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Abstract

This paper is concerned with the use of the Durbin-Wu-Hausman test for
correlated effects with panel data. The assumptions underlying the construc-
tion of the statistic are too strong in many empirical cases. The consequences
of deviations from the basic assumptions are investigated. The size distortion is
assessed. In the case of measurement error, the Hausman test is found to be a
test of the difference in asymptotic biases of between and within group estima-
tors. However, its ‘size’ is sensitive to the relative magnitude of the intra-group
and inter-group variations of the covariates, and can be so large as to preclude
the use of the statistic in this case. We show to what extent some assumptions
can be relaxed in a panel data context and we discuss an alternative robust
formulation of the test. Power considerations are presented.
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1 Introduction

The Hausman test is the standard procedure used in empirical work in order to
discriminate between the fixed effects and random effects model. It can be described
as follows.!

Suppose that we have two estimators for a certain parameter ¢ of dimension K x 1.
One of them , ¥,, is robust, i.e. consistent under both the null hypothesis Hy and
the alternative H;, the other, 4., is efficient and consistent under Hy but inconsistent
under H;. The difference between the two is then used as the basis for testing. It
can be shown (Hausman, 1978) that, under appropriate assumptions, under Hy the

statistic h based on (@ R— 5E has a limiting chi-squared distribution:

h= (0. -0.) [Var (5.-9)] " (9. -9.) 2

If this statistic lies in the upper tail of the chi-square distribution we reject Hy. If
the variance matrix is consistently estimated, the test will have power against any
alternative under which 4, is robust and ¥, is not. Holly (1982) discusses the power
in the context of maximum likelihood.

In a panel data context the test can be used as a test for correlated effects.
The null hypothesis assumes lack of correlation between the individual effect 7, and
explanatory variable x;; :

Hy : Cov(zy,m;) = 0.
The Within Groups estimator, ng, is robust regardless of the correlation between 7,

and x;. The Balestra-Nerlove estimator, By, is efficient under Hy but inconsistent
under Hj :
Hy : Cov(zy,n;) # 0.

The Hausman statistic in this case takes the form

~

= (Bug ~ Baw) [Var (Buy = Bon)] (Bug = Buw) £k (1)

If we cannot reject the null hypothesis then the most reasonable model for the data at
hand is the random effects model, otherwise the fixed effects model is more justified.
However, using the results in Hausman (1978), the statistic used in practice

o= (Buy — Ban) (Ve — Vo) (Buy —Bw ) )

where V,,, = Var <§w9> and Vgy = Var (33 N) . It is based on the result that the
variance of the difference between an estimator and an efficient estimator is equal to

!This approach is also used by Durbin (1954) and Wu (1973). For this reason tests based on the
comparison of two sets of parameter estimates are also called Durbin-Wu-Hausman tests, or DWH.
For simplicity of exposition we will refer to the Hausman (1978) set up.



the differences of the variances:
Var <Ewg - EBN) = ng - VBN‘ (3)

In the time series-cross section model considered in Hausman (1978) this equality
holds because Bg is an efficient estimator in the sense that it attains the Cramér-

Rao Lower Bound for fixed A (defined below), and Cov <ng7BB N) = Var <BBN>.
This implies

Var (ng — BBN) = Var (ﬁwg> + Var (BBN) —2Cov (ng, BBN)
= Var <ng> + Var <BBN> —2Var (BBN>
= Var <ng> —Var (BBN) = Vg — Van.

However, in applied studies, this may not always be the case and one should be
careful in using hy automatically. If equality (3) does not hold, hy does not follow an
asymptotic chi-squared distribution, even under H.

This paper considers the effects on the Hausman statistic used in applied panel
data studies, hs, of deviations from the conditions required in Lemma 2.1 in Hausman
(1978), which guarantees that equality (3) holds. The lemma is stated as follows.

Lemma 1 Consider two estimators ﬁo, ﬁl which are both consistent and asymptot-
ically normally distributed with 3, attaining the asymptotic Cramér-Rao bound so

that v/T (Bo — ﬁ) A N(0,V) and VT (Bl — ﬁ) A N (0, V7)) where V; is the inverse

of Fisher’s information matrix. Consider ¢ = Bl — Bo- Then the limiting distributions

~

of VT (Bo — ﬁ) and v/Tq have zero covariance, C'ov (50, qA) = 0, a null matrix.

The plan of the paper is as follows.

Regarding the attainment of the Cramér-Rao Lower Bound, in Section 2 we prove
that if we want to compare different estimators within a specific set, the assumption
of full efficiency is not necessary. A relative lower bound for the variance can play the
role. The variance of the difference between two estimators belonging to such a set is
still equal to the difference of the variances if one of the two is the minimum variance
estimator in the specific set considered. The algebraic derivation of this result is
provided in the panel data framework. The Lemmas contained in Appendix 1 prove
that this holds both in the exact and in the limiting case. Given that the Balestra-
Nerlove estimator can be obtained as a matrix weighted average of the Between
Groups, (3,,, and the Within Groups estimators (Maddala, 1971), we consider the
set of estimators which is defined by a matrix weighted average of two unbiased (or
consistent in the limiting case) estimators.



However, even the attainment of a minimum variance bound may be a strong
assumption in empirical studies. This circumstance is related to assumptions about
the error term. A failure of the assumption of spherical disturbances is quite common
circumstance in practice. Section 3 presents a robust formulation of the Hausman test
for correlated effects, which is based on the construction of an auxiliary regression.
We explain and discuss to what extent the use of artificial regressions may allow us
to construct tests based on the difference between two estimators in a panel data
model without making strong assumptions about the disturbances. The motivation
underlying the implementation of the robust test is that the size distortion of the
standard Hausman test, hy, in cases of misspecification of the variance-covariance
matrix of the disturbances may be serious. This is investigated in Section 5.

The failure of the consistency of the two estimators under the null is discussed
in Section 4. Such discussion is extremely relevant because a possible failure of the
consistency of the Within Groups and the Balestra-Nerlove estimators, not related to
the source of endogeneity being tested, is almost never raised in empirical studies. We
explain to what extent the econometrics of panel data, offering a variety of different
estimators for the same parameter, can help us to deal with this issue.

Section 6 compares the power of the standard Hausman test and the robust formu-
lation presented in Section 3 using a Monte Carlo experiment. Section 7 concludes.

2 The Failure of the Assumption of Full Efficiency

Consider the following model
Yir = T3 + 1; + Vi, i=1,...,N, t=1,...T (4)

where x;; is a K x 1 vector of stochastic regressors, n, ~ iid (O, O'%) , vy ~ iid (0, 0?)
are uncorrelated with z;; and Cov (n;,vy) = 0.
Defining the disturbance term

Eit = 1; + Vi,

the variance-covariance matrix of the errors is

Y =Iy®0
(NTxNT)
where , , )
(o +o0° ... ot
Q=1 : o =o’lr+o, " (5)
0727 0'3, + 02

and ¢ is a column vector of T ones.
The unobserved heterogeneity implies correlation over time for single units, but
there is no correlation across units.



Hausman and Taylor (1981) propose three different specification tests for the
hypothesis of uncorrelated effects: one based on the difference between the Within
Groups and the Balestra-Nerlove estimator, another on the difference between the
Balestra-Nerlove and the Between Groups and a third on the difference between the
Within Groups and the Between Groups. They show that the chi-square statistics
for the three tests are numerically identical. We now analyze the Hausman statistic
constructed on the difference between the Within Groups and the Balestra-Nerlove
estimator, commonly used in empirical work.

Hereafter, we define as fully efficient an estimator that reaches the Cramér-Rao
Lower Bond and as minimum variance the one that has the minimum variance within

a specific class. Let

0.2

- U2+TU%'

If we assume normality in model (4), it is well-known that the Balestra-Nerlove esti-
mator, i.e. the generalized least square estimator, is fully efficient if the variance-ratio
parameter \ is known, and asymptotically fully efficient if A is consistently estimated.
(A distributional assumption is required in order to obtain the Cramér-Rao Bound.)
Therefore the hypothesis underlying the construction of the Hausman statistic are
satisfied and the results of the test are reliable. However, we will demonstrate that
even without assuming normality of the ¢;; the results of the standard Hausman test
are reliable, the key assumption being (5). We will use the panel data framework as an
example. In what follows we take A as known. The same result holds asymptotically
if a consistent estimator A is available. It is implied by the Hausman-Taylor result
that we can construct the same test using ,,, and (,,, as will be clarified below.

We write the Balestra-Nerlove estimator (Balestra and Nerlove, 1966) as a func-
tion of the variables in levels

-~ / / -1 ’ /
Bpy = (X QX +AX MX) (XQ+>\X M)Y (6)
where
Q = IN X QJF,
1.
QF = Ir— T
M = Iye M
1 ..
]\4'Jr - f@l - IT - Q+,
X Y1 T} Yi1
X x i
x=| 2 lv=| " xi=| ", ="
XN YN Tip Yir



Q7 is the matrix that transforms the data to deviations from the individual time
mean, M is the matrix that transforms the data to averages. Rearranging

Bon = | X PIve + (1= N Q) X] X' [Mur+(1- 1) QY. (7)
The variance is

Var(Bay) = {[X Myr+ (1= A\ O] X}

X Myr+ (1= X Q]} Var(Y)

. {WNT FI=NQX [X Par +(1- N @) X]‘l}. ®)

Using a simplified version of the Sherman-Morrison-Woodbury formula (Golub and
Loan, 1983, p.50) one can show, that, under assumption (5), the variance of y; can
be written as?

2

-1 1
Var(y) = o |Ir— 2 —u'| =0 |Ir - l(1 — M’
o?+To? T

1, 1 ]!
= Uzl(IT—?LL>+>\?LL} )

This can also be obtained by ignoring time effects, and thus setting w = 0, in Nerlove
(1971). Using the matrices involved in formula (6), we can rewrite this expression as

Var(y) = o2 [(Ip — M*) + AM*]™ (9)
= 2[QT + Mr —2QT] (10)
= 2 Mr+(1-0Q1] . (11)

Thus
Var(Y) = Iy @ Var(y) = o [Myr + (1 = N)Q] .

Substituting (11) in (8), we obtain
VW(BBN)
ot [X My + (1= ) QIX| X e + (1= ) Q) Mwr + (1= V@I T12)

-1

Mz + (1 — X)) Q] X [X' Mz + (1— A\ QX

-1

— o7 [X’ Myr+ (1= A) Q] X} . (13)

Similarly, using the () matrix defined in formula (6), we write also the Within Groups
estimator as a function of the initial variables in levels

—~ —1
B, = [X’QX] X' QY. (14)

2See Appendix 2 for further details.



The variance is
Var(By,) = [X’QX} X QWVay)Q'X [X’QX} -
If we transform the data into deviations, the variance of y; can be written as
Var(Qy) = Q Var)Q* = o*Q* [Ir + 00| Q* = Q7 Q" = 5°Q*
where § = 07 /0* and Q¢ = 0, a vector of zeros. Thus
Var(QY) = o’Iy ® Q1 = o°Q

Plugging (16) in (15), we obtain®
Var(B,,) = o [X'QX]_lX'QQQ'X [X’QX} -
-1

— o [X’QX]

Hence, from (13) and (17)

Var(B,,) — Var(Bpy) = o* { (X'Qx] "~ [X Pve + (1 - )@ X] } .

(15)

(16)

(18)

Next we show that such expression is exactly equal to the variance of the difference

between the two estimators.

Var(BBN - ng) = VaT(BBN) - COU(BBN? ng) - COU(ng? BBN) + Var(ng)'

>From (7) and (14)
COU(BBN: ng>
_ 2 [X’ Mz + (1—A) Q) X} X Mg+ (1= X) Q]
< Dyr + (1= 0@ Qx [x'Qx]

= Var(Bpy).

— o7 [X’ Myr+ (1= A) Q] X}

This is symmetric, and thus equal to COU(ng7B gn)- Thus using (11) and (16), we

obtain

Var(Bpy — Bug) = Var(Bpy) — Var(Bay) — Var(Bay) + Var(B,,) (19)

= Va’r(ng) - Var(BBN)

3Recall that @ is an idempotent matrix.




as required. We have proved that equality (3) holds for A known or otherwise fixed.

