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1 Introduction

Some of the concepts and terms associated with twentieth-century Bayesian theory were new,
like “Bayesian” itself, a few were from the remote past, like “prior” and “posterior”, but
most were from non-Bayesian theory. This paper examines how two of these, likelihood and
identification, passed into Bayesian theory. Sufficiency will also be involved and the story of
the three makes a nice case-study in the development of concepts in statistical theory.

On present views identification and likelihood are related but their origins were quite
separate. “Likelihood” came from R. A. Fisher’s theory of estimation and some of his theory
came too—propositions Harold Jeffreys (1939) thought could be established more easily in
Bayesian theory. Later Bayesians were not so fixed on Fisher but likelihood stayed without
much debate. “Identification” crystallised in the 1940s when the econometrician Tjalling C.
Koopmans discussed a type of inference distinct from statistical inference. Identification then
made a double passage, into statistical inference and into Bayesian econometrics. However
there was no agreement on which propositions about identification were the important ones
or even whether identification involved the prior, the likelihood or the posterior. “Whether
Bayesian theory requires a different definition of identification from the classical one” was still
deemed “unresolved” by Hsiao (p. 272) in 1983. A resolution seems to have been reached,
though this disturbed past is still reflected in recent contributions to Bayesian econometrics.

The writers involved with likelihood and identification were seldom as explicit as Kol-
mogorov and Fomin (1970, p. 96) who commend one concept as “natural” or “fruitful” and
explain the survival of another through “historical inertia”, but they had to make similar
judgements. Those judgements link decisions about definitions and similar minutiae to the
bigger themes in statistical inference.

The account follows likelihood from its anti-Bayesian beginnings in Fisher’s theory into



Jeffreys’s theory and on to the appearance of the likelihood principle around 1960, since when
there has been relative quiet. I mention some proto-identification theory but the identification
story begins in the 1940s, with Bayesian interest peaking in the 1970s. That development too

may have run its course.

2 The Fisher programme

In the early 1920s R. A. Fisher (1890-1962) developed a new approach to statistical theory
based on the idea that the object in calculating a statistic is to extract as much relevant
information from the data as possible; see Aldrich (1997) for a detailed account and Box
(1978) for biographical data. Likelihood played an important part in the new theory and,
reviewing the theory after a decade or so, Fisher (1935, p. 41) judged that he had amply
demonstrated “the adequacy of the concept of likelihood for inductive reasoning”. The claim
and the concept require attention because they were carried into Bayesian theory. Incidentally
Fisher rewrote the language of statistical theory on a scale unmatched by any twentieth century

Bayesian.

2.1 Fisher’s likelihood

Fisher formulated the notion of likelihood because he wanted to emphasise the distinctiveness
of his approach. Soper, Young, Cave, Lee and Pearson (1917) interpreted Fisher’s phrase
“most likely value” as the value obtained from maximising the posterior distribution obtained
from a uniform prior and they criticised his choice of prior. Fisher however insisted he was

not using a prior—indeed he (1921, p. 24) rejected the whole set-up:

Bayes (1763) attempted to find, by observing a sample, the actual probability that



the population value lay in any given range. ... Such a problem is indeterminate
without knowing the statistical mechanism under which different values of [the
parameter| come into existence; it cannot be solved from the data supplied by a

sample, or any number of samples, of the population.

However if the statistical mechanism were known Fisher (1925, p. 10) agreed that Bayes’
solution could be applied.
Fisher defined likelihood in “On the Mathematical Foundations of Theoretical Statistics”

(1922, p. 310):

The likelihood that any parameter (or set of parameters) should have any assigned
value (or set of values) is proportional to the probability that if this were so, the

totality of observations should be that observed.

The proportionality derived from the presence of the differential element when writing the
“chance of an observation falling in the range dz” (p. 323) but as Fisher was only ever inter-
ested in the part of the function involving the unknown parameter—he usually took logs and
differentiated—he could be more radical. Thus in 1932 he (pp. 258-9) ignored “the numerical
coefficient which is independent of x [the parameter|” and wrote the likelihood for the binomial
as 2%(1 — x)® or “some arbitrary multiple of it”.

Fisher distinguished likelihood not only from the (usually) illegitimate posterior probability
but from a legitimate frequency notion of probability. He (1921, p. 4) complained that “two
radically distinct concepts have been confused under the name of ‘probability’...” The roles
of (legitimate) probability and likelihood were set out in the Statistical Methods for Research

Workers (1925, pp. 9-11):

The deduction of inferences respecting samples, from assumptions respecting the



populations from which they are drawn, shows us the position in Statistics of the

Theory of Probability. ...

This is not to say that we cannot draw, from knowledge of a sample, infer-
ences respecting the population from which the sample was drawn, but that the
mathematical concept of probability is inadequate to express our mental confi-
dence or diffidence in making such inferences and that the mathematical quantity
[Likelihood] which appears to be appropriate for measuring our order of pref-
erence among different possible populations does not in fact obey the laws of

probability.

Hitherto the task of expressing “mental confidence” had been assigned to the invalid posterior
probability. On the final point in the passage Fisher long complained that “there is still a
tendency to treat likelihood as though it were a sort of probability.”

While likelihood was fixed by the definition of 1922, its status was ambiguous. The 1925
passage and the 1921 paper (which introduced likelihood) treat likelihood as a primitive mea-
sure of belief, as it was in Barnard (1949), Edwards (1972) and other later works. Yet the
“Foundations” and Fisher’s main writings into the 1930s did not stress the primitiveness of
likelihood but rather propositions about the efficiency of likelihood-based methods in extract-
ing information. The case for the “adequacy” of the concept of likelihood was not a matter

of definition; it rested on two argument Fisher (1935, p. 53) summarised as:

First, that the particular method of estimation, arrived at by choosing those values
of the parameters the likelihood of which is greatest, is found to elicit not less
information than any other method which can be adopted. Secondly, the residual

information supplied by the sample, which is not included in a mere statement of



the parametric values which maximize the likelihood, can be obtained from other

characteristics of the likelihood function ...

The “information” here is a repeated sampling notion—the “Fisher information measure”.

2.2 Information and proto-identification

Information underpinned Fisher’s case for likelihood but information ideas are also relevant
to the identification story and, although they did not come into play until much later, it is
convenient to describe them here.

Behind the information measure was a primitive qualitative notion of a statistic containing
no information about a parameter. The idea that a statistic contains no information about
a parameter when its distribution does not depend on the parameter arrived with sufficiency.

Sufficiency is described in the glossary of the “Foundations” (p. 310) thus

A statistic satisfies the criterion of sufficiency when no other statistic which can
be calculated from the sample provides any additional information as to the value

of the parameter to be estimated.

