parabolic intensity profiles will be presented in the following chapters.
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Chapter 4

Timing Jitter Compensation
using TOFT's

This chapter describes the generation of parabolic pulses by nonlinear propagation in
a normally dispersive fibre and its application to temporal optical Fourier transforms
(TOFT). In the first part, we detail how parabolic pulses can be generated in a disper-
sion compensating fibre (DCF). The governing equations are applied to the generation
of pump pulses with parameters desirable for our application. The latter part of the
chapter describes an experiment which uses the parabolic pulses to perform timing jitter

compensation in a TOFT configuration.

4.1 Nonlinearly Generated Parabolic Pulses

In our efforts to generate parabolic pulses to use as time lenses, we start by investigating
the simplest and most common way of encountering these pulses. Parabolic pulses
have been observed naturally at the output of high power fibre amplifiers [1]. The
formation of these parabolics come about from the interplay between SPM and the
normal dispersion of the amplifier fibre. In 2000, Kruglov et al. showed theoretically
that any pulse propagating in a normally dispersive fibre with constant gain would
eventually evolve into a parabolic shape, so long as the bandwidth of the parabolic
pulse did not exceed the gain bandwidth of the fibre [2]. In addition, after evolving
into a parabolic shape, the pulse would continue to propagate in a self-similar fashion,
meaning that the pulse will remain the same shape even if it increases or decreases in
size [3]. This evolution is due to the parabolic shape being an asymptotic solution of
the nonlinear Schrédinger equation with gain. However, the gain requirement in this
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form of parabolic generation is undesirable in some applications since the generated
parabolic is limited by the gain bandwidth and the need for high power adds cost and
complexity to the system. Alternatively, parabolic pulses have also been demonstrated
to form in dispersion decreasing fibres [4]. Analytically, the decrease of dispersion in the
medium is equivalent to providing gain and so also results in the forming of parabolic
pulse solutions. While dispersion decreasing fibres have the benefit of being passive as
opposed to the gain fibres, they can present difficulties in fabrication and are not readily
available. In 2007, Finot et al. proposed an alternative method of generating self-formed
parabolics which was both passive and without the need for fabrication of complex fibres
[5]. Their method was based on using two sections of fibre instead of one, such that the

parabolic pulses are formed in the first section and then maintained in the second.

The two stage method is the method we will use to generate the parabolic pulses for
time lensing in this chapter. A summary of how parabolic pulses generated with this
method and the parameters governing the outcome are given below. We are particularly
interested in how the study presented in Ref [5] can be applied to creating a time lens
for TOFT. As well as the attraction of being able to generate parabolic pulses simply in
a length of DCF, the two stage configuration of this method allows for the second stage
to be integrated into the time lens potentially creating a simple and elegant Fourier

transformer.

4.1.1 Principle of Passive Two-Stage Parabolic Generation

The principle of generation of parabolic pulses with the passive two stage method relies
on SPM and dispersion, similarly to propagation in the gain fibre. The difference is
that in the absence of a constant gain, the propagation no longer evolves asymptotically
towards a parabolic solution, but rather evolves through an optimally parabolic shape
before becoming square-ish and is eventually susceptible to wave-breaking [6, 7]. Wave-
breaking occurs when the new frequencies generated during SPM run out of phase with
the original pulse causing interference and side lobes in the pulse. To avoid this, a
suitable length of normally dispersive fibre can be chosen such that the pulse exits the
fibre when it is most parabolic. This is the first stage of this two-stage method. The
quality of the parabolic pulse at this optimal point (at the output of the first stage) is
governed by many parameters such as the input pulse shape, the input pulse energy and

the ratio between the nonlinearity and dispersion of the fibre. To find the best parabolic



Chapter 4 Timing Jitter Compensation using TOFTs 63

obtainable in the parameter space, the quality of the parabolic was quantified in Ref [5]
through the use of a misfit parameter. The misfit parameter is defined by the difference
between the normalized pulse intensity profile and the profile of an ideal parabolic pulse
of the same energy, and is given by

2 JUAP = b2
[TApiar

(4.1)

where | A|? is the pulse intensity profile and |p|? is the intensity profile of the fitted ideal
parabolic. The optimal parabolic for a given input pulse shape could then be found by
mapping the misfit parameter over a range of nonlinearity and dispersion. Such a map
was simulated by C. Finot et al. for a Gaussian input pulse and shown in Fig. 4.1. The
N and & axes in the figure are the normalized representations of the nonlinearity and
dispersion respectively and are given by

vFPe
B2

where Ty and P, are the rms width and the peak power of the input pulse respectively,

_ B2L

N =T d ==
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(4.2)

and v and (o are the nonlinearity and dispersion of the first fibre respectively. The white
line shown in Fig. 4.1(a) indicates the condition beyond which wave-breaking will occur

and the black line in Fig. 4.1 indicates the minimum misfit as a function of &.
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FIGURE 4.1: Evolution of the misfit parameter by N and £. The minimum misfit point
is indicated by the yellow diamond. (adapted from figure in [5])

We had said earlier that this method uses two stages. Although the first stage was
chosen to optimise the formation of a good parabolic pulse shape, the shape could not
be maintained. Thus a second stage was needed to stabilise the pulses. The parabolic

pulses entering the second stage should have as low a misfit as possible (ideally < 0.05)
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and exhibit a linear chirp. The linear chirp is characteristic of parabolics formed through
nonlinear propagation and is important because it enables the self-similar propagation
observed in the gain-formed parabolics. However, this system has no gain and the
requirement is instead met by an increase in nonlinearity. That is, the fibre in the

second stage needs to have a nonlinearity parameter N’ > N where [5]

[yGP,
N' =T, VG, c. (4.3)
B

It can be seen from Eqn. 4.3 that choosing a fibre with a larger nonlinearity to dispersion

ratio in the second stage is equivalent to providing the required gain for self-similar
propagation. To avoid having to provide a gain GG, we can instead obtain the nonlinear
increase by choosing a second stage fibre with nonlinearity and dispersion parameters
v and B} for which

/

g—é > % (4.4)

Note also that the larger the increase in +//3’, the greater will be the effective G which
is desirable in maintaining a low misfit parameter, but will also result in a wider output
parabolic [5]. Thus we can use Fig. 4.1 and Eqn. 4.4 to help us to choose the parameters
we will use for generating the parabolic pulses we require to perform time lensing and

TOFT.

4.2 Experiment Design

4.2.1 TOFT Experiment Design

Now that we know how to generate parabolic pulses, we consider how they would be
incorporated into a TOFT experiment. Fig. 4.2 shows the basic setup for a TOFT

experiment.

AEDFA
Parabolic

Pump

m\\ @ Filter
Distorted I _ _
gign; - 28 Nonlinear Dispersive

Delay Fibre Fibre

FIGURE 4.2: Basic setup for a TOFT experiment using XPM with parabolic pulses.
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The high powered parabolic pump pulses are coupled with the target signal, and prop-
agated in a length of highly nonlinear fibre (HNLF) in which XPM will occur. Recall
from Chapter 2 that the XPM will impose the intensity profile of the strong pump as a
phase shift onto the signal, creating the time lens. After XPM, the signal is then passed
through a band-pass filter separating it from the pump to prevent further nonlinear
interactions as it is dispersed through the single mode fibre (SMF). The transformed
signal can then be measured. Electronic synchronization of the sources and an optical
delay line aid in ensuring that the pump and signal pulses are temporally aligned in
the HNLF. Since efficient XPM requires the pulses to also be aligned in polarization,

polarization controllers are placed in both the pump and signal arms.

This basic overview of the setup is quite simplistic and in the next few sections we will
look at each of the principle components of the setup in more detail. At the same time,
we need to consider the compatibility of the components to make sure all the components
work well together to successfully produce a TOFT device. Central to the compatibility
of the components is the XPM process which acts as the time lens. For the XPM to
create the desired quadratic phase shift on the signal, the most critical consideration
is the synchronization of the pump and signal pulses such that they remain temporally
stationary with respect to each other. In the first instance, this means that the pump
and signal need to have the same repetition rate and have synchronized clocks. In real
operation, clock recovery of the signal would first need to be performed which could be
used to drive the pump source. However in our proof-of-principle experiment, the fibre
lengths traversed by the signal will not be very long and synchronization of the pump
and signal at the sources is sufficient. Although this ensures the pulses are synchronized
at the entrance to the HNLF, greater consideration must be given to maintaining the
pulse overlap during nonlinear propagation. To avoid dispersive walk-off between the
two pulses as they propagate, the two pulses need to have the same group velocity.
This means that either the chosen fibre needs to have a low dispersion slope, or else the
wavelengths of the two pulses need to be chosen symmetrically about the zero dispersion

wavelength.

Another consideration that affects the quality of the XPM phase transfer is the wave-
length separation of the signal and pump. When matching the pulse wavelengths with
the fibre we need to also ensure that the signal and pump are sufficiently separated in

wavelength such that any spectral broadening arising from SPM of the pump will not
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cause it to interfere with the signal. Finally after time lensing, we require a matching
dispersion. This acts as the focal length required to complete the transformation and can
be easily achieved by using the correct length of a suitable fibre such as SMF. Filtering
the signal before propagation in this dispersive medium ensures no further interaction

between it and the pump pulses.

4.2.2 Parabolic Pulse Design

We have seen in section 4.1 that under the right conditions, a Gaussian pulse can evolve
into a parabolic pulse through the use of nonlinearities. We can use this theory to
generate parabolic pulses that are suitable for creating time lenses. To be able to use the
parabolic pulses for time lensing, we need to consider not only the quality of the parabolic
(its misfit parameter), but also its width, power, chirp and how it will evolve in the
HNLF. The first two parameters, width and power, will largely determine the properties
of our time lens. They also determine K which governs the magnification factor of the
output (see Section 2.4). In our experiments we ideally want a parabolic pulse profile
that goes to zero at £12.5 ps (i.e. 25 ps base width), so that it could potentially be
multiplexed up to 40 Gb/s. We need to start with a good quality Gaussian pulse which
is shorter than the target parabolic profile, because it will broaden on propagation and
develop the characteristic linear chirp. However, a Gaussian pulse which is very much
shorter than the target parabolic will require a lot of growth and will thus result in a

parabolic pulse which is very spectrally wide, which is also undesirable.
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FIGURE 4.3: (a) Retrieved FROG trace and (b) spectrum of the GSL output pulse
(before filtering)
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FIGURE 4.4: (a) Retrieved FROG trace and (b) spectrum of filtered GSL pulse.
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Our choice of pulse source falls on a DFB solid state gain-switched laser (GSL) which
can be driven with a 9.953 GHz RF signal to produce 7.5 ps pulses at 1540 nm. The GSL
was measured with the L-FROG using the MZM as the EOM. The L-FROG trace and
spectrum of the GSL output are shown in Fig. 4.3. The spectrum shown in Fig. 4.3(b) is
noticeably non-Gaussian indicating that the GSL output pulse is also not Gaussian. We
can improve the shape of the pulse by shaping it with a 1 nm Gaussian thin-film tuneable
filter. The characterization of the filtered output by the L-FROG can be seen in Fig. 4.4
and exhibits a good match to the fitted 7.7 ps ideal Gaussian shown. Referring back
to the misfit parameter map given in Fig. 4.1, we can see that the misfit is minimised
at the point (V,£) = (2.6,0.4) indicated by the yellow diamond. We substitute these
values into Eqn. 4.2 to find the optimal parameters with which to generate the parabolic
pulses for the TOFT. We are using DCF with a normal dispersion of 82 = 146 ps?/km
and a nonlinearity of v = 8.7 W—'km™! in which to generate our parabolic pulses. Eqn
4.2 can thus be rearranged to give P = 5.5 W and L = 55.6 m as the parameters we
should use to minimise the misfit. Fig. 4.5(a) shows the expected output pulse when
using these parameters. These pulses were simulated using a split-step Fourier routine,
written by myself following the method described in [8]. Although the fit between the
simulated pulse and an ideal parabolic is very good, we would ideally like to increase the
input power we use in order to maximise the K of our time lens. Furthermore, we note
that the output pulse is 11.4 ps (FWHM) which is shorter than the target parabolic
profile of 17.7 ps (equivalent to 25 ps at the base). Thus although this configuration
would give us the parabolic with the lowest misfit parameter, we see that it can still be

optimised to make it more suitable for time lensing.
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FIGURE 4.5: (a) Lowest misfit parabolic simulated using P=5.5W and 55.6 m DCF (b)
Wider parabolic simulated using P=8W and 50 m DCF

Firstly, we want to have a high pump power which means that N needs to be increased.
We can refer back to the misfit parameter map (Fig. 4.1) to see how an increase in N will
affect the quality of our parabolic pulse. Since we are moving away from the optimal
point (2.6,0.4) we know that the misfit parameter is going to increase. However, as
indicated on Fig. 4.1(b) we see that the increase in N can be partially compensated for by
decreasing €. That is, we need to reduce the length of DCF. Fig. 4.5(b) shows the output
parabolic when the average input power is increased to 28 dBm (Pp = 8W,N = 3.8)
and the length of DCF is reduced to 50 m ({§ = 0.36). Therefore we have managed to
increase the pump power, thus increasing K which will give us higher fidelity in our
TOFT as discussed in Section 2.4. Note that as an added bonus we have also managed
to increase the width of the parabolic to 12 ps (FWHM) to provide a bigger window
in which regeneration can occur. The sacrifice we have made here in order to achieve
these is the increase in misfit parameter. It can be seen by comparison of Figs 4.5(a)
and (b) that the pulse at (N,§) = (2.6,0.4) is a better match to an ideal parabola as
compared to the revised pulse at (N, &) = (3.2,0.34). However, while this slightly affects
the quality of the TOFT, it is more than compensated for by giving us more power and

a wider regeneration window.

We have so far described the design process leading to the formation of parabolic pulses
in our system. In the second stage of the parabolic generation we require a fibre in which
the parabolic pulses can be stabilized and propagate self-similarly. That is, we need a

fibre which will satisfy Eqn 4.4 for our system. Incidently, recall that we want to use
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our parabolic pulses to perform time lensing which also requires a nonlinear fibre. We
can thus simplify the configuration of the device by choosing a nonlinear fibre which will
satisfy the criteria for both time lensing and self-similar propagation of the parabolic

pulses. Our choice of a suitable nonlinear fibre is described in the next section.

