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On the estimation of covariance matrices using

panel data artificial regressions
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Abstract

The use of artificial regressions to compute the variance of the differ-
ence of pairs of panel data estimators that cannot be ranked in terms of
efficiency is considered. It is illustrated how it is possible to get (asym-
totically) valid estimators of covariance matrices for differences between
estimators when the assumption that the error term in the auxiliary model
is IID is violated. We distinguish two possible deviations, one leading only
to a non-spherical-within groups covariance matrix and the second leading
to a non-spherical-between-groups covariance matrix also. It is shown to
what extent the use of an artificial regression with panel data can lead
to a robust estimator of the covariance matrix in the first case whereas it
leads to a non valid estimator in the second. An alternative step by step
procedure is presented.
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1 Introduction

One recurrent problem in applied studies is to compute the variance of the
difference between two estimators that cannot be ranked in terms of efficiency.
Facing this problem should be the rule rather than the exception in empirical
studies because the assumptions underlying the application of standard results
(e.g. Lemma 2.1 in Hausman, 1978) are too strong in many cases of study. For
instance, the assumption of spherical disturbances is restrictive. To neglect this
problem may lead to unreliable inference. However, theoretical solutions that
require a knowledge of an advanced programming language (e.g. Lee, 1996)
are often not suitable for the applied econometrician. The use of an artificial
regression (e.g. MacKinnon, 1992) may be helpful in some cases but covariance
matrices calculated using artificial regressions may not be asymptotically valid
when the assumption that the error term in the auxiliary model is IID is violated
(Davidson and MacKinnon, 1998).
This paper considers the use of artificial regressions to compute the variance

of the difference between pairs of panel data estimators. It illustrates how it
is possible to obtain valid estimates of covariance matrices between estimators
when the assumption that the error term in the auxiliary model is IID is violated.
These results can be used to perform Hausman tests (Hausman, 1978) robust
to deviations from the classical errors assumption. The appealing feature of
these methods for applied work is that they can be implemented in standard
statistical packages.
Dealing with panel data, we distinguish two possible deviations from the

assumption of spherical disturbances in the auxiliary model, one leading only
to a non-spherical-within-groups covariance matrix and the second leading to
a non-spherica-between-groups covariance matrix also. In other words, in the
first case we still deal with a block-diagonal matrix whereas in the latter also
non-zero elementss outside the diagonal blocks are allowed. It is shown to what
extent the use of an artificial regression with panel data can lead to a robust
estimator of the covariance matrix in the first case whereas it leads to a non valid
estimator in the second. In those cases, an alternative step by step procedure
is presented.

2 Within groups non spherical disturbances

O’Brien and Patacchini (2003) show that the use of a panel data artificial re-
gression and the application of the White’s formulae (White, 1984) can lead
to consistent covariance matrix estimators that are robust to heteroscedastic-
ity and/or autocorrelation within groups. They use these results to construct
a robust formulation of the Hausman test for correlated effects based on the
comparison between the Within Groups (WG) and the Between Groups (BG)
estimators, and robust to deviations from the assumption of spherical distur-
bances.
However a similar procedure can be used for the comparison of a variety of
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panel data estimators. The condition to be satisfied in order to obtain a valid
(robust) estimator of the covariance matrix is that the two estimators involved
in the procedure have to be constructed using orthogonal transformations of the
data. This ensures that the block diagonal structure of the covariance matrix is
maintained. For instance, let us consider the comparison between the General-
ized Instrumental Variables estimator using data in deviations from individual
time-means, hereafter IVD estimator and the same Generalized Instrumental
Variables estimator on the model in levels, hereafter IVL estimator. As in the
comparison between the BG and the WG estimators, we deal with two differ-
ent estimators that are obtained applying the same estimation method on data
transformed in different ways. If we choose an IV estimator on the model in
averages (between groups transformation) as IV estimator for the model in lev-
els we deal again with two orthogonal transformations of the data. The use of
an artificial regression will typically lead to the desired outcome.
Consider the general panel data model for individual i

yi
(T×1)

= Xi
(T×K)

β + vi
(T×1)

, i = 1, ..., N, (1)

where the variance-covariance matrix of the vi is

Ω =

 σ2η + σ2 . . . σ2η
...

. . .
...