As we said, the case of estimated A can be treated by using the Hausman-Taylor
result that an algebraically identical test statistic can be constructed using the dif-
ference between (3,,, and the Between Groups estimator 3,,. We obtain

-1

Bug = Bug) [Var(Bug) + VarBuy)|  Bug = Bay)

as the estimators have zero covariance. In this form, we can see that estimating
0% and X\ (or 0727) affects only the variance matrix of the test statistic. We thus
obtain the same test statistic whatever A is, and (2) remains correct. It does not
follow from these arguments that the equality (3) can be made exact for estimated
A IE BB N and 3@ were independent of )\, the result would follow, but this requires
normality of the disturbances. Viewing 3 gy as a feasible GLS estimator, Kakwani
(1967) implies it is unbiased. However, conditional on A it may or may not be
unbiased. Further, the variances obtained are for A fixed, not conditional on . So
attempts to obtain unconditional variances from conditional variances and variances
of conditional expectations do not seem fruitful. So it would appear that the exact
result (3) may require normality of the €, or A fixed. Equality (3) implies that for fixed
and known )\, and known o2, under normality h would have an exact x? distribution.
If X is estimated, and/or the &; are not normal, h is asymptotically x? as long
as x; are sufficiently well-behaved to ensure that BBN and ng are asymptotically
normal, and o2 and 0727 (or equivalently \) are appropriately estimated. This is less
restrictive than the assumptions required for the identification of the Cramér-Rao
bound. We obtain the result (3) without assuming normality because we compare
two linear unbiased estimators, one of them achieving the minimum variance for
a linear estimator. Lemma 4 in Appendix 1 shows that the variance result depends
only on minimum variance properties, not on normality or achievement of a particular
(Cramér-Rao) bound. However, in order to get a panel data generalized version of
Lemma 1, it is necessary to prove a similar result in the limiting case. This aim is
achieved in Lemma 10 in Appendix 1. The minimum variance property required is
within a set of the form

T={t:t=At,+(I- At}

where t; and ¢y are estimators of the parameter vector #. For completeness, Lemma
9 establishes that sets of this form will contain minimum variance members.

We can summarize as follows. If we want to use the Hausman statistic to com-
pare two different estimators, e.g. one linear and one non linear, the assumption of
normality may be crucial because it allow us to find an absolute lower bound for
the variance of the estimators. However, if we want to compare different estimators
within a set of the form of 7 neither the assumption of normality nor the attainment
of the Cramér-Rao Lower Bound, even in the limiting case, is crucial. A lower bound

8



for the variance can play the required role. The variance of the difference between two
estimators belonging to the same set is still equal to the difference of the variances if
one of the two is the minimum variance estimator in the specific set. Lemma 10 in
Appendix 1 allows us to rely on the results provided by a traditional Hausman test
in a more general set-up.

It is worth noting that we are not removing the assumption of asymptotic normal-
ity of the estimators in Lemma, 1, which is needed to obtain the x? distribution of the
Hausman statistic. Our generalization applies for estimators that are asymptotically
normally distributed but that do not reach the Cramér-Rao Bound.

We prove the result for a specific set of estimators but this does not rule out the
possibility of extending the result to wider contexts. For instance, the GMM estimator
is asymptotically normally distributed and attains the asymptotic Cramér-Rao Lower
Bound only in some cases. Nevertheless, if we compare an arbitrary GMM estimator,
e.g. using the identity matrix, and the one which uses the optimal weighting matrix
(Hansen, 1982), Lemma 10 implies that Hansen’s GMM can be used as basis for a
Hausman test.

3 The Failure of the Assumption of Spherical Dis-
turbances

In the previous section, we relaxed the assumption of full efficiency in Lemma 1.
However, even the assumption that one of the two estimators has the minimum
variance or that both are consistent under the null hypothesis can be still too strong
in many empirical cases. In the panel data framework above considered (model (4)),
the crucial assumption for (3) to hold is (5). In other words, the form of the covariance
matrix has to be assumed. In cases of misspecification, i.e. if Var(y) = Q* # Q,
equality (3) does not hold any longer.

As Hausman clearly states at the very beginning of his article (Hausman, 1978),
the specification test he presents takes the hypothesis that the disturbances have a
spherical covariance matrix. He considers the standard regression framework

y=X0G+e, (20)
where
E(e/X) =0, (21)
and
Var(e/X) = o*I. (22)

In most of the articles that followed, assumption (22) is never relaxed. The empha-
sis of this part of literature is placed in testing the orthogonality assumption, i.e.
E(e/X) = 0. In the panel data framework a test of the assumption (21) is a test for
random versus fixed effects. Also in this context the assumption (22) is maintained.

9



The reason is straightforward if we consider the comparison between the Within
Groups estimator and the Balestra-Nerlove estimator as a comparison between an
OLS and a GLS estimator. One basic assumption in the construction of the Hausman
statistic (Lemma 2.1 in Hausman, 1978) is that one of the two estimators has to
reach the asymptotic Cramér-Rao Lower Bound or, using the generalization provided
in Lemma 4 in Appendix 1, that at least has to be the minimum variance estimator
in a specific class. In the panel data framework the Balestra-Nerlove, that is the
generalized least square estimator, is the BLUE estimator if the GLS transformation
produces spherical disturbances. This is the case if the correlation in the covariance
matrix of the initial errors is due only to the omission of the individual effects, i.e. if
the initial disturbances are spherical.

To make it clear, we analyze in detail the construction of the Balestra-Nerlove
estimator. In practice the Balestra-Nerlove estimator can be calculated running an
OLS regression on a transformed model. Assuming model (4), which implies the
disturbances variance covariance matrix (5), the transformation of the y; and the z;
is the following

yi1 — 0Y;.

i2 — 0Y;

Qiéyl _ Yi2 . Y;.

vir — 0Y;.

where 0
/ g
Qr=I——i, 6=1-
2 Tzz ,

(o2 +To3)’

and likewise for the rows of z;.

Under assumption (5), which implies initial spherical disturbances, this is a GLS
transformation that produces a model with spherical disturbances. Hence running
OLS on such a model we obtain the BLUE estimator. However, if assumption (5)
does not hold, the GLS transformation does not guarantee that the new disturbances
are spherical. In this case the GLS estimator, namely the Balestra-Nerlove, is still
consistent but it may not be the minimum variance estimator. The consequence is
that we can no longer be sure that the equality (3) still holds. In these circumstance
the results of the test may not be reliable. However, if the two estimators remain
consistent the comparison can still be conducted, but the methodology needs to be
adjusted in an appropriate way.

In what follows, we present a robust version of the Hausman test for panel data. It
is based on the use of an artificial regression. Keeping the assumption of consistency
of the two estimators, it allows us to compare different estimators without assuming
normality or ranking them in terms of efficiency. Specifically, such methodology does
not use the hypothesis that the variance of the difference of the two estimators is equal
to the difference of the variances. It estimates directly the variance of the difference
of the two estimators. It simply uses the statistic (1) instead of (2). Moreover, it pro-

10



vides estimators for the variances that are consistent and robust to heteroskedasticity
and /or serial correlation of arbitrary form in the covariance matrix of the random
disturbances. These estimators are obtained using White’s formulae (White, 1984).
It will be made clear to what extent the application of White’s heteroskedasticity con-
sistent estimators of covariance matrices in a panel data framework may also allow
for the presence of dynamic effects.

Different artificial regressions have been proposed in the panel data literature to
test for the presence of random individual effects, such as a Gauss-Newton regression
by Baltagi (1996) or that proposed by Ahn and Lo (1996). However, the assumption
of initial spherical disturbances has not been relaxed. As shown by Baltagi (1997,
1998), under the assumption of spherical disturbances, the three approaches, i.e. the
Hausman specification test, the Gauss-Newton regression and the regression proposed
by Ahn and Lo, yield exactly the same test statistic. Arellano (1993) first noted in
the same panel data framework that an auxiliary regression can also be used to ob-
tain a generalized test for correlated effects which is robust to heteroskedasticity and
correlation of arbitrary forms in the disturbances. Davidson and MacKinnon (1993)
list at least five different uses for artificial regressions including the calculation of esti-
mated covariances matrices. We will use this device to estimate directly the variance
between the two estimators without using equality (3). Furthermore, the application
of White’s formulae (White, 1984) in the panel data case will lead to heteroskedastic-
ity and autocorrelation consistent estimators of such variance. Therefore, we can use
an artificial regression to construct a test for the comparison of different estimators
which is robust to deviations from the assumption of spherical disturbances. From
now on we will call this technique the HR-test, for Hausman-Robust test.

Next we present the auxiliary regression that was proposed by Arellano (1993) to
test for random versus fixed effects in a static panel data model.

Consider the general panel data model for individual ¢

Y, = Xl ﬂ—l— v ’LZI,,N
(Tx1) (T'xK) (T'x1)
This system of T equations in levels can be transformed into (7' — 1) equations in
deviations and one in averages. We obtain

yr = x4+ puf — (T — 1) equations
Vi = T3+ — 1 equation.

Estimating by OLS the N(T — 1) equations in orthogonal deviations from individual

time-means we obtain the Within Groups estimator, i.e. (,,. Estimating by OLS

the IV average equations we obtain the Between Groups estimator, i.e. 3y,
Let

Bug = B (Buy)
and

ﬁbg =F (Bb;;) :

11



Rewrite the system as

{ yl* :m:ﬁwg—i_lu;,k _m:ﬁbg—i_m;(ﬁbg
E:m_lﬁbg_‘_lu_z

Rearranging, we obtain

{ E = IE: (/ng - ﬁbg) +x:ﬁbg +/JJ:
E = :E_iﬁbg +E

e ()= (5 1)
1 E Y 1 x—l Y
() ()

The augmented auxiliary model is

Call

uf)‘
i

V= WAt . i= 1N, (23)

If we estimate 3" by OLS, we obtain directly the variance of the difference of the
two estimators in the upper left part of the variance-covariance matrix of 3. If we
then estimate this covariance matrix using the White’s formulae and we perform a
Wald test on appropriate coefficients, we obtain a reliable HR-test comparing the
two estimators we are interested in, namely 3,, and f3,,. As first noted by Arellano
(1993), under the assumption of spherical disturbances a Wald test on appropriate
coefficients in the auxiliary regressions is equivalent to the standard Hausman test.
Appendix 4 provides an analytical derivation of this result. The following Lemma is
proved.

Lemma 2 Given model (23),
Bl = ng - Bbm (24)
Var(By) = Var (Bug — By (25)

—_

An appropriate estimator Var(Bl) consistently estimates Var(ﬁl). (26)

It is shown that, in order to get a consistent estimate of the variance, the first set
of equations has to be scaled.

In what follows, we will clarify to what extent an application of White’s formulae
for estimators of covariances matrices (White, 1984) in a panel data context provides
a consistent estimator which is robust to heteroskedasticity and arbitrary correlation
in the covariance matrix of the random disturbances. It may also control for the
presence of fixed effects. This latter possibility may be accommodated if we make

12



further assumptions, i.e. cross-sectional heteroskedasticity which takes on a finite
number of different values.
Consider a simple panel data framework without fixed effects

Y = Bri +en
Yio = Bxia + €i2,
Yir = BTir + €T, 1=1,...,N,

where

Y 0 0
0
=IRY= (27)
(NTxNT) : 0
0 0 X
Define
T4 Yi1 €i1
Xi = : vi=\| € =
ZiT Yir &iT
(T'x1) (T'x1) (T'x1)
and rewrite the model as

(Tx1) (Tx1) (T'x1)

This formulation allows us to consider panel data in the framework defined in White
(1984). If we assume no cross-sectional correlation and N — oo, all the hypotheses
underlying the derivation of White’s results are satisfied. Hence, Proposition 7.2 in
White (1984, p. 165) applies.

N
S=N')aa B3 (29)
i=1

and R R
O=I> -0

However, while with uni-dimensional data sets we obtain heteroskedasticity consistent
estimators because ¢; is a scalar, in the two dimensional case ¢; is a vector and we

13



obtain a consistent estimator of the whole matrix . Hence, by applying the result
(29) in the panel data case we obtain a consistent estimator of the variance covariance
matrix of the disturbances that also allows for the presence of dynamic effects within
groups.

Therefore, the estimators of the variance of the OLS estimators of 3 in the panel
data model (28) can be obtained by

Var(3) = li (X;Xi)] fj XX,

i=1

i (X;XZ)] o (30)

1=

As stated by Arellano (1993), they are heteroskedasticity and autocorrelation consis-
tent. Such estimators are the ones used in the implementation of the HR-test. This
case is referred in White (1984) as contemporaneous covariance estimation.

