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Abstract

In 1922 R. A. Fisher introduced the fixed X regression model,
synthesising the regression theory of Pearson and Yule with the least
squares theory of Gauss. The innovation was based on Fisher's realisation
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Introduction

In ..tting equations to observational data it is routine to use ..xed x regression, treating the
values of the explanatory variables as non-random, though they vary randomly. The practice
was introduced in the 1920s by R. A. Fisher (1890-1962). There were two mathematically
distinct theories with dicerent domains of application: an older univariate theory (the “theory
of errors”) and a newer multivariate theory (the “theory of correlation”). Regression belonged
with correlation until Fisher re-located it to the theory of errors.

This paper describes the circumstances in which ..xed z regression was established and
considers the inferential scheme(s) where it found a justi..cation. Fisher’s distribution theory
has been celebrated but less has been made of the re-location. The historians Seal (1967) and
Hald (1998) see a work of restoration. Hald (p. 616) writes that the statisticians who worked
on correlation theory “did not realise that their regression analysis was a version of the linear
model and the linear estimation theory” and Seal (p. 16) that “with Fisher (1922) the sampling
theory of regression equations returned to the Gaussian model”. But the theory could not
return to where it had never been-this was a new synthesis. Fisher, however, obscured his
own contribution—in the 20s by not explaining it and in the 50s by overlaying it with polemics
against Neyman and Karl Pearson.

Section 1 sketches the theory of errors and the theory of correlation as they were understood
in Britain at the beginning of the twentieth century; the great days of the ..rst seemed to be
over and the future to be with the second. The story proper begins with Slutsky and Karl
Pearson and their goodness of ..t tests for regression curves (Section 2). Fixed = regression
appears when Fisher (1922) corrected their work and at the same time introduced the ¢-test
for regression coeCcients (Sections 3 and 4). Sections 5 and 6 survey the new regression

presented in Statistical Methods for Research Workers (1925) and the continuing work on the



old. Fixed x regression was founded on the claim that the distribution of the test statistics is
not acected by the randomness—or otherwise—of the z’s. M. S. Bartlett (born 1910), the other
major contributor to ..xed x regression, made good the claim in his “Theory of Statistical
Regression” (1933).

In the later 30s a new claim appears grounded in the “theory of estimation”: the z’s
provide “ancillary information” about the regression coe®cients. Regression did not ..t into
Fisher’s earliest theory of estimation but an accommodation became possible after 1934, when
the theory took a conditional turn with ancillarity. (Sections 7 and 8). Bartlett in 1936 was
the ..rst to link regression to conditional inference (Section 9) while Fisher discussed regression
in relation to ancillarity in letters of 1939/40. Section 10 considers how Fisher applied the
theory of estimation to regression and Section 11 how he made regression serve in the campaign
against “repeated sampling from the same population”. Finally there are some comments on

the obscure history of everyday regression.

1 Theory of errors & theory of correlation

We need some background on the theory of errors and the theory of correlation. For fuller
accounts see Seal (1967), Stigler (1986), Hald (1998) and Farebrother (1999). As the sequel is
largely a British story, the emphasis is on the British background-Hald (chapter 27) describes
a richer continental scene.

The “Gaussian model” of the theory of errors was devised for measurement problems in
astronomy. Dynamical theory provides equations 1 = X3 between the non-stochastic 1 and
X with g a vector of unknown quantities; the elements of X are observed, but not those of y;

a vector of measurements y deviates from p by a vector of unobserved errors, ¢, distributed



N(0,0%I).r Estimation is by least squares-the maximum posterior value from a uniform
prior; the estimation of the normal mean was a special case. For Pearson and Fisher—our
protagonists—this combination of speci..cation and estimation procedure was the theory of
errors and was Gauss; see Aldrich (1997, pp. 162-4). Other contributors did not ..gure and
Gauss’s second speci..cation (without normality and treated by the Gauss-Markov theorem)
did not impinge on Fisher’s thinking, though it was revived in his time by Aitken (1935) and
Neyman (1934) and came to be taught with the normal speci..cation as “the linear model”.?

In the 19th century the theory of errors was also applied to ..tting “empirical formulae”.
Merriman’s (1884/1911) textbook (the least squares reference for Pearson and Yule) has many
examples. In Merriman the = values are either time trends or quantities selected by the
scientist—e.g. recorded depth and depth squared in an equation for water velocity (p. 131).2
Surprisingly, perhaps, the application of least squares to observational data appears to have
begun only in the correlation era. In 1871 Jevons (p. 141, note h) proposed using on price and
qguantity data the least squares method Bessel had used for trigonometric trends but when
economists, such as Moore (1914 & -17), came to ..t equations they followed Pearson.

The theory of errors was useful to Galton (1877 & -88) when he formalised his ideas on
reversion/regression and correlation but as Karl Pearson (1857-1936) developed these sub-
jects they moved away from the theory. Pearson (1896) presents regression and correlation
as aspects of the multinormal distribution. His inference formulae for multinormal regression
coeCcients were the same—though in dicerent notation—as those developed by Gauss for least

squares. For Pearson this was no more than a coincidence as the theories had dicerent subject

1The language and notation are modern. Aldrich (1998) discusses varieties of least squares notation.

2For Fisher’s background in least squares, see Aldrich (1997, pp. 162-3) and for references to the revival,
Aldrich (1999). Aitken came from the actuarial branch of trend ..tting.

3In all Merriman’s examples with several right hand side variables, the variables are all functions of a single
underlying variable. Multiple regression did not come naturally! See Aldrich (1997a).



matter; the = and y of the Gauss model are not correlated. In one theory multinormality
appears for the (posterior) distribution of 3, in the other for the distribution of the observ-
ables; see Pearson (1920, pp. 25-7). Pearson’s inference technique—see Pearson & Filon (1898,
pp. 194-6)-adapted from the theory of errors was a kind of large sample Bayesian theory.*
Pearson was slow to become involved in the small sample research begun by W. S. Gosset—
‘Student’ (1908a)-and propelled by Fisher (1915). By then Pearson wanted to escape from
the restrictions of the normal scheme, not perfect its inference theory.

Yule (1897) extended the linear regression speci..cation to cases of skew correlation and
used least squares. Stigler (1986, pp. 348-53) has a throrough treatment of this important
development and writes (p. 345) of a second “least squares synthesis”. This is more plausi-
bly ascribed to Fisher-at least on the theory side. Yule created the modern applications of
regression, including causal analysis in the social sciences and these would survive the change
in the theory of regression but Yule’s conception of regression, as depending on a frequency
surface for all the variables, was more Pearsonian than Fisherian.®

The limitations of Yule’s theory are evident in his study of pauperism. The regressors are
not normal and, while Yule uses least squares without hesitation, the normal theory probable
errors come with the warning (1899, p. 277)-*so far as they are valid for these cases of non-
normal correlation”. Yule did not pursue the problems of non-normal correlation; his later
work on correlation concentrated on time series where the di¢culty is the serial dependence
of the observations.

Non-normal correlation was Pearson’s project. Applications to the biological, social and
physical sciences required a generalisation of his theory of univariate skew curves (1895) but

Pearson was dissatis..ed with normality and least squares even in their traditional domains:

41t was evolving or disintegrating into something else: see Aldrich(1997) for discussion and references.
SFor Yule’s applied regression, see Stigler (1986, pp. 353-8) and Aldrich (1995 and -97a).
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he (1902) favoured the method of moments for curve ..tting and he (1902a) criticised the use
of the normal distribution for observational errors in astronomy.

In early twentieth century Britain the theory of errors was applied and taught but there
was no research ecort comparable to that in Biometry or Statistics. The students of these
more dynamic subjects were not taught the theory of errors. The textbooks mentioned least
squares for the sake of their mathematician readers but the books did not teach least squares
or insist on it. The Edgeworthian Bowley (1900) mentions least squares twice, noting (p. 284)
that his way of rationalising his estimate of the modulus of the normal distribution came
from that literature and remarking (p. 177) that least squares might be used for obtaining
a relationship between the marriage rate and foreign trade. The Pearsonian Elderton (1908,
p. viii) skipped least squares because “the range of its applicability is so limited that there is
a growing tendency to put it aside in curve ..tting”. Yule (1911, p. 230) acknowledged his
debt to least squares but did not suggest his readers take up its study. Pearsonian notions,
meanwhile, were in..Itrating courses for astronomers on the combination of observations; see
Brunt (1917, chapters IX and X).