In the body of the paper Fisher (p. 316) is more formal about what the sufficiency of a

statistic, 01, involves

In mathematical language ... if § be the parameter to be estimated, 6; a statistic
which contains the whole of the information as to the value of 6, which the sample
supplies and #; any other statistic, then the surface of distribution of pairs of
values of #; and 6, , for a given value of 0, is such that for a given value of 6, the
distribution of 5 does not involve . In other words, when 6, is known, knowledge

of the value of #5 throws no further light on upon the value of 6.



This is hardly an elementary application of uninformativeness as variation-freeness yet it
is clear that this is the idea that is being applied. In the notation of §6.2 below, suppose
the probability density of Y, f(y, ), is known to belong to a family of densities with o € A.
There is no “information in the sample as to the value of the parameter to be estimated”

when

fly.a') = f(y,a®) forall y

for any pair of parameter values o' and a? in A. Variation-freeness also figured later in
Fisher’s notion of ancillarity and the conditional inference theory based upon it.

Fisher discussed the elementary case in 1935 when he (p. 47) tested the information
measure against “our pre-mathematical common sense” requirements of such a measure. The
measure is zero when it should be: “when the probabilities of the different kinds of observation
which can be made are all independent of a particular parameter, the observations will supply
no information about the parameter.”

The identification concerns in Koopmans’s writings of the 1940s—§6.1 below—were quite
different and Fisher came closest to anticipating them, not in any theory, but in an example.
In the Statistical Methods Fisher (1925 p. 24) considers the task of estimating 6 in a restricted

multinomial distribution with cell probabilities

0, however, is not a fundamental parameter in Fisher’s genetical example, it is the product
of p and p’, the “recombination fractions” for males and females. In the first edition Fisher

did not explain why he does not estimate these parameters but subsequently he (1928 p. 241)



wrote:

Since these [multinomial] probabilities involve only the quantity pp’, it is only this
and not the separate values of p and p’ that the data can provide an estimate. ...
If p and p/ were equal, then v/ would give the recombination fractions in both
sexes, and if these are unequal it will always give their geometric mean. The data

before us, however, throw direct light only on the value of 6.

The information calculations that follow concern 6, not p and p’ which drop out of sight.

This example and the issues it illustrates can be connected with the formal information
ideas—see §6.2 below—but Fisher had no occasion to do so. There was another information
context in which he did not go into details. Fisher was constantly making ‘no no-information’
assumptions. Thus, in taking the reciprocal of the information measure in his maximum
likelihood theory, he was assuming that the measure is non-zero. Any careful description of
the circumstances in which a technique will work involves some kind of identification condition
and there were already such descriptions in the literature.

Fisher had been taught least squares after the fashion of Brunt (1917). The model involved,

put in modern notation, is

y~N(XB,a"I)

with X a matrix of known constants. The section (p. 79) on the “independence of the normal
equations” considers how the normal equations may not yield a “determinate solution”. The
treatment can be traced back to Gauss’s first publication on least squares (1809) where there is
a version of the full rank condition for “determinacy”; see Aldrich (1999) for details. Another

investigation of determinability appears in Pearson’s (1894) paper on estimating a mixture of



normals. Pearson first establishes that a non-degenerate mixture is uniquely determined—“a
curve which breaks up into two normal components can break up in one way, and one way
only.” (p. 74).

To return to likelihood, Fisher’s case for “the adequacy of the concept of likelihood” rested
on information. I have not detailed the case for Jeffreys (1935, p. 70) thought the argument
“would be made much easier by an explicit use of probability” and likelihood first when

Bayesian went Jeffreys made the case without information technicalities.

3 The Jeffreys programme

The earliest Bayesian work of the physicist Harold Jeffreys (1891-1989) was oriented more to
logic and the philosophy of science than to statistical analysis but in the 1930s his seismological
research took a statistical turn and he started writing about statistics and paying attention to
Fisher. The Theory of Probability (1939) developed a science of statistics, of comparable scope
to Fisher’s, founded on the theory of probability—Jeffreys’s name for the theory of inductive
inference based on the principle of inverse probability or Bayes’ theorem; see Cook (1991) for
biographical information and Lindley (1986) for an account of Jeffreys’s book.

The Probability recast Fisher’s methods in a consistent form and showed how some of his
larger objectives could be realised more easily. Jeffreys (1939, p. 323) admired Fisher’s ability
to grasp the essentials of a solution by “some brilliant piece of common sense” but lamented
the lack of system. Jeffreys was more influenced by Fisher than by writers from the Bayesian
past. He mentions earlier Bayesians, including Laplace, Edgeworth and Pearson for their views
about Bayesian theory but hardly for their work in Bayesian theory. Pearson, for instance, is

the author of the Grammar of Science, not the cooperator of 1917 or the 1907 investigator



of “the influence of past experience on future expectations”. It has taken modern historians,

like Dale (1991) and Hald (1998), to recover the pre-Jeffreys Bayesian past.

3.1 Jeffreys’s likelihood

Jeffreys was the first to use the now standard terminology of Bayes’ formula in its application
to inference; see David (2001). Wrinch and Jeffreys (1921, p. 387) contracted the widely-used
“probability a priori” and “probability a posteriori” to “prior probability” and “posterior
probability”, less, Jeffreys (1939, p. 29) explained, for linguistic streamlining than because “a
priori” had other philosophical meanings and was open to misunderstanding. The adoption of
“likelihood” was a more significant step and Jeffreys only took it after he had steeped himself
in Fisher’s work. Jeffreys chose to put likelihood into the Probability; he could have chosen
another word or left the component without a name. He did not explain his decision beyond
saying that Fisher’s term was “convenient”.

Jeffreys (1939, p. 29) wrote the “principle of inverse probability, first given by Bayes in

1763”7 as

P(q.|pH) o P(q, | H)P(p|q-H)

where the H on which all the probabilities are conditional is “previous knowledge”. He

interpreted the terms as follows:

If p is a description of a set of observations and the ¢, a set of hypotheses, the factor
P(q.| H) may be called the prior probability, P(q,|pH) the posterior probability
and P(p|q.H) the likelihood, a convenient term introduced by Professor R. A.

Fisher, though in his usage it is sometimes multiplied by a constant factor. It is the



probability of the observations given the original information and the hypothesis

under discussion.

Jeffreys draws attention to and then deviates from Fisher’s usage; he does not multiply by a
constant. The form in which Jeffreys writes the principle is that which follows most directly
from the definition of conditional probability. Presumably Jeffreys saw no point in the Fisher
version. Indeed he may have thought that Fisher’s separation of likelihood and probability
was unhelpful. Fisher’s point about likelihood not obeying the laws of probability could be

made in Jeffreys’s notation as

P(p|q. or q,,H) # P(p|q.H) + P(p|q. H).