However, White (1984) also implements consistent estimators in another case that
explicitly takes into consideration a grouping structure of the data. Consider again
the panel data model (28). Replace assumption (27) by

> 0 ... 0
- 0 2
(NTXNT) |
0 ... 0 X2y

In this context, in a slightly different notation from that used by White (1984, p.172-
173), suitable for the panel data framework, we can obtain consistent estimators of
the covariance matrix €2 using

ﬁ = diag(il, ig’ Ce iN)
where R
Y =T"6q.

In other words, a consistent estimator for the covariance matrix of group 7 is
constructed by averaging the group residuals over only the observations in group i.
In the balanced panel data case, their number is constant between groups and equal
to T'. This estimator is not only robust to autocorrelation of arbitrary form within

groups but it also allows for the possibility that individual error covariance matrices
may differ according to observable characteristics (such as region, union, race, etc....).

4 The Failure of the Orthogonality Assumption
between Regressors and Random Errors

The previous section discusses the use of the Hausman test when there are reasons
to think that one of the assumptions, namely that one estimator is the minimum
variance one, is too strong, as it is often the case in empirical work.

14



This section refers to the use of the test in circumstances where even the con-
sistency of the estimators under the null hypotheses cannot be assured. A possible
failure of the consistency of the two estimators, not related to the source of endo-
geneity being test, is almost never considered in empirical studies. It is worthwhile
noting that the question addressed by the Hausman test is whether the parameters
of interest have been estimated consistently. Thus, the test detects the presence of
any possible endogeneity problem (Davidson and MacKinnon, 1989), not necessarily
induced by a correlation between the regressors and the individual effects. Rejection
may be also caused, for instance, by the presence of measurement errors-in-variables.
Almost always in the widespread use of the Hausman test for correlated effects in
static panel data modelling, the consistency of the Within Groups and the Balestra-
Nerlove estimators under the null is not questioned. However if for instance we are
in presence of measurement errors-in-variables, least square estimators do not lose
only their efficiency but also their consistency. Our claim is that in such contexts
the use of the standard Hausman test is not correct. In the presence of arbitrary
measurement errors-in-variables, if we compare the Within Groups estimator and the
Balestra-Nerlove estimators to test for uncorrelated individual effects, we may be
comparing two inconsistent estimators. Moreover, the Within Groups estimator and
the Balestra-Nerlove estimator are OLS estimators constructed on different transfor-
mations of the data. Measurement errors can have different impact using different
transformations of the data. For instance, if we use first differences the bias can be
magnified (Griliches and Hausman, 1986). As a consequence, the probability limits of
two estimators calculated on different transformations of the data may be different.
In this case the null distribution of the Hausman test will depend on this difference,
and thus on the (unknown) parameters. In other words, in presence of measurement
errors-in-variables the widespread practice of using the standard Hausman statistics
based on the comparison between the Within Groups and the Balestra-Nerlove esti-
mator is not methodologically correct and it can lead to unreliable results.

An analysis of the causes that lead to a failure of the assumption of consistency
is quite delicate because they are often related to unobservable factors often difficult
to detect and to treat properly. The econometrics of panel data, offering a variety of
different estimators for the same parameter, can help us to deal with this issue. The
structure of a panel data set can be useful to distinguish among different sources of
bias and can allow us to control for the effects of different kinds of unobservable fac-
tors. Using the “repeated measurement property” of a panel data set, i.e. each cross
sectional observation is followed over time, we can construct different kinds of instru-
mental variables from the data set. Assuming a specific structure of the measurement
errors, we can find instrumental variables estimators that remain consistent. Hence
it is still possible to use the Hausman test framework using appropriate estimators
and gain some knowledge on the most reliable model specification. Patacchini (2002)
presents a sequential test for panel data aiming to distinguish between an endogene-
ity problem caused by measurement errors-in-variables and an endogeneity problem
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caused by correlation between regressors and individual effects. It is based on the use
of appropriate HR-tests in a particular sequence.

5 The Size of the Test

In this section we investigate the size distortion which occurs in the use of the standard
Hausman test when the basic assumptions (Lemma 2.1 in Hausman 1978) are not
satisfied.

Consider the panel data model (4) presented in Section 3. The Hausman test
investigates the presence of specification errors of the form E(n;|z;) # 0. The robust
version proposed in Section 3 tests such orthogonality assumption between explana-
tory variables and disturbances in presence of other forms of misspecification. In
particular we are interested in a possible misspecification in the variance-covariance
matrix of the disturbances arising, for instance, from the presence of measurement
errors in variables. This case may be the rule rather than the exception in applied
studies.

We want to test the hypothesis

HO : E(Sit|$it> =0 (31)
against the alternative
Hl . E(Sit’.ilfit) 7é O,

when
VCL’I“(SZ‘ILL‘#) 7é Qz (32)

Hausman (1978) shows that under H, the test statistic
h=qV(@ ™7~ xi (33)

where, V(q) is the asymptotic variance of ¢, and k is the length of q. The same test
statistic is obtained if we consider the vector g equal to

G = (Buy— Ban),
or gy = (Bbg - BBN)7
orGs = (Buy— Bug):
As Hausman and Taylor (1981) pointed out they are all nonsingular transforma-

tions of one another. The estimate of the variance covariance matrix used in the three
cases is

V@) = V(Buy) = V(Ban),
or V(g) = ‘7@,9) —V(Bpn),
or ‘7(21\3) = ?(Ewg) + v(Bb!J)



If we are in presence of misspecification of the form (32), none of the above
expressions gives a consistent estimate of the variance-covariance matrix, even under
H,. The distribution of the test statistic under H, need to be investigated. The
nominal size may be quite different from the observed one.

To investigate the size distortion under normality, we use the distributions of
quadratic forms in normal random variables.* In particular, we use the following
Lemma.’

Lemma 3 (in Lemma 3.2 in Vuong, 1989). Let x ~ Nk(0,V), with rank (V) <
K, and let A be an K x K symmetric matriz. Then the random wvariable x'Ax is
distributed as a weighted sum of chi-squares with parameters (K,-y), where 7 is the
vector of eigenvalues of AV.

This implies that =’ Az is x2, where r = rank(A), if and only if AV is idempotent
(Muirhead, 1982, Theorem 1.4.5).

If A=V~! ie. in cases of no misspecification, AV is idempotent. The theorem
is satisfied and result (33) holds. The test statistic gives correct significance levels.

If A+ V! but AV is idempotent then rank (A) < K and/or rank (V) < K but
still (33) holds. We omit this case for simplicity of exposition.

If A# V~! and AV is not idempotent, implying that the eigenvalues of AV are
not 0 or 1, the asymptotic distribution of the Hausman test under H, is a weighted
sum of central chi-squares

K
heY diz]
i=1

where 22 ~ x? and d; are the eigenvalues of AV. This implies that the significance
levels of the standard Hausman test are not correct.

Consider first the limiting case where d; — K, d; — 0, ¢+ = 2, .., K. Figure 1
illustrates numerically that

Pr [Kx} > Xkl -

where nga is the critical value for a test of size o under the x? distribution. In this
illustration « is set equal to 0.05.

In general we distinguish two effects: a scale effect if f d; # K, which is pre-
dictable (e.g. if d; = 2V i, h ~ 2x%) and a dispersionilffect if d; # d;, even if
i d; = K. We normalize the weights and we conjecture that the dispersion effect is
E;Ximized in the limit if we put all the weight on the largest eigenvalue, say the first
one.

4See, among others, Murihead (1982, Ch. 1), Johnson and Kotz (1970, Ch.29).
Both this Lemma and the following one hold also in the asymptotic case (using the Continuous
Mapping Theorem, e.g. White, 1984, Lemma 4.27).
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Figure 1: Pr [Kx} > x% ]

Figure 1 illustrates this case, i.e. the tail area of a y% is compared with the
maximum tail area of Kx?. The graph shows that the size distortion is an increasing
function of K. For instance, if K is equal to 14, an inappropriate use of the Hausman
test will give a probability of rejecting a true hypothesis of exogeneity which is almost
4 time larger than the nominal size.

In certain simple contexts an expression for the eigenvalues of AV can be ana-
lytically derived. For instance, a common source of misspecification in the variance
covariance matrix occurs when elements of the regressor matrix contain measurement
€rTors.

Suppose the true model is

Yie = 233 + 1, + Vit i=1,..,N, t=1,..,T (34)

where z;, is a 1 x K vector of theoretical variables, n; ~ iid (0, 02) , v ~ iid (0,0?)
uncorrelated with the columns of z; and Cov (n,,v;:) = 0. The observed variables are

Tit = Zit + Mg,

where m;; is a vector of measurement errors uncorrelated with n, and v;. The esti-
mated model is

Yir = T, 0+ 1; 4+ vie — ', i=1,..,N, t=1,..T. (35)
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In the case of exact measurement, i.e. my; = 0,

Var(yy) = E(n; +va)? = oy + 0%,
Cov(yit, yir—s) = Cov(x,f+n; + v, Ty 0+ 1; + Vir—s)
2

= o, Vs.

The variance-covariance matrix is matrix (5). It can be written as

(NTxNT)
where
O =0’y + oy u' = o’[Ip + V1], (36)
and 5
o
_
191 = ;

If we assume that m; ~ iid (0,3,), we obtain

Var(yu) = En;+vi — Bma)”® = 0727 +0° + 'S,
Cov(yita yit—s) = Cov(m;tﬂ +n; + Vi — 6/mit> m;tﬁsﬂ + 1+ Vig—s — ﬁ/mit—s)

= Uf) Vs # 0.
So
Q= (6> + FZuP) It + o> — (0% + BSmpB) (Ir + aw ), (37)
and 9
o
Uy = 55—
o2+ B Yup

Consider now the exogeneity test based, for instance, on the comparison between 35
and By. In this case, the measurement errors render 3z, and By inconsistent. If
we assume that

pim(Bpe—p) = plim(Bye—B) = [S202/(T — 1) + Zu] " ub = [Szmz + Su] ' Suf

we show in Appendix 5 that if the rows M; «~ NID(0,3y,)

VN(Bwa = Bpa) = N0, [1/(T = 1)} [Sz2/(T — 1) + Zn] " x

(0 + B5mB) S22/ (T — 1) + 0*Su + {SuBBEm + (B'SmB)Eum}] ¥

S202/(T = 1) +Su] " + [Ezmz + ] ' x

[To2Szmz + (02 + B5MB) S zmz + 0. T50 + 0° Sy + {XuB6'En + (6 Zu0) S )]
Xzmz + EM]_l).
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The Hausman test

h = Bwe - Bsa) |VarBuwe) + Var(Bse)]  Buwe - Bac)

~ ~ . . -1 - ~
= m(ﬁWG — Bpa) [NV@T(ﬁWG) + NVC“”(ﬁBG)] \/N(ﬁWG e
will have the same asymptotic distribution as
~ ~ . . ~1 - ~
ha = VN (Bwe — Bpe) plim | NVar(Bye) + NVar(Bs)|  VN(Bywe - Bec)
and we also show in Appendix 5 that
NVar(Bye)
2 (o + S~ 5w |
(Xzoz + (T — 1)y

-1
mxzc)z + EM} Yupb} X

and
NVar(Bs)
L ATol + 0%+ BSup — BSy [Szmz + Sl Sub} x
[Szaz +Zu]
Thus in terms of the notation of Lemma 3, for the asymptotic distribution
1 /( — 1)} B20z/(T = 1)+ Ty
(02 + BZmB) S22/ (T — 1) + 0*Sy + {SuBB'Sm + (BEmB)Eum}] ¥
Xzz/(T —1) + Sul "+ Bzmz + ] ¢
[T02S 20z + (02 + BSuB)Szmz + 0TSy + Sy + {Zu BB Sy + (651 8) S }]
[Szmz +Zu] 7).

and

A | {o?+85up - BTy {(T—L)Ezgz + 5] S8 X [Sroz + (T = D™
HTo? 40> + FEuf — 8'%m [Ezmz + Sl EmBY X [Samz + Su
Consider first the case when 5 = 0.
Vo= /(T =1D][E202/(T = 1) +p] " x
[028202/(T — 1) + 0?Su] X [Lz02/(T — 1) + Eu] ™"
+ [Ezmz + EM]_l X [TU%EZMZ +0*Smz + U%TEM +0*Sm] [Xzmz + EM]_l
= /(T = 1)]0* [Zz0z/(T = 1) + Su]
+[Szmz + Su) T (Tol+ 0)[Ezmz + S [Szarz + Sl ™
= /(T = 1)]0* [Zz0z/(T = 1) + Su]
+(T0’% +02) [Bzmz + EM]fl
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A= [02 Y2z + (T~ I)ZM]i1 + {TU% +0°} % [Szmz + ZM]A}_I

so AV = 1. As a check, when Y,; =0,
V = 0®[1/(T = 1)} [Szoz/(T = )] + [T} + 0*] [Samz]

_ 17—l
A= [0S0, +{To} +0*}S 014
which can be compared with Appendix 3.
Now let Xq = ¥zqz/(T — 1), 0** =0+ 'EuB, c=Xyp, 0 =0+ To},
SO

Vo= [T —1)] [0 +Zul " [0S0 + Sul +cc] [Zg +Zu] T +
Szmz +Zu) [0*?[S20mz + Zm) + ] [Szmz + Sy
= [1/(T—1)] [0S+ Zum] ' +dd’] + [0"?[Zzmz + Zu] ™ + e€’]
where d =[X¢g + ZM]fl ¢, and e = [Ezmz + Xm| tc. These are just the inconsis-
tencies, which we are assuming equal.