4.2.3 The Nonlinear Fibre

One of the most important parts of the setup and at least as important as the design of
the pump and signal pulses, is the nonlinear medium in which they will propagate. The
main purpose of the nonlinear fibre in a TOFT setup is to manifest XPM between the
parabolic pump and the signal pulse so that time lensing can occur. For this purpose,
it should ideally have a good nonlinearity and a suitable dispersion profile to reduce
dispersive walk-off as mentioned previously. In this particular experiment, the choice
of nonlinear fibre also fulfills a second role which is to act as the second stage of the
parabolic pulse generator. That is, the second fibre needs to provide a medium in which
the parabolic pulses can propagate self-similarly, thus maintaining their parabolic shape.
This would ensure that the time lens does not distort along the fibre. To satisfy this
second role, we saw from Eqn 4.4 that we need a fibre with a greater nonlinearity to
dispersion ratio than the fibre in which the parabolic was formed. That is, it needs to

have a higher nonlinearity or lower dispersion (or both) than the DCF.

The HNLF we chose was a 220 m, germanium-doped, narrow core fibre provided by
Sumitomo Electric. It encourages XPM between the pump and the signal by having a
good nonlinearity, a low dispersion and a zero-dispersion wavelength at 1550 nm. The

main fibre parameters are given in Table 4.1. The low dispersion of the HNLF ensures

Fibre Parameter Value
v 20 W lkm ™!
B2 (at 1550 nm) | —0.013 ps?/km
B3 (at 1550 nm) | 0.048 ps?/km
Ao 1550 nm
L 220 m
Loss (at 1550 nm) | 0.53 dB/km

TABLE 4.1: Parameters for the 220 m HNLF used for XPM.

that the signal is minimally dispersed during the time lensing process and the location
of the zero-dispersion wavelength in the middle of the C-band allows us a fair amount

of flexibility in choosing signal and pump wavelengths. As long as the signal and pump
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are situated symmetrically around the zero-dispersion wavelength, the walk-off between
the pump and the signal will be fairly minimal. The very low dispersion also made this
fibre appropriate as the second stage of the parabolic generator, giving a nonlinearity
parameter value of N = 80.2. Thus N’ is a large increase from N = 3.8 in the first

stage and satisfies Eqn 4.4.

4.2.4 Test Signal

It may seem surprising that choosing a suitable target signal on which to perform a
TOFT demonstration had to be undertaken as carefully as creating the parabolic time
lens itself. The two most important criteria we had to consider when choosing a test
signal were wavelength and pulse width. To match the pump wavelength, we needed
a signal pulse at 1560 nm. The pulse width is important because we are only able to
TOFT whatever lies within our time lens and so any parts of the signal extending beyond
the parabolic region of the pump would not be transformed correctly. Furthermore, we
required that the signal still fits in the parabolic as much as possible after a distortion
has been applied. However, signals that are too short pose their own problems. We
established in Section 2.4 that the greater the spectral extent of the signal, the greater
K must be for a successful transformation in the spectral domain. If we choose a signal
with too large a spectral content then we may find that we do not have enough pump

power to ensure Eqn. 2.23 is satisfied.

This brings us to the question of signal distortion. To show that a domain swap has
occurred we need a linear distortion that distinguishes the time domain signal profile
from its spectrum, which should remain unchanged. Furthermore, we wanted to show
that this domain swap could be applied to the compensation of distorted telecommu-
nications signals. Signal distortion suffered in telecommunications experiments is often
achieved by propagating the test signal through a real or simulated transmission system
such as a recirculating loop. However for the purposes of our TOFT demonstration,
the experiment was simplified by artificially introducing the distortion onto the signal
before compensation with the TOFT. This had the added benefit of being controllable
in severity and allows testing against a specific type of distortion, which would not be
the case if real transmission was used. The distortion we applied had to be significant
enough to easily observe without being so severe as to cause the signal to extend beyond

the parabolic window. We decided to distort the signal pulses by introducing artificial
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timing jitter to the test signal. The occurrence of timing jitter in a signal does not
change or shift its spectrum. Thus when a TOFT is applied the spectrum is transferred
into the time domain, consistently centered and without jitter. Conversely, temporally
mistimed pulses when transferred into the frequency domains, will be wavelength shifted
thus converting the timing jitter into spectral jitter. The timing jitter was applied to
the signal by using an additional low frequency generator to modulate the driving fre-
quency into the signal GSL. Thus the 9.953 GHz nominal driving frequency of the signal
became 9.953+¢(t) GHz, where ¢(t) = Msin(f’t) is the sinusiodal RF signal from the
additional generator of frequency, f’. Because ¢(t) is only applied to the synthesizer
driving the signal source, this causes a small variation in the timing of the test signals
when compared to the undithered pump clock. The greater the amplitude, M, of the
modulating signal, the larger will be the deviation and the timing jitter suffered by the
signal. This setup gave us a distortion of artificial timing jitter that could be controlled
through the amplitude of the modulating frequency and which could be easily monitored
in real time by observing the signal on a high speed sampling oscilloscope. Being able
to monitor the timing jitter in real time on an oscilloscope also simplified the alignment
of the pump and signal pulses. The correct alignment could be easily determined from

the reduction of timing jitter observed.

4.3 Timing Jitter Compensation Experiment and Results

All the elements of the TOFT experiment described above were put together in a com-
plete setup as shown in Fig. 4.6. The final setup consisted of two synchronised GSLs at

1540 nm and 1560 nm to act as the pump and signal sources respectively.

The parabolic pulses were generated using the design parameters discussed in Section
4.2.2. The GSL output was filtered to generate a 7.7 ps Gaussian pulse (see Figs 4.3
and 4.4 for before and after filtering characterisations). The Gaussian pulse was then
amplified up to an average power of 28 dBm and propagated through 50 m of DCF to
evolve into a parabolic shape, which is the first stage of its development. Fig. 4.7 shows
the characterisation of the pulses we obtained at the output of the DCF, which were
measured using the L-FROG system and a standard OSA. Also shown in Fig. 4.7(a) is
the Gaussian profile at the input to the DCF. We note that there is an asymmetry in

the temporal parabolic profile, which is suspected to arise from a slight asymmetry in
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FIGURE 4.7: (a) The retrieved L-FROG trace of the nonlinearly generated parabolic
and (b) the spectrum of parabolic pulse, before and after the HNLF

the input pulse. The pulse nevertheless exhibits a good linear chirp across the majority

of its width and matches well to an ideal parabolic in its central region.

The test signal was generated with a second 9.953 GHz GSL at 1560 nm. The output
of the GSL was compressed with 125 m of DCF to compensate for the inherent chirp
from the source. Fig. 4.8 shows the L-FROG trace and spectrum of the 10 Gb/s signal.
The measured signal is 4.9 ps wide (FWHM), with a flat phase in Fig. 4.8(a) showing
that the chirp has been fully compensated. The signal can also be seen to have small
side lobes which arise from the square-ish, non-Gaussian shape of the spectrum seen
in Fig. 4.8(b). We resisted filtering the signal to obtain a better shape, in order to

maintain the minimum pulse width. The pulses were passed through a polarisation
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FIGURE 4.8: (a) Retrieved FROG trace and (b) spectrum of the 10 Gb/s signal
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FIGURE 4.9: Waveform of the data (a) at 10 GB/s, (b) through the OMUX and (c)
after multiplexing to 40 Gb/s.

controller and a LiNbO3 Mach-Zehnder modulator to be encoded with a 23! — 1 pseudo-
random bit sequence (PRBS). The eye diagram of the 10 Gb/s test signal after data
modulation is shown in Fig. 4.9(a), as measured with a sampling oscilloscope. The
broad width of the signal shown here and the ringing surrounding it are due to the
limited 32 GHz bandwidth of the photodetector. The 10 Gb/s encoded signal was then
multiplexed up to 40Gb/s while the pump remained at 10 Gb/s to demonstrate the effect
of regenerating one 10 Gb/s tributary against the other three. The optical multiplexer

(OMUX) we used was made in house and consisted of a series of couplers and delay
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lines as shown schematically in Fig. 4.9(b). The delay lines were made by wrapping
lengths of polarisation maintaining fibre around micrometer controlled fibre stretchers.
The resulting multiplexed 40 Gb/s signal is shown in Fig. 4.9(c). It can be seen that
there is a slight variation in the amplitudes of the four channels. This is due to an
imperfection in the construction of the multiplexer in balancing the polarisations of the
various channels and could not be adjusted at the time of this experiment. This 40 Gb/s

data was then the initial signal for this experiment.

The next step was to apply timing jitter to the signal. To quantify the amount of timing
jitter we were adding to the signal we measured the ‘width’ of the leading edge of its
eye diagram. That is, a histogram was taken of a slice of the leading edge of the signal
as shown in Fig. 4.10. The histogram represents the distribution of arrival times of
the signal pulses into the photodiode and so will broaden for strongly jittered pulses
and narrow for well timed pulses. The severity of the jitter can thus be quantified by
measuring the standard deviation of the histogram distribution at a given intensity level
of the pulse (e.g. half maximum). Fig. 4.11(a) shows our multiplexed 40 Gb/s signal

wide time window
Jittered
Signal
Histogram small intensity
area L 4 slice
1

Histogra
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3
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FIGURE 4.10: Timing jitter was quantified by taking a histogram of the samples in the
selected histogram area. A narrow intensity slice and a wide temporal selection is used
take a width measurement of the leading edge.

after the application of timing jitter. The timing jitter of the clean signal was measured
to have a standard deviation of less than 800 fs, but could not be accurately resolved,
since this is the inherent jitter of the sampling oscilloscope. After introduction of the
artificial timing jitter (shown in Fig. 4.11(a)), the signal jitter was measured to have
a standard deviation of 1.6 ps, which is more than twice the timing jitter of the clean

signal.

The high powered parabolic pump pulses and timing jittered signal were combined via
a 90:10 coupler to preserve as much of the pump power as possible (21.4 dBm). The
pulses were then launched into the 220 m HNLF to undergo XPM. After the time
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lensing by XPM, the signal was separated from the pump using two 5 nm band pass
filters to increase the combined filter extinction ratio and ensure that the pump was fully
excluded. Finally, a 577 m length of anomalously dispersive SMF was used to match

the chirp induced by the pump and complete the transformation.

Fig. 4.11 shows characterisations of the timing jittered test signal before and after TOFT.
Parts (a), (c) and (e) on the left column shows measurements of the noisy signal before
TOFT and parts (b), (d) and (f) in the right column shows the measurements of the
signal after TOFT. The eye diagram of the noisy signal in Fig. 4.11(a) distinctly shows a
broader leading and trailing edge distributions than the clean signal shown in Fig. 4.9(b).
After TOFT, in Fig. 4.11(b) it can be clearly seen that the second channel (indicated
with an arrow) has a much reduced jitter. Unfortunately due to the severe jitter from
the neighbouring channels and the limited bandwidth of the detector, it was not possible
to quantify the reduction in jitter of the output pulse. However, the eye can be seen
to be wider in the regenerated channel compared to the uncompensated channels and
the pulse edges are better defined. Figs 4.11(c) and (d) show L-FROG characterisations
of the 40 Gb/s signal before and after TOFT. Although the L-FROG is an averaged
measurement and thus does not show timing jitter, we can see that where all the four
pulses had the same profile and phase in Fig. 4.11(c). Then after the TOFT, the second
pulse (indicated with an arrow) has been regenerated and is cleaner than the others
in Fig. 4.11(d). Note in particular that the regenerated pulse is a clean shape and no
longer exhibits the side lobes of the input and further, that it has a flat chirp indicating
proper compensation. The final two parts (e) and (f) show the corresponding spectrum
of the signal before and after TOFT. Although the signal spectrum appears noisy, this
is due to the affect of applying the PRBS modulation.

The characterisations of the output pulses in Fig. 4.11 show that we have effectively
compensated for the timing jitter. However, it was mentioned above that we have been
unable to quantify the jitter reduction due to the lack of distinction between the regen-
erated channel and its neighbouring channels. While this could be improved by using
a photodetector with a larger bandwidth, it is also in part due to the quality of the
input signal. We observed in Fig. 4.8(a) that the signal pulse exhibited side lobes and
commented that we were reluctant to filter the signal in order to preserve its narrow
width. The preservation of the signal width was important in ensuring confinement of

the signal within the parabolic window. However, the side lobes then became the cause
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FIGURE 4.11: Jittered 40Gb/s signal: Eye (a) before TOFT and (b) after TOFT with
one channel regenerated (arrow). L-FROG (c) before TOFT and (d) after TOFT with
one channel regenerated (arrow). Spectrum (e) before TOFT and (f) after TOFT.
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of interference and beating between the multiplexed pulses when jitter was introduced.
This problem could have been resolved with the use of a wider bandwidth signal source
such as a mode-locked laser. Unfortunately at the time of these experiments, no func-
tioning solution was available in our lab and it was decided that time should be better

spent in exploring new experimental directions.

While awaiting more suitable signal sources, we investigated some ways in which the
TOFT device could be improved. The most significant of these is the inflexibility pre-
sented by the interdependence between the parabolic pulses’ width, quality and power.
We noted in Section 4.2.2 that in order to increase K and obtain a wider transform
window, we had to sacrifice some of the quality of the parabolic pulse. To be able to
overcome the interdependence would extend the applicability of this technique to allow
for independent scaling of K and the transform window width. We have in the following
chapters investigated the generation of parabolic pulses by more flexible means. More
specifically, different forms of spectral filtering are used to generate parabolic pulses
which can be propagated through SMF or other optical components such as an amplifier

without sacrificing the quality of the parabolic profile.

4.4 Conclusions

In this chapter we have performed the implementation of a temporal optical Fourier
transform by using parabolic pulses for time lensing. The parabolic pulses were gener-
ated in a two stage system by exploiting their natural evolution in normally dispersive
nonlinear fibre in the first stage to form the parabolic shape, and then maintained in a
second highly nonlinear stage. We have shown that given an appropriate combination
of parameters and nonlinear fibres, these passively generated parabolic pulses can be
maintained for use in further applications. The nonlinear parabolics were used to create
a time lens, by undergoing XPM with the test signal to create a TOFT based timing
jitter compensator. The TOFT based timing jitter compensator was operated at 10 GHz
against a 40 Gb/s data stream in order to regenerate one out of the four 10 Gb/s OTDM
tributaries. The sampled eye and L-FROG characterisations of the 40 Gb/s output sig-
nal clearly show the improvement of the regenerated channel compared to its neighbours.