Pearson was crushing the theory of errors so it is remarkable that Seal (p. 16) could write
in 1967 that Pearson “must ... be given the credit for extending the Gauss linear model to a
much broader class of problems than those of errors of measurement”. The story of .xed z
regression is of Fisher making this improbable perspective possible.® Yet even without Fisher
the theory was not quite dead: ‘Student’ (1908) solved the problem of the “probable error of
the mean”—writing in Pearson’s journal, using Pearson’s curves—and the theory was acquiring a
role in agricultural experiments. ‘Student’ was involved and so was F. J. M. Stratton, Fisher’s

tutor-see E. S. Pearson (1990, p. 47). These were peripheral activities; there was no live

80f course Fisher did not crush the theory of correlation; it lives on as multivariate analysis where both
his and Pearson’s names are hallowed.



centre.

2 Regression curves & goodness of ..t

Testing equations was a Pearsonian project-his goodness of ..t test (1900) applied to his non-
linear regression speci..cation (1905). However the initiator was E. E. Slutsky (1880-1948), an
economist correlator based in Kiev.’

A “general theory of skew correlation and non-linear regression” needs a surface relating
to univariate skew curves as the multinormal surface relates to the normal curve. Pearson
(1905, 84) reported that the full theory of skew correlation surfaces “has not yet been worked
out owing to di¢culties of analysis, and their complete discussion must be postponed” so the
regression curve had to serve.® Pearson does not write down a speci..cation but something

commodious is implied, perhaps:

Y = p(X) +e(X)

where the regression curve, u(X) = E(Y|X), may be linear, quadratic, ..., or quartic; my
symbol (X)) marks the possibility that the distribution of the deviation can vary with X; in
particular skewness and scedasticity can vary.®

The data on X is grouped and consists of repeated values of z—an “array”-with associated
values of y. If Y, is associated with z,, and 1, is its expected value, then the regression curve of

y on z expresses the relationship between y,, and z,.1% There are n,, replicates of z,, where the

"Seneta (1988) has biographical information.

8Pearson (1923) reviewed his and his assistants’ years of struggle with this problem. The paper turned out
to be an obituary for the skew-correlation project.

9Blyth (1994) gives an interesting account of Pearson’s project and his data analysis from the perspective
of Bjerve & Doksum’s (1993) theory of correlation curves.

101 need a magnifying glass to read Pearson’s—or Slutsky’s—notation so I have simpli..ed it.



numbers n, are random variables. Pearson does not restrict the distribution of Y, around p,,;
the normal homoscedastic case was not to be assumed. He (84) gives a string of propositions
leading up to the probable error of the *“correlation ratio”; this is a measure of correlation
which in the case of linear regression equals the correlation coe€cient. Pearson proposed
testing for linearity by comparing the two quantities and Blakemore (1905) developed the
suggestion. No probable errors are given for the regression coe®cients which are estimated by
the methods of moments.!!

Slutsky (1913) proposed a x? test for the skew correlation set-up. Denote by 7, the mean of
the ys associated with p,, and by e, the deviation of g, from its expected value y,, . Appealing
to one of Pearson’s propositions, Slutsky states that the standard deviation of ¢, is given by
o,/v'n, where o, is the standard deviation of y in the p-th array. Appealing to another, he
states “Now it is known that there is no correlation between the deviations in the mean of
an z-array and in the mean of a second z-array”. Slutsky changes Pearson’s speci..cation:
he retains heteroscedasticity but assumes that each Y, is normally distributed around the
appropriate x,. Slutsky concludes that the quantity

= Z np@pag Mp)2
p
is distributed as chi-square with the number of degrees of freedom equal to the number of
arrays. In the test statistic estimates replace unknowns.

The ..rst of Slutsky’s examples is the cubic Pearson (1905, 89) ..tted to the height and

age of 2272 girls classi..ed into 20 age groups. The other is a linear relationship ..tted to

124 observations classi..ed into 11 groups on the price of rye in pairs of adjacent months (the

IMoore, who attended Pearson’s lectures, compares his polynomial regression curves by the estimate of
standard error (1914, pp. 78-80). He does not give probable errors for the estimated parameters.



.rst ..tting of an autoregressive model to time series data?). As the numbers in the groups
are small, heteroscedasticity cannot be established, so for this case Slutsky reworked the test
assuming homoscedasticity.

Pearson (1914, p. xxxii) gave a “word of caution” about Slutsky’s procedure then developed
his own ideas in a 1916 paper. Pearson (1916, p. 256) warns that “very fallacious results”
can be reached by Slutsky’s test. Pearson objected to the presumption of normality but
adopted the assumption nevertheless. He was content with replacing population quantities
with sample quantities but considered Slutsky’s replacements unsatisfactory. In the case of a
random array size the o,/ v'n, quantity could be improved on but Pearson (p. 248) had a more
general objection: Slutsky’s practice of estimating o, and n, from data on the p-th array but
estimating 4., from all the data was arbitrary-all the quantities should be estimated from all
the data. The realised value n, is replaced by an estimate obtained from ..tting a distribution
to the z values and o, is estimated from the entire sample by using the heteroscedasticity
relationship between o, and x. Compromises are necessary when working with Slutsky’s
price data (pp. 250-3) but the full scheme is demonstrated on the abundant height/age data
(pp. 253-6).

Slutsky had outlined his test in a letter to Pearson in 1912.%2. He told Pearson that “quite
analogous” would be a criterion to be applied to the physical sciences for testing whether a
given system of measurements can reasonably be supposed to correspond to a certain functional
relationship. Slutsky’s published paper considers only observational (statistical) data but
Pearson’s “On the Application of ‘Goodness of Fit’” Tables to Test Regression Curves and
Theoretical Curves used to Describe Observational or Experimental Data” considered both

and rejected the “analogy”.

21t is in the Pearson archive at UCL, though without Pearson’s reply.



Pearson (p. 256) writes of the physicist making a few measurements of a variate A for
each of a series of a variate B: “there is no question in the ordinary sense of a frequency
surface”. For the category of “physical, technical and astronomical measurements”, Pearson’s
(pp. 256-8) procedure is the same as Slutsky’s except that o, is estimated by a dicerent
method. The important dicerence between the physical and statistical cases is that in the
former, the numbers in each array are non-stochastic. Pearson (p. 247) remarks “It is singular
that the goodness of ..t theory can actually be applied with greater accuracy to test physical
laws than to test regression lines.” It would be interesting to know the reasoning behind

Slutsky’s “analogy”-to know whether he invented ..xed x regression.

3 Fisher on the ..t of regression formulae

In 1922 Fisher was working on several projects—y? theory, agricultural meteorology, genetics,
the theory of estimation and the analysis of variance. The projects were more interrelated than
they sound. Regression goodness of ..t was a minor division of x? theory. Fisher’s reconstruc-
tion of Pearson’s contingency table theory brought him recognition from the statisticians, for
Bowley and Yule had an interest in the outcome, but his regression work made no immediate
mark.'3

Goodness of ..t is the main business of the 1922 regression paper; see Hald (§27.6) for
further discussion. Fisher moves freely between speci..cations and his arguments are not fully

spelt out but his core model is

y ~ N(XB, o°)

13Box (1978, chapters 3-5) describes Fisher’s activities in his ..rst years at Rothamsted. There are treatments
of individual topics in Fienberg & Hinkley (1980).



where the N rows of X (the x’s may be powers of some underlying variable) comprise a distinct
vectors, the p-th of which is replicated n,, times. Fisher focusses on the homoscedastic version
of Slutsky’s statistic, viz

2 Z np(yp - /‘Lp)Q

o2

Fisher treats explicitly only the statistical case of random n’s, though it is obvious that the
results also hold for the physical case. The key step is in establishing the distributions of the

components of the y? statistic. Fisher (1922, p. 598) writes:

For such samples of n, , therefore, the mean, 7, will vary about the same mean
my, [My u,], and since this mean of 7, is independent of the number in the array,
my, [my p,] will be the mean of all values of 77, from random samples, however the

number n, may vary.

Fisher takes v'n,(7, — u,) to be normal with mean zero and standard deviation o, so the
numerator of Slutsky’s statistic is o times a x? . When u,, has to be estimated, a degrees of
freedom adjustment is necessary; in this regression set-up there is the further distributional
complication associated with s? replacing o2 in the test statistic:
= ~ 2

2 np(yp - /’Lp)

> T
The estimate s* is obtained by combining the within-array estimates of o2 ; the combining
rule is based on a marginal maximum likelihood argument; s has a x? distribution with N — &

degrees of freedom. Fisher derives the exact distribution of the test statistic and identi...es it as

a Pearson Type VI curve-as distinct from the Type 111 appropriate when o2 is known. When

10



Fisher (1924/8, p. 812 & 1925, pp. 214-8) presented the test in the format of the analysis of
variance he introduced the numbers of degrees of freedom associated with the deviation of
the array mean from the formula and rescaled the statistic to become F(a — k, N — k). The
Statistical Methods (1925) has tables for z = %lnF.