Jeffreys’s likelihood is clearly not the same as Fisher’s likelihood. The likelihoods do not
refer to the same things. One is, or derives from, a family of conditional distributions where
the conditioning variable is a parameter while the other comes from a family of unconditional
distributions indexed by the parameter. This difference reflects the fundamental difference
in the way parameters are conceived in the two theories. However the difference seemed to
cause nobody any trouble because it is clear how the translations should be made. Although
parameters are random variables in one paradigm only, the notions of random variable and
conditional distribution are common to the paradigms. Fisher’s term would have been incon-
venient and there would have been something to argue about if Bayesian theory used both the
indexing notion and the conditioning notion. On a more operational level Fisher’s maximum
likelihood and Jeffreys’s maximum likelihood are the same functions of the data. Perhaps Jef-
freys’s likelihood is as near to Fisher’s as it could be given the different status of parameters

in the two theories. This is a big given and Bayesians could have introduced a new term.



Part of the disanalogy between Fisher’s likelihood and Jeffreys’s likelihood was Fisher’s
claim that likelihood is “appropriate for measuring our order of preference among different
possible populations” ,something Jeffreys might say of the posterior distribution. However
there was a positive analogy in that some of Fisher’s information claims could be sustained

by Jeffreys’s likelihood. Thus when he came to interpret the magic formula

Posterior Probability oc Prior Probability x Likelihood

Jeffreys (1939, p. 46) wrote

where by the likelihood we understand the probability that the observations should
have occurred, given the hypothesis and the previous knowledge. The prior prob-
ability has nothing to do with the observations immediately under discussion,
though it may depend on previous observations. Consequently the whole of the
information that is relevant to the posterior probabilities of different hypotheses is

summed up in the values they [the observations| give to the likelihood.

The last sentence led Berger and Wolpert (1984, p. 23) and Lindley (1986, p. 36) to suggest
that Jeffreys understood the likelihood principle. However the likelihood principle involves a
contrast between the probability distribution of the observations and anything that works in
the formula. Jeffreys, however, was using “likelihood” for the probability distribution and was
contrasting it with the prior distribution. The likelihood principle only emerged in Bayesian
statistics around 1960-see §5.1 below. Jeffreys missed this corollary of the principle of inverse
probability although admittedly it would have fitted in well with other parts of his system

e.g. his (pp. 315-6) well-known criticism of the use of tail areas in significance testing: “a

hypothesis that may be true may be rejected because it has not predicted observable results that



have not occurred.”

Unlike Fisher, Jeffreys based no technical development on “information” or “the whole of
the information”. He did not need to for, however they are defined, they must operate through
the likelihood function as the only way the observations affect the posterior is through the
likelihood. It was easy for Jeffreys to recast some of Fisher’s core theory. We have seen how

he established the first part of the first of the “main results” of the “present system” (p. 351)

a proof independent of limiting processes that the whole information contained in
the observations with respect to the hypotheses under test is contained in the like-
lihood, and that where sufficient statistics exist other functions of the observations

are irrelevant.

Fisher’s proof of this first part had required the notion of Fisher information which Jeffreys
thought could only be justified by a large sample argument.

Jeffreys also had his own method for the second sufficiency part of the result. He replaced
Fisher’s original definition of sufficiency (§2.2 above) with one based on the factorisation
criterion. (Fisher had used the criterion but not to define sufficiency.) Jeffreys (pp. 89-90)

writes:

Whenever the likelihood, apart from factors independent of the unknown param-
eters to be estimated, can be expressed as a function of the unknown parameters,
the number of observations, and a number of functions of the observations equal to
the number of unknown parameters, those functions of the observations are called

sufficient statistics.

Thus he (p. 90) could say that “the whole of the information with respect to the [parameters]

that is contained in the observations is summmarized in the [sufficient statistics]”.



In the third edition of the Theory (1961, pp. 165-6) Jeffreys shifted the emphasis in his
account of sufficiency to the way the posterior distribution depends on the data and showed
how the Fisher 1922 definition could be “proved” as a theorem. Raiffa and Schaifer (1961, p.
32) adopted a similar posterior-based definition: the posterior depends on the data through
the sufficient statistic. They (p. 34) establish the “complete equivalence” of the Bayesian and
classical (factorisation) definitions of sufficiency; the criterion is that the two concepts have
the same extension, i.e. the same statistics from the same distributions are sufficient according
to the two definitions. Raiffa and Schaifer prefer their definition because it “leads naturally”
(p. xi) to the concept of marginal, or partial, sufficiency which concerns the way the data
acts on the marginal posterior. This notion (p. 35) is relative to the prior distribution that
permits the nuisance parameter to be integrated out.

Jeffreys installed likelihood in Bayesian theory. His definition corrected Fisher’s but the
claims Fisher made about likelihood and information could be made—and proved more easily—
for their Jeffreys counterparts. So there was continuity of purpose as well as continuity of
reference. When Fisher’s concerns became less pressing there was more of a cost in maintaining
likelihood. Schlaifer (1959, p. 338) warned his readers: “Again we emphasise that the new
term is introduced purely for convenience: a likelihood is a probability in the same sense as
any other probability.” Against the “convenience” had to be set the fact that this was an
unnatural term with the wrong associations. Convenience can be another name for historical

inertia—it was not for Jeffreys in 1939.



4 Classical interlude: Neyman and Wald

The Bayesians who came after Jeffreys were not enthralled to Fisher; Raiffa and Schlaifer’s
(1961, p. ix) global acknowledgment is confined to “to Neyman, Pearson, Jeffreys, Von Neu-
mann, Wald, Blackwell, Girshick and Savage.” Fisher’s information/likelihood theory had
been replaced as the norm by the “classical” decision theory of Jerzy Neyman (1894-1981)
and Abraham Wald (1902-50). For biographical information on Neyman and Wald see Reid
(1982) and Wolfowitz (1952).

Neyman’s “Outline of a Theory of Statistical Estimation based on the Classical Theory of
Probability” (1937) confronted Jeffreys by distinguishing (p. 341) Jeffreys’s theory from the
“classical theory”. It did not confront Fisher, though an essential point of the new theory was
that it was not based on likelihood or information. Neyman (1935, p. 74) had pressed Fisher
on whether likelihood is outside probability and whether it is possible to construct a theory
of mathematical statistics based solely on the (classical!) theory of probability. Neyman (p.
75) preferred to found estimation on the “frequency of errors in judgement”. This provides
a “sufficiently simple and unquestionable principle in statistical work” while the “amount of
information is too complicated and remote to serve as a principle”. Likelihood and maximum
likelihood had figured in Neyman’s inference theory since the Neyman-Pearson 1928 paper on
likelihood ratio tests. Neyman and Pearson (pp. 184-7) used the same definitions as Fisher’s
but their likelihood, likelihood ratios and maximum likelihood were not enchanted but merely
useful, their usefulness registering in results on error frequencies.

Wald (1939) gave a unified treatment of testing and estimation based on the notions of
loss (“weight”) functions, risk functions and admissibility. He (p. 302) repeated Neyman’s
objections to a priori probability distributions but used the concept in a technical capacity:

“it proves to be useful in deducing certain theorems and in the calculation of the best systems



of regions of acceptance”. In his Statistical Decision Functions Wald (1950) extended this line
of research emphasising the minimax criterion and including (p. v) a “treatment of the design

of experimentation as a part of the general decision problem.”