Finally, we discussed the limitations and potential improvements to this system. The
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incompatibility of the system to pump power changes leads us to investigate spectrally

shaped parabolic pulses in the following chapters.
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Chapter 5

TOFT using Parabolic Pulses
Formed in a SSFBG

In this chapter, we demonstrate the compensation of second and third order dispersion
by performing TOFT with a different type of parabolic pulse. The parabolic pulses
we use here do not evolve naturally as they did in the experiments of Chapter 4, but
are specifically shaped using a specially designed superstructured fibre Bragg grating
(SSFBG). The use of a grating allows us to have much greater control of the shape and
phase profile of the parabolic pulses, hence greatly reducing the tails we saw on the
nonlinearly generated parabolics. Furthermore using a grating greatly relaxes many of
the compatibility considerations that we had to make previously, between the parabolic
generation and the time lensing stages of the setup. For instance when the parabolic
pulses were generated nonlinearly, they were linearly chirped, meaning that it was im-
portant to minimise any SMF between the two stages and that a careful choice of the
fibre for XPM had to be made. Both of these are important to maintaining the required
balance between nonlinearity and dispersion during the propagation of the parabolic
pulse, and hence preserve its shape. Consequently, the input power of the parabolic
pulses and hence the K of the time lens could not be freely adjusted and had to coincide
with powers that were optimal for parabolic generation. Parabolic pulses generated by
SSFBGs can overcome this limitation by producing unchirped pulses which are mini-
mally affected by amplification and thus allows the K of the time lens to be easily and

independently adjusted.

The first part of this chapter gives a brief overview of fibre Bragg gratings and SSFBGs,

how they are designed and how they can be used to create interesting and useful pulse

79
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.

refractive index

Fi1cUre 5.1: Filtering by a fibre Bragg grating.

shapes. The design of SSFBGs for parabolic pulse generation is then described and
the output pulses characterised. Finally we demonstrate the compensation of pulses de-
graded with second and third order dispersion by using the SSFBG generated parabolic

pulses in a TOFT compensator.

5.1 Fibre Bragg Gratings

Fibre Bragg gratings (FBG) are commonly used in telecommunications as filters [1],
demultiplexers [2, 3] and dispersion compensators [4]. The most basic FBGs work by
having a periodically varying refractive index in the core of the fibre which acts as
a Bragg reflector to a given wavelength. The principle is shown in Fig. 5.1. At the
interface of each refractive index change, a small fraction of the input light is reflected.
The Bragg wavelength is the wavelength for which all the reflected portions are in phase

and interfere constructively. This is given by
Ap = 2nA (5.1)

where n is the mean refractive index of the grating and A is the period of the grating as
indicated in Fig. 5.1. As a result the Bragg wavelength will be strongly reflected back

along the fibre while the other wavelengths pass through.

Such FBGs can be fabricated (or written) by using the UV sensitivity of hydrogenated,
germanium-doped silica to produce the refractive index change. Fig. 5.2 shows an ex-
ample of a grating writing rig. A UV laser beam is shone onto the fibre to be written

through a phase mask. The first order diffracted beams from the phase mask will form
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FIGURE 5.2: Schematic of a grating writing rig.

an interference pattern in the region below the mask where the exposed fibre lies. Illu-
mination of the doped fibre core with the UV interference pattern will cause the doped
silica to have an increased refractive index at the high intensity parts. Thus the inter-
ference pattern imparts a periodic refractive index change onto the fibre. For some more
complicated grating structures such as the SSFBGs discussed and used in this chapter, a
moving stage is used to move the fibre relative to the interference pattern. This enables
longer gratings to be written and also for the grating profile to be more flexibly tailored
along the length of the fibre. Smearing of the periodic structure during fibre translation
is avoided by turning the UV beam on and off, such that the final structure is written
in multiple sections. Further details of the technique used to write the gratings used in

this chapter can be found in Ref [5].

Some common FBG structures are shown in Fig. 5.3 with their corresponding spectra.
Fig. 5.3(a) shows the typical reflection spectrum for a uniform grating. The width of

the drop band, A\ is given by
A
AT negy

where v is the visibility of the modulation fringes and n. is the effective refractive index
of the core outside the grating. More precise estimation of grating reflection spectra can
be found using coupled-mode theory. While a thorough description of coupled-mode
theory and its applications to various grating types is beyond the scope of this thesis, it
can be found in many good references, of which I give a few [6-8]. Fig. 5.3(b) shows the

structure of an apodized grating for which the refractive index change, An, is tapered
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FIGURE 5.3: Some common fibre Bragg grating structures. Shown are (a) uniform,

(b) raised-cosine apodized, (c) chirped and (d) phase shifted grating profiles and their

corresponding spectra. Note that the grating period has been greatly exaggerated in
these figures.

at the ends of the grating. This has the effect of suppressing the side lobes in the
reflection spectrum and thus producing a cleaner filter. Chirped gratings (Fig. 5.3(c))
have a period that changes along the length of the grating causing different wavelengths
to be reflected at different parts of the grating. The time delay between the wavelengths
propagating different path lengths applies a dispersion to the filtered signal. Chirped
gratings can thus be used for dispersion compensation. Fig. 5.3(d) shows a grating
exhibiting a phase shift. Introducing phase shifts in a grating can be used to obtain very

narrow transmission peaks and are often necessary for creating complex pulse shapes.

FBGs have a wide range of applications in telecommunications where their robust fiber-
ized form is particularly attractive. The dependence of the Bragg wavelength on the
grating period (in terms of optical path length), A, means that the wavelength and dis-
persion of a grating is tunable through stretching or compressing the fibres [9], or even
by temperature tuning [4]. The versatility of FBGs is demonstrated by their wide range
of uses within the experiments in this chapter. As well as their main use in shaping

sech? pulses into parabolic pulses for time lensing, they will also be used to generate the
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FIGURE 5.4: (a) Photo of the tunable TOD grating rig. (b) Characterisation of the
third order dispersion TOD grating at the setting used for experiment.

TOD impairment we want to compensate for.

To generate the third order dispersion (TOD) we wanted to show compensation for in
this experiment, two chirped fibre gratings were fabricated and mounted together in a
strain rig to enable tunability. The first grating imposed both a group velocity dispersion
(GVD) and a TOD to the signal, while the second grating compensated for the GVD
in the first grating. A photo of the TOD gratings fabricated by M. Ibsen and mounted
by Z. Zhang are shown in Fig. 5.4(a). At the top right corner of the strain rig can be
seen a micrometer which is used the tune the gratings by moving one end of the mount.
This in turn flexes the mount in an S-bend, thus stretching and compressing parts of it
to change the induced delay. By mounting the gratings together, the GVD values were
always matched and only the TOD was tuned as the mount is flexed. Fig. 5.4(b) shows

the characterisation of the grating pair tuned to a TOD value of 8.4 ps/nm?.
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5.2 Superstructured Fibre Bragg Gratings

Another type of FBG which is of particular interest to us is the SSFBG. SSFBGs are able
to shape pulses by having an overlaying superstructure which modulates the standard
refractive index modulations of the grating [10]. When written weakly (<20% reflectivity
to ensure full penetration of the wave into the grating) this superstructure can be shown
to have the same profile as the grating’s impulse response in both phase and amplitude
[11, 12]. However, the impulse response itself will not determine the output pulse we
can expect from a grating, which is of course also dependent on the input pulse. Rather,

the output will be given by the convolution of the input and impulse functions. That is,

y(t) = (t) * h(t) (5.2)

where y(t) is the output temporal profile, () is the input profile and h(t) is the impulse

function.

To design a grating to generate a specific output pulse from a given input, we can simplify
the calculation of h(t) by looking at its Fourier transform H (w). In the frequency domain,

the convolution becomes the product
Y(w)=X(w)H(w) (5.3)

from which we can find the required reflection spectrum H(w) from the input X (w) and

desired output Y (w) spectra. Thus the grating requires an impulse response given by

h(t)= FY{H(w)} =F! {f(((z))} (5.4)

From here, we can find the required superstructure of the grating by scaling the impulse
response with the time-to-space transformation z = 5—;, which arises from the propa-
gation time of the light reflected in the grating. A diagram of the design process is
shown in Fig. 5.5. The method described has been used to design gratings for several

interesting pulse shapes which are useful for optical signal processing [13-15].

5.3 TOFT Setup using a Superstructured Grating

The experimental setup and operation principle of the scheme is shown in Fig. 5.6. In

this experiment, we changed our pump source from the GSL we used in Chapter 4 to
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the 10 GHz mode-locked erbium fiber ring laser (MLL) used in Section 3.2. The change

was required because unlike the nonlinear method of generating parabolic pulses we
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FIGURE 5.8: (a) Temporal profile of the parabolic pulse as compared to an ideal 10 ps
parabola. (b) Spectral response of the SSFBG.

described in Chapter 4, we are now filtering the pump spectrum rather than broadening
it. We thus need to start with a pulse bandwidth that is greater than the design width in
order to ensure there is enough bandwidth to be carved with the SSFBG. The MLL was

operated at 1542 nm to produce 2.1 ps sech? pulses with a 3-dB bandwidth of 1.7 nm.

The laser pulses are shown in Fig. 5.7. The pulses were then amplified and shaped in a
SSFBG designed to generate a 10 ps (FWHM) parabolic envelope superimposed upon
a fifth order super-Gaussian profile to reduce their spectral extent. The amplifier was
necessary due to the high loss inherent in these weakly reflective gratings, which was
10.4 dB in our case. The grating was designed by F. Parmigiani and fabricated by M.
Ibsen for a previous application [16, 17]. The resulting pulses reflected off the grating
were characterised with the L-FROG system and are shown in Fig. 5.8. Fig. 5.8(a)

shows the temporal profile of the measured pulses as compared to an ideal parabolic
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Fibre Parameter Value
v 20 W Tkm™!
Bo 0.816 ps?
B3 0.046 ps®
Ao 1550 nm
L 490 m

TABLE 5.1: Parameters for the 490 m HNLF used in the NOLM.

pulse. The good agreement between the measured and the ideal pulses confirm that
that the intensity profile of our shaped pulses had an almost linear gradient which in
turn should induce a linear chirp on our distorted pulses by action of the XPM in the
TOFT system. The reflected pulse spectrum is given in Fig. 5.8(b) showing the spectral
shaping imposed by the SSFBG.

We also changed the test signal to use for this experiment. In the previous chapter, we
had struggled with obtaining a test signal which would be well confined within the TOFT
compensation window. We had compromised by obtaining signal pulses which were 5 ps
wide, but of poor quality. In this improved experiment, we wish to solve the problem by
using the MLL to generate the signal pulses. However, because this source was already
being used to generate the parabolic pump pulses at 1542 nm, we needed to first split
the MLL output into two paths using a 50:50 coupler and then wavelength convert one
path to a suitable signal wavelength. The wavelength conversion was achieved with a

nonlinear optical loop mirror (NOLM) employing a 490 m length of HNLF.

The principle of operation of the NOLM is shown in Fig. 5.9 and the main parameters
of the HNLF are shown in Table 5.1. Wavelength conversion is achieved in a NOLM
by using the pulsed signal as a nonlinear gate with which to carve pulses from a CW.
In the absence of the pulsed signal, the CW is split 50:50 into two waves entering the
NOLM, one propagating clockwise and the other anti-clockwise around the loop. Due
to the operation of the directional coupler, a m/2 phase shift is acquired each time the
light passes through it. Thus the counter-propagating waves will be 7/2 out of phase
with each other and after traversing the same length around the NOLM will interfere
destructively in the output direction and contructively in the input direction. The
NOLM is thus acting as a mirror in sending all the signal power back towards the input.
We can upset the balance between the two counter propagating waves by introducing
the pulsed signal which co-propagates with only the clockwise wave. As XPM occurs

in the HNLF between the pulsed signal and the clockwise wave, it gains a phase shift
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FIGURE 5.9: Operational principle of the NOLM. (a) The counter-propagating waves
are m/2 out of phase. (b) After traversing the same path they interfere destructively
at the output and constructively at the input. (¢) XPM with a control pulse induces a
phase shift in one wave which opens a gate to produce a pulse similar to the control.

which is dependent on the power of the pulses. Tuning the pulse peak power to induce
a 7w phase shift in the clockwise signal will cause it to now interfere constructively at
the output and so carve a pulse of a similar width to the pulsed input signal, but at the

wavelength of the CW.

We were able to obtain 3 ps pulses at 1556 nm at the output of our NOLM which we used
as our test signal for the TOFT (see Fig. 5.10). Both the temporal and spectral profiles
can be seen to be clean with an almost flat phase in the temporal pulse. The spike in the
centre of the spectrum is a residual CW component which was incompletely compressed
by the pulse carving in the NOLM. These pulses were subsequently passed through a
distortion stage consisting of either a length of SMF for second order dispersion (GVD),
or the chirped FBG to impose TOD on the signal. These formed the target signal
to be processed and were coupled together with the amplified parabolic pulses using
a 90:10 coupler. An optical delay line in the path of the parabolic pump was used to
ensure the signal and pump pulses were overlapping temporally before being launched
into the 220 m length of HNLF. This was the same fibre we used in Chapter 4 and its
parameters are given in Table 4.1. As we were no longer using a nonlinearly generated
parabolic pulse, we were able to place an EDFA in the pump arm. This allowed flexible
amplification of the pump pulse which in turn allows tuning of K. The signal pulses
however, were kept at a low power level (3 dBm) to avoid any spectral broadening from

SPM.

As the distorted signal propagated through the HNLF, it acquired a linear chirp from
XPM induced by the much stronger parabolic pulses. After the HNLF, the parabolic
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FIGURE 5.10: (a) Temporal profile of the clean input signal measured at output of the
NOLM using the L-FROG and (b) its corresponding spectrum compared to the OSA.

pulses are filtered out by a 3 nm bandpass filter centered at 1556 nm, and the target

signal launched into 150 m of SMF to complete the transformation [18].

5.4 Compensation of Group Velocity Dispersion using TOFT

We tested the operation of our TOFT compensator using target pulses which were clean,
and those that were distorted with GVD. According to Eqn. 2.20, our parabolic pump
pulses required an average power of 19.5 dBm to generate a chirp rate, K = —0.34 ps~2,
to inversely match the dispersion, foL = —3 ps?, arising from 150 m of SMF. However,
recognizing TOFT of a GVD broadened signal is difficult because GVD changes only
the width of the pulse and not the shape. Thus, in order to verify that TOFT would

be achieved, we measured the pulse width that we obtained at the output of the system

for various values of pump power. This was done for several values of applied GVD.