Fisher compared his statistic with Slutsky’s and with Pearson’s statistic for the experi-
mental case. His main point was that neither Slutsky nor Pearson adjusted the degrees of
freedom for the estimated parameters; the need for such adjustment was the theme of Fisher’s
x2 work-see e.g. his (1922b).}* It is clear throughout that for Fisher the observational and ex-
perimental cases should not be treated dicerently: e.g. he (p. 607) comments on the limitation
of the analysis to the case of groups of y-values corresponding to identical values of x, “little
statistical or physical data is strictly of this kind although the former may in favourable cases
be con..dently grouped, so as to simulate [this] kind of data.” When he illustrated the method
in Statistical Methods (1925, Ex. 42 of 844 in all editions) it was for a (non-randomised)

experiment on the infuence of temperature on the number of eye facets in drosophila.

4 The distribution of regression coe@cients

In his note to the 1950 reprint of “The Goodness of Fit of Regression Formulae, and the
Distribution of Regression Coe@cients” Fisher remarks that the second topic is linked to the
.rst “only by arising also in regression data”. The technical analysis is unrelated-there are
no replications and a dizerent distribution is involved—-and the work came about in a dicerent
way. Box (1978, p. 115) and E. S. Pearson (1990, p. 48). describes how Gosset wrote Fisher

in April 1922:

14 See Lancaster (1969, chapter 1), Fienberg (1980) and Hald (§27.4).
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| want to know what is the frequency distribution of ro, /o, for small samples, in

my work | want that more than the r distribution now happily solved ...”

Fisher was the obvious person to ask about the regression coe®cient in the bivariate normal;
in 1915 he had “solved” the r distribution—indeed in 1924 and -28 he would solve the partial
and multiple problems.

Fisher (1922, p. 598) speaks of “an exact solution of the distribution of the regression
coeCcients” but the distribution he gives is of the ¢-ratio for a Gaussian unknown quantity. Yet
everything in the paper—except the argument-indicates that the discussion was not restricted
to the traditional applications of the theory of errors: the language of “regression coe@cients”,
the bundling with the regression goodness of ..t test, the reference (p. 612) to *“agricultural
meteorology” where x’s are weather variables-as in Hooker (1907)-and ..nally the emphasis
in the statement (p. 611), “the accuracy of the regression coeccients is only acected by the
correlations which appear in the sample”, which is pointless unless there is a population of
x's.

The argument follows what have become familiar lines. Fisher deals with the simple and

then the multiple regression model

y~ N(XB, o°I)

assuming X given. The assumption slips out when Fisher (p. 608) writes of simple regression—
the regressor is expressed in deviations from the mean-that the least squares estimates “are
orthogonal functions, in that given the values of = observed, their sampling variation is inde-

pendent.”

12



Gosset’s letters show he was disappointed. Through 1922 he kept asking for the marginal
distribution for b; in November he told Fisher that the proof of the distribution of b is limited
to “given 7 and o, ”. Fisher’s letters have not survived, however there is an answer in Fisher
(1925b).*> Fisher (p. 96) begins his derivation of the distribution of the ¢-ratio, emphasising
that he is *“con..ning attention to samples having the same value of . The work done, he

(p. 99) retects:

The quantity ¢ involves no hypothetical quantities, being calculable wholly from
the observations. It is the point of the method, as of ‘Student’s’ original treatment
of the probable error of the mean, to obtain a quantity of known distribution ex-
pressible in terms of the observations only. If we had found the distribution of b for
samples varying in the values of = observed, we should have been obliged to express
the distribution in terms of the unknown standard deviation o, in the population
sampled; moreover since o, is unknown, we should have been obliged to substitute
for it an estimate based on S(z —7)? ; the inexactitude of the estimate would have
vitiated our solution, and required us to make allowance for the sampling variation
of S(z —7)?; ..nally this process, when allowance had been accurately made would
lead us back to the ‘Student’s’ distribution found above. The proof given above
has, however the advantage that it is valid whatever may be the distribution of z,
provided that y is normally and equally variable in each array, and the regression

of y on z is linear in the population sampled.

While it is not clear that the proof is “valid”, the answer to Gosset is clear: the marginal

distribution of b is no use on its own and the usable form-the ¢-ratio—is available whether z is

15The distribution theory of this paper and that of the “epoch-making” (1924/8) on the z distribution are
reviewed by Hald (pp. 669-74).
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normally distributed or not.
Perhaps this was Fisher’s case already in 1922. In a letter of 1954-see Bennett (1990,
p. 214) he refers to the “application” of the principle invoked in the discussion of the goodness

of ..t test to the distribution of regression coe¢cients.

5 The idea of regression

Kendall (1951, p. 12) noticed a “subtle” change in outlook on regression analysis in the early
20s which is “di€cult to trace in the literature”. An important part of the change was a new

idea of regression. In Statistical Methods for Research Workers Fisher (1925, p. 114) writes:

The idea of regression is usually introduced in connection with the theory of corre-
lation, but it is in reality a more general, and, in some respects a simpler idea, and
the regression coeCcients are of interest and scienti..c importance in many classes
of data where the correlation coe®cient, if used at all, is an arti..cial concept of no

real utility.

Excluding Fisher’s work, “usually” can be read as “invariably”. Regression and correlation
were aspects of a joint distribution.

Fisher took the situations for which Pearson and Yule had used correlation/regression
and Merriman least squares and treated them together. Yule (1909, p. 722) had described
correlation as “an application to the purposes of statistical investigation” of least squares.
Least squares was outside Statistics and Yule did not confate the situations where least squares
was traditionally used with those to which correlation/regression was appropriate, nor confate
the sampling theories. Fisher did both. As “classes of data” he made no distinction between

observational and experimental material: his examples (pp. 114-36) of x and y include age

14



and height of children, height of fathers and sons, fertilisers and yield, time and yield, position
and rainfall. One sampling theory does for all. Curiously Fisher did not invent a new term for
this extended conception or use a term from the theory of errors; he used *“regression”. Yule
(1897, p. 814) had once preferred the colourless “characteristic line” to “regression” with its
unwanted associations of biological “stepping back”.1®

Fisher’s (pp. 114-5) only restrictions on the use of the model arise from the “very dicerent
relations” the independent and dependent variables bear to the regression line. If errors occur
in the former, the regression line will be altered; if they occur in the latter, the regression line
will not be altered, provided the errors “balance in the averages”; so the errors in variables
case was not covered. Secondly “the regression function does not depend on the frequency
distribution of the independent variable, so that a true regression line may be obtained even
when the age groups are arbitrarily selected ...” On the other hand a selection of the dependent
variate will “change the regression line altogether”.

The book has a chapter on correlation as an aspect of the bivariate normal; evidently cor-
relation coe€cients may be of “of interest and scienti..c importance”. The results of his 1915,
-21 and -24 papers are presented and illustrated. The examples illustrating the signi..cance
of a correlation and a partial correlation (pp. 158-161) are from agricultural meteorology
and Yule’s work on pauperism. Fisher mentions that the partial correlation depends on the
“assumption that the variates correlated (but not necessarily those eliminated) are normally
distributed.” Fisher was attached to the idea of investigating the existence of dependence
between variables by testing hypotheses about the correlation coe€cient rather than the re-
gression coeCcient. The ¢-test that modern packages always ozer—of § = O-appears in the

Methods as a test on the correlation coe€cient, a coe€cient only meaningful in the bivariate

160f course interest in “stepping back” continued but not as part of regression analysis. See Stigler (1997).
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normal setting.

The Methods was a very busy book and the reviewers, including ‘Student’ and E. S.
Pearson, had plenty to discuss without mentioning regression. The book went through 14
editions and it came to be recognised as epoch-making- its silver jubilee marked by an issue of
JASA. Yet it was a poor platform for the new regression. Fisher (1925, p. 16) had discovered
that the same few distributions turn up *“again and again” and his book consists of a few
tables each prefaced by a chapter surveying its many uses. The idea of regression appears
in the chapter on the ¢-distribution and the regression goodness of ..t test in the chapter on
the z-distribution. The methods are not documented; “references” are listed but-apart from
the data sources—not referred to. The crucial (1924/8) and (1925b) do not appear as they
were not published in time for the ..rst edition. Fisher’s early readers had to discover for
themselves that the regression a’s and b’s are least squares/maximum likelihood values; after
1934 there is a historical note (§85) mentioning Gauss, least squares and maximum likelihood.!’
Fisher never presented the techniques and the underlying theory together; Hotelling proposed
a collaboration on such a presentation but nothing was produced.