[ /(T = 1){o? =[S + Zm] e} x [Sg + Zu] -

A= _ _
+{O'**2—C/ [EZMZ+ZM] 1C} X [EZMZ+EM] !

The simplest case to examine is when Xg = X2z < plim BWG = plim BBG for all
ﬁ, let EQM = EQ + ZM = EZMZ + EM Notlng d= e, we have

V =0"Ygy "t +2dd

where
o™ = [1/(T —1)]o* + o
[T/(T —1)]o** + To?,
A— [0++2Ec_g}v.r]_1
where

ot = /(T —1){o™ - c'Sgyct + 0% — 'S¢,
= [T/(T - 1)][o* — 'Sgp¢] + To;

and AV has the same eigenvalues as

+2
/2y, 41/2 _ 9 2 1/2.9.9/ 1/2
AV AV? = — !+ s Tem 2dd'S gt

and has K — 1 eigenvalues of
k= 0.+2/0.++2
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and one of

k+(2/c" ) d'Bqud = k+(2/0" ) Sge
= k+(2/0++2),3/2M2(3%\/[2Mﬁ

Thus the size distortion depends on scalar quantities,

ot? 1
b= otz T 1k
— o2 _ g2 _ ,B’ZME{Q}VIEMﬁ
ot? [T/(T —1)|{o%+ 8T8} + To}
and the larger root is
ot? 2 * 42 1 *
e s LA wy e LR

FEnEgEuf = BEYIEN (S + Ea) S5
= AT (S Sty Iy
If we now write
y=Xy/’B
v is the vector of parameters in the model

yi = [Zi+M]Sy" Sy 8 +ni+e
= Ziv+Mv+nite

where the rows of M; are NID(0,1) and Z; = Z;%,}% = Z; = Z:SY? = ZIM* Z; =
SR Mt Zr s
k* = ”y/[EX;/ZEZMZz:X;/Z—FI]_l’Y/O’JFZ
Y [Bzemze + 17/ [[T/T = Y{o® +4/7} + Ty (38)

The components of the variance of y;, are
Var(y:) =y + o, + 0

so an interpretation of our result is that if one takes one component of the variance,
~'7, downweights it by the between sums of squares of the unobserved ‘true’ variables
(in the model with standardised measurement errors), to produce ' [z« prz+ + I ]_1 v,
then the ‘size’ distortion depends on k*, as in (38), and the asymptotic distribution
of the Hausman test is not x*(K), but a weighted sum of K x?(1), K — 1 weights
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being 1/(1 — k*), with one of [1 + 3k*/(1 — k*)]. It also follows that a lower bound
to the distortion is provided by multiplying a x?(k) by 1/(1 — k*).

A number of qualifications are in order. This only occurs if the inconsistency of
within and between estimators is equal, and, further, the within group sum of squares
matrix, and between group sum of squares matrix, are equal:

N
Sz, = A}@@%;&M*Zi,: Yo, =7 N@;ONZZ@Z

The equality of plim(BBG — () and plim(BWG — () is required to ensure that the
asymptotic ‘size’ is not 1. (Thus the Hausman test can be regarded as a (consistent)
test of equality of these ‘inconsistencies’). The equality of ¥,z and X simplifies
the result and is an aid to interpretability. We also assume that the rows of M;,
the measurement errors, are NI1D(0,3,/). Some assumption about fourth moments
is required, and this appears the simplest.

We can plot the size distortion for assumed values of T, K, vy, [Eznmz+ + 1 ]_1 v, 0
ando?. f T'=50r10,1 < K <10,9y = 1,07 = 0> = 0.1, and ¥ [Lz-prz+ + ™y =
0.5, we have Figure 2, evaluated by Monte Carlo (1 million replications).

We can relax the assumtion that ¥ = ¥ 257 by observing that V' is of the form

V = kB + koC + d*d”
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and A is of the form
A= (ksB+ l<:4C’)_1

where
B = [Sg+3u™, C=[Szmz+3u]™!
ki = /(T —-1]o*?, ky=0"?
d* = {1+1/(T-)}2d={T/(T - 1)}/,
]{33 = ]_/(T — 1){0'*2 — C,B_lC}, <]{31
ky = {072 —cC'c}, < ky
and B and C are positive definite. We see that A is “too small”, and the test will be
oversized.
V = B"Yul+ kB '?CB'?+ B?d*d” BB/
A7 = BY?[ksI + k,BY2CB~Y?BY?
Let
D = B20CB'* = PAP
where P is orthogonal, A diagonal, with as diagonal elements \; the eigenvalues of
D. Then
V = BY2P[kI + koA + P’ B~Y2d*d”B'/?P|P'B'/?
A = [BY2PksI + ksA|P’BY?] " = B2 PksI + kyA] ' P’ B2

and thus

AV = B7Y2P[ksI + kyA] " [krI + koA + P'B7Y/2d*d” B2 P|P'B*/?
B™Y2P[diag([ks + ks\] ) {diag(ki + ko))
+P,B_1/2d*d*/B_1/2P}]P,Bl/2

which has the same eigenvalues as

Y i PO
{diag S

+diag([ks + ko) H{P' B~Y2d*d* B2 P}
The second matrix has rank 1, and the eigenvalues of the whole matrix are bounded
between the smallest of ko; = (k1 + ko)i)/(ks + ka\;) and the largest of ko, +
d¥B~'d*/(ks + k4);). )i are the eigenvalues of D = B~Y2CB~'/2 or of B~'C =
[EQ + EM][EZMZ + EM]fl. d= [EQ + EM]il c= [EZMZ + EM]flc =Bc =CCc
d“B'd* = {T/(T —1)}c'Be={T/(T - 1)}3Sm[Sz0mz +Xu) ' ZuB
{T/(T - D)} [Szemze + 171y
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k= [1)(T-1)]o* 02 =0+32up=0>+7"y

by = o2 :a*z—i—Taf)

ks = 1/(T—1{0” —cB e} =1/(T = 1) [0* + 7'y =7 [Bzenz + 1] 9] <k
ks = {07 —cC ¢} =0 ++"v+ TU% — [Ezensze + 171y < kg

Thus

o = /(T -1D]o*?+ 0" =k + k
o = [T =1)Ho™ - Tgyet + 0™ — Ty =ky + Ky

ki +kadi  ky A+ ko + Ko )

— _ A — 1
* ks + kaX;i ks 4 ks + ka(N; — 1)

o2 4 ko(N = 1)/0%] L4 k(N — 1) /0]

ot 21 + ky(N — 1) /o2 T [L+ ka(A — 1) /o]

Thus comparing this case with the B = C' case, we are introducing more variability
into the eigenvalues, which as we have seen , may well increase the ‘size’ of the test.
(Thus the ‘size’ is sensitive to the relative magnitude of the intra-group and inter-
group variations of the covariates, ¥zgz and Xzp7). Our conclusion is somewhat
dispiriting: a significant Hausman statistic may arise from measurement error, as it
is implicitly comparing the inconsistencies: but cannot be used to test if the inconsis-
tencies are equal, as the ‘size’ may considerably exceed its nominal value, even when
the inconsistencies are equal.

6 A Power Comparison

The possible serious size distortion of the standard Hausman test motivates the for-
mulation of the HR-test. Using the White estimators for the variance-covariance
matrix, the test is robust to the presence of common sources of misspecification of
the variance-covariance matrix, i.e. to arbitrary patterns of within groups depen-
dence. In other words, using the notation in Lemma 3, AV is idempotent and the
nominal size is equal to the observed one. We now use a simulation experiment to
investigate the relative power of the Hausman test and the HR-test. We are inter-
ested in a quantitative assessment of the possible power loss that may incur in using
a robust version of the test, in absence of misspecification.

The postulated data generation process is the following.

We consider the model

y = ax + Bz + u,
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where y, z, u and z are (N1 x 1). The null hypothesis of the Hausman test is
E(ulz,z) = 0.

We assume z exogenous variable and we generate x correlated with u, so that the
null hypothesis above is not satisfied. We consider

T =yw+e, (39)

where x, w, € are (NT x 1), w is an exogenous variable and (u,¢) are drawn from a
bivariate normal distribution with a specified correlation structure.

The values from the exogenous regressors and the range of values for the param-
eters comes from the empirical case of study analyzed in Patacchini (2002). Using
UK data, the following model is estimated.

Lfillvy = ¢+ ylunfvy + wlutoty + ey, 1=1,...,275; t =1,...,63

where [fillv is the logarithm of filled vacancies, lunfv is the number of unfilled
vacancies (stock variable) and lutot is the number of unemployed in the area i at
time ¢, both expressed in logs, ¢ is a constant term, e indicates a disturbance term.
The estimates of v and 7, 0.5 and 0.4, have been used in the simulation experiment
for a and 3 respectively. Also, the best prediction for unfilled vacancies (lunfv) is
found to be

lunfvy = 1.21n otwvy, 1=1,...,275; t =1, ...,63,

where [notv is the log of the number of monthly notified vacancies (flow variable). In
our experiment design, the real values for lutot and Inotv have been used as exogenous
variables, i.e. respectively z and w. The endogenous variable lunfv, i.e. x, has been
constructed according to the structure (39)

r=12w+e.

The equation estimated is
y = 0.5z + 0.4z + u,

where (u, e) are constructed as draws from a multivariate normal distribution with
the specified correlation coefficient rho of (0,0.05,0.10,...,0.95).

Six sample sizes, typically encountered in applied panel data studies are used.
The experiment is repeated 5000 times for each sample size and level of correlation.
Figures 3 to 5 contain the results of the simulation experiment. The power is expressed
in percentage.

The tables displayed compare H pow, the power of the Hausman statistic (H-
test):

h = (ng - Bbg)l (ﬁwy + ‘7;?9> B (ng B Bbg)
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Table 1: N=25, T=4

rho rho” H_pow HR_pow
0.00 0.00 4.90 4.80
0.05 0.03 5.10 4.90
0.10 0.06 7.90 7.40
0.15 0.09 9.20 9.30
0.20 0.12 14.40 13.80
0.25 0.15 19.90 20.90
0.30 0.17 25.50 26.80
0.35 0.20 32.20 32.50
0.40 0.23 34.50 38.50
0.45 0.26 43.60 45.80
0.50 0.29 50.10 57.40
0.55 0.32 70.10 70.80
0.60 0.35 78.20 79.90
0.65 0.37 87.90 89.70
0.70 0.40 94.10 92.70
0.75 0.43 98.50 98.90
0.80 0.46 99.90 100.00
0.85 0.49 100.00 100.00
0.90 0.52 100.00 100.00
0.95 0.55 100.00 100.00

Table 2: N=25, T=10

rho rho” H_pow HR_pow
0.00 0.00 4.60 4.50
0.05 0.04 6.50 5.40
0.10 0.08 8.10 6.10
0.15 0.11 12.50 9.20
0.20 0.15 16.40 13.90
0.25 0.17 20.60 20.10
0.30 0.21 25.40 27.50
0.35 0.25 31.50 32.50
0.40 0.28 40.10 43.30
0.45 0.32 50.20 55.50
0.50 0.35 57.20 61.90
0.55 0.39 70.20 72.70
0.60 0.42 82.40 85.40
0.65 0.46 88.60 90.00
0.70 0.49 99.80 96.70
0.75 0.53 99.90 99.40
0.80 0.56 99.90 99.90
0.85 0.60 100.00 99.90
0.90 0.64 100.00 100.00
0.95 0.67 100.00 100.00