We expected that although pulses with different applied GVD would have different
input pulse widths, the preservation of the spectrum in GVD would ensure they all
have the same output pulse width if a TOFT has occurred. This behaviour would not
be observed if instead of a TOFT, pulse compression had occurred, since compression
would cause different input distortions to result in different transformed widths. Thus
we can confirm the matching condition by observing the change in pulse width of the
target pulses at the output of the compensator as the pump power is increased. This is

shown in Fig. 5.11 (lines) where we have simulated the plot of output pulse width against
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average pump power for target pulses with different levels of distortion. We see that all
the output pulses converge to the same width near the calculated pump power indicating
the operational point for TOFT. Our measurements of the system as shown by Fig. 5.11
(symbols) confirm this and agree reasonably well with our simulations, intersecting near

the predicted power level. The slight misalignment of the simulated intersection point is
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F1cURE 5.11: Dependence of the output pulse width on the pump power for various
values of GVD distortion, indicating the correct operating point for TOFT

due to some minor leakage of the widely dispersed pulses outside the transform window.
Therefore only the portion of the pulse inside the window will be transformed resulting

in a narrower output, but also the formation of side lobes.

The GVD-distorted pulses at the input and output of the compensator, shown in
Fig. 5.12, were measured at the TOFT operating point (19 dBm). Fig. 5.12(a) shows the
autocorrelations of the input pulses with no dispersion and those dispersed by 100 m and
200 m of SMF. After compensation, all the pulses have the same autocorrelation width
of 6 ps regardless of the GVD at the input, as shown in Fig. 5.12(b). This output width
could potentially be reduced by using a different (but still matched) chirp and dispersion
pair. That is, by increasing the pump power and shortening the SMF at the output.
The input and output spectra of the GVD distorted pulses are shown in Fig. 5.13. We

notice that unlike the autocorrelations, the spectral widths of the output signal do not
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correlate well with the amount of dispersion applied. This raises some questions about

the spectral quality of our TOFT which will be further discussed in Section 5.6.
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5.5 Third Order Dispersion Compensation using TOFT

We then proceeded to apply TOFT to TOD-distorted pulses using the same setup.
Because TOFT is not dependent on the input chirp of the pulses, we were able to use
the same K and SMF length to transform the TOD distorted pulses. The pulses were
dispersed to 8.4 ps/nm? by reflection off the grating pair characterised in Fig. 5.4(b). The
relatively flat top of the loss spectrum ensured that the pulses experienced only minor
spectral filtering but are mainly affected by the time delay to the frequency components
of the signal. Fig. 5.14(a) shows the L-FROG characterization of the pulses reflected
off the FBGs. The dotted line shows a 10 ps apodized parabolic pulse profile which can

be seen to cover most of the distorted pulse but not all. Although we were not able to
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FIGURE 5.14: Temporal profile (a) and spectrum (b) of the TOD-distorted pulses

at the input of the TOFT compensator. At the output of the TOFT compensator,

the temporal profile (c¢) and spectrum (d) of the TOD-distorted pulses have swapped.

Shape of output spectrum imperfect due to leakage outside the parabolic window, but
has expected shape compared to simulation.
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achieve complete confinement of the TOD pulses, we were able to contain the majority of
the signal power. However, this meant that we could not expect parts of the TOD pulse
extending outside the parabolic envelope to be transformed. The minor spectral filtering
from the TOD gratings as compared to the original pulse can be seen in Fig. 5.14(b). The
spectrum is otherwise largely unchanged. Figs. 5.14(c) and (d) show the corresponding
temporal and spectral traces at the output of the device. In Fig. 5.14(c), the temporal
pulse can be seen to be compressed and exhibits a waveform resembling the profile of the
input spectrum in (b). Fig. 5.14(d) shows the transformed output spectrum to which
the main temporal distortions have been passed. Although the spectrum does show
ringing features resembling the distorted input pulse, it is clear that the transformation
in the spectral domain is imperfect. This is partially due to the limited TOFT window
provided by our 10 ps parabolic pulses. Any parts of the distorted pulse outside of this
window did not experience the linear chirp which resulted in imperfect transformation.
Another likely reason for the imperfect transform is the extra phase term in the spectrum
as described in Section 2.23. We discuss this extra phase term further below and then
in more detail in Chapter 7. The simulated converted pulse and spectrum using the

apodized parabolic in (a), is shown in the inset for comparison.

5.6 Discussion

In the two experiments above where we have performed dispersion compensation on
GVD and TOD distorted pulses, the results have a common characteristic. In both
cases, the transformation of the spectral profile into the time domain was very good.
However, the transformation of the temporal profile into the spectral domain has been
less convincing. These results were unexpected because although the spectra have shown
a reasonable match to simulation, we expect in theory that pulses experiencing TOFT
should have a swap in both their temporal and spectral domains. That is, a dispersed
pulse which is temporally broader than its undispersed form, should emerge from the
TOFT with a broader spectrum than the undispersed. Furthermore, this should hold
true regardless of the sign of the chirp on the dispersed pulse. However, this is not what
we observe experimentally. Instead, we see that the spectral broadening and output
pulse width is very dependent on the chirp of the distorted signal. Fig. 5.13 showed the
spectral broadening of the pulses dispersed by SMF. It is clear that while the greater

dispersion of the pulses passing through 200 m of SMF did result in a wider spectrum,
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FIGURE 5.15: Simulation of the TOFT assuming a wider parabolic. (a) The simulated
input pulse and wide parabolic pump. (b) The resulting spectrum after TOFT.

the pulses dispersed by 100 m SMF spectrally narrowed. Similarly, we observe that the
spectrum of the TOD pulses after TOFT only loosely followed the temporal features of
the incoming waveform. Fig. 5.15 shows a simulation of what the TOFT output would
look like for a wider parabolic window than shown in Fig. 5.12(a), but with the same K.
We see that the spectrum is still very poor in this case indicating that the confinement
is not our main problem here. It is more likely that the output pulses were affected
by the extra phase term we observed in the TOFT of the spectrum (Eqn. 2.22) in
Chapter 2. The extra phase term given by exp[—w'?/2K] is imaginary in the temporal
domain and resides outside the Fourier transform integral thus affecting only the phase
of the output and not its intensity. However in the spectral domain, the exponential is
moved inside the Fourier transform integral and so affects the the waveform intensity
itself. We had observed that using a high chirp rate, K, would reduce the effects of this
phase term, but this poses practical problems in requiring stronger pump amplification
and thereby giving rise to greater SPM in the pump. In Chapter 7 we investigate this
problem further and change our TOFT configuration to compensate for the phase term

without increasing the pump power.
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5.7 Conclusions

In this chapter we have reviewed the operation and design of FBGs and SSFBGs. A
SSFBG designed to generate 10 ps parabolic pulses was used to obtain the pulses we
needed for time lensing. This was shown to provide benefits over the nonlinear parabolic
pulses by allowing a variable pump power. We also improved the confinement of the
test pulses in the TOFT window by using a NOLM to create a second short pulse source
from the MLL we were already using for the pump. Our improved setup enabled us to
examine the pulse width evolution of dispersed pulses through the TOFT and verify the
TOFT operational point. Finally, we have experimentally demonstrated the mitigation
of second and third order dispersion of short optical pulses with our TOFT compensator
using the SSFBG shaped parabolic pulses. The quality of the transformations were very
good in the time domain making this suitable for use as a compensator before an end
detector. However, a discrepancy was observed in the width of the transformed spectra.
By eliminating the extra phase term in the TOFT output spectra, we should be able to

achieve even better fidelity in transforming pulses with the TOFT compensator.

In Chapter 7 we will investigate this phase term further and re-evaluate the TOFT
system to correctly and completely compensate for it. However before that, we take a
break from TOFTs to investigate a new pulse source derived from an optical frequency
comb. The frequency comb can be filtered in some interesting ways which will help us

to obtain high quality parabolic pulses and further improve the fidelity of our TOFTs.
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Chapter 6

Pulse Generation with an Optical
Frequency Comb Generator

In this chapter we take a small break from optical Fourier transforms to look at an
interesting new source which we have not yet introduced. The source is an optical
frequency comb generator (OFCG) with very high stability and a very large bandwidth.
Such a source is interesting to use because its large bandwidth makes it an excellent
canvas on which to perform spectral shaping. As will be shown in this chapter, the
combination of the large bandwidth comb and tuneable filters can create a very versatile
and flexible pulse source, which will be extremely useful in our further studies of TOFT
in the next chapter. This chapter begins with an overview of the OFCG. We gain
further understanding of the OFCG in Section 6.1.1 in which we will use the L-FROG
to characterise this useful resource. The latter sections of this chapter explore how
tuneable filters can be used to turn the OFCG into a versatile source from which we can
independently tune the output pulse width, wavelength and pulse shape. Furthermore,
the source is used, in the last section, to simultaneously generate both the pump and

the signal for our next temporal optical Fourier transform experiment.

6.1 The Optical Frequency Comb Generator

Stable optical frequency combs are interesting for many applications including accurate

laser frequency measurements [1], optical coherence tomography [2] and as high repeti-

tion rate short pulse sources [3]. It was the quest for high repetition rate short pulses

that led Gordon and Rigden to first propose generating these combs with a Fabry-Perot

electro-optic modulator (FP-EOM) in 1963 [4]. In 1972, Kobayashi et al. used Gorden
98
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and Rigden’s FP-EOM by placing it inside a laser cavity to increase the efficiency of
the side band generation in his laser [5]. While many other schemes have been pro-
posed in the following years for high repetition rate short pulse generation, it was in
the early 1990s when Kourogi et al. revisited the idea of the FP-EOM [6]. Kourogi’s
interest was not in short pulse generation however, but rather in wide sideband gen-
eration for accurate frequency measurements. Kourogi considered the FP modulator
without Kobayashi’s laser cavity and used instead a CW laser input from which to

create sidebands. The principle for Kourogi’s OFCG is shown in Fig. 6.1. A LiNbOj

f,= n*FSR
Mirrored
surfaces l

CW
input

FIGURE 6.1: Principle of the optical frequency comb generator.

phase modulator is placed inside a high finesse optical cavity and driven at n times the
free spectral range (FSR) of the cavity [6, 7]. In this way, every time the light passes
through the modulator it will experience a chirp that brings it very briefly through the
resonance of the cavity and a pulse will be generated at this point in time. The higher
the finesse of the cavity, the narrower will be the linewidth of the cavity resonance and
thus the shorter the resulting pulse. Similarly, an increase in the driving amplitude will
increase the chirp gradient at the crossing which also results in a narrower pulse. Thus
the power is more efficiently coupled into the higher order modes. In each second half
period, the RF signal must oscillate back through the resonance again, and generating
a second pulse half a period away and with the opposite chirp to the first pulse. Fig. 6.2
represents this more clearly by unwrapping the cavity onto a time axis. The plot on the
upper axis illustrates the chirp imparted by the modulator with the periodicity, T. On
the lower axis, we see that whenever the chirp passes through the resonance condition
of the cavity (blue), a pulse is generated resulting in two pulses per period and with
opposing chirps. With each successive round trip in the cavity, the chirp is further re-
inforced and more of the CW light is coupled into the sidebands. The resulting optical

frequency comb (OFC) has a symmetric spectrum consisting of discrete spectral lines
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FIGURE 6.2: Pulse generation in the OFCG. A pulse is produced every time the mod-
ulating chirp brings the beam through the cavity resonance. The up and down chirps
in each cycle generate a pair of oppositely chirped pulses per period.

separated by the modulation frequency, f,,, with wings that decay exponentially in the
frequency domain. In one half of the spectrum, all the spectral lines are in phase with
each other, while in the other half of the spectrum adjacent spectral lines are m out
of phase with each other. From Fourier transform theory, it follows that each half of
the OFCG spectrum generates a pulse with a Lorentzian envelope [3], an arctan phase
profile and is temporally offset by half a period from the other half of the spectrum. The
complete spectrum thus gives two pulses per period. However, the two pulses in these
pairs are not identical, but have opposing chirps arising from the part of the RF cycle

from which they are generated [7].

To understand this peculiar spectrum further, we considered it analytically. The power

of the n'" sideband P, of the OFCG can be approximated by [6]

T 2
Po=npr (5p) o [_mF] Fo (6.1)

where npp is the efficiency of the Fabry-Perot cavity, m is the single pass modulation
index, P, is the input laser power and F' is the finesse of the Fabry-Perot which describes

how well the signal is confined to the cavity, and is related to the reflectance, R, of the

mirrored surfaces by the relation F' = (1i}}22)2' To obtain the envelope function from the

discrete lines, we can consider that |n| = fi, where fp, is the line spacing of the comb

such that when f = nf,, we have a spectral line. So

P <o () o0 (~f ) 2
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This can be expressed as

2
PU) = nerry (“5) exp(-ar) (62

where o = ﬁ is the decay rate of the spectrum. To simplify the problem, we begin
by considering only one half of the spectrum. That is, we can assume zero phase and
n > 0. Thus the electric field of the spectrum is just the square root of the power

spectrum for n > 0. So

u(w) = %\/ nrpFyexp (—%W> (6.3)

It can be seen that the decay rate a gives the slope of the spectrum on a logarithmic
scale. To find the pulse in the time domain, we take the Fourier transform of u (w) (from

0 to oo, since the spectral density is zero for w < 0), so

u(t) = O‘J;m\/m [ T / e dnve de} (6.4)

which eventually gives,

— \/m exp (ztan <—4;”)> (6.5)

For the other half of the spectrum, we can replace the phase alternation of the spectral
lines by offsetting it from the first half spectrum by a half period. Then putting the two

halves together, we obtain the electric field for the whole signal as

exp [itan_l (#)} exp [itan_l (—#)}
VT -T/A7 | P+ + /A7

E(t) = afm/nrpPin

(6.6)

where T is the period. Furthermore, the two phase terms contained in E(t) can be seen

to be time reversed, highlighting that they originate from and depend directly on a.

Fig. 6.3(a) shows the resulting temporal profile of the pulse as expressed in Eqn. 6.6.
However in practice due to the broad spectrum of the OFC, its generation will inherently
introduce dispersion to the pulses from the LiNbOg crystal itself and any fibre in the
system. With a modest amount of dispersion the pulses will begin to look like Fig. 6.3(b),
exhibiting mirror image profiles that stem from the opposing slopes on the two sides of

the spectrum.
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FIGURE 6.3: Theoretical temporal profile of the OFCG output with (a) no extra dis-
persion and (b) with dispersion.