5 Bayesian decision theory

There were many publications that contributed to the modern Bayesian revival but I concen-
trate on two of the most influential: The Foundations of Statistics (1954) by L. J. Savage
(1917-1971) and Applied Statistical Decision Theory (1961) by Howard Raiffa (b 1924) and
Robert Schlaifer (d 1994); for biographical information on Savage, see Lindley (1980). The
new Bayesian line was very different from Jeffreys’s. The foundations combined “personalism”
with the “behavioralism” (decision-orientation) of Neyman and Wald. Savage (p. 276) consid-
ered the Theory of Probability “an ingenious and vigorous defense of a necessary view, similar
to, but more sophisticated than Laplace’s”. Raiffa and Schlaifer refer to some of Jeffreys’s
higher-level contributions, though not to his recasting of Fisher.

Unlike Fisher, these authors were not profoundly dissatisfied with their elders. Savage
(1954, p. 4) judged the methods of the “British-American School” as “on the whole consistent”
with the theory of probability he was proposing—indeed he tried to develop a subjectivist

interpretation of Wald’s minimax theory. Raiffa and Schlaifer (1961, p. vii) stated:

the so-called “Bayesian” principles underlying the methods of analysis presented in
this book are in no sense in conflict with the principles underlying the traditional

decision theory of Neyman and Pearson.

The term “Bayesian”, incidentally, had only come into use around 1950-see David (2001).



While Raiffa and Schlaifer played down the conflict between classical and Bayesian ap-
proaches, important differences were emerging. These differences affected methods as well as
foundations. Lindley (1980, p. 7) recalls Savage’s (1962a, p. 307) admission “I came to take

... Bayesian statistics ... seriously only through recognition of the likelihood principle.”.

5.1 The likelihood principle: terminal and preposterior analysis

“Likelihood” on its own hardly figures in Savage’s 1954 book. He (p. 140) writes “The
concept of likelihood ratio, sometimes simply called likelihood, is now one of the most pervasive
concepts of statistical theory”. Likelihood ratios are discussed at length and there is some
discussion of maximum likelihood. Raiffa and Schlaifer discuss likelihood per se and use
Jeffreys’s definition, thus writing for the discrete case (p. 29): “If the conditional measure
has a mass function, we shall denote by [(z | 8) [likelihood| the probability given € that e [the
experiment] results in z”.

Raiffa and Schlaifer introduced the refinement of the “likelihood kernel”. The kernel was
useful in extracting distributional information from Bayes’ formula and helpful in setting up

the conjugate prior theory. It is presented (p. 30) as follows:

if p and k are functions on Z [the observable] such that for all z and 6

1(2]0) = K(2|0)p(2)

i.e. if the ratio k(2 ]0)/l(z|60) is a constant as regards 6, we shall say that x(z | 0)

is a (not “the”) kernel of the likelihood ...

While most modern Bayesians define likelihood as the conditional measure, some, e.g. Box

and Tiao (1973, pp. 10-1), slide between this and the likelihood kernel in the Fisher manner.



Savage previewed the likelihood principle when he (1960, p. 544) wrote

it is becoming increasingly accepted that, once an experiment has been done, any
analysis or other reaction to the experiment ought to depend on the likelihood-
ratio function and on it alone, without any further regard to how the experiment

was actually planned or performed.

He had first heard this argument—applied to sequential sampling—from Barnard in 1952, as he
(1962, p. 76) later recalled. Savage (1962, p. 17) set out the argument more fully, replacing

the “likelihood-ratio function” by the likelihood:

According to Bayes’s theorem Pr(z|A), considered as function of A constitutes
the entire evidence of the experiment, that is, it tells all that the experiment has
to tell. More fully and precisely, if y is the datum of some other experiment, and
if it happens that Pr(y|\) and Pr(z|\) are proportional functions of A (that is,
constant multiples of each other), then each of the two data = and y have exactly
the same thing to say about the value of A .... I, and others, call this principle the
likelihood principle. The function Pr(x | A)-rather this function together with all
others that results from it by multiplication by a positive constant—is called the

likelihood function.

Raiffa and Schlaifer do not state the likelihood principle but their detailed comparison of
the Bayesian and classical treatments of optional stopping (pp. 36-42) became a standard

illustration. They (p. 42) summarised:

the likelihoods for all noninformative stopping processes have a common kernel,

and therefore all lead to the same posterior distribution. ...[O]n the other hand



we shall also be concerned with the problems of experimental design as they look
before any sample has actually been taken, and then we shall want to ask what
can be expected to happen if we predetermine r [the number of successes| rather

than n [the number of trials|] and so forth.

Raiffa and Schlaifer [p. x] distinguish between “terminal” (post-experimental) analysis and
“preposterior” (pre-experimental) analysis, between choice of an act after an experiment has
been performed, and choice of the experiment to be performed. In pre-experimental analysis
the probability distribution of the observable is considered but post-experimental analysis
is conditional on the observed outcome and based on the likelihood function, not on the
density. Thus something of Fisher’s distinction (§2.1) between probability and likelihood—and
of elaborations such as that by Barnard (1949)-reappears in the Raiffa and Schlaifer scheme.

Bayesians have varied in their attitudes to the likelihood principle. Against the enthusiasm
of Savage and Lindley, of the econometricians Leamer (1978) and Poirier (1988), is the caution
of Gelman, Carlin, Stern and Rubin (1995, pp. 9, 190) for whom the principle is of limited
interest and its suggestion that analysis be done “without further regard to how the experiment
was actually planned or performed” potentially misleading. However, despite disagreements
about the significance of the likelihood principle and differences in the use of likelihood and
likelihood kernel, likelihood’s passage into Bayesian theory was untroubled. This was not the

case with identification.

6 The troubles with identification

There are two obvious ways of transferring a concept into a new theory so that some continuity

is maintained. Either take its meaning as fixed and consider how the concept functions in the



new theory or find something in the new theory with the same or similar function. When
Jeffreys appropriated likelihood he took its meaning as fixed-more or less—and found that
his likelihood had a similar function to Fisher’s in that some of the theorems in which it
figured were the same. The situation with identification was more complicated for both ways
of managing the transfer were tried—either filling the blank in “from the Bayesian viewpoint,
classical identification theory is really concerned with —” (from Dreze (1972, p. 27)) or filling
the blank in “an appropriate Bayesian definition of identification is —” (from Rothenberg
(1973, p. 158)). Both projects were pursued, but identification carried so much baggage that
there was more than one way of filling both blanks.

It may be worth noting some points about the language of the identification commu-
nity. “Identified” and “identifiable”’—and “identification” and “identifiability” —circulated as
synonyms, linguistic anomalies it would take too long to unravel. “Identification problem”
signified both a topic for discussion and something requiring a solution. If there were a prob-
lem, i.e. the parameter were not identifiable, or under-identified, the solutions were to lower

one’s sights to an “identified function” of the parameter or to get more information.

