Learning correlated equilibria in normal form games

Ianni, A. (1997) Learning correlated equilibria in normal form games. Southampton, GB, University of Southampton (Discussion Papers in Economics and Econometrics 9713).


Full text not available from this repository.


We analyze a population game as being constituted by a set of players, a normal form game and an interaction pattern. The latter specifies the way players are repeatedly matched in the population to play one shot of the normal form game.

We first relate the set of equilibria of the populations game to the set of correlated equilibria of the underlying game, and then focus on learning processes that we model as Markovian adaptive dynamics. For the class of doubly symmetric games, we formulate general conditions under which convergence is obtained under myopic best-reply dynamics. We also analyze noisy best-reply dynamics, where players' behaviour is perturbed by payoff dependent mistakes, and explicitly characterize the ergodic distribution of the population game in terms of the correlated equilibrium payoffs of the underlying game.

We conclude with ome good examples

Item Type: Monograph (Discussion Paper)
Related URLs:
Subjects: H Social Sciences > HB Economic Theory
Q Science > QA Mathematics
Divisions : University Structure - Pre August 2011 > School of Social Sciences > Economics
ePrint ID: 33187
Accepted Date and Publication Date:
January 1997Made publicly available
Date Deposited: 25 Jan 2008
Last Modified: 31 Mar 2016 11:59
URI: http://eprints.soton.ac.uk/id/eprint/33187

Actions (login required)

View Item View Item