6.1.1 Characterisation of the OFCG

We obtained an OFCG commercially from Optical Comb Inc. (LP-5011), which con-
sisted of a high finesse, LiNbO3 optical cavity as described previously, and driven at
10.0 GHz with an internal frequency source and could be fed with a CW input at any
wavelength from 1530-1565 nm. On locking, the unit generated an exponentially de-
creasing spectrum with a base bandwidth of > 50 nm. Unfortunately, due to the high
insertion loss of the device (30 dB) and the input damage threshold of the device, the
output power was very low and the measurable spectrum was limited by the sensitivity
of our optical spectrum analyzer. We were thus not able to measure the full extent of
the OFC bandwidth. The spectrum we have measured is shown in Fig. 6.4(a) and its
autocorrelation shown in Fig. 6.4(b). Note that this spectrum was measured without
the use of an EDFA which would distort the shape of the comb. However, all other
measurements we have taken of the OFC (including Fig. 6.4(b)) do use an EDFA to

bring the low output power within the sensitivity of our diagnostics.
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FIGURE 6.4: (a) Measured spectrum of the OFC without amplification (b) Autocorre-
lation of the OFC
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FIGURE 6.5: Setup to characterise the OFCG output.

Previous studies into the OFCG have focused mainly on the intensity profiles of their
output pulses. We wanted to extend this by exploring also the phase characteristics
of these pulses. To this end, we attempted to perform L-FROG measurements on the
OFCG output. Fig. 6.5 shows the setup used to characterise the OFCG. Because we
expected the OFCG to generate two pulses per period which are not identical, we require
a gate pulse that only has one pulse per period. A GSL was driven at 10 GHz from the
internal synthesizer of the OFCG to produce the gate we required. Fig. 6.6 shows the
measured spectrogram of the OFCG output. This spectrogram very clearly shows the
two pulses which are generated by the OFCG and their correlation with each half of the
spectrum. It is interesting also how clearly defined this correlation is with each pulse

being completely confined to its half of the spectrum.

After deconvolution, the retrieved output of the OFCG is shown in Fig. 6.7. In Fig. 6.7(a),
the temporal profile shows two pulses per period spaced half a period apart from each
other as expected. However, we see that the two pulses are not mirror images as ex-
pected and do not have opposing chirps. Instead, one of the pulses is asymmetric and

chirped while the other is symmetric and unchirped. Fig. 6.7(b) shows the L-FROG
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A

FIGURE 6.6: Spectrogram of the OFCG showing the pulses offset by T/2. Tt is possible
to filter out just one of the pulses by filtering a portion from just one side of the
spectrum only (red shading).
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FIGURE 6.7: (a) L-FROG retrieved profile of the OFCG output. (b) Spectrum of the
OFCG output. The inset shows the matching between the OSA measured and the
retrieved spectra in the central region.

retrieved and the OSA measured spectra. Although the spectra do not match very
well, we do not believe this to be the reason for the unexpected temporal characteris-
tics. Indeed, we investigated this by measuring each half of the spectrum separately.
By reducing the spectrum by a half, the resolution of the L-FROG measurement can be

greatly increased, thus improving its fidelity. The retrieved spectra are shown in Fig. 6.8
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and their corresponding temporal profiles are shown in Fig. 6.9. The improved quality
of the measurement can be seen by the smoother retrieved envelope and its improved
matching to the OSA measurement. Although it can be seen that the limited dynamic
range of the measurement has also limited the measurement of the spectral wings here,
the discrepancy only begins ~ 10 dB down from the peak and so should not significantly
alter the major features of the measurement. Furthermore, it can be seen that the re-
trieved pulses are essentially the same as when they were measured together. That is,
the measurements of Fig. 6.7 and Figs. 6.8-6.9 both measure the output of the OFCG,
but in different ways to enhance the resolution of the measurement. The similarity of
the results from both sets of measurements indicate that the asymmetrical temporal

phase profile observed is real and not due to any inadequacy in the measurements.
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FIGURE 6.8: Retrieved spectra of the two OFC pulses. The spectra are compared to
the OSA measured spectrum.
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FIGURE 6.9: L-FROG retrieved profiles of the pulses on the (a) red side and (b) blue
side of the spectrum respectively.
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On closer inspection, Fig. 6.8 presents us another possible explanation for the chirp
discrepancy between the two pulses. Note that since an EDFA was required in these
measurements, there has been some change to the spectral shape arising from the non-
flat gain spectrum of the EDFA. More specifically, we note that the rate of decay of the
spectrum is now different on the two different sides. As we have seen in the theory and the
simulation of the pulses in Fig. 6.3, this directly affects the chirp of the pulses breaking
the symmetry between them. Once the pulses no longer have perfectly opposing chirps,
it is possible that dispersion in the measurement system could cause compensation of

the dispersion in one pulse but leaves the other incompletely compensated.

6.2 Variable Pulse Generator using a Tunable Flat Top
Filter

In this section we use a tuneable filter to add pulse tuneability to the OFCG. The
dependence of the output pulse characteristics on the bandwidth of the spectral slice
was investigated by passing the OFC through different filter bandwidths. It is shown
that the combination of a OFCG with a filter which is tunable both in wavelength
and bandwidth gives rise to a high quality short pulse source with adjustable pulse

characteristics.

6.2.1 The Tuneable Flat-Top Filter

The filter we used was a Santec flat-top tunable filter (OTF-950) which we were able to
continuously and independently tune in bandwidth and wavelength across the C-band.
Fig. 6.10(a) shows a diagram of the operation of the filter [8]. The input to the filter is
first incident upon a diffraction grating formed from a reflecting wedge. The spectrally
spread beam is then reflected off one slice of a movable triangular mirror. Because the
beam is only incident on one slice of the mirror at any given time, moving the mirror
perpendicular to the incident beam will change the width of the reflected portion. This
concept is more clearly shown in Fig. 6.10(b). Recompression of the filtered beam off the
initial grating couples the light back out into the original input fibre. Finally a circulator
redirects the output to a separate port from the input. The wavelength tunability of the
filter is achieved by varying the tilt of the mirror constructing the bottom edge of the

wedge grating. As shown in Fig. 6.10(c), changing the angle of the wedge will cause a
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different portion of the spectrum to be directed to the bandwidth selecting mirror, thus

selecting a different centre wavelength.

(@ (b) Bandwidth tuning
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for handwidth tuning

FIGURE 6.10: (a) Schematic of the Santec tunable filter (b) Bandwidth tuning is

obtained in the filter by moving the triangular mirror perpendicular to the beam thus

reflecting a slice of differing width. (c) Wavelength tuning is obtained in the filter by

changing the tilt angle of the mirror in the wedge reflector, thus changing the portion
of the spectrum reflected off the triangular mirror. (Edited from figure in [8])

6.2.2 Experimental Setup

The experimental setup we used is shown in Fig. 6.11. A 1560 nm CW signal was am-
plified up to 15 dBm which was the maximum specified input to the OFCG without
damaging it. Since the LiNbOj3 modulator is polarisation sensitive, a polarisation con-
troller was used just before the OFCG to maximise the output power from the device. At
the output of the OFCG the signal had been reduced to -15 dBm and had to be ampli-

fied again to bring it within the sensitivity of our characterisation devices. This second

1552 nm
156006 nm <o~ _PC EDFA Mo antec
CW Laser ~>ﬁm OFCG D— Tunable —> to L-FROG
Filter

FIGURE 6.11: Setup of the variable pulse generator
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amplifier was also important since we anticipated that more optical power would be lost
in the Santec filter when most of the OFC spectrum was rejected. The filter was centred
around 1552 nm, in a region as close as possible to the central wavelength to maximise
the power, but far enough away to ensure that the second half of the spectrum was fully
rejected. In addition, the wavelengths of the CW laser and the filter were chosen such
that the part to be filtered experienced a flat gain across its bandwidth as it passed
through the EDFA, and the shape of the OFC spectrum was preserved. Pulses were
measured with filter bandwidths ranging from 0.5 nm to 6 nm on the short wavelength
side of the OFC spectrum allowing us to pick out one component of the pulse pair.
We analysed the filtered output on the L-FROG measurement setup, and the measured

pulses are shown along with simulations in Fig. 6.12.
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FIGURE 6.12: Filtered output pulse profiles and corresponding spectra for bandwidths
of (a) 0.5 nm, (b) 3 nm and (c¢) 6nm
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6.2.3 Results and Discussion

Fig. 6.12 shows the output pulses resulting from 0.5 nm, 3 nm, and 6 nm filter band-
widths respectively. Both the measured pulse intensities and phases (dots) can be seen
to match very well with the theory (lines). Their corresponding spectra are shown next
to them. The filtered pulses can be seen to be of high quality and very short, with pulse
widths of 10.5 ps, 2.3 ps and 1.6 ps respectively. Note that the linear chirp observed on
the pulses is not intrinsically due to the OFC generation technique, but rather to other
dispersions in and following the system as was shown in Fig. 6.3. Sources of this extra
dispersion include the LiNbOg crystal itself, the dispersion within the Santec tunable
filter and the SMF fibre between the OFCG output and the L-FROG. The simulations
take this into account by applying a consistent dispersion across all three pulses, which
was fitted by eye to a value of 1.02 ps/nm. The corresponding simulation of our filtered
pulses with only the intrinsic chirp of the comb generation technique and without the
extra dispersion is shown in Fig. 6.13. The very small intrinsic chirp of these undispersed

pulses can be seen to be < 100 GHz across the full pulse-width in all cases examined.
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FI1GURE 6.13: Simulated OFCG output without any additional dispersion.

The side lobes which can be observed on all the pulses are due to the super-Gaussian
shape of the tunable filter. Indeed, we see that the side lobes are reduced for the 0.5 nm
filter which has a more rounded spectrum. In order to improve the quality of the filtered

pulse for a given bandwidth, it is possible to design an (amplitude-only) filter to apodize
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the spectrum and correct for the spectral slope which gives rise to the chirp. Fig. 6.14
shows that a filter which combines compensation of the spectral slope with a sech? shape
can give a much improved output pulse. The simulated output shown in Fig. 6.14(b)
is chirp free, smooth and exhibits no evidence of side lobes down to the -30 dB level.
Note however, that such designs still require some form of truncation or apodisation to
completely reject the second half of the spectrum. In this example, a 6 nm 6 order
super-Gaussian was used to apodize the design. Unfortunately, the Santec tunable filter
used in these experiments is not able to provide such a filter design. However, these
designs are possible to implement using SSFBG, or better yet, more highly configurable

filters as will be presented in the next section.
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FIGURE 6.14: (a) Spectral profile of a filter that provides apodised pulses, and the
corresponding filtered output; (b) Output pulses from the compensating filter.

6.3 Configurable Spectral Filtering for Creating Multiple
Pulse Sources

In this section we extend the pulse shaping work of the last section with the use of a
more sophisticated filter. The combination of the wide bandwidth OFC and this new

configurable filter allows for almost-arbitrary pulse shaping of picosecond-scale pulses.

6.3.1 The Configurable Filter

The filter in question is a WaveShaper (WS 4000E) from Finisar. Fig. 6.15 shows the
configuration of the WaveShaper [9]. A spread input beam is reflected off a Liquid

Crystal on Silicon (LCoS) element composing of nxn liquid crystal pixels. The liquid
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crystal pixels can each be electronically aligned to induce a phase shift to the light
passing through it. The LCoS is thus able to impart a spectral phase profile onto the
signal. After reflection, the beam retraces its input path and is coupled into an output

fibre.

input / output fibre
ports ‘\ array

LCOS optical

\ processor

conventional

polarisation
diversity

compensating
optics

imaging
optics )

imaging
optics

=
cylindrical mirror

FIGURE 6.15: Schematic of the WS 4000E.(Edited from figure in [9])

Spectral filtering in the WaveShaper is achieved by setting a phase ramp across all the
pixels in one line of the LCoS. The liquid crystal line can then steer the incident light
spatially in the same way that refraction at an interface bends light. The redirection
of the light causes a misalignment between the reflected light and its output fibre thus
effectively attenuating it. Since each line of the LCoS pixels affect a different slice of
the incident spectrum, wavelength dependent attenuation is achieved, that is, spectral
shaping. In the WaveShaper, each individual line of the LCoS can be user configured
with a desired phase and attenuation up to a maximum configurable attenuation of 34 dB
and down to a 0.2 nm resolution. However, the lines are also grouped into ‘channels’
of 100 GHz width to coincide with telecommunications standards. These ‘channels’ can
be turned “off” to obtain complete suppression (> 50 dB extinction) which is useful for
completely blocking wavelengths outside the region of interest. It can also be seen that
by redirecting the light in the y-dimension instead of the z, the output can be coupled
to different output fibres giving switching functionality. We utilize all these features of

the WaveShaper to obtain the pulse carving we demonstrate in the following section.
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6.3.2 Pulse Shaping

To improve the quality of our TOFTs, we wanted to use the OFCG as a source from
which to shape new parabolic pulses. The parabolic pulses would ideally be 25 ps at
the base (bit slot duration of 40 Gb/s data), chirp free and of course exhibit a good
parabolic shape. Furthermore, we wanted to obtain a dark parabolic shape instead of
the bright parabolics we have previously used in Chapters 4 and 5. This was because
dark parabolics suffer from less SPM than bright parabolics which was important for
our experiment [10]. Further discussion on our choice of dark parabolics is given in the

following chapter. The first parabolic design attempted is shown in Fig. 6.16 in blue. A
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FIGURE 6.16: Dark parabolic pulse designs with parabolic and abrupt truncated sides.
(a) Temporal (b) Spectral

dark parabolic was chosen with edges that decayed parabolically, thus representing the
neighbouring bit slots, as shown in Fig. 6.16(a). In Fig. 6.16(b) we show the required
spectrum to achieve this. Note that some of the features of the spectrum are quite
fine and that it decays steeply. This posed a problem with the 0.2 nm resolution and
34 dB maximum attenuation of the WaveShaper. Although contradictory to most pulse
shaping designs, the solution to this was to increase the pulse bandwidth by creating a
sharper drop from the upper edge of the dark parabolic to zero. As well as widening
the spectral features, this served to bring more of the spectral lobes above the -34 dB
attenuation limit, thus giving a better parabolic shape. The resulting design is shown
in Fig. 6.16 in red. However, it is not possible to simply apply the design in Fig. 6.16(b)

to the WaveShaper as there are other design considerations we have not yet taken into
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account. The greatest of these is the spectral extent of the pulse. It can be seen
from Fig. 6.16(b) that the desired spectrum exhibits infinite side lobes. Because of
the attenuation limit of the WaveShaper, we must limit the number of side lobes to
those that we can define well in the filter. We decided to include in the spectrum five
lobes on each side on the central lobe. However, simply truncating the rest of the lobes
will result in distortions in the parabola as shown in Fig. 6.17. This can be mitigated

to some degree by also apodizing the remaining lobes. Figure 6.17(b) shows that the
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FIGURE 6.17: The (a) spectral and (b) temporal effects of truncating the parabolic
pulse spectrum. Spectral apodization is shown to smooth out the temporal ripples
from the truncation.
apodized parabolic matches fairly well with the non-truncated one. However on close
observation it can be seen that the spectrally limited dark parabolic offers a slightly

narrower parabolic window and slightly deviates from the perfect parabolic shape in the

centre of the pulse. The effects of these imperfections are evaluated in Section 7.2.2.