σ2η . . . σ2η + σ2

 = σ2IT + σ2η ιι
0
,

and ι is a column vector of T ones. The NT × 1 vector of disturbances has
variance covariance matrix

Σ
(NT×NT )

= IN ⊗Ω.

This system of T equations in levels can be transformed into (T − 1) equations
in deviations and one in averages. We obtain½

y∗i = x
∗
iβ + v

∗
i

yi = xiβ + vi.

Estimating by IV the first group of equations, i.e. the ones in deviations from
individual time means, we obtain the IVD estimator, i.e. bβivd. Estimating by
IV the average equation we obtain the IVL estimator, i.e. bβivl.
Let

βivd = E
³bβivd´

and

βivl = E
³bβivl´ .
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Rewrite the system as½
y∗i = x∗iβivd + µ∗i − x∗iβivl + x∗i βivl
yi = xibβivl + µi.

Rearranging, we obtain½
y∗i = x∗i (βivd − βivl) + x

∗
iβivl + µ

∗
i

yi = xbβivl + µi.
Call

Y +i =

µ
y∗i
yi

¶
, W+

i =

µ
x∗i x∗i
0 xi

¶
,

β+ =

µ
β1
β2

¶
=

µ
βivd − βivl

βivl

¶
, µ+i =

µ
µ∗i
µi

¶
.

The augmented auxiliary model would be

Y +i =W+
i β

+ + µ+i , i = 1, ...,N. (2)

Estimating the model by IV, we obtain directly the variance of the difference
of the two estimators in the upper left part of the covariance matrix of β+.
If we now estimate this variance using White’s formulae (White, 1984), we
get consistent estimators robust to heteroscedasticity and/or dynamic effects
within groups. However, in standard econometric packages White’s consistent
estimators for IV estimators may not be implemented for panel data. In this
case, a practical possible solution can be to obtain the IV estimators as OLS
estimators on a further transformed model, as it is explained in the next section.
This approach is pursued in Appendix 1. The following Lemma is proved.

Lemma 1 Given model (2),

bβ1 = bβivd − bβivl, (3)

V ar(bβ1) = V ar ³bβivd − bβivl´ , (4)

An appropriate estimator dV ar(bβ1) consistently estimates V ar(bβ1). (5)
3 Between groups non spherical disturbances

Let us now turn our attention to cases when the covariance matrix of the aux-
iliary model is not block diagonal. Consider, for instance, the comparison be-
tween a IVD estimator and the WG estimator, that is between an IV estimator
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and a OLS estimator on the same transformation of the data (deviations from
individual time-means).
The formulation of such a test using a standard econometric package is not

straightforward. Unlike the cases considered in Section 2, here we do not directly
compare OLS estimators applied on different orthogonal transformations of the
data. In other words, it is not only necessary to manipulate the data according to
the different transformations, insert the new variables in an auxiliary regression
and then run OLS using White (1984) robust standard errors. The procedure
also needs to be adjusted. Some preliminaries are needed.
In static models, the most efficient Generalized Instrumental Variables esti-

mator is obtained by projecting the variables to be instrumented in the space
generated by the instruments. This is a case where the instruments are orthog-
onal to the initial errors and especially correlated with the initial regressors. It
can be shown that, given the properties of the projection matrix, it is equivalent
to run OLS in a regression where the regressors are the projected variables.1

Consider model Then, choose the instrumental matrix, say Z. Project the
variables we want to instrument in the space generated by Z

fX∗i = PZX∗i ,
where

PZ = Z(Z
0
Z)−1Z

0
.

If we assemble the data in a NT × 1 vector of dependent variables, Y ∗ and in
a NT ×NK matrix of regressors fX∗

bβivd = (fX∗0fX∗)−1fX∗Y ∗.
For the single individual i , construct the system½ ey∗i =fx∗iβ +fµ∗i

y∗i = x
∗
iβ + µ

∗
i .