6.1 Koopmans’s identifiability

The topic of identification—with its concepts of identifiability and observational equivalence—
was formalised in the 1940s by T. C. Koopmans (1910-85), first as applied to the simultaneous
equations model of econometrics and then to scientific inference in general. In econometrics
identification became a big topic, warranting a book in 1966 (F. M. Fisher’s Identification
Problem in Econometrics) and a chapter in the1983 Handbook of Econometrics (by C. Hsiao).
The story of identification in econometrics is a complex one and various facets have been

discussed by Qin (1989), Morgan (1990, chapter 6), Aldrich (1994), Rayner and Aldrich (1997)



and others.

Koopmans’s most general ideas appear in “The Identification of Structural Characteristics”
by Koopmans and Reiersgl (1950). The authors were particularly interested in econometrics
and factor analysis but the genetic example from Fisher’s Statistical Methods (§2.2 above) can
illustrate their viewpoint. The “structural characteristics” are the elements of (p,p’), while
the distribution of the observations depends on the multinomial probabilities. Given “exact
knowledge” of those probabilities, can the value of (p, p’) be deduced? Clearly not, for infinitely
many pairs of values generate the same value of the product pp’ and hence the same probability
distribution for the observables. In Koopmans’s language, the pair (p,p’) is not identifiable
since for every pair there is another (in fact infinitely many) observationally equivalent pair(s).
Koopmans and Reiersgl (p. 170) state that “the study of identifiability proceeds from a
hypothetical exact knowledge of the probability distribution of observed variables rather than
from a finite sample of observations.” Their “identification problem” was outside the scheme of
statistical analysis set down in R. A. Fisher’s “Foundations” in which the statistician specifies
a population and makes inferences from the sample to the parameters of the population.

Writing of the economic context, Koopmans (1949, Abstract p. 125) separates the process
of inference from sample to theoretical structure into a step from sample to population and

one from population to structure.

Statistical inference, from observations to economic behavior parameters, can be
made in two steps: inference from the observations to the parameters of the as-
sumed joint distribution of the observations, and inference from that distribution
to the parameters of the structural equations describing economic behavior. The

latter problem of inference [is] described by the term “identification problem”.

Step one is the domain of statistical inference in the narrow sense, step two the domain of



economic theory or the structural theory of whichever substantive field the observations come
from. Identifiability turns on the invertibility of the mapping—e.g. pp’ = 0 or B~'T" = II (see
below)—from the theory parameters to the parameters that can be estimated from the data
and the typical identification theorem involved a condition on the rank of a matrix. Koopmans
was interested in the total process of inference from sample to structure and failure at the
first stage wrecked the total process. For Koopmans this involved a data deficiency of some
kind-the most familiar being an X matrix of deficient rank in regression—not a failure of
identification.

Koopmans’s identification concerned a layer of inference beyond statistical inference and
belonged in the structural theory. One can imagine a Bayesian and the classical Koopmans
agreeing that identification is a property of the structural specification and is the same whether
considered classically or from the Bayesian approach. However I have not found any Bayesian
taking this line for there was a powerful deflecting influence in the idea that identification is
related prior information. The relationship was built into the way the simultaneous equations
model was usually presented.

Following Koopmans, Rubin and Leipnik (1950), each equation of the simultaneous equa-
tions model has an economic “identity” as a demand, a supply or some other theoretically
meaningful equation. There is a vector z; of conditioning (exogenous) variables and a vector
y; of conditioned (endogenous) variables. The system of “structural” equations is organised
into two parts: an unrestricted structural model with parameters B,I', Y and a set of “a priori

restrictions” expressed through the function U:

By, = Tzi4+e:6IN(0,X):t=1,...T

U(B,T,%) = 0.



The commonest form of restriction was the exclusion restriction—a particular element of B or
I is zero signifying that a particular variable does not appear in a particular equation.
The implied “joint distribution of the observations” or “population” is given by the reduced

form equations

ye = Hz+ v v IN(0,Q), with Il = B7'T and Q = BB~V

or yp v IN(Ilz, Q).

The structure is identified when only one (B, ', X)) satisfying the restrictions can be obtained
from an attainable II and 2.

If there are more than one (B,T',Y¥), Koopmans, Rubin and Leipnik (p. 73) call them
observationally equivalent; they represent “mathematically equivalent ways of writing down”
the distribution. Econometricians came to speak of identification being “achieved” or the
parameters “identified” by the imposition of “restrictions”. In this spirit the identification of
the parameters in the Fisher genetic model would be achieved if, say, the restriction p = p’
were imposed.

Econometricians generally took the hierarchical formulation of the structural model for

granted, though as Malinvaud (1966, p. 545) noted,

the distinction between the general statistical hypothesis and a priori restrictions
is purely conventional. Its only object is to facilitate the discussion of identification

problems, and it is based on no necessary logical principle.

Koopmans’s mathematical technique for establishing identification results exploited this dis-
tinction, but it does not usually match the economics of the situation for the unrestricted

model has no obvious economic interpretation. One could just write down the ‘restricted’



model as Haavelmo (1944, p. 99) originally did. Bayarri, DeGroot and Kadane (1988) have
drawn attention to the arbitrariness of the division into prior and likelihood in a hierarchical
model; the hierarchy was an important part of the Koopmans identification legacy.
Koopmans put the distinction, between what can be discovered from data under favourable—
even ideal-circumstances and what cannot, to the service of a view that economic theory is

indispensable. Thus Koopmans, Rubin and Leipnik (p. 64) insist that

Statistical observation will in favourable circumstances permit [the investigator]
to estimate ... the characteristics of the probability distribution of the variables.
Under no circumstances whatever will passive statistical observation permit him
to distinguish between mathematically equivalent ways of writing down that dis-
tribution.... The only way in which he can hope to identify ... equations ... is with

the help of a priori specifications of the form of each structural equation.

“Favourable circumstances” —enough variety in z to deliver I and 2-will not necessarily deliver

(B,T,%).

6.2 Identification goes statistical

In the 50s and 60s the terminology of identification came to be applied to statistical inference,
mainly in the context of regularity conditions for statistical inference procedures—see Aldrich
(1994, introduction). T. J. Rothenberg’s “Identification in parametric models” (1971) con-
solidated this movement with a body of theorems. In the 1977 reprint of the Identification
Problem F. M. Fisher (p. v) distinguished the treatment of identification in a “general sta-
tistical setting” with his own which treated identification as a “branch of economics”. The

contrast is genuine although the Koopmans-Fisher notion had always been amphibious for,



while it lodged in economic theory, it was always associated with statistical inference actual
or possible-Koopmans and Reiersgl published in the Annals of Mathematical Statistics after
all.

The root idea of the statistical notion was R. A. Fisher’s uninformativeness as variation
freeness (§2.2) and the first of Rothenberg’s theorems treats the non-vanishing of the Fisher
information measure as a condition for local identifiability. Rothenberg (p. 577) remarks, “lack
of identification is simply the lack of sufficient information to distinguish between alternative
structures [parameter values|”.