To help us achieve this filter design we used an external 0.65 nm filter to enhance the
reach of the WaveShaper attenuation. Fig. 6.18 shows the application of the external
filter (blue line) to the OFC and how the spectrum of the dark parabolic (red line)
would fit inside it. The steep sides of the filter shape indicate the edges of the “on”
channels used. Note in particular that the lower lobes of the pump spectrum lie >34 dB
below the original comb, but only ~ 15 dB below the externally filtered shape showing
the extended shaping ability that the external filter offered us. Lastly, we wanted to

fully characterise the externally filtered portion in power and phase in order to accurately
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fit

— OFC spectrum
Externally filtered
parabolic filter design
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FIGURE 6.18: The OFC spectrum before filtering (black) and after the pump port is
passed through the external filter (blue). The parabolic spectrum design is shown in
red.

determine the base our parabolic pulses would be carved from including any phase effects
in the filtering system. Fig. 6.19 shows the attenuation and phase of the filter used to
shape the parabolic pulses. Although the desired phase profile for the dark parabolic
pulse requires adjacent lobes to be exactly m out of phase, the configured phase profile
can be seen to have some finer features and curving. This extra phase shift was required
to compensate for residual phase on the filtering system corresponding to the spectrum
shown in Fig. 6.18(blue). The adjustment was small but necessary to ensure a good

resulting parabolic.

Note that we have so far wasted the other half of our OFC. The multiple output ports
available on the WaveShaper meant that we were able to use the other half of the
spectrum to generate a signal pulse thus obtaining both signal and pump from the same
source. This arrangement equipped us with a second short pulse source at 10 Gb/s
which is automatically synchronised to the first source and which would otherwise be
unavailable to us. That is, we were able to direct the channels used for the pump
spectrum out of one port on the WaveShaper, and another set of channels shaped for
use as the signal out of a separate port. This also had the benefit of giving two highly
configurable signals with minimal drift between them, thus increasing the stability of
the experiment. The Gaussian shaping applied to the second half of the OFC spectrum
to generate the signal can also be seen in Fig. 6.19. The small pedestals that can be
observed on the signal and pump filter profiles indicate the attenuation discrepancy

between the 34 dB configurable attenuation and the full suppression at the edge of the
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channels. The resulting parabolic and Gaussian pulses are shown in Figs. 6.20 and 6.21
respectively. The parabolic region matches well to the shown ideal parabolic. It can also
be seen to be 20 ps wide, significantly wider than we were able to achieve by the other
methods. The signal pulse is shown compared to an ideal Gaussian. The Gaussian pulse
is nearly transform limited as shown by the nearly zero chirp of the measured profile

and has a pulse width of 2.4 ps.

Lastly, the flexibility of the setup allowed us to generate more interesting shapes with
which to test our TOFT device. For example, we were able to use a slope compensation
profile to generate a 1.6 ps sinc pulse with a square spectrum. The characterisation of
the sinc pulse is shown in Fig. 6.22. The double pulse carving configuration and the
pulses shown will all be used in the next chapter. There they will be applied to a new

TOFT experiment.

6.4 Conclusions

We have theoretically and experimentally investigated the intensity and phase charac-
teristics of pulses generated in a commercial OFCG. The OFCG generates a pair of
oppositely chirped pulses per period, each associated with one half of the spectrum.
The large tunability and wide bandwidth of the OFC are exploited in the latter parts of
the chapter where it is coupled with tuneable filters to create a tuneable pulse source.
The wavelength and bandwidth tuneable filter used in Section 6.2 is shown to be suit-
able for converting the OFCG into a tunable short pulse source offering high quality
pulses with pulse widths tunable from 1.6 to 10.5 ps. However, side lobes on the pulses
were observed due to the steep edges of the filter. Improved filter designs compensat-
ing for the slope of the OFC spectrum and with apodized edges could yield even more
improved pulse characteristics. To achieve this, Section 6.3 used a more configurable
filter to obtain precise pulse shaping. The multiport filter enabled two separate shaped
pulses to be simultaneously created from the OFCG. These pulses were optimised for
use in a TOFT setup and will be the pump and signal used in our next experiment in

the following chapter.



Chapter 6 Pulse Generation with an Optical Frequency Comb Generator

116

19?‘5

7

Phase [rad]
o o N o= o
T | \ |

IQII.D

IQJI.E 19%0

192|.5

19?.0

Frequency [THz]
IQ‘ILD

19?.5

1911‘5 19?.0 ]9?.5 19?.0

19?.5

IQ‘T‘D

-% 25
196‘5 191‘.0 19]‘.5 1950 ].92‘.5 19:‘1.0 195.5 19“1.0 19“}‘5 19%.0 ]9%.5 195.0 19é.5 197‘"0
Frequency [THz]
FIGURE 6.19: Attenuation and phase profiles configured on the WaveShaper. The
different colours of the pump and signal indicate that they are set to exit from separate
ports.
5oo 200 10
esign 17— OSA
1.0 ]—*—LFROG / 1150 0J—=—FROG retr.
—Fit Design
0.8_7777Chlrp 100 104
O~
- 50 >
S 0.6 g'% -20 1
S 0 =3
= O 30
£ 0.4 50 8
c -2
3 S -401
E 02] 100 o T
-150 504 —u
0.0. T ’ T T .'200 -60 LI T T T T
20 - 0 20 1538 1539 1540 1541 1542 1543
Time (ps) Wavelength (nm)
(a) (b)
FIGURE 6.20: (a) Temporal and (b) Spectral profiles of the dark parabolic pulses
characterised with the L-FROG and compared to the design.
: 200
104 J; | ——L-FROG retr. -30 — osA
“’ i Gaussian Fit FROG retr.
. <= Chirp -40
i ' L 100
- 9. -504
3 =M
< o 232
25 o0
2
= 100 O -70
o
L, i
-200

1556

1558 1560 1562
Wavelength (nm)

(b)

FIGURE 6.21: (a) Temporal and (b) Spectral profiles of the Gaussian signal pulses
characterised with the L-FROG and compared to the design.
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Chapter 7

Complete TOFTs using Dark
Parabolic Pulses

“A TOFT causes the temporal and spectral envelopes of a signal to swap
such that its spectral profile is transferred to the temporal domain and vice

versa.”

At the beginning of this thesis, we set out to perform temporal optical Fourier transforms
which was defined as quoted above. To achieve this goal, we have so far analytically
derived the occurrence of TOFT behaviour through time lensing (Chapter 2) and its
experimental implementation using parabolic pulses generated in two different ways
(Chapters 4 and 5). We can even say that we have obtained TOFTs in Chapters 4 and
5, having demonstrated the transfer of a signal’s spectral profile into the time domain for
signal regeneration. However, something is missing. In these experiments, we observed
spectra that were not as we expected and do not comply with the TOFT we originally
defined. That is, we have so far not observed the correct transformation of a signal’s

temporal profile into the spectral domain.

In this chapter we work to resolve this discrepancy and demonstrate a TOFT complete
in both the time and frequency domains. We do this by revisiting the TOFT theory
derived in Chapter 2 and extend it to considering the signal’s input phase separately. The
phase dynamics surrounding TOFT behaviour is further investigated through the use of
dispersion maps. These maps plot the effect of perturbations on the TOFT system and
the balance between the chirp induced by the time lenses and the dispersion surrounding

it. In the experimental portion of this chapter we redesign our TOFT experiment using

119
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the new dark parabolic time lenses we generated in Chapter 6. With these time lenses we

were able to verify the new theory and use it to perform a new improved and complete

TOFT.

7.1 Theory Revisited

From Section 2.4 we considered the passage of an arbitrary pulse A;,(T"), in a time frame

shifted by T' =t — 52, through a time lens function defined as

H(T) = exp [20;0;:} = exp [—i (1;() TZ}

where wy is the central frequency, fr is the focal time and K = _% is the chirp rate. To

explicitly consider the chirp of the input pulse, we can redefine the input pulse to have
both arbitrary intensity and phase as A;,(T)expli¢s(T)]. As before, the target pulse is
propagated through the time lens H(7T') and viewed after some dispersion

Glw) = exp [ing}

where £ = [z is the dispersion. The output pulse after propagation can then be

described by applying the H(T') and G(w) operators to give
Aout (W) = F{F ™ {Ain(w)expligs (w)]} H(T)}.G(w)

which using the convolution theorem [1] reduces to

1

Aout(w) = -

5 (Ain(W)expligs(w)]) * H(w)).G(w)]

where H(w) is the Fourier transform of H(T') given by

we can now express the output spectrum as

Aoul) = 5 oxp [2 (s+;{)w2} (7.1)

< [ Autwren [ (6. + o )| o s (2) ]

It can be seen that for the conversion T' = w/K the integral above resembles a Fourier

transform of a pulse with input spectral phase, ¢s(w’) + w?/2K, which is inconsistent

with the actual input phase ¢4(w). Therefore the input pulse into the time lens requires
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an extra phase shift, A¢, such that the total phase is A¢ + ¢s(w') + w?/2K = ¢4(w').
That is, we require

Ap = —u?)2K. (7.2)

to obtain a Fourier transform in the spectral domain. Correspondingly the phase term

outside the integral, will cancel out to ensure there is no residual phase if
E+1/K =0. (7.3)

Note that this is the same relation obtained in Eqn 2.20 and is required to preserve
the transformation in the time domain. Combining equations 7.2 and 7.3 we see that
to obtain a complete Fourier transform in both domains and for the input phase to be

preserved in the transformation we also require
_ _ & n
Ap=—— = iw . (7.4)

That is, the extra phase shift A¢ can also be implemented by the chromatic dispersion
operator H(w) = exp {i%wﬂ . This would add a pre-dispersion before the time lens equal

to the post-dispersion and produce the output spectrum

1
2nviK

which gives a true scaled Fourier transform of the input spectrum A;, (w)exp [ips(w)].

Aout (w) =

/Am(w’)exp [igs(w")] exp [z (%) w’} dw’ (7.5)

The analysis above has shown that a true OFT can only be obtained when the dispersion
surrounding the time lens satisfies equation 7.4. However, to further understand the
relationship between the chirp rate of the time lens and dispersion, we must also consider
perturbations to this matching condition. Figure 7.1 explores the dispersion space in the
region around the {; = —1/K matching condition. The dispersion map plots the output
temporal pulse width of a Gaussian signal pulse as a function of the pre- and post-
dispersions &1 and &; respectively. In an experiment, these can simply be implemented
by suitable lengths of fibre preceding and following the time lens. Note that the chirp
rate, K = 1/t3, is chosen to obtain a unity transform of a 2.55 ps (FWHM) transform

limited input pulse. Also, & and & are normalized using

_ Bz _ Baze

1= & & = &

where (9 is assumed to be the same for both fibres, and z; and 2o are the lengths of fibre
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preceding and following the time lens respectively. Figure 7.1(b) shows the dispersion
map with contours of the output spectral width. There are several features of the
dispersion-chirp rate relationship that these two dispersion maps highlight. For instance,
if we consider the line &, = 1 on Fig. 7.1(a) we see that the temporal width remains
constant. This is the behaviour expected from a frequency-to-time transformation as
we have seen in the previous chapters. Since £; does not change the input spectrum of

the signal, the temporal output after the OFT must be constant. The preservation of
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FIGURE 7.1: Dispersion maps of the (a) temporal widths in ps and (b) 3-dB spectral

widths in GHz of the output, as a function of perturbations in &; and & around the

ideal TOFT condition. The simulated input pulses were transform limited and had an
input width of 2 ps.

the temporal pulse width along this line regardless of the input dispersion confirms its
suitability for dispersion compensation in agreement with the theory in Section 2.4. The
same line &, = 1 in Fig. 7.1(b) shows a different spectral behaviour. Instead of remaining
constant, the spectral width increases away from the & = 1 point. If £&, = 1 was the only
condition required to obtain a complete TOFT, the spectral width of the output signal
would be expected to broaden as £; increases because an increase in & is equivalent to
an input pulse which has already suffered GVD and is thus temporally broadened. After
a true TOFT, this temporal broadening should be transformed through the TOFT as
a spectral broadening of the output. Instead, we see that the minimum of the spectral
width is offset to & = 1 supporting the theory that a pre-dispersion equivalent to &1 = 1
would compensate for the offset. In this case, GVD already suffered by the input pulse
would become a perturbation away from £ = 1 and result in the consistent spectral
broadening expected. Due to the symmetry of Fourier transform behaviour, we notice
that the converse occurs along the line & = 1. Along this line the spectral width remains
unaffected by &2, but the temporal width reaches a minimum at £, = 1 where all internal

phase terms are cancelled out.
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7.2 Practical Limitations

The theory has shown that a TOFT can be obtained using a quadratic phase shift as
a time lens, and that the time lens needs to be preceded and followed with dispersions
equal to & = 1/K to be complete. This section explores numerically and without the
complications of experiment, the limitations of using XPM with a parabolic pulse as the

method of imposing the required quadratic phase shift.

7.2.1 Dispersion Map Analysis

Fig. 7.1 showed how the dispersion map should look for an ideal time lens. That is, when
a perfect quadratic phase shift is imparted to the entirety of the test signal. In practice,
obtaining a quadratic phase shift through XPM between the pump and signal pulses
simultaneously subjects the pulses to other linear and nonlinear effects in the medium
such as SPM and dispersion, which will also affect the signal’s phase. We can seek to
minimise dispersion by an appropriate choice of fibre and operating wavelength, but since
SPM uses the same x® nonlinearity as XPM, limiting this mechanism would not serve
our cause. Even if the pump pulse evolution due to these effects is quite small, the most
significant consequence of SPM is spectral broadening of the pump which can lead to
spectral overlap with the signal. When this occurs, the signal and pump cannot be fully
extracted from each other after XPM and a residual portion of the pump is filtered along
with the signal. This residual portion lends an additional phase to the signal which would
not be compensated for in the TOFT. Fig. 7.2(a) shows the dispersion map generated
by using a split-step Fourier routine to simulate the XPM between a 2.55 ps Gaussian
signal and 25 ps bright parabolic pulses. It is clear that the line of constant pulse width
in this map is offset from £ = 1 and that it is slightly skewed. Observation of the
spectrum after XPM (shown beside the map) reveals the cause of the offset. The large
amount of SPM induced spectral broadening suffered by the strong pump has caused
its spectrum to overlap with the signal’s. This is confirmed in Fig. 7.2(b) where the
wavelength separation has been increased to 100 nm and as a consequence, the offset is
seen to return to &, = 1. Note that we wanted to ensure the signal and pump pulses were
experiencing the same dispersion and SPM when separated by 100 nm as they were when
they were separated by 20 nm. The dispersion slope of the fibre was therefore reduced

to one fifth of its normal value in the simulation where they are 100 nm apart. Being
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unable to increase the wavelength separation to this extent in practice, we need to find a
way to reduce the SPM instead. Although detrimental to the XPM process, the simplest
way to reduce SPM is to reduce the pump power. There are thus several trade-offs that
must be considered in designing the TOFT. The spectral broadening due to SPM can
be reduced by reducing the peak power of the pump which in turn can only be achieved
by reducing the time lensing window or decreasing K. Decreasing K may be a suitable
sacrifice if the application does not require the output pulse to be scaled to a particular
width. Even so, there is a catch since both options increase the risk of the signal being
broader than and ‘leaking’ beyond the extent of the time lensing window. It is obvious
that there will be more leakage if the time lensing window is reduced, however it may
be less obvious that by decreasing K we must necessarily increase &y, thus increasing

leakage through the need for a larger pre-dispersion.