The new regression was crowded out of Fisher’s empirical work. In 1922 he had mentioned
“agricultural meteorology” as an application of regression and his ..rst job at Rothamsted
was analysing historical data on yields and weather. The task may have inspired the new
regression but the main product-the orthogonal polynomials of (1921a) and (1925)-belonged
to the old least squares, to ..tting empirical formulae.!® In the most ambitious study “The
Intuence of Rainfall on the Yield of Wheat at Rothamsted” Fisher (1924a, p. 96) did not

regress yield on weekly rainfall directly but made an ingenious use of orthogonal polynomials

17Schultz (1929, p. 86) complained “it is to be regretted that Dr Fisher did not see ..t clearly to separate
the propositions which are due to him from the general body of statistical theory.”
8Hald (825.7) places Fisher’s work in a literature which goes back to Chebyshev.
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in a discrete approximation to a continuous time formulation in which yield depends on the
entire past rainfall record. The regressors are time trends!

“Studies in Crop Variation I” (1921a) analysed historical data but Study Il-Fisher &
Mackenzie (1923)-analysed Fisher’s own experiments and observational studies were soon
eclipsed by experiments in the work of Fisher and other statisticians. The new experimenta-
tion was not Merriman’s or Pearson’s for now randomisation was involved. Fisher’s work on
experiments did not acect his regression theory-it was already done and the later conditional
inference theory owed nothing to experiments—but there was probably infuence the other way.
The randomised experiment set-up resembles Pearsonian regression, with the statistician ran-
domising not nature. The analysis of variance that follows is ..xed = analysis.

The new regression went forward without further contributions from Fisher. In Econo-
metrics, the ..eld where regression was most used, a practical synthesis of regression and least
squares had been proceeding independently with Ezekiel & Tolley (1923) and others apply-
ing least squares algorithms to Pearson/Yule regression.!® Ezekiel’s Methods of Correlation
Analysis (1930) was based on Fisher’s methods; Moore’s work of ..fteen years before had been
based on Pearson’s.?® The ..rst adequate account of Fisher’s regression theory appeared in

Koopmans’s Linear Regression Analysis of Economic Time Series (1937).

6 Regression old & new

Pearson did not visibly react to the new regression. He (1923, -23a) continued to publish
on frequency surfaces though the grand theory projected twenty years would never arrive.

More surprisingly he began working in the vein of ‘Student’ (1908a) and Fisher (1915). His

¥For more information on the Gauss, Pearson, Yule and Fisher formalisms see Aldrich (1998).
20Ezekiel’s book had an intuence back on Fisher for it seemed to induce the publication of the ..ducial
argument—see Aldrich (2000).
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..rst contributions, Pearson (1925, -26), gave Gosset what he had wanted from Fisher—the
marginal distribution of b for the bivariate normal. By the end of the decade there was a
complete account of the statistics for the multinormal distribution that came into use in the
1890s. Pearson, Fisher (1924 & -28) and Wishart (1928) and Wishart’s student Bartlett all
contributed.

The results were consolidated in Bartlett’'s “On the Theory of Statistical Regression”
(1933). Part | surveyed the statistics associated with the multivariate normal distribution.
Though Bartlett was born into the new regression, he was not satis..ed with the treatment
in Fisher (1925b): “[Fisher] seems to suggest that ... his test holds under somewhat wider
conditions than he assumed.” Part Il considered which of the results survive if all that is
normal is the conditional distribution of one of the variables. Crucial to the analysis were
factorisations of the joint distribution. Amongst numerous results Bartlett (p. 278) showed
that the ¢-test of signi..cance of b is “valid, with no restrictions on = . Bartlett had shown
how Fisher’s regression theory could be integrated with Yule’s, with all the ¢’s crossed.?!

Pearson (1931, cxxxii-cxl) gave a very negative evaluation of Student’s ¢z-work and did not
mention the extension to regression. However he conceded the goodness of ..t point, writing
(1934, p. ) that Fisher’s test applies whether the array totals “are kept the same or vary in a
random manner”. Pearson ..nally engaged Fisherian regression-without mentioning Fisher—in
a very long comment on Welch (1935) and Kolodziejczyk (1935). These papers applied the test
theory of Neyman and (E. S.) Pearson (1928 and -33) and used Fisher’s regression results but
Welch was explicitly concerned with ..xed z regression-his y and = have a joint distribution—
while Kolodziejczyk’s “linear hypothesis” belongs with Neyman (1934) and descends from

Markov’s statement of the theory of errors—with normality restored. Pearson (1935) argued

21Sampson (1974) presents Barlett’s results for the multinormal distribution in modern notation. Curiously
his tale of two regressions does not mention Bartlett’s interest in integrating the two regressions.
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that the generality of the “Welch-Kolodziejczyk frequency surface”—the frequency surface for
which the normal regression model is the conditional distribution—is illusory for the only

important case is the bivariate normal which is best treated by not using the Fisher apparatus.

7 Estimation: population, information & sudciency

Fisher’s ..rst justi..cation for ..xed = regression was the distribution theory he developed for the
tests proposed or inspired by Pearson and ‘Student’. Later justi..cations derived from his own
“theory of estimation”. Fisher worked on this theory while he worked on ..xed x regression
but the two would not ..t. Developments in the theory eventually solved the problem but it
seems that the problem never set the pace. The solution rationalised a practice Fisher knew
was right; it is possible that the rightness of the practice guided his thinking on conditional
inference but the infuence cannot be seen in what he wrote.

“The theory of estimation” is more a theory of the information that estimation—in its pop-
ular sense—exploits. The “Mathematical Foundations of Theoretical Statistics” (1922a, p. 311)
describes the statistician’s task as the “reduction of data”-ideally without loss of information.
The statistician speci..es a “hypothetical in..nite population” to which the observed sample is
referred and calculates a statistic which *“‘should summarise the whole of the relevant informa-
tion supplied by the sample”. This is the supreme “criterion of su€ciency” (p. 316); when
such a statistic is found “the problem of estimation is completely solved” (p. 315).%2

The application of su€ciency to regression was problematic. In the regression paper Fisher

(1922, p. 598) retected on his handling of the randomness of n (see Section 3 above)

we have not attempted to eliminate known quantities, given by the sample, from

225ee Aldrich (1997) for an account of the paper and the three estimation criteria.
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the distribution formulae of the statistics studied, but only the unknown quantities—
parameters of the population from which the sample is drawn-which have to be

estimated somewhat inexactly from the given sample.

A footnote ties the point to the “the problem of estimation”:

Statistics whose sampling distribution depends upon other statistics given by the
sample cannot, in the strict sense, ful..| the Criterion of Su¢ciency. In certain
cases evidently no statistic exists, which strictly ful..Is this criterion. In these
cases statistics obtained by the Method of Maximum Likelihood appear to ful..l
the Criterion of E€ciency; the extension of this criterion to ..nite samples thus

takes a new importance.

Fisher’s “Theory of Statistical Estimation” (1925a) extended “e¢ciency” to ..nite samples—
measured by the information in a statistic’s sampling distribution-but it did nothing about
the inelligibility due to the use of a conditional distribution. In his note to the 1950 reprint,
Fisher described the “Theory” as “more compact and businesslike” than the “Foundations”;
it was because it shelved many of the problems. The notion Bartlett crystallised as *“quasi-
su€ciency”—see Section 9 below—better addresses the regression diCculty.

Fisher applied “ec®ciency” and “consistency”—the two lesser criteria—to regression in an
unpublished critique (1924/5) of N. R. Campbell’s (1924) alternative to least squares.?® Fisher
states that both methods are consistent and asymptotically normal under general conditions
but that least squares is more eCcient. If the errors in y are normally distributed, “it may
be shown” that the estimate b has 100% e¢ciency. In the 1922 theory “eCciency” is a

large sample property delivered by maximum likelihood.and *“showing” presumably used the

23Campbell’s method was a variant of the method of averages—see Farebrother (1999, pp. 236-7).
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fact that least squares is maximum likelihood-in ..xed or random x situations. Fisher gives
two examples quantifying the ine¢ciency of Campbell’s method. In the ..rst, illustrative of
experimental work, the x is a (non-stochastic) arithmetic progression and the other, illustrative
of “observational studies”, x is a normally distributed. The second analysis is curious because
Fisher does not condition on = when he calculates the variance of the estimator.

The in..nite in “hypothetical in..nite population” drew immediate ..re and Fisher (1925a,
p. 700) replied with a clari..cation. In the 50s—see Section 11-he pressed himself to clarify the
hypothetical. He (1922a, p. 313) had originally written: *“any such set of numbers [observations]
are a random sample from the totality of numbers produced by the same matrix of causal
conditions”. Of course any hypothesised population had to face a “rigorous and objective
test of the adequacy with which the proposed population represents the whole of the available
facts” but that was the end of it.

Some students paused over the hypotheticalness of the regression population. Working
and Hotelling (1929, p. 82), who made the ..rst extension to Fisher’s regression ¢-results, were

.tting time trends by least squares:

The ..ction is conventionally adopted that the sampling might be repeated indef-
initely with new and independent values of the random part of y, but with the

same fundamental trend.