Estimating by OLS the first group of equations, i.e. the ones in levels, we
obtain the IVD estimator, i.e. bβivd. Estimating by OLS the second group, i.e.
equations in deviations, we obtain the WG estimator, i.e. bβwg. However, the
use of an artificial regression, as it is exploited in Sections 2, is not suitable. In
Sections 2, because the between groups and the within groups transformations of
the disturbances are orthogonal, the variance covariance matrix in the auxiliary
model is block-diagonal. It is then estimated using the White (1984) robust
estimators. When other transformations of the data are used, the structure of
the variance covariance matrix in the auxiliary regression model can be more
complicated. The fact that the equation sets are not orthogonal is not taken
into consideration and the White’s estimators are not robust to the presence

1For further details and an extensive discussion on these issues see Bowden and Turkington
(1984).
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of inter-groups correlation. The use of a Newey-West robust OLS estimator
would not help either. The variance covariance matrix exhibits a pattern of
cross sectional dependence (i.e. particular form of non stationarity persistent
when N goes to infinity) that is not supported by these estimators. Therefore,
a consistent estimator for the variance of the difference of the two estimates
needs to be constructed step by step. Appendix 2 contains further clarification
and the implementations of an appropriate procedure.

4 Conclusions

The paper shows how to estimate the variance of the difference between two
panel data estimators that cannot be ranked in terms of efficiency using a stan-
dard statistical software. The results are directly applicable in empirical work.
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5 Appendix 1

Let us compare an IV estimator on the model transformed according to the
between groups transformation and an IV estimator on the model transformed
according to the within groups transformation. The notation follows O’Brien
and Patacchini (2003, Appendix 4).

The artificial regression of Y ∗ =
·
HY
GY

¸
on X∗ =

·
PZHX PZHX
0 PZGX

¸
gives coefficients bβ∗ = " bβivd − bβivlbβivl

#
. Results (3) and (4) in Lemma 1 directly

follow from the application of Lemma 13 and 14 in O’Brien and Patacchini (2003,
Appendix 4). Moreover we use again two orthogonal transformations.
Also in this case

V ar(Y ∗) =
·
HV ar(Y )H 0 0

0 GV ar(Y )G0

¸
=

·
σ2

T (1 + Tθ)IN 0
0 σ2IN(T−1)

¸
.

If now eX =

·
PZHX 0
0 PZGX

¸
,

V ar(bβ∗) = (X∗0X∗)−1X∗0V ar(Y ∗)X∗(X∗0X∗)−1

= A−1( eX0 eX)−1 eX0V ar(Y ∗) eX( eX0 eX)−1A−10 .
Next, we calculate this variance by separating the different components.eX 0V ar(Y ∗) eX =

·
X0H0P 0Z 0

0 X0G0P 0Z

¸ ·
σ2

T (1 + Tθ)IN 0
0 σ2IN(T−1)

¸·
PZHX 0
0 PZGX

¸
= σ2

·
X0H 0P 0Z 0

0 XG0P 0Z

¸ ·
(θ+ 1/T )PZHX 0

0 PZGX

¸
= σ2

·
(θ + 1/T )X 0H 0P 0ZHX 0

0 XG0P 0ZGX

¸
.

( eX0 eX)−1 = · (X0H 0P 0ZHX)
−1 0

0 (XG0P 0ZGX)
−1

¸
.

Thus
( eX0 eX)−1 eX0V ar(Y ∗) eX 0( eX 0 eX)−1
= σ2

·
(X0H0P 0ZHX)

−1 0
0 (XG0P 0ZGX)

−1

¸
×·

(θ + 1/T )X 0H 0P 0ZHX 0
0 XG0P 0ZGX

¸·
(X0H0P 0ZHX)

−1 0
0 (XG0P 0ZGX)

−1

¸
= σ2

·
(θ + 1/T )(X 0H 0P 0ZHX)

−1 0
0 (XG0P 0ZGX)

−1

¸
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and

A−1( eX0 eX)−1 eX 0V ar(Y ∗) eX0( eX0 eX)−1A−10
= σ2

·
I −I
0 I

¸ ·
(θ+ 1/T )(X0H0P 0ZHX)

−1 0
0 (XG0P 0ZGX)

−1

¸ ·
I 0
−I I

¸
= σ2

·
(θ + 1/T )(X0H 0P 0ZHX)

−1 −(XG0P 0ZGX)−1
0 (XG0P 0ZGX)

−1

¸·
I 0
−I I

¸
= σ2

·
(θ + 1/T )(X0H 0P 0ZHX)