These compromises can be alleviated to some degree by using a dark parabolic pulse
instead of a bright one [2]. Fig. 7.2(c) shows the dispersion map and related spectral
broadening using a 25 ps dark parabolic pulse. It can be seen that the dark parabolic
pulse has undergone less SPM than the bright one, thus reducing the spectral overlap
between the pump and the signal. This in turn reduces the offset in the dispersion map
of Fig. 7.2(c) and indicating the dark parabolic pulses would be a better choice of pump
for our XPM-based TOFT.

7.2.2 Pulse Profile Analysis

We are interested to find if spectral broadening is the only side effect of using XPM with
parabolic pulses as a means to implement a time lens. To analyse this and to clearly
show the quality our simulated TOFT processes, we chose a square spectrum (10"
order super-Gaussian) to transform, as it would be particularly sensitive to imperfect
transforms lacking in definition. We begin by following the theory conditions exactly
and impose the time lens onto the signal with a perfect and infinite quadratic phase shift
eliminating any interference from nonlinear effects. If we do this, a perfect transform
is obtained as predicted (Fig. 7.3). However temporal phase shifts cannot stretch to
infinity and at the very least are limited to the period of the signal in question. If the
signal in question has a very low duty cycle then this is not a problem and the phase
shift is more likely to be limited in magnitude. When using XPM, this is limited by

the peak power of the parabolic pump pulse. Since K determines the scaling of the
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FIGURE 7.4: Truncation of the parabolic reduces the transform window. This in turn
leads to ripples along the top edge of the transformed square.

transformed waveforms, this value frequently cannot be chosen and an increase in K
will result in a reduction in the transform window for any system with a maximum
applicable phase shift. This gives rise to the first and probably the most important
limitation of TOFTs. The issue of leakage was previously mentioned in Chapter 4 and
its effect can be seen in Fig. 7.4 where the quadratic phase shift has been temporally
truncated and the transform window is now limited. Note that our choice of an abrupt
truncation rather than a slow decay was discussed in Section 6.3.2. We can see the top
edge of the output pulse in Fig. 7.4 now exhibits ripples instead of being flat as it should
if the square shape was correctly transferred from the spectral domain. These ripples
come from the effective truncation of the sinc pulse’s infinite side lobes at the edge of the

parabolic phase. The risk of leakage is even greater now with the use of a pre-dispersion.
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In most cases the pre-dispersion will broaden the signal pulse, pushing more of the pulse
outside the parabolic window where it does not experience the quadratic phase shift. In
fact, this is demonstrated even more clearly if we choose a signal pulse that is initially
very well contained in the parabolic window as is the case if we flip the current example
around. That is, we can choose for the signal pulse to be square (super-Gaussian) with
the many lobed sinc shape residing in the spectrum. Fig. 7.5 shows the input and output
profiles of such a pulse when the quadratic phase shift is infinite (coloured) and when it

is truncated (black). It is clear that although the 6 ps (FWHM) square is much shorter
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FIGURE 7.5: The square pulse is completely confined within the parabolic. However,
there are still ripples in the transformed profile.
than the 25 ps parabolic, the square transformed from the time to the spectral domain
still has significant ripples along the top edge. These ripples arise not because I have used
a high order super-Gaussian instead of a true square, but rather from the pre-dispersion
of the square dispersing it into a many lobed pulse extending beyond the the parabolic
window. Figure 7.6(a) shows the pre-dispersed square on a log scale as compared to the
extent of the parabolic window. Furthermore, we see that if we increase the transform
window without increasing the chirp as shown by the green trace, the oscillations of the
output pulse after TOFT will be reduced since more of the signal lobes are included

within the parabolic window.

The quality of the TOFT in Fig. 7.5, although not perfect is still very good and the main
structure convincing. The next limitation is in the spectral content of the pump. We
described in Section 6.3.2 the effect that spectral limitations have on a dark parabolic
shape, and the means taken to produce the best possible (and practical) dark parabolic

of a useful width. If we use that practically designed dark parabolic now, it can be
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FIGURE 7.6: The pre-dispersion causes the square pulse to leak out of the parabolic
window causing the ripples in the transform. A wider window reduces the ripples
significantly.

seen that it offers a slightly narrower parabolic window than a non-spectrally limited
parabolic, and also that it slightly deviates from the perfect parabolic shape in the
centre of the pulse. The effect of the further narrowing is shown in Fig. 7.7, with the
distortions along the top edge of the square increasing as we would expect. Of greater
effect however is the seemingly small deviation at the centre of the pump profile from
an ideal parabolic. Fig. 7.7 shows the quality of the TOFT that can be achieved with
a pump imposing a phase shift of this shape. Clearly, there is now a distortion in the
middle of the transform. Also shown, in Fig. 7.7(b) is the change in the gradient of the
truncated and apodized parabolic. Using the same w = T'K scaling factor for the pump
gradient as is applicable to the signal, the correspondence between where the phase shift
changes and the location of the signal distortion is clear. Finally we must consider that
the simulations so far have assumed a perfect transfer of the pump profile to a signal
phase shift equivalent to 2yP(t)L. As discussed earlier, other nonlinear effects that
accompany the desired XPM, such as SPM, can also be detrimental to the time lensing
process. Furthermore, we have seen here that seemingly small disturbances to the time
lensing whether they be from leakage or an imperfect parabolic, can cause significant

disturbances in the final transform.
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in the centre. The change in chirp in the centre of the window gives a corresponding
distortion in the centre of the transformed pulse.

7.3 Experimental Verification

7.3.1 Experimental Setup

Now aware of the practical limitations, we sought to experimentally verify the complete
TOFT theory with the best possible setup. Compared to the TOFT setups used in
previous chapters, we are now using both a pre- and post-dispersion. Other improve-
ments to the TOFT setup have also been made which can be seen in the experimental
setup in Fig. 7.8. The most significant change is in the time lens which is now im-
plemented through XPM between the signal and a dark parabolic pump pulse instead
of a bright one. The dark parabolic pulses and the target signal were simultaneously
generated through spectral shaping of the broadband OFC. Spectral carving of the two
stable, synchronized and accurately shaped signal and pump sources was facilitated by
the WaveShaper 4000E. The spectrum of the 10 GHz frequency comb was carved at
1540 and 1560 nm, and shaped to form 14 ps dark parabolic pump pulses and 2.4 ps
Gaussian signal pulses respectively (see Fig. 7.9). The full description of the design
and implementation of the dual pulse carving can be found in Section 6.3.2. As well as
requiring only one source instead of two, generating the pump and signal pulses this way
had many advantages with regards to this experiment. Firstly, the parabolic generation
was simplified allowing greater power, width and shape tunability than the nonlinear
methods as well as greater wavelength tunability than using a SSFBG. Furthermore, its

simplicity of operation and the reconfigurability of the filter made real time adjustments
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possible for optimized pulse shaping. Although the requirements are less stringent, all

these arguments apply to the signal also. Together, the wide wavelength span and

wavelength tunability of the OFCG critically allowed us to have two sources at a wide

wavelength separation thus reducing spectral overlap. Finally, the use of one source

instead of two eliminated the need to synchronise two separate sources, reducing the

temporal drift between the pump and signal and thus greatly increasing the stability of

the experiment.
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After carving, the two portions of the comb were directed out of two separate ports in
the WaveShaper. The pump was strongly amplified and further filtered with a 0.65 nm
(3-dB width) Gaussian filter to improve its extinction. The width of these pulses were
chosen for optimal OFT conditions but would be ultimately limited by the spectral

resolution of the configurable filter.

The profile of the dark parabolic pump pulses and the Gaussian signal pulses as measured
by the L-FROG were shown previously in Figs. 6.20(a) and Fig. 6.21(a) respectively.
They are shown here again in Fig. 7.10, compared to each other and showing the con-
finement of the signal within the parabolic window. Also shown is the signal pulse after
Bz = 4.8 ps? of pre-dispersion was added (in simulation). This was the maximum pre-
dispersion we applied in this experiment and we can see that although the confinement

is generally still quite good, some leakage of the pulse wings is now expected.
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F1GURE 7.10: Profile of the input signal pulse compared to the dark parabolic pump
with and without the maximum applied pre-dispersion (4.8 ps?).

The use of a dark parabolic pulse instead of a bright one means that a negative chirp is
imposed on the signal and the dispersive element must be normal or £y > 0. So the target
signals were pre-dispersed (£;) in an initial length of DCF before being coupled with the
amplified dark parabolic pulses to undergo XPM in a 220 m length of low dispersion,
highly nonlinear fibre. The fibre parameters are given in Table 4.1. Following XPM,
the pump pulses were filtered out to prevent any further XPM and the signal passed
through a second length of DCF (&2). To obtain a unity transform of the 2.4 ps Gaussian

signal we can use Eqn. 2.19 to find that we require & = 2.08 ps?. The closest dispersive
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amount we had in the experiments was a 15 m length of DCF with D=-1.8 ps/nm

(¢ = 2.3 ps?).

7.3.2 Verification of the TOFT Operational Point

In the same way that we verified the TOFT matching in Chapter 5, we can verify the
pump power we need to match this dispersion by measuring the output pulse width for
increasing pump power. The TOFT point will be at the pump power where the signal
pulses have the same width regardless of their input dispersion (and therefore input
temporal width). The measured output pulse widths versus average pump power are

shown in Fig. 7.11 for input dispersions of D = 0, -1.8 and -3.6 ps/nm.
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FIGURE 7.11: Plot of output signal pulse width versus average pump power for three
input dispersions. The TOFT point can be found at the power where the output pulse
widths all match.

We can find the power setting for the operational point for the TOFT at the point where
the three lines meet. This can be seen to be at ~ 29.3 dBm. This value however, does not
take into consideration any losses or nonlinearities between the amplifier and the HNLF
or in the HNLF itself. A better indication of the nonlinearity induced by the pump, is
the amount of SPM it has experienced in the HNLF. Fig. 7.12 shows the measured and
simulated spectral broadening when the L-FROG retrieved pump pulse is numerically
propagated through the HNLF with a peak power of 3.75 W (P,,e = 26.2 dBm). The

match is seen to be very good, with slight differences in the simulated and measured
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using a peak power of 3.75 W.

spectra most likely to be due to the gain spectrum of the amplifier used. This indicates

that using this power accurately represents the amount of nonlinearity our pump is

experiencing. Note however, that the XPM imposed by the pump on the target signal

would also be affected by the exact temporal and polarisation alignment between the

pump and the signal in the HNLF, an effect which introduces small uncertainties into

the simulation. Fig. 7.13 shows the L-FROG measurements of the pump and signal
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pulses individually after propagation through the HNLF. This gives a measurement of

the SPM suffered by the individual pulses. Although the pump pulse was shown to have

experienced significant SPM in Fig. 7.12, we can see in Fig. 7.13(a) that the spectral

broadening is only temporally evident in the chirp of the pump and has not been very



Chapter 7 Complete TOFTs using Dark Parabolic Pulses 134

detrimental to the pump’s temporal profile. As such, we expect the time lens to still be
good throughout the HNLF. Fig. 7.13(b) shows the signal as having experienced very
little SPM indeed due to its low input power.

7.3.3 Verification of the Dispersion Map

We have so far established the TOFT operational point for our system. Now we also
want to verify the characteristics of the dispersion map around this point. Fig. 7.14
shows the dispersion map simulated by propagating a simulated 2.4 ps Gaussian signal
pulse with a peak power of 1.8 mW through the TOFT setup with varying values of pre-
and post-dispersion. A chromatic pre-dispersion is applied to the spectrum of the input
pulse before it is combined with the pump pulse and propagated through a split-step
Fourier routine to simulate the XPM. The pump pulse used in the split-step Fourier
routine was obtained from the retrieval of the L-FROG measurement (see Fig. 6.20)
and scaled to a peak power of 3.75 W. The signal spectrum is then filtered out with a
5 nm (FWHM) 2" order super-Gaussian filter centred at 1560 nm to reject the pump
pulse as was done in the experiment. The post-dispersion is then applied to the filtered
spectrum, and a numerical autocorrelation taken of its temporal profile. The red dots
plotted on top of the simulated dispersion map indicate the points on the map that
were verified experimentally. Using different lengths of DCF to vary the pre- and post-
dispersion, we measured the temporal and spectral profiles of the output pulse along the
principle lines on the dispersion map, namely & =0, & = 1, & = 0 and & = 1. The
measured autocorrelation widths (FWHM) and 3-dB spectral widths are shown next to
the corresponding points in ps and nm respectively. A fair match can be seen between
the measured and the simulated widths, especially for the lower values of dispersion.
Figure 7.15 shows the measured traces along & = 1 and £ = 1. The measurements
show the expected trend on the dispersion map with the temporal pulse widths along
the horizontal line & = 1 reaching a minimum at the point £; = & = 1, and remaining

fairly constant along the vertical line £ = 1.

The spectral widths are plotted in nanometers as circles on the simulation trace in
Fig. 7.16. A full dispersion map was not neccessary in this case since the post-dispersion
does not affect the spectral width. Again, we can see that there is a fair match between
the simulated and measured values, especially around the complete TOFT operational

point, & = 1. Fig. 7.17 shows the measured output spectral along & = 1 and & = 1.
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FiGURE 7.14: The simulated dispersion map of autocorrelation values. The red dots
and numbers indicate the temporal autocorrelation width of our measurements in ps.
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FIGURE 7.15: Autocorrelations of output pulses along the lines (a) & = 1 and (b)
=1

Note that only the spectral envelopes are shown here to enable easier comparison between
them. The spectra can be seen to follow the expected trend, remaining almost constant

along the horizontal line £; = 1, and reaching a minimum on the vertical line & = 1

near the point £ = & = 1.