Koopmans (1937, pp. 1-8) spent more time on the interpretation of the ..xed x population.
He sent his book to Fisher but they seem not to have discussed the regression population.
Koopmans later had a strong infuence on econometric thinking on the subject but that is

another story-see Aldrich (1993).
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8 Ancillary information

Ancillarity reconciled regression with the theory of estimation. The notion had been trailed in
Fisher (1925a, p. 724) but only became prominent in “Two New Properties of Mathematical
Likelihood” (1934) and “The Logic of Inductive Inference” (1935).* An ancillary provides
help in reducing the “loss of accuracy” associated with the use of a single estimate; the loss
is the dicerence between the information in the entire sample and in the estimate. The
ancillaries that materialised in 1934 were for the location and location/scale families. For the
location case he showed how conditioning on the *“con..guration” leads to the full recovery of
the information lost; the con..guration is the set of n — 1 dicerences between the median and
the other observations.

Fisher’s practice was to work through “trivial but representative” (1956, p. 158) problems,
without proving or even stating precisely any theorem of which they are representative in-
stances. To help ..x these notions of loss and recovery | present an argument which underlies
much that he wrote but which he seems never to have written down. The formulation is from
Kalbzteisch (1982, p. 78).

The information in the sample X is

_E 0?1n fx(z;0)

Ix(6) = 96°

In the case of interest there is no single succient statistic. If 7" is the maximum likelihood
estimator of 0, then Ir(0) the information in 7, calculated from the sampling distribution
of T, will be less than that in the sample, Ix(6). Fisher calls the dicerence the information

“lost” in using 7' rather than X.

24Hinkley (1980 and -80a) and Hald (pp. 729-33) discuss relevant aspects of Fisher’s theory of estimation.
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Suppose there is a statistic A (for ancillary) such that (T, A) is jointly su¢cient for ¢
and the distribution of A is free from §. Consider now the information in the conditional

distribution of 7" given the realised value of A:

]
0% In t;x; 60
Irjaza(0) = —E fTa'gz( ) \A—a}
]
2 .
_ _p 0 lnfT7A2(t,a:,¢9) |A—a}
00

since f4(a), the density of A is free from 6.
Average these conditional informations across A and use the joint su¢ciency of (T, A) to

obtain the information measure for the sample.

E]T|A(9) — IT,A(H) — Ix(e)

Fisher’s (1934, p. 303) gloss is that “The process of taking account of the distribution of our
estimates in samples of the particular con..guration [A for the location problem] observed has
therefore recovered the whole of the information available.”

Fisher (1935, p. 48) emphasises two further points: ancillary statistics tell us nothing
about the value of the parameter; their function is to tell us what “reliance” to place on the
estimate. Regression is not mentioned but the ideas seem obviously applicable. Fisher also
initiated a second life for ancillarity with an example showing that ancillarity is “useful not
only in questions of estimation proper” (p. 78). This is the test for independence in the 2.X2

table, obtained by conditioning on the margins (p. 48):

If it be admitted that these marginal frequencies by themselves supply no infor-

mation ... as to the proportionality of the frequencies in the body of the table
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we may recognize the information they supply as wholly ancillary; and therefore
recognize that we are concerned only with the relative probabilities of occurrence
of the dizerent ways in which the table may be ..lled in, subject to these marginal

frequencies.

Information loss and recovery do not ..gure. Fisher eventually applied to regression both this
estimation-free notion of ancillarity (and information) and the original notion-see Sections 10

and 11 below-but in the 30s only Bartlett published on ancillarity in relation to regression.

9 Quasi-succiency & statistical regression

For the next few years Bartlett wrote more about conditional inference than Fisher; Fraser
(1992) has a brief review. The ..rst paper, “Statistical Information and Properties of Suf-
..ciency” (1936), is the most relevant to regression. Bartlett took Fisher’s idea away from
“the theory of estimation”-he did not share Fisher’s *“reduction of data” viewpoint nor his
enthusiasm for information calculations in small sample work.?®

Bartlett (p. 131) re-states Fisher’s analysis of the location problem; the distribution of each
item in the sample S is of the form f(x —m), the chance of a con..guration C' is independent

of the parameter m and there is a T" such that

p(S|m) = p(S|C,m)p(C)

= p(T'|C,m)p(C)

“Hence all the information on m is given by T'|C”. Such estimates as 7" are called quasi-

2SFisher and Bartlett had a protacted argument over ..ducial inference: see Bartlett (1965) and by Zabell
(1992, pp. 377-8). Bartlett retects on his general relations with Fisher in Bartlett (1982) and Olkin (1989).
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succient statistics by analogy with the factorisation condition for suc€ciency.
Bartlett thus made explicit the scheme implicit in Fisher (1934)—or rather half-explicit for

the reader has to de..ne quasi-su€ciency in general. That done, Bartlett (p 135) points out:

The important practical illustration of the use of quasi-su€cient statistics occurs
in the theory of statistical regression. In the simplest case [0? known] our estimate
by Of the coeccient 3, is accompanied by a speci..cation of the value of }~(z—7)*
obtained, the distribution of b,.| > (« —T)? being normal (for normal y), whatever

the distribution of x;

Behind the correspondence between (b,., > (z — T)?) and (7, C) is a certain amount of calcu-
lation which is not given; it draws on the factorisation analysis of the 1933 paper on statistical
regression-see Section 6 above. | do not think the su€ciency of b in the ..xed x regression
model had been noted before.

Bartlett’s later papers show the intuence of Neyman & Pearson (1933) as well as of Fisher:
as Fraser (p. 110) notes, the 1937 paper “uses concepts and theory from both the Fisher and
Neyman-Pearson schools in a manner that might now be called uni..ed”.?® Bartlett returned to
quasi-succiency and the regression example after Welch (1939) identi..ed a conztict between
conditioning and power. Welch (p. 66) had concluded “that certain methods, for which
properties analogous to those of su€ciency have been claimed, do not satisfy conditions which
I think they should, if these claims are to be upheld”. The “claims” were Fisher’s, the
“conditions” related to Neyman and Pearson’s power but Bartlett felt the criticism.

Bartlett (1939, p. 392) did not directly defend conditioning but turned the objection by
showing how, if the size of the test is varied with the value of the ancillary, conditional tests

can achieve maximum power for a given unconditional (long run) size. He illustrates as follows:

26Earlier Bartlett (1933a) had tried to explain Fisher and Jeareys to one another.
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The orthodox theory is to consider the conditional statistic b| > (z—7)? ... Suppose
for the sake of argument that the true variance of ...y, was known to be unity, and
the z’s are such that > (z — 7)? = 1 on Mondays and 1.44 on Tuesdays. Then
for an 0.025 signi..cance level (one tail), the usual practice would be to take 1.96
as the signi..cance level for b (from b, = 0) on Mondays, and 1.96/1.2 = 1.633 on
Tuesdays. The power of the test in relation to the alternative that b, = 3.92 is
0.9860. But if we were satis..ed with adjusting the signi..cance level to be 0.025
merely in the long run for Mondays and Tuesdays together, we may raise the power
of the test to its maximum value of 0.9878 by taking the Monday signi..cance level

at b = 1.87 (o = 0.0307) and the Tuesday level at b = 1.723 (o = 0.0194).

Bartlett returned to regression and conditioning in an obituary of E. S. Pearson. He (1981,
p. 3) mentioned a “formidable logical criticism” of the concept of power: in regression the
conditional power for a test about 3,, depends on } (z — 7)* and “we usually consider it
irrelevant to ask whether we can obtain a better procedure based on “absolute power” by
considering the sampling variation of > (z — T)%.”

In the 30s neither Fisher nor Bartlett articulated what Birnbaum (1962) called the “con-
ditionality principle”: see Cox & Hinkley (pp. 38-9). However Bartlett wrote as though he
accepted it while Fisher was more equivocal-there was a world beyond “questions of estimation

proper” but information extraction came ..rst.

10 Regression & ancillary information

Fisher probably regarded the application of ancillarity to regression as obvious but his earliest

mention of the application that | have seen is in a 1939 letter to Jeareys (see Bennett, 1990,
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p. 173):

| regard regression work ... as a good example of ancillary information, in that the
precision of the regression does not really depend on the number in the sample,
but only on the sum of squares of the independent variate, or, in general, on the
dispersion ... In fact the whole work is completely independent of how they may

be distributed in the population sampled ...

Fisher made the same point to Darmois in August 1940. In an earlier letter Fisher (see Bennett,
1990, p. 70) criticised Bartlett’s use of the “phrase ‘conditional su&ciency.?’ Fisher never
referred to Bartlett’s treatment of regression but he was surely aware of it.