Rothenberg (p. 578) gives a pair of definitions for the parametric case. Here Y repre-
sents the n-dimensional outcome of some random experiment with density function f and A

represents the m-dimensional parameter space:

DEFINITION 1: Two parameter points (structures) o' and o? are said to be

observationally equivalent if f(y,a') = f(y,a?) for all y in R™.

DEFINITION 2: A parameter point o in A is said to be identifiable if there is no

other a in A which is observationally equivalent.

These descend from definitions in Koopmans and Reiersgl (p. 169) but these had not reflected
Koopmans’s concerns with inference from population to structure and the role of prior infor-
mation in making such inference possible. Rothenberg’s o may be a structural parameter or
a reduced form parameter. In terms of Koopmans’s two steps, the “statistical identification
problem” can be interpreted as encompassing both steps or just the first. Rothenberg (p.
577) opts for the encompassing possibility, describing the “identification problem” as con-
cerned with the “possibility of drawing inferences from observed samples to an underlying

theoretical structure.”



7 Bayesian treatments of identification

The “solution” of the identification problem would be seen in the posterior distribution and so
there was a very direct way of extending identification into Bayesian theory. Morales (1971, p.
20) deemed “identified” a model in which the posterior density is not flat. Rothenberg (1973,

p. 158) also considered the possibility:

From the Bayesian point of view, the posterior density function summarises all
the prior and sample information that is available. If the posterior distribution for
the structural parameter « is highly concentrated around its mean, then we are
in an excellent position to distinguish between different values of a.. ... Thus one
is tempted to define identification in terms of the degree of concentration of the

posterior density.

Rothenberg drew back because it becomes possible for a parameter to be identifiable “even
though the data were completely irrelevant”. So he used “estimable” for this concentration
notion, leaving “unanswered the question of an appropriate Bayesian definition of identifica-
tion”.

Koopmans had established a body of interrelated propositions about identification in
econometrics: lack of identification matters because inference about structural parameters
is prevented or impeded; identification is about prior information making possible—or not—the
transition from the reduced form to the structural form; theorems about when identification
is achieved usually involve the rank of certain matrices. The Morales-Rothenberg proposal
built on the first of these propositions but by picking different ones authors could extend
identification into Bayesian theory in any number of ways—all would satisfy one criterion of

naturalness, that when ‘contracted’ they correspond to classical identification. The next four



sections consider different Bayesian responses to identification. For accounts of the origins of

Bayesian econometrics see Dreéze and Richard (1983) and Qin (1996).

7.1 Broadening the concept of identification

It would be too much to say that Bayesian econometrics was solely a response to the iden-
tification problem but the problem was seen as one where the new approach could make a
difference—see Dreze (1972, p. 8). Lindley’s (1971, p. 46n) remark, “it might be noted that
underidentifiability causes no real difficulty in the Bayesian approach” became a talisman
for Bayesian econometrics. Raiffa and Schlaifer had shown how to treat the singular X'X
regression case when there is extra-sample information and the new Bayesian theory—unlike
Jeffreys’s—opened up the possibility of using uncertain prior knowledge to solve or alleviate
the identification problem. From this new perspective Koopmans had entertained either cer-
tain prior knowledge (about the restrictions) or no prior knowledge (about the unrestricted
coefficients). (There is a considerable literature considering the interaction of identification
and impropriety of priors—e.g. Erickson (1989) and Gelfand and Sahu (1999)-but it would
take too long to explore this.)

Jacques Dreze (b 1929) and Arnold Zellner (b 1927), the founding fathers of Bayesian
econometrics, devised formal constructions extending the Koopmans notion of identification.
They both emphasised how Bayesian analysis permits the introduction of uncertain prior

information into the simultaneous equations model. Zellner (1971, p. 254) argues

Usually in the sampling theory framework exact restrictions are imposed on the
parameters of a model to achieve identification ... Since prior information in the
Bayesian framework need not necessarily take the form of exact restrictions ...

there is a need to broaden the concept of identification to allow for the more



general kind of prior information used in Bayesian analysis.

Dreze and Zellner worked on the simultaneous equations model but—following the example
of Leamer (1978)—their approaches can be illustrated in the simpler regression framework.
Suppose we take as the basic scheme the unrestricted structural form and corresponding

reduced form the following regression specification

y ~ N(X(a1+ay),0’)

y ~ N(Xmo%l):7m=o0a;+ay.

To simplify matters further suppose that o2 is known. Koopmans assumes that there is no
obstacle to knowing 7. However, as neither oy or ay can be determined from knowledge of m,
neither is identifiable. Consider imposing the a priori restriction ay; = 0. Now identification
of a; is achieved because m determines «;. This is an identifying restriction.

Dreze reproduces in Bayesian terms the two step inference procedure described by Koop-
mans. The first step is inference to the reduced form and the second is inference from the
reduced form to the structural form. Dreze shows how this decomposition is valid in that the
data is informative only about the reduced form parameters; the structural parameters and

the data are independent given the reduced form parameters.

fla|m,y) = fa|r)

With the restriction, ay = 0, a single o is associated with any given m. Without it, infinitely
many «}s are associated with any given 7. The identifying restriction could be interpreted as

a prior probability distribution for ay concentrated on 0. A way of weakening this restriction



would be to take an uninformative prior for o; and choose an informative prior for ay, say:

OngN(O,M).

To take advantage of this extension, Dreze introduces the notion of “identification in prob-
ability.” Define the parameter as as “identified in probability” when the conditional prior

probability of s given 7 is proper. In the present case

ap |m ~ N(m, M)

Identification is the limiting case of identification in probability when the probability distri-
bution is concentrated at a single point.
The “more general kind of prior information” envisaged by Zellner may take the form of

an informative prior on ay, e.g.

&2~N(0,M>

then we can integrate oy out of the likelihood and obtain

y~ N(Xay,o?(I + XMX'))

In this new distribution no distinct values of a; are observationally equivalent. Here is a
“broadened” concept of observational equivalence on which to base a “broadened” concept of
identification. These rest on a broadened notion of likelihood—a marginal likelihood reflecting

both the prior for as and the original likelihood.



These broadened concepts involve both the likelihood and prior—as they are meant to!l.An
immediate consequence is that identification in probability, say, may be lost if the prior is
changed. Of course this characteristic was inherited from the ancestor, the Koopmans hier-
archical specification of unrestricted model plus a priori restrictions. However the project of
broadening the scope of identification seems to have been suddenly abandoned. Dreéze (1975,

p. 167) had been presenting identification in probability in lectures.

Reactions to this presentation have led me to recognise that it was misleading to
use the word “identification” in defining a property of the prior density for the pa-
rameters of unidentified models. I agree with Kadane’s view “that identification is
a property of the likelihood function and is the same whether considered classically

or from the Bayesian approach.”