Figure 3: Simulation Results
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Table 3: N=25, T=20

rho rho” H_pow HR_pow
0.00 0.00 4.80 4.70
0.05 0.04 6.80 5.90
0.10 0.07 9.00 8.10
0.15 0.10 17.80 16.50
0.20 0.14 27.80 27.00
0.25 0.18 36.10 36.40
0.30 0.21 46.20 48.10
0.35 0.25 66.20 66.50
0.40 0.28 79.00 79.60
0.45 0.32 87.20 87.90
0.50 0.35 95.00 93.90
0.55 0.39 97.80 97.70
0.60 0.42 99.10 98.70
0.65 0.46 99.90 99.80
0.70 0.50 99.90 100.00
0.75 0.53 100.00 100.00
0.80 0.57 100.00 100.00
0.85 0.60 100.00 100.00
0.90 0.64 100.00 100.00
0.95 0.67 100.00 100.00

Table 4: N=275, T=4

rho rho” H_pow HR_pow
0.00 0.00 4.90 5.00

0.05 0.03 6.30 6.40

0.10 0.06 9.60 8.80

0.15 0.09 18.20 17.60
0.20 0.11 29.10 28.90
0.25 0.15 45.10 48.10
0.30 0.17 57.20 62.50
0.35 0.20 72.40 78.20
0.40 0.23 86.00 89.10
0.45 0.26 93.60 96.20
0.50 0.29 97.90 98.00
0.55 0.32 99.80 99.80
0.60 0.34 99.80 100.00
0.65 0.37 100.00 100.00
0.70 0.40 100.00 100.00
0.75 0.43 100.00 100.00
0.80 0.46 100.00 100.00
0.85 0.49 100.00 100.00
0.90 0.52 100.00 100.00
0.95 0.55 100.00 100.00

Figure 4: Simulation Results
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Table 5: N=275, T=10

rho rho” H_pow HR_pow
0.00 0.00 5.00 4.90

0.05 0.03 9.80 6.40

0.10 0.06 26.10 15.10
0.15 0.09 61.00 34.00
0.20 0.12 87.80 55.10
0.25 0.15 97.80 74.10
0.30 0.18 98.90 86.50
0.35 0.20 99.80 93.40
0.40 0.23 99.90 97.90
0.45 0.26 100.00 98.90
0.50 0.29 100.00 99.90

0.55 0.32 100.00 100.00
0.60 0.35 100.00 100.00
0.65 0.38 100.00 100.00
0.70 0.41 100.00 100.00
0.75 0.44 100.00 100.00
0.80 0.47 100.00 100.00
0.85 0.50 100.00 100.00
0.90 0.53 100.00 100.00
0.95 0.55 100.00 100.00

Table 6: N=275, T=20

rho rho” H_pow HR_pow
0.00 0.00 5.10 4.70

0.05 0.03 18.40 6.40

0.10 0.06 59.70 18.90
0.15 0.09 91.10 40.10
0.20 0.12 99.80 62.40
0.25 0.15 99.90 75.50
0.30 0.18 99.90 87.40
0.35 0.20 100.00 94.10
0.40 0.23 100.00 98.90
0.45 0.26 100.00 100.00
0.50 0.29 100.00 100.00
0.55 0.32 100.00 100.00
0.60 0.35 100.00 100.00
0.65 0.38 100.00 100.00
0.70 0.41 100.00 100.00
0.75 0.44 100.00 100.00
0.80 0.47 100.00 100.00
0.85 0.50 100.00 100.00
0.90 0.53 100.00 100.00
0.95 0.56 100.00 100.00

Figure 5: Simulation Results
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with HR_ pow, the power of the robust Hausman statistic (HR-test) obtained using
the auxiliary regression detailed in Section (3):

hr = <ng - Bbg)l lvar <B/wg\_ Bbg>:| B (ng - Bbs}) )

with different sample sizes. Figures 6 to 11 contained in Appendix 6 illustrate the
relative power functions. The significance level has been fixed at 5%. rho” is the
estimated level of correlation between x and u conditioned upon w. For each level
of rho, H pow and HR pow indicate the percentage of times we reject a false
hypothesis if we use respectively the H-test or the HR-test.

In Table 1, 2 and 3 the number of cross-sectional units is held fixed at 25 and
the number of time periods is varied respectively between 4, 10 and 20. In Table 4,
5 and 6 the number of cross-sectional units is held fixed at 275 and the number of
time periods is varied respectively between 4, 10 and 20. Table 1 to 4 show that the
performance of the HR-test is comparable with the one of the H-test, even better for
values of rho greater than 0.3. In larger samples (Table 5 and 6) the performance of
the H-test is superior but the power loss of the HR-test is not serious. The HR-test
gives a very high rejection frequency for the false hypothesis of absence of correlation
between x and u, starting from levels of correlation around 0.3 (86.5% and 87.4%
respectively in Table 5 and 6) and it detects the endogeneity problem almost surely
as soon as rho is higher than 0,4 (97.9% and 98.9% respectively in Table 5 and 6).
Taking the results as a whole, the simulation experiment provides evidence that the
performance of the HR-test in terms of power is satisfying in large samples and even
better than the one given by the H-test in small samples.

In addition, it is worthwhile noting that a version of the Hausman test imple-
mented in most econometric software, which is generally used in empirical studies, is
the one based on the comparison between 3, and Bgy, i.e.

h=(Buy— Bon) (Voo Vi) (Buw— Bon)

The problem related with this approach is that, in finite samples, the difference
between the two estimated variance-covariance matrices of the parameters estimates
(i.e. ng V},g) may not be positive definite. In this cases, the use of a code imple-
menting a different Hausman statistic or the formulation of the Hausman test using
an auxiliary regressions (e.g. the one proposed by Davidson and McKinnon (1993, p.
236), which is now already implemented in some statistical packages, or the (robust)
one presented in this paper) are the only possibilities to get a test outcome.

7 Conclusions

This paper has presented a methodological revision on the use of the Hausman test for
correlated effects with panel data. The relevance of the discussion is both theoretical
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and empirical.

From a theoretical point of view, it is shown that the assumptions in Lemma
2.1. in Hausman (1978) are sufficient but not necessary. The main result is that the
attainment of the absolute Fisher lower bound can be replaced by the attainment of
a relative minimum variance bound.

From an empirical point of view, the main implication of this paper is a caveat
on the use of the standard Hausman test framework for correlated effects in applied
panel data studies. Our claim is that the application of this test is often not correct
from a methodological point of view. The assumptions underlying the construction of
the Hausman statistic (Hausman, 1978) may be rarely satisfied in empirical work. An
analytical investigation of the size of the test shows that, at least in some cases, the
distortion is substantial. The econometrics of panel data offers a variety of estimators
for the same parameters. Our recommendation is to use the Hausman test framework
for the comparison of appropriate panel data estimators, but to construct a version
of the test robust to deviations from the classical errors assumption. This test, the
HR-test, gives correct significance levels in common cases of misspecification of the
variance-covariance matrix and has a power comparable to the Hausman test when
no evidence of misspecification is present. The power of the HR-test is even higher in
small samples. It can be easily implemented using a standard econometric package.
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8 Appendix 1

Lemma 4 Ift, and ty are unbiased estimators of 0 € RP, with t; minimum variance
(MV) at least in the set

T={t:t=At+(I- At}

then
COU(tl,t - tl) =0

where 1 is the identity matriz, 0 a null matrix, and A € RP*P is fized.
Proof.
=t; + Bd, say, B € RP*?
Var(t) = E{[t, — 0+ Bd| [t — 6 + Bd]'}
= Var(ty) + Cov(ty,d)B' + BCou(d, t,) + BVar(d)B'.
Thus we can write
Var(t) — Var(t;) = CB' + BC' + BDB'.

The minimum variance property of ¢; implies this difference is positive semi-definite,
and thus for every A € RP, and B € RP*P,

Q=X (CB' +BC’'+BDB') A > 0.
However, for the particular case of
B=-CD'
Q=XN(-CD'C'-CD 'C'+CD 'DD'C')\
= XN(—CD'C')A
which satisfies the required inequality if and only if
C=0.

Further, for any B € RP*P

t— tl == Bd7
Cov(ty,t —t;) = CB'= 0.
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Remark 5 We exclude the case where D is singular, as in that case replacing D!
with a pseudo-inverse DT such that DYDD™ = DT reveals that all that is required is
CD"C' = 0, or that C has rows orthogonal to the eigenvectors of D corresponding to
the non-zero roots. As an example, consider the case where some elements of t; and
ty coincide. It is simplest to exclude the coincident elements, and apply the argument
above to the reduced vectors so formed.

Remark 6 This lemma implies that the MV unbiased estimator is uncorrelated with
its difference from any other unbiased estimator, and the MV linear unbiased estima-
tor 1s uncorrelated similarly.

We next show that a set of the form 7 in Lemma 1 contains a minimum variance
estimator. First, it is convenient to re-write the basis of the set in terms of ¢; and 3,
where Cov(ts, t;) = 0.

Lemma 7 If t; and ty are unbiased estimators of 8 € RP with covariance matriz

Vi Vi
[ Vi Vi } , the set

T={t:t=At + (I At}

can also be defined in terms of t1 and

t3 - Btl + (I - B)tg

where
CO’U(tg,t1> =0
as
T ={t:t=Ct;+ (I-C)ts}
with
B=-Vyu(Vy,~Va) L, I1-B=V,(V,;~ V)’
Var(ts) = —DV'D' + DV, 'V, VD', D = [V, — V]
C= A<V11_V21) + V21)V;11= I-C= (I - A)(V11_V12)V;11
Var(t) = CV;C' + (I— C)Var(t3)(I - C)
Proof.

CO’U(tg, tl) = E{[Btl + (I — B)tQ — 9] [tl — 9]/}
=BV +(I- B)\/—21
= —V21(V11—V21)71V11 + V11(V11—V21)71V21
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Now
_ 1 _
[VII(VH_Vﬂ) 1V21} = V2—11 (Vn_Vﬂ)Vn1
= V2_11 - V1_11

and
_ -1 _ _
[V21(V11_V21> 1V11} - Vlll(Vll_V21)V211
= Vgll - Vﬁl-

It follows that
Vi (V= Vo) Vo = Vou (V= V) 'V (1.1)

and thus
CO’U(tg,t1> =0

To find Var(ts), as
t3 - Btl + (I - B)tg

Var(ts) = BV 1B'+(1— B)V,B+BV (I - B)'+(I - B)V,,(I—- B)
BV B = Vg (V,,— Vo) 'V (V- V) V'V,
(I-B)VyB = Vi (V= Vo) Vo (V1= Vo) VY,

Identity (40) implies equality between these expressions.
BV 5(I-B) =~V (V},=Var) 'Vis(V,, = V) 'V,

Transposing (40), this becomes the same as the expression for BV;B’.

!

(I - B)V22(I - B), = Vll(V11_V21)_1V22<V11_V21)_1/V11

This suggests writing the matrix in (40) as
_ 171
D= [V211 - an}
to give
Var(ts) = —DV!D' + DV;'Vy, (V5) ' D’
[ ]
Remark 8 Again, we are assuming non-singularity, in particular of Va1. One could
apply the steps above to zero a single non-zero element of Va1, by shrinking t; and

ty to the corresponding elements. Repeated application would then replace Vo1 with a
null matrix.

We can now show that 7 always contains a minimum variance unbiased estimator.
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Lemma 9 Ift; and ty and T are as in Lemma (2) but with Vi3 = 0 then t has the
minimum variance i T if
A= [V;11+V521]_1Vf11

Proof. Let this value of ¢ be t,;, the corresponding A be Aj;, and V), =
Var(ty). Let
Ay=EV] =>1-Ay=EV,

We have
Var(ty) = EV] VL VLE +EV,, Vo V' E
=E [V +V,]|E=E.
Moreover,
COU(tM,tl — tg) = COU(AMtl + (I — AM)tg, tl — tg)
= E{EVy (t — 0) + EVyy (ts — 0)}t] — t5}]
= E[E(V] Vi1 — V5 V)] = 0.
IfteT,
t=At;+ (I—-A)t,
=Ay+A—-Ayti+T—-—Ay —A+ Ayt
Thus

Var(t) = Var(ty) + (A — Ay)Var(ty — t2)(A — Ay

and thus Var(t) exceeds Var(ty) by a positive semi-definite difference, and thus ¢,
is the minimum variance estimator in 7. m
Finally, we establish the large sample equivalent of Lemma 1.