7.3.4 TOFT of a Square Spectrum

We have shown strong evidence that our system was behaving as we expected and
would produce a true TOFT at & = & = 1. The final test is to demonstrate a TOFT

of an interesting shape and see that the spectral and temporal profiles do indeed swap
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domains as is our aim. The shape we chose to transform is a square spectrum as
analysed previously in Section 7.2.2, which has a sinc profile in the time domain. These
pulses were produced by adjusting the spectral filter profile such that the slope of the
OFCG was compensated at 1560 nm and truncated at 5 nm width to form a square.
The characterization of the input signal was previously shown in Fig. 6.22. This shape
was chosen for its distinctive shape in the two domains and also the easily identifiable
autocorrelation shape of a square pulse which is a triangle. The autocorrelation and
spectral traces of the signal pulse before and after the TOFT are shown in Fig. 7.18
below. The solid lines show the actual measurement and the dashed lines are the pulses
from the simulation. In the ‘before’ case, the dashed lines are obtained from the L-
FROG retrieval which was used as the input signal pulse in the simulation. We see first
that the L-FROG measurement of the input matches those of the autocorrelator and
the OSA quite well with the variation on the top edge of the square spectrum being only

~ 0.5 dB. However the matching of the pulses after the TOFT shows some discrepancies,
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FIGURE 7.18: (a) Autocorrelation and (b) spectral traces of the test signal before (red)
and after (blue) TOFT. The simulated traces are shown with dotted lines.

especially in the spectrum where the simulated trace is narrower than the measured one
and the side lobes of the sinc shape are more prominent in the simulated spectrum than

the measured one.

This may seem to challenge our claim that only by adding a pre-dispersion can a complete
and true OFT be obtained. However, Fig. 7.19 shows that without the pre-dispersion the
residual phase term leaves the signal spectrum relatively square in shape, very unlike its
Fourier transform and much more like the original input spectrum. By contrast, although
the signal spectrum obtained when a pre-dispersion is used is lacking in some definition,
it is distinctively sinc-like in shape with evidence of side lobes. In the time domain, a
triangular autocorrelation is obtained in both cases since the accurate transformation

in this domain is determined by the post-dispersion which is unchanged.
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FIGURE 7.19: The (a) autocorrelation and (b) spectral traces of the sinc pulse before
the OFT (blue), after the OFT when there is no pre-dispersion used (red) and after
the OFT when the pre-dispersion equals the post-dispersion (black)
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7.4 Discussion and Conclusions

In this chapter we have re-evaluated the TOFTs we were trying to perform in the
previous chapters and sought to understand their shortcomings. The most significant
outcome of our investigations was to find that the extra phase term originally noted
in Eqn. 2.22, is too large to be neglected by increasing K. Instead this term can be
completely negated through the use of a pre-dispersion satisfying the condition & =

1/K.

In addition, we have identified through numerical simulation the limitations and draw-
backs of using XPM with parabolic pulses generally, as a method of implementing a
time lens. The two main issues we identified related to the generation of high fidelity
parabolic pulses and the nonlinear side effects associated with using XPM. In order to
reduce side effects such as SPM of the pump, dark parabolic pulses were used with which
we experienced difficulties in generation. However, high fidelity dark parabolic pulses
which utilize the entire bit slot have been successfully generated by Hirooka et al. by
employing line-by-line spectral shaping [3]. Furthermore, these dark parabolic pulses
have recently been demonstrated in a TOD compensating TOFT setup which did not
use a pre-dispersion or consider the spectral domain [4]. Nevertheless, these reports
indicate that achievement of the complete TOFT could be potentially improved and

demonstrated to even higher fidelity with the use of high resolution spectral shapers.

Despite the limitations, we have demonstrated experimentally that a complete TOFT
between the temporal and spectral domains can be achieved by using the matching
dispersions around the time lens. Further, the matching condition has been verified in
simulation and experimentally by studying the behaviour of the pulses when there is a

dispersive offset.
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Chapter 8

Conclusions and Future Work

This thesis has explored the connections between the temporal and spectral profiles of
optical telecommunications signals. In particular, it has focussed on using TOFTs to
transfer signal profiles between the temporal and spectral domains, which has potential
applications in all-optical signal processing. The work presented in this thesis has con-
tributed to the development of the TOFTs by both increasing the understanding of the

conditions enabling TOFT and exploring new methods of obtaining TOFTs in practice.

We started the investigation by reviewing the concept of space-time duality on which
our understanding of TOFTs is based. The application of a quadratic phase shift and a
matched dispersion is shown to produce a scaled Fourier transform of the signal waveform
with an additional phase term. The many ways that a TOFT and more specifically a
time lens could be implemented were reviewed leading to a description of our intended
method of time lensing. This work has been novel in using XPM with a parabolic pulse
to induce the quadratic phase shift needed for time lensing and we have described and

demonstrated many ways in which this can be achieved.

To aid our understanding of the domain transformations and of the many irregular sig-
nals we have encountered in the course of the thesis, Chapter 3 presented some different
techniques to obtain full pulse characterisations. The L-FROG technique in particular
was described which has been the most important diagnostic tool in this thesis. The ca-
pabilities of the L-FROG technique were demonstrated in the characterisation of pulses
from two sample experiments. In the first experiment, pulses were compressed by using
SPM to increase their bandwidth and then compressed using matched dispersion. The

402 fs output pulse and its wide bandwidth demonstrated the advantages of using a
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Mach-Zehnder modulator as the gating element in the L-FROG as opposed to the nar-
rower bandwidth electro-absorption modulator. In the second experiment, the L-FROG
was demonstrated to be suitable for characterising responses of active devices such as an
SOA-based wavelength converter. Measuring the output of a CW probe into the device,
the L-FROG showed that it could be flexibly configured to measuring the dark pulses
carved into the CW probe.

Having established the theory and our diagnostic tools, we designed the first TOFT
experiment. In this experiment we generated parabolic pulses by taking advantage of
their natural evolution in normally dispersive fibre. With the correct balance of input
power, nonlinearity and dispersion, we were able to propagate Gaussian pulses in DCF
and extract them at a point when they had evolved into a parabolic shape. In a second
stage, the parabolic pulses were simultaneously maintained and underwent XPM with
signal pulses to impart a quadratic phase shift onto them, thus achieving time lensing.
The TOFT achieved in this experiment was applied to the compensation of timing jitter
on a 4x10 Gb/s test signal and demonstrated that it significantly improved the jitter of

the channel on which it was applied.

In a second experiment, we addressed the practical difficulties of using nonlinear effects
to both generate parabolic pulses and use them for time lensing by employing SSFBGs.
A SSFBG designed to spectrally filter 2 ps sech? pulses into 10 ps parabolic pulses was
used to linearly obtain the required pump. This enabled greater control of the pump
power and thus the TOFT conditions. The SSFBG-carved parabolic pulses successfully
demonstrated time lensing in a TOFT setup applied to the compensation of second and

third order dispersion.

Despite the success of the first two experiments in achieving compensation, it was noted
that the pulses were not transforming as we initially expected in the spectral domain.
This was addressed by re-analyzing the governing TOFT equations. We found that
an additional length of dispersion was required before the time lens to ensure correct
transformation in the spectral domain also. This improved theory was analyzed by
simulating the effect of perturbations to the ideal amount of dispersion before and after
the time lens. We sought to further verify the improved theory through a final TOFT

experiment.
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With the final experiment we used not only an improved theory, but also an improved
implementation of the TOFT. A new pulse source was used which exhibited an extremely
wide and stable frequency comb, particularly suitable for spectral carving. Employed
in conjunction with reconfigurable filters, we were able to simultaneously generate both
a dark parabolic pump pulse and a test signal from the same source. Using wide dark
parabolic pulses which exhibit less SPM than bright parabolics and high quality short
Gaussian signals, we vastly improved the confinement and quality of the TOFT experi-
ment. We successfully verified the improved theory and demonstrated the improvement

by performing a TOFT of a square spectrum.

Having explored and developed several ways of achieving TOFTs using XPM with
parabolic pulses, we should consider the applicability of the technique to real systems.
First, we note that the setup must neccessrily be altered from the proof-of-principle con-
figuration presented in this thesis, to one which is able to process separately generated
incoming signals. Without the close control we’ve had on the signals in experiment, a
real configuration would require clock recovery to enable synchronisation of the signal
with a local pump source and demultiplexing of WDM signals (since this is a single

channel technique).

Improved parabolic generation encasing the entirety of the signal bit slot (as demon-
strated in [1]) would also be neccessary in a real system if demultiplexing of OTDM
signals is to be avoided. Even if a full bit slot parabolic could be used, the TOFT tech-
nique is ultimately limited by its time domain implementation. We have seen throughout
the thesis that leakage of the signal beyond the time lensing window leadds to distortions
and side lobes in the output signal. While this fundamentally limits the attainment of
an ideal TOFT, it is yet to be determined the extent of which this would limit its use for
telecoms signal regeneration. In fact, Okazaki et al. have already demonstrated that a
perfect TOFT is not required for the technique to achieve significant BER improvement
to signals in a real transmissions link [2]. Furthermore, they have shown that even with
a sinusoidal phase modulator (signal was temporally demultiplexed), advanced phase

modulation formats such as DPSK can also benefit from TOFT regeneration [3, 4].

Consequently, it is likely that for signal regeneration in future telecommunications net-

works, the greater fidelity of complete TOFTs using XPM would be outweighed by the
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lower cost and simplicity of TOFT schemes using phase modulators. Instead, XPM-
based complete TOFT schemes could prove more valuable in other applications such
as signal characterisation or signal pre-conditioning processes (e.g. packet compression)

where the preservation of signal phase is important.

Future Work

Implementation of time lenses

The method of implementation of time lenses is critical to the quality of a TOFT device.
The work presented in this thesis was novel in its use of XPM with parabolic pulses as a
time lens. However, the parabolic pulses presented here were not wide or sharp enough
to extend across an entire bit slot, thus limiting the potential transform window of the
device. Dark parabolic pulses which occupy entire bit slots have been presented in [1]
and demonstrated to achieve TOD compensation in a TOFT configuration in [5]. The

use of these pulses with our improved theory would yield further improvement in TOFT's.

We should not forget that there are many other implementations of time lenses which
do not use XPM. The FWM implementation described in Section 2.3.3 is particularly
interesting since it requires relatively low powers thus reducing nonlinear effects such
as SPM which have caused significant challenges with the XPM method. The main
drawback of the FWM method was the strongly chirped Gaussian pump it used which
reduced the duty cycle of the transform window. This could be potentially alleviated by
using the WaveShaper (presented in Chapter 6) to create a pump which is still strongly

chirped, but has a flatter intensity profile thus increasing its potential transform window.

Regeneration of Telecommunications Signals

Beyond the development of a XPM based TOFT device, the original aim of this body
of work was to create a signal regenerator suitable for use in telecommunications. In
Chapters 4 and 5 we demonstrated the ability of our TOFT device to compensate for
timing jitter, second and third order dispersions respectively. While we were able to
artificially introduce the impairments and observe their compensation using a range of
diagnostics, the true test of a regenerator would be to test it in a transmission experi-

ment. That is, the signal would be allowed to develop impairments naturally through
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propagation in a real fibre link or a recirculating loop. Regeneration by the TOFT and
subsequent bit-error-rate testing after various transmission lengths would then highlight

the true capability of the device.

An extension to transmissions testing would be the performance of the TOFT device
under leakage conditions. That is, when the level of distortion in the temporal signal is
large enough to cause it to extend beyond the transform window. We have so far stated
that the technique is only applicable to signal impairments confined within the transform
window, since other portions of the pulse extending beyond this would not be correctly
transformed. There does exist the possibility however, that a small amount of leakage
outside the transform window would translate to amplitude jitter while still allowing
the majority of the pulse to be regenerated. Further investigations into the amount of
tolerable leakage would determine the point at which the introduced jitter outweighs
the regenerating action. In addition, it is possible that the combination of a TOFT
compensator with an all-optical step-function regenerator (such as the one presented in

[6]) could enable the compensation of signals suffering severe inter-symbol interference.
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Appendix A

The DFB Gain-Switched Laser

Gain switched lasers (GSL) have been used in many parts of this thesis as picosecond
pulse sources. The main laser diode modules we used were KELD(1552)SSC distributed
feedback (DFB) semiconductor lasers available from NEL at a series of wavelengths
across the C-band. This appendix describes the basic operation of these useful and

compact sources.

The semiconductor laser is initially biased just below threshold giving a low photon
density as shown in Fig. A.1 [1]. When a high current is then applied to the device,
the carrier density increases and exceeds the lasing threshold level. Through stimulated
emission, a large number of photons are generated. During this process, the carrier
density is rapidly depleted. The lasing is halted when the carrier density falls back to
below threshold. If the injection current is reduced to a low level before threshold is
reached again, thus preventing the relaxation oscillations from inducing further lasing,
this process produces a single pulse which is much shorter than the electrical driving

pulse.

Due to the random nature of spontaneous emission, from which the pulse develops, the
timing jitter between the pulses can be very high. However, when the pulse is forced
to develop in a stimulated way, e.g. by seeding it with a continuous wave source, such
as a CW laser, with better defined optical phase properties, this timing jitter can be
reduced by about 60% [2]. This process is called external seeding. The external seed
can be injected into the DFB laser, using an optical circulator. Varying the seeding
power and polarisation affects the pulse length and the suppression of side modes, as

does the wavelength separation between the centre wavelength of the diode and the seed
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wavelength. There is trade off between obtaining short pulses and reducing the side
modes which is influenced by these parameters, such that pulse widths were limited to

~ 7 ps for good quality Gaussians from our GSLs.

Direct intensity modulation of semiconductor lasers is also accompanied by phase modu-
lation, due to changes in the carrier densities and resultant changes in the refractive index
of the cavity. This means that the pulses generated by gain switching a semiconductor
laser carry a considerable amount of chirp. The down-chirp (i.e. the instantaneous fre-
quency of the pulse reduces over time) observed on gain switched laser pulses is close
to linear, with the carrier density quickly reducing at the moment of pulse generation.
Linear chirp can be compensated through propagation in dispersive fibre, or with lin-
early chirped gratings. In the experiments presented in this thesis, suitable lengths of
DCF have been used to provide the compensation of this linear chirp. Confirmation of

the most optimal DCF length for correct compensation was frequently confirmed with

L-FROG measurements.
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FIGURE A.1l: Gain switching laser time characteristics (from [1]).
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