Dreze’s Damascene conversion was significant for the Louvain school of Bayesian econometrics

followed him.

7.2 The role of identification in Bayesian theory

The “view” from J. B. Kadane’s “The Role of Identification in Bayesian Theory” (1975, p.

175) that

identification is a property of the likelihood function and is the same whether

considered classically or from the Bayesian approach.

is the best remembered part of the paper that brought the statistical notion of identification
into the Bayesian debate.
The “likelihood” is evidently the Jeffreys likelihood, not the likelihood kernel. The force

of the remark is first that identification is not a property of the prior and second that the



definition of identification-Rothenberg’s in §6.2-is meaningful in the Bayesian framework.
The remark might also be taken, as by Hsiao (1983, p. 272), as a declaration that a Bayesian
definition is unnecessary.

Kadane demonstrates the role of identification through theorems of relevance to Bayesians.
These expand a remark he (p. 180n) attributes to Savage: “identification is properly a part
of the study of the design of experiments”. Kadane (pp. 184-189) applies the preposterior
decision machinery of Raiffa and Schaifer, considering an experiment “valuable” if it can
yield information leading to a better decision, i.e. if the minimum expected loss is reduced by
performing the experiment (see §7.4 below for examples). His Theorem 4 is a “characterization
of identified functions in terms of valuable experiments”.

Zellner’s (1971) comprehensive book on Bayesian econometric treats one preposterior
topic—a multi-period control problem in which control also gives an opening for learning about
the structure of the economy (Sections 11.5-6)-and econometricians might have concluded
from Kadane’s theorems that identification was none of their business as they rarely design
experiments—see §7.4 below. However they produced variants of Kadane’s results. Leamer
(1978, p. 192) and Hsiao (p. 273) depart from the decision formulation and consider an ex-
periment “informative” about 0 if it might change your opinions about 6. A common feature
of this work and most that has followed is the emphasis on the change from the prior to the
posterior not, as in Morales (see §7.1), an emphasis on the posterior and its properties.

The various theorems differ in scope but agree in showing that the situations—the experiments—
characterised by identification and informativeness are the same. When Kadane and Leamer
describe their theorems they bring to the surface an issue running through this entire story:
what is sameness? Kadane (p. 181) argues that “the dependence on the prior indicates that the

concepts of identification and informativeness are different” while Leamer (p. 193) claims that



“the words identifiable ... and publicly informative ... are interchangeable”, which presumably
means that the corresponding concepts are the same. In §3.1 we met various definitions of
sufficiency and Raiffa and Schaifer’s (p. 34) demonstration of the “complete equivalence” of
the Bayesian and classical definitions. The differences involved here seem philosophical rather
than statistical. Different inference theories employ different terms and the terms of the char-
acterisations may not make sense in other theories although the objects characterised are the
same. (However the example of Wald (1939) in which a prior distribution has only a formal
significance indicates that we must take care in interpreting “making sense”.) The case of
Jeffreys’s co-option of likelihood suggests that one consideration underlying the judgement of
similar enough to be considered the same is that enough significant propositions remain true
when the change is made. There has been a great deal of discussion amongst historians and
philosophers of science of the way concepts change—or keep—their meaning as the theory in
which they are embedded changes. See Sankey (1994) provides a useful review. The literature
is suggestive but it does not generate exploitable conclusions.

Returning to Kadane’s “view”, there is a second argument in his paper which provided

backing of a different kind.

7.3 The duality between parameter and data

Kadane (p. 178) expounds the “analogy of the theory of identified functions to the theory of
sufficient statistics”. This idea has been developed in conjunction with the notion of a duality
between parameter and data in Bayesian theory. This notion was discussed by several authors
including Florens and Mouchart (1977), Picci (1977) and Dawid (1979); Dawid also refers to
earlier literature. The most detailed and abstract treatment of identification on these lines is

by Florens, Mouchart and Rolin (1990, §§4.5-6) but I will take as texts the more elementary



discussions in Gourieroux and Montfort (1989/95) and Dawid (1979).
On the Bayesian view parameters as well as observations are random variables. Gourieroux
and Montfort (1989/95, pp. 102 and -8) present a pair of definitions—of sufficiency of a statistic

“in the Bayesian sense” and of sufficiency of a parameter “in the Bayesian sense”:

o A statistic S is sufficient in the Bayesian sense if # and Y are conditionally independent

given S(Y),ie. 0 LY | S(Y).

e A function g(f) of the parameter is said to be sufficient in the Bayesian senseif Y 1 0 | g(0) .

Next they define a function of the parameter as minimal sufficient if it is sufficient and a func-
tion of any other sufficient function. They (p. 108) then state a “property”-—not a definition—
relating identification (Rothenberg style) to minimal sufficiency: “f is identified if and only if
6 is minimal sufficient in the Bayesian sense.”

Gourieroux and Montfort do not refer to “identification in the Bayesian sense” but their
definitions and properties could be re-choreographed to produce such a notion. In his account
of conditional independence in statistical theory Dawid (1979, p. 4) considers the distribution
of X as determined by a pair of parameters (O, ®). In the case when X | ® | © , the parameter
® is “redundant once © is known”. In such a situation the “full parameter (©,®) is said
not to be identified”. Thus the full parameter is not identified when it contains redundant
parameters. In the basic scheme of §7.1 the parameter vector («,7) contains redundant
parameters. However the redundancy idea is better applied reparametrising from « to (m, )
where § (= ay — a3) is the redundant part of a.

Using properties of conditional independence Dawid glides through definitions and results,

thus:

If © is a sufficient parameter, so that X 1 & | ©, and the parameters have a



prior distribution , then ® L X | ©, so that p(¢| z,0) =p(¢| 0). We see that
the conditional distribution for the redundant part ® of the parameter, given the
sufficient parameter O, is the same in the posterior distribution as in the prior:
once we have learned about © from the data, we can learn nothing about ®, over

and above what we knew already.

The demonstration of the duality between parameters and data and the parallel between
identified functions and sufficient statistics may have given identification a new naturalness
in Bayesian theory. Of course Bayesians may not be equally impressed by this insight. For
Florens, Mouchart and Rolin the theory of reduction is a major part of the subject while
Lindley (1979, p. 16) is unimpressed by the “trick” of sufficiency, classifying the difficulties

for Bayesian theory created by its absence as “numerical not inferential”.

7.4 Informativeness of observations

Neath and Samaniego (1997, p. 226) emphasise their distance from Kadane’s concern with
learning from an experiment when they present some outcome level analysis pertaining to
nonidentifiable models. However they do not investigate the possibility of not learning from
outcomes. Dreze (1972, p. 7) had mentioned the possibility in his outline of the inferential

use of Bayes’ formula

if P(x| B;) [the likelihood of the observation] is the same for all ¢, then P(B;|x) is
equal to P(B;), and the observation is noninformative; when this property holds

for all z, the B;’s are called “observationally equivalent”.