Lemma 10 Consider t, = [t},t)/],0. = [0/, 6]

D Vi1 Vi
e 2 [ 3

where V11 is the ‘asymptotic variance’, Avar, of t1 and V1o is the ‘asymptotic co-
variance’ of t1 and ty, Acov(ty,ts). If ty is asymptotically minimum variance at least
in the class

T={t:t=At1 + (I— A)ta}, A €RP*?| fized,

then if ty = [ty, [t —t]']. 05 = [0, 0]

D V11 0
\/ﬁ(td - Hd) - (07 0 Var(t) _ Vll )
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_ ty | o t | I o0
Proo£Lettd_[t2—t1]_[—I I][ },so,as@d—[ }9*,

Vit~ 60 = | & 1] vt -0,

D (0 { Vi Vi —Vy ])
"I Vor = Vi1 Vii—Via—Vy +Vy
A% C
i) (07 |: _éll D :|>7 say

= t; + Bd, say, B € RP*?

- 11 4)-

I 0
0= [18]a

t I 0
i} O V11 V11 + CB, )
"| Vi1 +BC' V;; + BDB'+BC' + CB’

SO we can write

Avar(t) — Avar(t;) = CB' + BC' + BDB'.

The minimum variance property of ¢; implies this difference is positive semi-definite,
and thus for every A € RP, and B € RP*P,

Q=) (CB'+BC'+BDB') A > 0.
However, for the particular case of
B=-CD
Q=)N(-CD'C'-CD'C'+CD 'DD'C)\
= N(-CD™'C')A
which satisfies the required inequality if and only if

C=0.
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Further, for any B € RP*P

SO as

D V11 0
— [ 0 BDB ])
where, as C =0,V,; = Vi3 = Vo, D = V5, — V3. Moreover, from (40)
Var(t) = BDB' + Vy; = Var(t — t;) = BDB' = Var(t) — Var(t;)

as required. m

Remark 11 The assumption that A is fized can be replaced by a stochastic matrix
A, with plim(A,) = A

Remark 12 This lemma implies that an asymptotically MV consistent estimator is
uncorrelated in large samples with its difference from any other consistent estimator.

9 Appendix 2

In this Appendix we give further details about the expression for Var(y;) used in
Section 2.
As

Var(y;) = Qs = o*Ir + Ufl uw,
we can use the formula (see, e.g., Golub and van Loan (1983, p.50))
(A+UVhH) ' =A" - AU+ VTATIU) VT AT
which simplifies for vector u, v to

1

— A 'wTATh
1+0TA 1y b

(A+uw’)t=4"1-

It follows that, if 6 = o7 /0

14+170

2 -1
o
2 n '
= o' |Ip— ——==u| .
{ o+ To} }

, A
Q = oIp+0uw]=0o" {IT— LL:|
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10 Appendix 3

In Section 2 we focused our attention on Hausman test constructed using the contrast
between the Within Groups and the Balestra-Nerlove estimator. In this Appendix we
show the derivation of the Hausman statistic for the comparison between the Within
Groups and the Between Groups estimator. Using the notation in Section 2, the
Between Groups estimator can be written as

Boy = (X'MX)X'MY.

The variance is

-~ ’ -1 ’ ’ ’ -1
Var(By,) = [X MX] X' MVarY)M X [X MX} . (41)
Further
Var(M*y) = M*Var(y)M* =o*M™ [IT + ebbl] M+ (42)
= oM [Ip +0TM*| M =o*(1+6T)M™, (43)

where 6 = o2 /0. Thus
Var(MY) = o*(1+0T)Iy @ M+ = o*(1 +0T) M.

Plugging (16) in (15), we obtain

Var(B,,) = o*(1+0T) [X’MX} X Mx [X'MX] -

= (1 +6T) [X'MX} o (44)

In addition
Cov(Byy Bug) = [X’MX} X MVay)QX [X’QX} B (45)
= o [X'MX] XM [Ty + 0T M) QX [X’QX} 70 (46

So
Var(Byy — Bug) = Var(By,) + Var(Ba,)
— (1 +67) [X'MX] R [X’QX} -

Thus we have as a test

~

(Brug — By lam 40T [X’MX} R [X’QX] _1} B (Bug — Buy):
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11 Appendix 4

Lemma 13 If

B: (X/X)ilX/y,B* — (X*/X*)ilX*/y,

then
(X*’X*)fl — Afl(X/X)flA/fl
P -ap
e =%
Proof.
(X*’X*>—1 — (A/X/XA>_1 — A_l(X,X>_1A/_1.
B* — (X*/X*)le*/y — A71<X/X)71A/71A/X/y — AfIB'
/5\*:y—X*B*:y—XAA_lgzy—Xﬁzé\
]
Lemma 14 If
Ba= (X4Xa) " Xya, Bp = (XpXp) " Xpys,
€a=1ya— XaB4,e8 =ys — XBPOp
* XA XA * Ya oF #/ vok\—1 v/
X' = = = (X"X X
[0 XB},y [yg]’ﬁ ( ) Y
&=y - X5
then R R
B*_ ﬁA/\_ﬁB M:[EA}
Bg ’ €B
Proof. Let

X:[XA 0 },;»X*:X[é ﬂ:XAsay

L[ -
St

Further, it is an exercise in elementary matrix algebra to show that

3= (X)X = [gf* ] E=y-xi=| 2.

B €B
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So applying Lemma 13,

and
~ €A
== | 1
EB

]

Return now to model (23). Results (24) and (25) in Lemma 2 directly follow from
the application of Lemma 13 and 14. Next, we will prove the remaining result in
Lemma 2, i.e. equality (26).

Let
HY = li'H:I ® H* H'H:lM
T7 N 9 T
By = [(HX)'(HX)|(HX)(HY) = (X'MX)"'X'MY

(QX)(QX)]HQX)(QY) = (X'QX) ' X'QY

—

Bug

Further, let G be Arellano and Bover’s (1990) forward orthogonal deviations matrix,
(T'— 1) x T, such that

/ 1
Gti = 0,GTG" = Iir—yy, GGt =Qt =1Ip — ?iz"
G - IN ® G+7G/G == Q7GG/ == IN ® I(T—l) == IN(T—l)
Buy = [(GX)(GX)THGX)(GY) = (X'QX)'X'QY
and identifying HX and HY with X4 and Y4, GX and GY with Xp and Yjg, we
HY] on X+ — [HX HX

see that the artificial regression of Y* = [ ay 0 GX } gives

coefficients 3* = [ b b"B— Bug ] . In this case,
wyg

Var(y*) = l HVar(Y)H' 0 ]

0 GVar(Y)G'
If 0 = 07 /o*we have

GVar(Y)G' = o®G(Inr + 0Ty ® i) G’
= ’GG as GTi=0

= Uz]N(T—l)
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and

HVar(Y)H' = o*H(Inr+0Iy ®ii')H'
= oIy ® H")(Inr + 01y @) Iy @ H']
= o[Iy® (HYH) +0Iy @ (Hii'H").

1 1
Ht=—i{ Hi=1HH" = —,
T T

2

1
HVar(Y)H' = %[ Iy +01x] = %(1 +TO)Iy.

Assembling our results,

2
x Z(14+70)Iy 0
Var(Y™) = T(
&) { 0 o*In(r-1)
> HX 0
IfnowX—{ 0 GX}’

~x

Var(8) = (X¥X*) ' X*"Var(Y*)X*(X¥X*)™ !
= ATYX'X)'X'Var(Y)X(X'X)TAY,

Next, we calculate this variance by separating the different components.
- ~ " a?
X/Var(Y*)X:{XH 0 HT(1+T9)IN 0 HHX 0 }

0 X'G 0 O'2IN(T,1) 0 GX
B Z[X’H’ 0 H(9+1/T)HX 0 }
0 X@ 0 GX
LT+ mX'MX 0
-7 { 0 X'QX }
<o | T(X'MX)! 0
S Y e |
us
(X' X)L X' Var(Y*) X' (X' X)™
o [ T(X'MX)! 0
—7 0 (X'QX)! } 8
(0/T +1/THX'MX 0 T(X'MX)™! 0
[ 0 X’QX} { 0 (X'QX)~!
_ 2 (TO+1)(X'MX)™ 0 }
_d I 0 (X'QX)™*
all

AYX'X) ' X Var(Y)X' (X' X) A7
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]

o[ I —I}[GW+D@WMX)1 0 }
|01 0 (X'ex)
L[+ H(X'MX)TE —(X'QX) ! ]{[ o}
-7 0 (X'QX) ! I 1
_ 2| MM + (XQX) —(X'QX) ! } )
—(X'QXx)™ (X'QX)™!

We now need to find the variance-covariance matrix the artificial regression will
assume. This will be proportional to

(X*,X*)_l _ (A/)’Z/)’ZA>—1 (X/X) lA—ll
1

il e |5 7]

S Alth

_ [TOMX) T (XQX) ! ot .
_ - (X'Qx)™ (x'Qx)™ |

By comparing (47) with (48) it appears that an artificial regression is a valuable device
to estimate a suitable variance-covariance matrix. This variance is estimated using a
(White) robust OLS estimator which uses a consistent estimator of X*Var(Y*)X*
under the assumption that Var(Y™*) is diagonal. Next, we derive this consistent
estimator. Following the steps used in the derivation of Var(ﬁ*) above, we separate
the different components.

X'Var(Y*X
_[xH 0 HX 0
- 0 X' o 0 GX
L[ xH 0 Q 0)[HX o0
“ %0 0 x¢]lo 9]l 0o 6x
L[ XxXHQ 0 HX 0
-7 0 xaol||l 0o ox
L[ XHQHX 0
-7 0 X'G'OGX

o [ T(xXMX) 0

Thus

(X' X)X Var(Y)X'(X'X)!
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L[ T Mx) 0
-7 0 (x'Qx)* |~
XH'QHX 0 T(X'MX)™ 0
0 X'G'OGX 0 (X'QX)!
L[ T(X'MX)" N (XH'QHX) 0
- U{ 0 @vay*@WGnGX)}X
T(X'MX)~! 0
0 (X'Qx)™
o [ T2HX'MX)" N (XH'QHX) (X'MX)™! 0
’ [ 0 (X'QX) "N (X'G'OGX) (X'QX) ™ |
Let
B=T*X'MX)" (XHQHX)(X'MX)™
and
D= (X'QX)  (X'G'OGX) (X'QX) .
So

AN X' X)X Var(Y)X'(X'X) A7V
o [I -11[B 0 I 0
— %00 1|0 D||-T1

)L

0 D || -1
,| B+D -D
. -D D

HY] nX*:[HX HX

ay 0 ax } to give

The residuals from this regression of Y* = {

coefficients E* = g bgﬁ_ Bug can be obtained by stacking those from HY on HX
wg

above those from GY on GX. The first set will yield sum of squares
RSS, = (HY)[Iy — (HX)T(X'MX) Y X'HHY

1
= V(M — MX(X'MX)7X'M)Y.

Note that (M — MX(X'MX) " 'X'M) = Mp is idempotent, and MpMX = 0.
Note than if the write the model as

Y =XB+E

we get
MY =MXp+ ME,
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MpMY = MpE
and 1
RSS, = TE/MPE.

The expectation is given by

ERSSy = %tmce [MpVar(E)] = %tmce [MpVar(Y)]

2
= %tmce [Mp{InT + 0Iy ®1ii'}].

As
1
M(Iy®i')=(In® ?ii/)(IN ®ii') = Iy ®@ii' =TM,

2

0_2(1 + 0T trace(Mp) = %(1 +0T)(N — K).

ERSSy = a
Similarly, if

RSSp = (GY)[Iyr — GX(X'QX) ' X'G'|GY
Y'[Q - QX (X'QX)™'X'Q)Y,

ERSSp = o’*trace |Qp{Int + 0y ®ii'}]
= o*trace|[Qp| = o*[N(T — 1) — K].