The Fisher-Darmois correspondence (see Bennett, pp. 65-79) is particularly rich and many
of the ideas sketched there went into “Conclusions Fiduciaires” (1948) and then into Statistical
Methods & Scienti..c Inference. One of the innovations of “Conclusions Fiduciaires” was a
de..nition of ancillarity had been implicitly de..ned by its role in recovering lost information

but o was the de..nition (p. 193):

Tout ensemble de statistiques dont la distribution simultanée est indépendante des

parametres, est appelé un ensemble “ancillaire” des statistiques.

When Fisher (1935) wrote that marginal frequencies “supply no information” he presumably
envisaged a notion like that embodied in this de..nition.

In “Conclusions Fiduciaires” the technique of the theory of estimation was applied to
regression. The paper’s second example (p. 197) considers the bivariate normal regression
model with known variance o2 In 1922 Fisher had written that the least squares estimator b

is normally distributed with variance o2 /A, where A is the sum of squared deviations of z.

27Bartlett did not use the term though years later Cox and Hinkley (1974, p. 32) did.
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He now supposed that x is normally distributed with known variance «, so that A is o times
a x2 with N — 1 degrees of freedom. With this speci..cation the marginal distribution of b is a
non-central ¢ with N — 1 degrees of freedom with parameters which are functions of the known
quantities o and o2 and the unknown . Fisher (p 21) states that there is less information in
this unconditional distribution than in the normals of which it is a mixture. By ignoring the
value of A and using the value of « and the sample size N, the information has been reduced
in the ratio N/N + 2.

Fisher obtains this value by applying results from his ..rst example which was itself based
on a weighting argument that went back to 1925. However a free-standing argument can
be based on the ‘implicit theorem’ of Section 8 above, identifying g with 6 and (b, A) with
(T, A). The information in a sample of size N conditional on the value of A is A/c?. Taking
the expectation of these conditional informations yields a(N — 1)/0? as the information in
the entire sample. If now we compute the information in b from its marginal distribution we
obtain a smaller value: the information in the sample is reduced in the ratio N/N + 2.

These information calculations—unlike most of the paper—did not ..nd their way into Sta-
tistical Methods & Scienti..c Inference. Indeed regression does not appear in the estimation

chapter but in the chapter on “misapprehensions about tests of signi..cance”.

11 A multiplicity of populations

Fisher’s campaign against the Neyman-Pearson theory of testing and the notion of repeated
sampling from a ..xed population was a reply to criticisms of his tests for the 2X2 table and
the Behrens-Fisher problem. Thus on the latter he (1946, p. 713) wrote—-misguidedly—against

Bartlett:
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I am quite aware that Bartlett, following Neyman, feels bound to identify the
population of samples envisaged in tests of signi..cance with those generated by

repeated sampling of a ..xed hypothetical population ...

In the polemics of the 1950s Fisher argued that the criticised work must be correct because
it follows the regression pattern which everyone knows is correct. The business is testing and
the estimation theory aspect disappears.

The article, “Statistical Methods and Scienti..c Induction”, and the book, Statistical Meth-
ods & Scienti..c Inference, stress the hypotheticalness of the statistician’s population. The root
dic¢culty with the formula, “repeated sampling from the same population”, is that there is “a
multiplicity of populations to each of which we can regard our sample as belonging” (1955,
p. 71). In an acceptance samping (quality control) situation the population has an “objective
reality” but in the natural sciences the population is a “product of the statistician’s imagina-
tion” and “the ..rst to come to mind may be quite misleading” (1956, pp. 77 & 78). Fisher was
criticising Neyman but the formulation in the “Foundations”-see Section 7 above-was just as
vulnerable.

Setting up the regression model, Fisher (1955, p 71) states “The qualitative data may also
tell us how z is distributed with or without speci..c parameters; this information is irrelevant.”

He (p. 72) continues

The normal distribution of b about 3 with variance o2 /A does not correspond with
any realistic process of samping for acceptance but to a population of samples
in all relevant respects like that observed, neither more precise nor less precise,
and which therefore we think it appropriate to select in specifying the precision of
the estimate b. In relation to the value of 5 the value A is known as an ancillary
statistic.
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However there is no appeal to information calculations.

In the book Fisher does not use the word “ancillary” with regresssion; perhaps to make
the attack on repeated sampling less dependent on the theory of estimation which was not
widely accepted. He (1956, p. 82) presented regression adding the ..ducial distribution of 3

and this pointed introduction:

A case which illustrates well how misleading the advice is to base the calculations
on repeated sampling from the same population, if such advice were taken literally,

is that of data suitable for the estimation of a coe@cient of linear regression.

The regression material appears in the book’s chapter on “misapprehensions” about signi...-
cance tests and the material is organised around the ¢-distribution, i.e. Fisher’s ...rst regression
theory where it is shown that the distribution is not acected by the distribution of z. The
“advice” for testing and ..ducial inference resulting from failure to condition is not going to
be “misleading”—it is going to be the same.

For Bartlett (1939) and for Fisher (1948) conditioning had to be related to power or

information. In 1956 Fisher (p. 84) makes a more direct appeal:

To judge of the precision of a given value of b, by reference to a mixture of samples
having dicerent values of A, and therefore dicerent precisions for the values of
b they supply, is erroneous because these other samples throw no light on the

precision of that value which we have observed.

This is an eloquent ampli..cation of the 1922 proposition: “the accuracy of the regression
coeCcients is only acected by the correlations which appear in the sample”.

Fisher wrote about ..xed x regression over a period of more than thirty years. He produced
three justi..cations: from ¢ distribution theory, from the theory of estimation and from the
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application of the conditionality principle to the choice from the multiplicity of populations.

He saw these justi..cations not as alternatives but as mutually reinforcing.

12 Retrospects

In 1956 Fisher gave a very lean history of .xed x. He wipes his own contribution and the
Pearsonian past of regression and bivariate distributions. Like Seal (see Introduction), Fisher

(p. 84) describes a return—from Pearson (1925) to Gauss (1809):

[I]n repeated sampling from the bivariate distribution of =z and y, the value of A
would vary from sample to sample. The distribution of (b — 3) would no longer
be normal, and before we knew what is was, the distribution of A, which in turn
depends on that of = would have to be investigated. Indeed, at any early stage
Karl Pearson did attempt the problem of the precision of a regression coe¢cient
in this way, assuming x to be normally distributed. The right way had, however
been demonstrated many years before by Gauss, and his method only lacked for
completeness the use of ‘Students distribution, appropriate for samples of rather

small numbers of observations.

In his Foreword Fisher (p. 3) had remarked that Pearson cared little for the past, instancing
the “Gaussian tradition of least square techniques”. In the 20s, when Pearson’s regression was
being claimed for the Gaussian tradition, Gauss was not to be seen. Only Fisher’s ..rst paper
(1912) has working references to the literature of that tradition.

In 1956 Fisher thought ..xed z regression beyond dispute. It was clearly a presence but
on what terms? A full answer would be a project in itself. Section 6 gave some views from

the Rothamsted/University College ‘inside’ and | will add some examples from outside to
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illustrate further possibilities. Hotelling was a born again Fisherian of the 1920s, an early
contributor to regression t-theory and should have been an insider.?® Yet when he (1940,
pp. 276-7) weighed the merits of the .xed x and joint multinormality assumptions in the

regressor/predictor selection problem he did not consider Fisher’s distribution agument:

The advantages of exactness and of freedom from the somewhat special trivariate
normal assumption are obtained at the expense of sacri..cing the precise applica-

bility of the results to other sets of values of the predictors.

This recalls Yule on normal theory probable errors (Section 1 above): they are not perfect but
they work-after a fashion.

Cramér (1946) noticed the distribution theory argument or at least part of it. His chapter
29 considers regression inference for the multinormal distribution case and chapter 37 regres-
sion with non-random z’s. Cramér (p. 550) records the “formal identity” of the ¢-results in
the two cases; he noticed Part | of Bartlett (1933) but did not mention the results in Part I1.

The conditioning arguments were less visible and less noticed. The underlying theory of
estimation was not accepted, understood or even widely known. Thus Hotelling (1948, p. 867)
complained after reading Kendall’s Advanced Theory: “it is still not clear what the statistician
is supposed to do with ancillary statistics”.?® Before 1955/6 the regression applications were
footnotes not headlines.®® Yet modern views on conditioning in regression-see Barndora-
Nielsen & Cox (1994, p. 39) and Gelman et al (1995, p. 235)-are linked to Fisher and Bartlett
through Cox (1958) and Savage (1962). Cox re-stated Fisher’s point about the multiplicity

of populations, the weighing machine example (p. 360) is a parable for regression and the

285ee Aldrich (2000) for an account of Hotelling’s relations with Fisher.