However, he did not dwell on noninformative observations nor relate them to the identification

discussion later in his paper.



The noninformative observation can provide the basis for observational equivalence but
it has no role in unconditional classical theory. Yet it is a prima facie interesting concept
to anyone who accepts the likelihood principle and wants to do terminal analysis (§5.1).
Noninformativeness is to outcomes what Fisher’s statistic supplying no information about a
parameter is to experiments (see §2.2).

In the paradigm cases of the identification problem in the regression and simultaneous
equations models all the points in the sample space are noninformative if any is—the same is
true for Neath and Samaniego’s binomial model with parameter p = p;+ps and Fisher’s genetic
model. Yet it is clearly possible for an identified experiment to generate some noninformative
outcomes. I have two biassed coins: for one the probability of heads is 0.8; for the other
0.2. T have forgotten which is which and contemplate experimenting to help me decide. One
experiment would be to toss the-arbitrarily determined—‘first’ coin twice, record the total
number of heads, Y, and base the decision on that number. Another would be to toss the first
coin and then the second and record the total number of heads and base the decision on that
number. The parameter space comprises the two possible identities of the‘first’ coin. Using
notation based on that of §6.2, with f(0,0.8) as the probability that ¥ = 0 given that the

first coin is the 0.8 coin, the densities for the first experiment are

£(0,0.8) = 0.04: £(1,0.8) = 0.32: f(2,0.8) = 0.64

£(0,0.2) = 0.64: £(1,0.2) =0.32: f(2,0.2) = 0.04



and for the second

£(0,0.8) = 0.16: £(1,0.8) = 0.68 : f(2,0.8) = 0.16

£(0,0.2) = 0.16: £(1,0.2) = 0.68 : f(2,0.2) = 0.16.

The first experiment is valuable in Kadane’s sense (assuming a reasonable loss function and
nondogmatic prior) and can help me decide which coin is which but the second experiment
is worthless. The first coin is identifiable from the first experiment but not from the second.
Consider now the observation Y = 1 which is noninformative in both experiments. According
to the likelihood principle, it does not matter whether this observation has come from the
informative, valuable experiment or from the uninformative, valueless one. The division of
experiments into identified ones and unidentified ones is not essential for terminal analysis;
the essential division is into informative and noninformative observations.

The special uniform distribution discussed by Barndorff-Nielsen and Cox (1994, pp. 34-5)
provides another example where an informative outcome may fail to be realised. Consider a
random sample of size 2 from a uniform distribution on (§ — 1,60 + 1) with § € {#',6%}. Let
Y1) and Y9y be the order statistics and Y the mean and R the range Yo) — Y(1). Given data
ya) and y2), the likelihood is flat on the interval (y — 1+ %r, y+1-— %7“) of the parameter
space. If ' and 6% are both in this interval the observation is noninformative.

Poirier (1998) has written about noninformative observations under the rubric “uninfor-
mative data”. He envisages a nonidentified model where part of the parameter v is identified

and part A is unidentified. He (p. 485) defines

The data y are marginally uninformative for A iff f(A| y) = f()\). The data y are

conditionally uninformative iff f(A|v¢, y) = f(A| )



One could imagine analogous concepts at the experiment level.
Poirier’s (pp. 485-6) results are on the lines of the sentences following Lindley’s (1971, p.

46n) celebrated remark (his 6, corresponds to A and the “remaining parameters” to ):

In passing it might be noted that underidentifiability causes no real difficulty in
the Bayesian approach. If the likelihood does not involve a particular parameter,
0, say, when written in the natural form, then the conditional distribution of
0., given the remaining parameters, will be the same before and after the data.
This will not typically be true of the marginal distribution of #; because of the
changes in assessment of the other parameters caused by the data, though if 6,
is independent of them, it will be. For example, unidentifiable (or unestimable)
parameters in linear least squares theory are like #; and do not appear in the

likelihood.

Bauwens, Lubrano and Richard (1999, p. 42) consider the same set-up with identified and
unidentified sub-parameters and consider whether the marginal and conditional priors are
revised by the sample. These results have a family resemblance to those of Dawid discussed in
§7.3 as Gelfand and Sahu (1999, p. 248) point out. However only Poirier seems to be working
at the outcome level.

The tags, “identification ... is the same whether considered classically or from the Bayesian
approach” and “underidentifiability causes no real difficulty in the Bayesian approach”, sit
together uneasily even if they are not precisely contradictory. Poirier (p. 483) reducers the
tension by showing that in a nonidentified model there is “no Bayesian free lunch ... there
exist quantities about which the data are [marginally] uninformative.” For Morales, say (§7.1),

the price of the “free lunch” was obtaining the prior information. Value-added accounting



focusses on the properties of the transformation of prior to posterior, not on the properties of

the posterior.

8 Does Bayesian theory require a different definition?

By way of summary, consider the generalised Hsiao question from the Introduction, “whether
Bayesian theory requires a different definition of — from the classical one” and the received
answers-received today, that is, for these are matters of judgement not of necessity. Of course
the fact that the question can be posed reflects the continuing subordinate status of Bayesian
theory.

For likelihood, the received answer is tacitly no, for the differences are not considered
material: allowing for the altered status of parameters the definitions are the same (see §3.1 and
§5.1). For sufficiency there is no received answer: the answer will depend on how “required”
and “different” are interpreted. Although the original Fisher definition has not been used by
Bayesian writers, it could be used without creating scandal; it would have to be linked to the
scene of its application by a chain of equivalences: equivalences in the sense of having the
same extension. It is not a natural definition for it points to features of the extension which
are irrelevant for Bayesian analysis. Jeffreys used the factorisation definition which requires
no-or at least a shorter—chain but he and Raiffa and Schlaiffer saw merit in a more explicitly
Bayesian definition; this may have the same extension as the classical definition but it employs
terms with no place in classical theory. The nature of the “requirement” is to facilitate the
development of other concepts. (see §3.1).

In Bayesian econometrics today the identification question is routinely asked and answered

no (see §§7.2-3). Thus Piorier (1998) and Bauwens, Lubrano and Richard (1999) endorse



the Kadane declaration while at the same time recalling the econometric past. That past
contained radical alternatives to classical identification—so radical that it is misleading to
speak of different definitions of the same thing. In the general statistics literature there is not
the same burden of history, only the divergence seen with sufficiency. Neath and Samaniego
(1997) give the classical definition and get on with things. Gelfand and Sahu (1999) give a
Bayesian definition of identification and get on with things; their definition is based on Dawid
(1979) which relates to the classical definition the way that Raiffa and Schlaifer’s definition of
sufficiency relates to the classical definition. (see §7.3).

Identification seems to be secure in Bayesian econometrics and the project of broadening
the concept of identification has lapsed but in a sense identification has bifurcated with a
second branch based on the informativeness of observations—see §7.4. Koopmans’s original
notion of identifiability in relation to “hypothetical exact knowledge” appears to be of no

current interest.
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