Accordingly, there is no multiple of RSS4 + RSSp with expectation o2. However, if
in the first regression Y4 and X4 are scaled by

k=+\/T/(1+6T)

the coefficients will be unchanged, their variance will be unchanged, (X, X 4)~! will
be scaled by 1/k? = (1 + 6T)/T. So instead of

(HX)YHX]'=T(X'MX)™*
we will now have

(X4 Xa) =1 +0T) (X' MX)™.
Further,
K*ERSS, = L0—2(1 +0T)(N — K) = 0*(N — K)

(1+601)T

and (k2RSS4 + RSSp)/(NT — 2K) is an unbiased estimator of o2.
Thus given a consistent estimator 6 of 6, and thus k of k, we can construct

the Hausman test by carrying out the artificial regression of Y* = [ kg;/ } o
X = [ ld—éX l{:é{)?( } , and constructing a Wald test on the first K coefficients.
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12 Appendix 5

We define between groups and within groups estimators as usual:
-~ ’ -1 ’
Bpe = (X MX) X' MY

Bve = (XQx) XQv

where

Q - IN ® Q+a

1 ..,

Q+ = IT - f?/l 9

M = Iyeo M,

1 .
MY = il = I - Q"

X1 Y1 Ti Yil
X x i
x=| 7, v=" . x =] "], ="
XN YN Tip YiT

Q™" is the matrix that transforms the data to deviations from the individual time
mean, M ™" is the matrix that transforms the data to averages.
Suppose the true model is

yitzzgtﬁ+ni+vit, 1=1,..., N, t=1,...,T

where z;, is a 1 x K vector of theoretical variables, n; ~ iid (0, 02) , v ~ iid (0,0?)
uncorrelated with the columns of z; and Cov (n,,v;:) = 0. The observed variables are

Tip = Zig + My,

where m;; is a K X 1 measurement error uncorrelated with 7, and v;. The estimated
model is

yit:m;tﬁ—i—ni—i—vit—métﬁ, 1=1,...,N, t=1,...,T.
In the case of exact measurement, m;; = 0. So
vi=Xif+ni+tv, — M8 =X,0+(;

say, where i is a column of 7' 1s,

/U’Ll m’Ll
/

V32 m;o
v, = ) Mz = .
/

Vi My
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To consider the ‘generic’ estimator, let

Bae = (X'AX)_lX'AY

N -1 N
- [Z X ATX; | Y XAty
=1 . z:_ll .
= B+ DX ATX| D X AT,
=1 =1

where A = () or M as appropriate, and
N N
S OXATG = Y XA i+ v — Mg
i=1 i=1

N
= Y [Zi+ M] AY [ni+vi — Mg,

=1

where
i
7 — Zia
Zir
Given our assumptions,
N N
E|Y X;A%(,| =-E ZM;NM,ﬂ] .
i=1 i=1
Let
M; = [My, .., Mix]

so the r — s—th element of M/A™ M, has expectation
tr(E[M], A* M;s]) = E[tr(M;s M, A)] = tr(oamsIrA) = opestr(A)

if we assume m;; are possibly correlated only contemporaneously within groups. Thus

N N
E|) X, ATG| =~ |tr(4)) ] EMﬂ] = —tr(A)NZ .
i—1 i=1
If we write
X ATX; = (Zi+ M)A (Z;+ M;) = ZIA* Z; + Z!A* M, + M A" Z; + M! A* M,
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and taking the Z as non-stochastic,
E(X,ATX;) = ZIATZ; + E(M]ATM;) = Z! AT Z; + tr(A) Sy

If we make appropriate assumptions about Z; to ensure that (1/N) Zfil ZIATZ;
converges to an appropriate limit, say ¥4z, then

N -1 N
Bag = B+ ZX;AJFXi ZX;AJFQ
=1 =1
1 - 1 Y
p . e . oL
2 B+ plim N;XiA X, pth;XiA ¢
= 8= [Szaz +tr(AN)Sy] (AN Ty B.
FOI' BBG;
1.,
AT = M* = il = tr(A) =1
SO .
Bra L B—12zmz + ZM]_l XmpB.
FOI' BWG7
1.,
A+:Q+:IT—?% =tr(A)=T -1
SO

Bwe 2 B— (T —1)[Szqz + (T — 1)Sy] ' Suf
= B—[S20z/(T 1)+ Sy EuB

These formulae are comparable, as ¥ zgz grows with 7. Indeed, if ¥z¢7/(T — 1) =
Yzmz, that is, the between sum of squares and the within sum of squares are roughly
proportional to the number of terms contributing to each, then

b= phm(BBG - BWG) ~ 0.

We turn next to the estimation of the variance of the disturbances. For the generic
estimation

o~ ’ -1 /
Zac = AY — AXB,. = AY — AX (X AX) X'AY,
Y = XB+¢

where

C=1[¢ - W]
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Substituting
’ -1 ’
Buc = AXB+AC— AX (X Ax) X' AXB+0)

— AC— AX (X’AX) “xAc

Consider
’ -1 ’
2 eac = CAC—CAX <X AX) X Ac
N
/ -1 /
= S gATG - CAX (X AX) X AC.

i=1

As

AT = AT i+ v — M,f],

N
ﬁ > AT S Tl_ C[oht AT (AN {0 + 3B}
=1

If A* =Q* =Ip — Lii ,tr(A%) =T - 1,

N
N L CQG 2 e+ s,
i=1

If AV = M+ =2ii' = Ir — QF,tr(A%) =1,
| X
& D CMICG B [l ATt (AT){o® + FEnBY] = Toy + 0* + B'Sup.
i=1
The other component in the ‘natural’ variance estimate €,,€4c/(N(T — 1)) is
/ -1 /
¢AX (X'AX) X'AC

We are assuming that (1/N) SV, Z/A*Z; converges to an appropriate limit, say
Y z4z7, and thus

N
1 ,
~ > X ATX; B Szaz + tr(AN)Sy
i=1
Further, that

N
. 1 / + —+
phmﬁ g X, AT, =tr(AT)Emp

=1
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Thus

’ . N 1 . N
— ATX| = "AYC
[N ;XzA Xl N;XzA Cz

r(AY) EMm (Y747 + tT’(AﬂEM]fl tr(AT)Sy B

= tr(AN)FSy l

Loax (x'ax) ' xac = |2 3 X A
F¢AX (X' 4x) <—w§ ¢

1
(A+)EZAZ + EM:| Xup

If A* =Q* =Ip — Lii ,tr(A") =T — 1,

1

~1
— by by YupB.
NT =1 zqz + M:| mB

SN 1
CQx (XQx) " X QD s | s

If AY = M+ =2ii' = Ir — QF,tr(A%) =1,

1 / -1 / _
SOMX (X'MX) X' MC L 350 [Szaiz + Sa) ™ Suf

Thus
L o s e , 1 -
m&/yg&?wc = {0"+88uB — 'y {mzzcgz +Xum| ZmB}  (49)
and L, ) ) / , »
NEBGEBG To,+ 0"+ B'8uB — Yy [Xzmz + Zul ™ Zupb. (50)

Finally, we require Var(B ac)- We have
Bag=8— (Y747 + tr(AT)Sy] ! tr(AT)S 6.
and thus under appropriate assumptions

VN [BAG — B+ [Szaz +tr(AN)5y] tr<A+)zMﬁ}

1

BN, [Szaz + tr(AN)Sy] ™ x

Var \/% {éX;AJrCi — tr(A+)2MﬁH [Szaz + tr(AN)Sy] 7).
As
ZX At = Z[Zi + M| A i+ v — M3,
o N
E ZX;AWQ. = — tr(A+)ZzMﬁ] = —tr(AT)NI .
P -
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N TN
Var | Y X;AT¢| = Var | [ZIAT + M{AY [ni+ vi — M|
i=1 [ i=1
= Var Zl { M[A™ i+ M{ATv, — M/A* M,
where AT = Qt = Iy — Lii' or = M* = Lii' = Iy — Q. We are assuming no

correlation between groups. We thus need to evaluate
+M]ATni+M/Atv; — MAT M3
= Varla+b+c+d+e+f]

Var(X,AT¢,) = Var[

say, where
E(X;A*¢,) = —tr(A")Sup = E(f)

and if u is a random vector,

Var(u) = E {{u—E(u)][u—E(u)]'}.

Thus
Var(X,A*¢;,) = E(aa')+ E(bb') + E(cc)
+Cov(cf’) + Cov(fc') + E(dd’)
+E(e€') + Var(f).
as
E(ad) = 0. Z]ATi{ AY E(M;) = 0,
E(be') = 0’ Z]AYE(M;) = 0,
E(cd’) = BE(—=Z!AT M;Bvl AT M;) =
E(ce') = E(—ZA* M,Bin, AT M;) =
E(de') = E(M!ATn,iv AT M;) = 0,
Cov(df') = Cov(M!A™ni,M/A*M;3") =
and

Cov(ef’) = E(M]AYv;, M[ATM;(3') = 0,

assuming that the appropriate fourth order cross moments are zero, or, more strongly,
that v;,n,, and M; are independent. Of the 36 possible terms, 8 are non-zero, and 2
of these are obtained by transposition. Further,

Var(X,A¢)

= 0LZIAYWATZ + 0* Z] AT Z; + E(Z]AT M BB M A* Z;)
+Couv(cf’) + Cov(fc') + o2 E(M]ATii' AT M;) +
E(M]AYM;) + Var(f)
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We show below that
E(ZIA*M;BB'M{A*Z)) = B'SuBZ/AY Z;
E(M[ATM;) = tr(A")Xy
E(M/ATi{'ATM;) =1 ATiYy,

and that under assumptions of normality, that is if W is a matrix with i.i.d. rows
w N(0,2w)

Var(WAWS) = tr(A*) {ZwBB8'Zw + (BZwB)E, } -
Thus
Var(f) = Var(MA*M;3)
= tr(AT) {ZuBB'Ey + (BZuB)Z,}
Under these assumptions,
Cov(cf') = Cov(Z!ATM;3, M] AT M;[3) = 0.
Thus
Var(X;A*¢;)
= 0LZJATWAYZ + 0P Z]AT Z; +
BEMBZATZ; + ol ATiXy +
o tr(AN) Sy + tr(AT) {(ZuBB'Ey + (BEuB)S,,} -
Finally

\/N [BAG - ﬂ + [EzAZ + t?”(AJr)ZM} - tT(A+>EMﬂ]

EA N(0, [EZAZ + tr(AJr)EM}_l X
[ TO'%EZAMAZ + (0 + B'ZuB)Xzaz + O‘%YA‘FiEM_{_ } s
o*tr(AT)Sy + tr(AT) {(ZyBBEy + (BZuB)E,, )
[Szaz + tr(AN)Sw] 7).
where

1 1
lim SZATAYZ =T lim - ZIATMA*Z

N—oo N—oo
and A" = Q* = I — i or = M* = i I - Q*. S0
VN [BWG — B+ [Sz20z/(T — 1)+ S zMg}

B N0, [Sz0z + (T —1)Sy] ™ x

{ (02 + IB/EM,@)EzQz-i- } %
(T —1D)Iy + (T - 1) {EZuBB'Zy + (B=uB)E,,}

[Szqz + (T —1)Su] ).
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and the variance matrix can be written

/(T = 1)} [L202/(T — 1) + S %
[(0® + BEuB)S207/(T — 1) + 0’y + {EuBB' M + (BZuB)E,, ] %
Xz0z/(T —1) + Sy ",

Thus
VN [BBG — B+ [Ezmz + EM]i1 ZMﬁ]

2 N0, [Xzmz + EM]il X
{ TU%EZMZ + (0'2 + ,BIEM,B)EZMZ + U%TZM—i_
o’y +{ZuBBEN + (BEuB)X,,}

(Xzmz + EM]_l).

To complete our analysis, and obtain the limiting variance of BWG — BBg, we need

CO’U(BWG, Bpe)- This would be zero except for the measurement error. Accordingly,
we require only some terms of

Cov(X; M, X;Q7¢,)-
Remembering
X;A%G,
= [ZIAT + M{A™] [nii + v; — Myf3]
= ZIA"A+ZIATv; — ZIATMB + MjATn,i+ M AT v, — M{AT M,
and as QF = Ip—Lii', M+ = 2ii' = Ir —QF, MTi=1,QTi = 0,M*Q* = 0, consider
XM,
= Zni+Z{M" v, — ZIMT M3 + Mni+M;M" v; — M{M"M,3
= ay + bytcy+dyt+en+fyy, say
and
XiQ*¢;
= ZiQ'w; — ZJQTMB+M]Q v, — M]QV M,
= bQ+cQ+eQ+fQ, say.