29Kendall discusses ancillarity with the theory of estimation (p. 32); it is not linked to conditional testing
which is applied to regression (pp. 127 & 156).

30The earliest reference in Barndora-Nielsen’s (1978, p. 36) historical note on regression in relation to
ancillarity is Fisher (1956).
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references include Bartlett (1939).3! Savage (p. 19) gives a Bayesian view of ancillarity and
regression, referring to Cox.

The .xed z assumption was not a central issue in Anglo-American Statistics but from
the 30s into the 70s econometricians made a profession out of not ..xing z—with errors in
variables and simultaneity.®> They had to discuss when the ..xed x practice would pass—see
Aldrich (1993)-but their discussions did not infuence the literature treated here. A matter
the econometricians discussed is the possible causal nature of the relation between y and =x.
From Yule onwards regression was used for investigating causal relations but in the statistical

tradition the causal interest was not intrinsic to the statistical analysis but a thing apart.

References
Aitken, A. C. (1935) On Least Squares and Linear Combinations of Observations, Proceedings
of the Royal Society of Edinburgh, 55, 42-48.
Aldrich, J. (1993) Cowles Exogeneity and CORE Exogeneity, Southampton University, De-
partment of Economics, Discussion Paper 9308.

(1995) Correlations Genuine and Spurious in Pearson and Yule, Statistical Science,
10, 364-376.

(1997) R. A. Fisher and the Making of Maximum Likelihood 1912-22, Statistical
Science, 12, 162-176.

(1997a) Multiple Regression Grumbles, in D. Connize (ed) Roy Geary 1896-1983
Irish Statistician, Dublin, Oaktree Press.

(1998) Doing Least Squares: Perspectives from Gauss and Yule, International

Statistical Review, 66, 61-81.

31See Reid (1994) for Cox’s own account of the background to his paper.
$2Morgan (1990) describes their work

33



(1999) Determinacy in the Linear Model: Gauss to Bose and Koopmans, Interna-
tional Statistical Review, 67, 211-219.

(2000) R. A. Fisher’s ‘Inverse Probability’ of 1930, to appear in International
Statistical Review.
Barndora-Nielsen, O. (1978) Information and Exponential Families, Chichester: Wiley.
Barndora-Nielsen, O. E. & D. R. Cox (1994) Inference and Asymptotics, London: Chapman
& Hall.
Bartlett, M. S. (1933) On the Theory of Statistical Regression, Proceedings of the Royal Society
of Edinburgh, 53, 260-283.

(1933a) Probability and Chance in the Theory of Statistics, Proceedings of the
Royal Society A, 141, 518-534.

(1936) Statistical Information and Properties of Succiency, Proceedings of the
Royal Society A, 154, 124-137.

(1937) Properties of Succiency and Statistical Tests, Proceedings of the Royal
Society A, 160, 268-282.

(1939) A Note on the Interpretation of Quasi-su®ciency, Biometrika, 31, 391-2.

(1965) R. A. Fisher and the First Fifty Years of Statistical Methodology, Journal
of the American Statistical Association, 60, 395-409.

(1981) Egon Sharpe Pearson, 1895-1980, Biometrika, 68, 1-7.

(1982) Chance and Change, in J. Gani (ed) The Making of Statisticians, New York:
Springer-Verlag.
Bennett, J. H. (1971) (ed) Collected Papers of R. A. Fisher, Adelaide: Adelaide University

Press.

34



(1990) (ed) Statistical Inference and Analysis: Selected Correspondence of R. A.
Fisher, Oxford, University Press.
Birnbaum, A. (1962) On the Foundations of Statistical Inference, Journal of the American
Statistical Association, 57, 269-306.
Bjerve, S. & K. A. Doksum (1993) Correlation Curves: Measures of Association as Functions
of Covariates, Annals of Statistics, 21, 890-902.
Blakeman, J. (1905) On Tests for Linearity of Regression in Frequency Distributions, Biometrika,
4, 332-350.
Blyth, S. (1994) Karl Pearson and the Correlation Curve, International Statistical Review, 62,
393-403.
Bowley, A. L. (1900) Elements of Statistics, London: King.
Box, J. F. (1978) R. A. Fisher: The Life of a Scientist, New York: Wiley.
Brunt, D. (1917) The Combination of Observations, Cambridge: Cambridge University Press.
Campbell, N. (1924) The Adjustment of Observations, Philosophical Magazine, 47, 816-826.
Cox, D. R. (1958) Some Problems Connected with Statistical Inference, Annals of Mathemat-
ical Statistics, 29, 357-372.
Cox, D. R. & D. V. Hinkley (1974) Theoretical Statistics, London: Chapman & Hall.
Cramér, H. (1946) Mathematical Methods of Statistics, Princeton: Princeton University Press.
Ezekiel, M. (1930) Methods of Correlation Analysis, New York: Wiley.
Farebrother, R. W. (1999) Fitting Linear Relationships: A History of the Calculus of Obser-
vations, New York: Springer.
Fienberg, S. E. (1980) Fisher’s Contribution to the Analysis of Categorical Data, pp. 75-84 of

Fienberg & Hinkley (1980).

35



Fienberg, S. E. & D. V. Hinkley (1980) (eds) R. A. Fisher: An Appreciation, New York:
Springer.
Fisher, R. A. (1912) On an Absolute Criterion for Fitting Frequency Curves, Messenger of
Mathematics, 41, 155-160. CP1.

(1915) Frequency Distribution of the Values of the Correlation Coe@cient in Sam-
ples from an Inde..nitely Large Population, Biometrika, 10, 507-521. CP4.

(1921) On the ‘Probable Error’ of a Coeccient of Correlation Deduced from a
Small Sample, Metron, 1, 3-32. CP14.

(1921a) Studies in Crop Variation. |I. An Examination of the Yield of Dressed
Grain from Broadbalk, Journal of Agricultural Science, 11, 107-135. CP15.

(1922) The Goodness of Fit of Regression Formulae, and the Distribution of Re-
gression Coeccients, Journal of the Royal Statistical Society, 85, 597-612. CP20.

(1922a) On the Mathematical Foundations of Theoretical Statistics Philosophical
Transactions of the Royal Society, A, 222, 309-368. CP18.

(1922b) On the Interpretation of x? from Contingency Tables, and the Calculation
of P, Journal of the Royal Statistical Society, 85, 87-94. CP19.

(1924) The Distribution of the Partial Correlation Coe¢cient, Metron, 3, 329-332.
CP35.

(1924a) The Infuence of Rainfall on the Yield of Wheat at Rothamsted, Philo-
sophical Transactions of the Royal Society, B, 213, 89-142. CP37.

(1924/5) Note on Dr Campbell’s Alternative to the Method of Least Squares,
unpublished manuscript. In Barr-Smith Library of the University of Adelaide.

(1924/8) On a Distribution Yielding the Error Functions of Several Well Known

Statistics, Proceedings of the International Congress of Mathematics, Toronto, 2, 805-813.

36



CP36.

(1925) Statistical Methods for Research Workers, Edinburgh: Oliver & Boyd.

(1925a) Theory of Statistical Estimation, Proceedings of the Cambridge Philosoph-
ical Society, 22, 700-725. CP42.

(1925b) Applications of ‘Student’s’ Distribution, Metron, 5, 90-104. CP43.

(1928) The General Sampling Distribution of the Multiple Correlation Coeccient,
Proceedings of the Royal Society, A, 121, 654-673. CP61.

(1934) Two New Properties of Mathematical Likelihood, Proceedings of the Royal
Society, A, 144, 285-307. CP108.

(1935) The Logic of Inductive Inference, (with discussion) Journal of the Royal
Statistical Society, 98, 39-82. CP124.

(1946) Testing the Dicerence between Two Means of Observations of Unequal
Precision, Nature, 15, 713. CP207.

(1948) Conclusions Fiduciaires, Annales de I’'Institute Henri Poincaré, 10, 191-213.
CP222.

(1955) Statistical Methods and Scienti...c Induction, Journal of the Royal Statistical
Society, B, 17, 69-78. CP261.

(1956) Statistical Methods and Scienti..c Inference, Edinburgh: Oliver & Boyd.
Fisher, R. A. & W. A. Mackenzie (1923) Studies in Crop Variation. 1. The Manurial Response
of Dizerent Potato Varieties, , Journal of Agricultural Science, 13, 311-320. CP32.
Fraser, D. A. S. (1992) Introduction to reprint of Bartlett (1937), pp. 109-112 of S. Kotz &
N. L. Johnson (eds) Breakthroughs in Statistics, volume 1, New York: Springer.
Galton, F. (1877) Typical Laws of Heredity, Nature, 15, 492-495, 512-514, 532-533.

(1886) Family Likeness in Stature, Proceedings of the Royal Society, 40, 42-73.