Of the 24 possible covariances in Cov(X;M*(;, X;Q%¢;), ay and dy; have zero co-
variance with X, Q% ¢, under our assumption that 7, is uncorrelated with v; and M;,

CO’U(bM, bQ) = E(ZZ,M+I/Z(ZZ,Q+VZ>,) =0
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as E(viv)) = oIy and MTQ" = 0. Similarly Cov(by,eq) = Cov(ey,bg) =
Cov(en,eq) = 0. Cov(byr,cg) = Cov(by, fg) = Cov(ey, cg) = Cov(ey, fg) under
our assumption that v; is uncorrelated with M;. Again, Cov(cyr, bg) = Cov(cyr, eq) =
Cov(far, bg) = Cov(fyr,eg) = 0. This just leaves the 4 terms involving the measure-
ment error,

) E(ZM*M3(Z;Q" M;3)")
e, fg) = E(Z;MTMB(M;Q*M;B))

) = E(MM*M;3(Z;Q"M;p))
Cov(fyr,fg) = Cou(M;M* M3, M!Q" M,[3)

Taking them in order, E(M;33 M;) has j, k-th element
E(mi;Bmig 8) = 6" E(migymi;))B = 816 %m
where mg(k) is the k-th row of M;, and thus

Cov(en,cq) = ZiMTE(M;B3' M;)Q"Z;)')
= ASuBZMTIrQ7Z;)) = 0.

Cov(en, fg) = E(Z;MTMB3'M;Q* M)
= ZMTE(M;B33 M.Q*M,).
The expectation has j, k-th element

E(mj ;86" M;Q m)
= E(mj;)Bmiy Q" M;)B
= E[(mi(j)(g)mé(k))/(ﬁ®Q+Miﬁ)

K K
_ +/
= F E My jr E My ks [ﬁTQ(k)Miﬁ]
r=1 s=1
K K T K
_ +
= F ﬁrmi, j,r my ks q mi,t,uﬁu
J kt
r=1 s=1 t=1 =1
K T K K
= F ﬁr qkt ﬁu mi,j,rmi,k,smi,t,u
r=1 t=1 =1 =1

using
a'bcd = (a®c)(b®d).

We are assuming all third order moments are zero, and thus this expectation will be
zero, as will Cov(fys, cg). This leaves

CO’U(fM, fQ) = COU(M{M+Miﬂ, M;Q+Mzﬁ)
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However, under assumptions of Normality, M Q" = 0 ensures that M/M™M; and
M!Q* M, are independently distributed, and hence the covariance will be zero.

We can now assemble the Hausman test statistic for the measurement error case.
One would calculate

h
N N . . 1 .
= (Bwe — Bra) [Var(ﬂwe) + Va?“(ﬁBG)] (Bwe — Bra)

1

= \/N(BWG - BBG)/ [N@”(BWG) + N@(BBG)] ) \/N(BWG - BBG)

NVar(Bye)

N -1
]. ~ o~ / +

i=1

1 1 & o
N(T —1)“weewe [N Zi:l i@ ]

-1
L {o*+8SupB - BSu [#ZZQZ + EM} Yupf} X

(T —1)
X207z + (T —1)Sy]"

NVar(Bpe)

N —1
1., ,

- NN/S\IBGSBG [2 XiM+Xi]

1 1 < -
— Né\lBGé\BG [N ;XZMJ"XZ]

L ATol + 0%+ BSubB — BSu [Szmz + ) Sub} x

Zzmz +Zu) !
using A" = Q" =1Ip — Lii' or = M* = Lit' = Ip — QF,
1
~ > XAYX B Sgaz + tr(AN) Sy
i=1
1 PO
MT—_I)SWGSWG (51)
1 -1
LAo* +8'SuB — 'Sy [mzzcgz +Xum| XmB} (52)
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1 —~
NZ—?\IBGSBG (53)

L Tol+ 0%+ BFEuB — B8y [Szmz + Su) " Zub. (54)

However, under the assumption that

X202/ (T =1) + Sy Sy = [Bzmz + Zu] ' ZufB

VNBwe = Bse)

2N, [1/(T = 1)} [Szz/(T — 1) + u] " x

[(0® + BZuB)S20z/(T — 1) + oSy + {EuBB'Ey + (BZuB)E,, ] %
(Yzqz/(T —1) + Sul T+ Bzmz + ] ¢

(075202 + (0% + B ZuB)Szmz + 0oTSm + Sy + {ZuBB'Em + (BZuB)Z,,}]
[Szmz + Su] )

12.1 A matrix result

If U is a random, K x K matrix, and 3 is a fixed K x 1 vector, Var(UB) has i,i-th
element

Var(u,B) = B'Var(ug,)B
if u’(i) is the i-th row of U. Similarly,Var(U@) has i, j-th element
Cov(ugyB,u;)0) = ,B/Cov(u(i), u;))P.
Considering K = 2,

o =[5 ] Loty “Vtaas” ][5 5.
= (I, ® B)Var(vec(U')) (I, ® B)

Thus we can see that in general
Var(UB) =(Ix @ B")Var(vec(U"))(1x ® B)

So Var((W'AW3) can be written in terms of Var(vec(W'AW)), as A is symmetric.

12.2 Cov(Z' AWB, W AW ()

This covariance matrix is given by

E(Z AWBBW'AW) = ZAE(WBB'W'AW).
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WBBW'AW has i-th row WEZ.)BB'W/ AW and thus 1, j-th element
K K
w(BIW Aw; = <Z wﬂﬁl> (Z ﬁmw;nij>
l? m; 1 T T
= <Z wilﬁl) (Z Bud > wtmatswsj>
=1 m=1

t=1 s=1

The product wjw,ws; always has zero expectation, under the assumption that odd
moments of order 3 and 4 are zero.

12.3 E(Z'AT*MB3 M A*Z)

B(Z' AY MBS M'A*Z) = 7' AYE(MBB M')A* Z
M BB M’ has i, j-th element

K

K
my;) B6'm;) = [Z mirﬁr] [Z ijﬁS] .
=1 s=1

K K
(m(z /6/6 m(]) 61] ZZUMrsﬁrﬁs = 51]/6/21\/[/6

r=1 s=1
Thus
E(Z'ATMBB M AT Z;) = BXyBZ AT Z
12.4 E(M’A+M)
M'A* M has i, j-th element

T T
m;ATm; = ZZ My GysMs;,
P
E(m;A™m;) = Z Z 1550 nij = oarijtr(AY)
=1 s—1
E(M'A*M) = tr(A)Sy

12.5 E(M/A*ii'A* M)

M'ATii’ATM is of the form M'aa’M. Following the analysis for E(M’'A*M), we
obtain

E(M'aa’M) = tr(aa’)X) =a'aXy
E(M/AT{AM,) = iA*iSy,
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12.6 Var(vec(W'AW)) and Var(W/AWg) under Normality
Magnus and Neudecker (1988), p. 251, Theorem 12, provide, if z «~~ N(0,12), and A
is n X n, symmetric,
E(x'Az) = tr(AQ)
Var(x'Az) = 2tr(AQAQ) + 4’ AQAu
We need to generalise this to a matrix normal W, of order T' x K, but assume that

the rows of W are NI1D(0, X). The typical covariance required is Cov(w;Aw,, w;, Aw)
where w; is the i-th column of W. Consider

Qij = [ wi U’H[Sl I(H [;Ui.]:?wﬁfle-
J

Var(w;Aw;) = —tr

using (A® B)(C ® D) = (AC) ® (BD), and tr(A® B) = tr(A)tr(B). Consider next
0 w;
0 w;
A Wy
0

Ws

/ / / / / /
Qijirys = [ w; w; w, W } = 2w;Aw; + 2w, Aws.

[N e lile NG )

Now
Var(Qijrs) = 4Var(w,Aw;) + 4Var(w, Aws) + 8Cov(w;Aw;, w, Aws).

Applying our previous result
. 2

0100 Oii Oij Oir Ojs

N B 1 000 Oij 0jj Ojr Ojs
Var(Qijrs) = 2tr 000 1 ® A G Op O Ore ® I

L O O 1 0 Ois gjs Ors Ogs

— 9%r Oy 045 Oi Ois tr(AQ)

Oir Ujr Orr Opg



Thus

Cov(w;Aw;, w,, Aws)

In general,

In our case

Cov(w; Aw;, w, Aws)

tr

tr

tr

NN N

tr(B

B C
L+ D

[ B C
| C* D
[ B2+ CC*
?

2
Tij Ojj Ojr Ojs
r Oy O4j O4 Ois
Ois Ojs Oprs Oss
Oir Ujr Orr Ops
2
0ij 04 — tr Ors Oss
04 Oij Orr Ops

B C
c* D
?

]2> — tr(B?*) — tr(C?)

D —tr(B?) — tr(C?)

D? 4 OO D — tr(B?%) —tr(C?)

2| 0C*) + tr(D? + C*C) — tr(B?) — tr(C?)
tr(CC*) +tr(C*C) = 2tr(CC™).

ccr

|
|

Ujr
Oir

Ujs
Ois

I

Ois
Oir

Ojr0is + OjsOir

2Uir0is

Ujs
Ujr
2Ujrajs
Ojr0is + OjsOir

tr(AQ) [0jr0is + 0js04r]

|

This can be verified with some algebra, using x = [X}, .., X,,]' ~ N(0,9Q) =

E(XlX]Xle) = WijWkl + WirWg + WiW ik

(Anderson, 1958, p. 39). Our result also exhibits the necessary invariance to the
ordering of 4, j, r, s. As W/ AW has w}Aw; as i, j-th element, vec(WW'AW) has i varying
more rapidly than j, so if

then Var(vec(W’AW) has k, [-th element Cov(w]Aw;, w, Aws)
If K = 2, the pattern of subscripts is

i, j\l,m

bl

b

N — DN =
N DN = =

1,1

k=n(j—1)+il=n(s—1)+r

tr(A?) [or0is + 0j504]



and

Var(vec(W'AW))
2 2
20’171 20’1710'172 20’1720'171 20’172
2 2
2011021 01,1022+ 07y 011022+ 07y 2012022
2 2
2021011 01,1022 + 07y 011022+ 07y 2022012
2 2
20’172 20’2’10'2’2 20’2’20'2’1 20’272

= tr(A? (55)

We notice that the symmetry of W’ AW implies an implicit duplication in the wvec
operator, and ensures that in the last array, column 2 = column 3 and row 2 = row
3. Now stacking

Cov(wiAw;, w,. Aw,) = tr(A?) [0,04 + 04504)]
vertically, first on 7, we have
Cov(W' Aw;, w! Aw,) = tr(A?) [o,05 + 0j50,]
then with respect to 7,
Cov(vec(W'AW), w!. Aw,) = tr(A?) o, @ 0, + 0, @ 7] .
where o, is the r-th column of . Then we stack horizontally, first with respect to r,
Cov(vec(W'AW), W' Aw,) = tr(A*) [E @ o, + 0, @ Y]

then with respect to s,

Cov(vec(W' AW, vec(W' AW)
= tr(A){[Z®0o; - TQog |+E®T}
= Var(vec(W'AW)).
Finally, we need
Var(W' AW )

= (Ig@pf)tr(A{[2®o; -+ Lok |+Z@I}Ik®H)
= trA2 {[Zefor - Sofok |+L®F%} (Ik®p)
= tr(A){[S@fo; - Sefox |(Ix®B)+Ie(FH))
- trA2 [Bo1®E -+ Boxk®L|(Ix®6)+I® (L)}

(B8] @ X)(Ix ® B) + X ® (E6)}
A {(B'5) ® B8) + (B'EB)S} = tr(A%) {ZBF'S + (3'58)2} -

Checking this for K = 2,
51 ] { 01 012 ]
= Z:
g { By |’ o1 O |’
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and after some algebra

Var(W'AW(3)

tr(AZ) 226%0-%1 + 43185011012 + ﬁg((’ll@? ‘{‘20%2)
201012011 + B031(30%, 4+ 011092) + 205012092

237012011 + 8281 (303, + 011022) + 268501202
203503, + 48,82022012 + B (022011 + 03,)

which again can be obtained directly from (55).

13 Appendix 6

This appendix contains the graphs of the power curve of the standard Hausman test
(H-test) versus the one displayed by the robust formulation presented in Section 3
(HR-test) with different sample sizes.
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power %

0.10 0.20 0.30 0.40

H-test — — — - HR-test

Figure 6: Power function comparison when N=25, T=4
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power %

0.10 0.20 0.30 0.40 0.50

H-test — — — - HR-test

Figure 7: Power function comparison when N=25, T=10
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power %

= =2 NN WwWw A A OO OO OO N
g O o0 O U1 O O O oo o O 4 o

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

H-test — — — - HR-test

Figure 8: Power function comparison when N=25, T=20
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Figure 9: Power function comparison when N=275, T=4
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Figure 10: Power function comparison when N=275, T=10
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Figure 11: Power function comparison when N=275, T=20
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