37



Gauss, K. F. (1809) Theoria Motus Corporum Coelestium, English translation by C. H. Davis,
reprinted 1963, Dover, New York
Gelman, A & J. B. Carlin, H. S. Stern & D. B. Rubin (1995) Bayesian Data Analysis, London:
Chapman & Hall.
Hald, A. (1998) A History of Mathematical Statistics from 1750 to 1930, New York: Wiley.
Hinkley, D. V. (1980) Theory of Statistical Estimation: the 1925 Paper, pp. 85-94 in Fienberg
& Hinkley (1980).

(1980a) Fisher’s Development of Conditional Inference, pp. 101-108 in Fienberg &
Hinkley (1980).
Hooker, R. H. (1907) Correlation of the Weather and Crops, Journal of the Royal Statistical
Society, 70, 1-51.
Hotelling, H. (1940) The Selection of Variates for Use in Prediction with Some Comments on
the Problem of Nuisance Parameters, Annals of Mathematical Statistics, 11, 271-283.

(1948) Review of The Advanced Theory of Statistics vol. 2, by M. G. Kendall,
Bulletin of the American Mathematical Society, 54, 863-868.
Jevons, W. S. (1871) The Theory of Political Economy, London: Macmillan.
Kalbzteisch, J. (1982) Ancillary Statistics, pp. 77-81 of S. Kotz & N. L. Johnson (eds) Ency-
clopedia of Statistical Science, volume 1, New York: Wiley.
Kendall,.M. G. (1946) The Advanced Theory of Statistics vol. 2, London: Gri¢n.

(1951) Regression, Structure and Functional Relationship. Part I, Biometrika, 38,
11-25.
Kolodziejczyk, S. (1935) On an Important Class of Statistical Hypotheses, Biometrika, 27,
161-190.

Koopmans, T. C. (1937) Linear Regression Analysis of Economic Time Series, Haarlem: Bohn.

38



Lancaster, H. O. (1969) The Chi-squared Distribution, New York: Wiley.

Merriman, M. (1884/1911) A Textbook on the Method of Least Squares, New York, Wiley.
References to the eighth edition 1911.

Moore, H. L. (1914) Economic Cycles—their Law and Cause, New York: Macmillan.

(1917) Forecasting the Yield and the Price of Cotton, New York: Macmillan.
Morgan, M. S. (1990) A History of Econometric Ideas, New York, Cambridge University Press.
Neyman, J. (1934) On the Two Dicerent Aspects of the Representative Method, (with dis-
cussion), Journal of the Royal Statistical Society, 97, 558-625.

Neyman, J. & E. S. Pearson (1928) On the Use and Interpretation of Certain Test Criteria
for Purposes of Statistical Inference, Biometrika, 20A, 175-240 & 264-294.

(1933) On the Problem of the Most E€cient Tests of Statistical Hypotheses, Philo-
sophical Transactions of the Royal Society, 231, 298-337.

Olkin, 1 (1989) A Conversation with Maurice Bartlett, Statistical Science, 4, 151-163.
Pearson, E. S. (1926) Review of Statistical Methods for Research Workers by R. A. Fisher,
Science Progress, 20, 733-734.

(1990) ‘Student’, A Statistical Biography of William Sealy Gosset, Edited and
Augmented by R. L. Plackett with the Assistance of G. A. Barnard, Oxford: Oxford University
Press.

Pearson, K. (1895) Contributions to the Mathematical Theory of Evolution. 1. Skew Variation
in Homogeneous Material, Philosophical Transactions of the Royal Society A, 186, 343-414.

(1896) Mathematical Contributions to the Theory of Evolution. I11. Regression,
Heredity and Panmixia, Philosophical Transactions of the Royal Society A, 187, 253-318.

(1900) On the Criterion that a Given System of Deviations from the Probable in

the Case of Correlated System of Variables is such that it can be reasonably Supposed to have

39



Arisen from Random Sampling, Philosophical Magazine, 50, 157-175.

(1902) On the Systematic Fitting of Curves to Observations and Measurements,
Parts | & Il, Biometrika, 1, 265-303 and 2, 1-23.

(1902a) On the Mathematical Theory of Errors of Judgement, with Special Ref-
erence to the Personal Equation, Philosophical Transactions of the Royal Society A, 198,
235-299.

(1905) On the General Theory of Skew Correlation and Non-Linear Regression,
Drapers’ Company Research Memoirs, Biometric Series I, Cambridge: Cambridge University
Press.

(1914) Tables for Statisticians and Biometricians, Cambridge: Cambridge Univer-
sity Press.

(1916) On the Application of ‘Goodness of Fit’ Tables to Test Regression Curves

and Theoretical Curves used to Describe Observational or Experimental Data, Biometrika,

11, 239-61.

(1920) Notes on the History of Correlation, Biometrika, 13, 25-45.

(1923) Notes on Skew Frequency Surfaces, Biometrika, 15, 222-230.

(1923a) On Non-Skew Frequency Surfaces, Biometrika, 15, 231-244.

(1925) Further Contributions to the Theory of Small Samples, Biometrika, 17,
176-199.

(1926) Researches on the Mode of Distribution of the Constants of Samples taken
at Random from a Bivariate Normal Population, Proceedings of the Royal Society A, 112,
1-14.

(1931) Tables for Statisticians and Biometricians, Part Il, Cambridge: Cambridge

University Press.

40



(1934) Tables of the Incomplete Beta-Function, Cambridge: Cambridge University
Press.

(1935) Thoughts Suggested by the Papers of Messrs Welch and Kolodziejczyk,
Biometrika, 27, 227-259.

& Filon L. N. G. (1898) Mathematical Contributions to the Theory of Evolution
IV. On the Probable Errors of Frequency Constants and on the Infuence of Random Selection
on Variation and Correlation, Philosophical Transactions of the Royal Society A, 191, 229-311.
Reid, N. (1994) A Conversation with Sir David Cox, Statistical Science, 9, 439-455.
Sampson, A. R. (1974) A Tale of Two Regressions, Journal of the American Statistical Asso-
ciation, 69, 682-689.
Savage, L. J. (1962) Subjective Probability and Statistical Practice, pp. 9-35 of L. J. Savage
et al The Foundations of Statistical Inference: A Discussion, London: Methuen.
Schultz, H. (1929) Applications of the Theory of Error to the Interpretation of Trends: Discus-
sion, Journal of the American Statistical Association, Supplement: Proceedings of the Ameri-
can Statistical Association, 24, 86-89.
Seal, H. (1967) The Historical Development of the Gauss Linear Model, Biometrika, 54, 1-24.
Seneta, E. (1988) Slutsky (Slutskii), Evgenii Evgenievich, pp. 512-515 of S. Kotz & N. L.
Johnson (eds) Encyclopedia of Statistical Science, volume 8, New York: Wiley.
Slutsky, E. (1913) On the Criterion of Goodness of Fit of the Regression Lines and on the
Best Method of Fitting Them to the Data, Journal of the Royal Statistical Society, 77, 78-84.
Stigler S. M. (1986) A History of Statistics. Cambridge, Mass.: Belknap Press.

(1997) Regression Towards the Mean, Historically Considered, Statistical Methods
in Medical Research, 6, 103-114.

‘Student’ (1908) The Probable Error of a Mean, Biometrika, 6, 1-25.

41



(1908a) Probable Error of a Correlation Coeccient, Biometrika, 6, 302-310.

(1926) Review of Statistical Methods for Research Workers by R. A. Fisher, Eu-
genics Review, 18, 148-150.
Tolley, H. R. & M. J. B. Ezekiel (1923) A Method of Handling Multiple Correlation Problems,
Journal of the American Statistical Association, 18, 993-1003.
Welch, B. L. (1935) Some Problems in the Analysis of Regression Among k& Samples of Two
Variables, Biometrika, 27, 145-160.

(1939) On Con..dence Limits and Succiency, Annals of Mathematical Statistics,
10, 58-69.
Wishart, J. (1928) The Generalised Product Moment Distribution in Samples from a Normal
Multivariate Population, Biometrika, 20, A, 32-52.
Working, H. & H. Hotelling (1929) Applications of the Theory of Error to the Interpretation
of Trends, Journal of the American Statistical Association, 24, 73-85.
Yule, G. U. (1897) On the Signi..cance of Bravais’ Formulae for Regression, &c., in the Case
of Skew Correlation, Proceedings of the Royal Society, 60, 477-489.

(1899) An Investigation into the Causes of Changes in Pauperism in England, etc.,
Journal of the Royal Statistical Society, 62, 249-296.

(1909) The Applications of the Method of Correlation to Social and Economic
Statistics, Journal of the Royal Statistical Society, 72, 721-730.

(1911) An Introduction to the Theory of Statistics, London: Gri¢n.

42