−1 + (XG0P 0ZGX)
−1 −(XG0P 0ZGX)−1

−(XG0P 0ZGX)−1 (XG0P 0ZGX)
−1

¸
. (6)

We now need to find the variance-covariance matrix the artificial regression
will assume. This will be proportional to

(X∗0X∗)−1 = (A0 eX0 eXA)−1 = A−1( eX0 eX)−1A−10
=

·
I −I
0 I

¸·
(X0H 0P 0ZHX)

−1 0
0 (XG0P 0ZGX)

−1

¸ ·
I 0
−I I

¸
=

·
(X0H 0P 0ZHX)

−1 − (X 0G0P 0ZGX)
−1

0 (X0G0P 0ZGX)
−1

¸·
I 0
−I I

¸
=

·
(X0H 0P 0ZHX)

−1 + (X 0G0P 0ZGX)
−1 − (X0G0P 0ZGX)

−1

− (X 0G0P 0ZGX)
−1 (X0G0P 0ZGX)

−1

¸
. (7)

By comparing (6) with (7) it appears that an artificial regression is a valuable
device to estimate a suitable variance-covariance matrix.
We also need to consider the (White) robust OLS estimator which uses a

consistent estimator of X∗0V ar(Y ∗)X∗ under the assumption that V ar(Y ∗) is
diagonal.

eX0V ar(Y ∗) eX =

·
X 0H 0P 0Z 0

0 X0G0P 0Z

¸ ·
σ2Ω 0
0 σ2Ω

¸ ·
PZHX 0
0 PZGX

¸
= σ2

·
X0P 0Z 0
0 X 0G0P 0Z

¸·
Ω 0
0 Ω

¸ ·
PZHX 0
0 PZGX

¸
= σ2

·
X0H0P 0ZΩ 0

0 X 0G0P 0ZΩ

¸·
PZHX 0
0 PZGX

¸
= σ2

·
X0H0P 0ZΩPZHX 0

0 X0G0P 0ZΩPZGX

¸
.
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Denote for simplicity Γ = X0H 0P 0ZΩPZHX, Π = X
0G0P 0ZΩPZGX. Thus

( eX0 eX)−1 eX0V ar(Y ∗) eX 0( eX 0 eX)−1
= σ2

·
(X 0H 0P 0ZHX)

−1 0
0 (XG0P 0ZGX)

−1

¸
×·

Γ 0
0 Π

¸ ·
(X0H 0P 0ZHX)

−1 0
0 (XG0P 0ZGX)

−1

¸
= σ2

·
(X 0H 0P 0ZHX)

−1Γ 0

0 (X0G0P 0ZGX)
−1Π

¸ ·
(X 0H 0P 0ZHX)

−1 0

0 (X0G0P 0ZGX)
−1

¸
= σ2

·
(X 0H 0P 0ZHX)

−1Γ(X0H 0P 0ZHX)
−1 0

0 (X0G0P 0ZGX)
−1Π (X0G0P 0ZGX)

−1

¸
Denote for simplicity U = (X0H 0P 0ZHX)

−1Γ(X0H 0P 0ZHX)
−1,

V = (X0G0P 0ZGX)
−1Π (X 0G0P 0ZGX)

−1
.

A−1( eX 0 eX)−1 eX0V ar(Y ∗) eX 0( eX0 eX)−1A−10
= σ2

·
I −I
0 I

¸·
U 0
0 V

¸ ·
I 0
−I I

¸
= σ2

·
U −V
0 V

¸ ·
I 0
−I I

¸
= σ2

·
U + V −V
−V V

¸
.

The residuals from this regression of Y ∗ =
·
Y
GY

¸
onX∗ =

·
PZHX PZHX
0 PZGX

¸
to give coefficients bβ∗ = " bβivd − bβivlbβivd

#
can be obtained by stacking those from

Y on PZHX above those from GY on PZGX. Similarly to the first artificial
regression the first set of equations needs to be scaled by

k =
p
T/(1 + θT )

as otherwise there is no multiple of the residual sum of squares of the artificial
regression with expectation σ2. However, because in this case we are performing
an IV estimation by running OLS on a transformed model, the OLS residuals
do not provide a consistent estimator of the variance of the initial disturbances.
Both in the estimation of θ and in the test statistic, the sum of squares of the
residuals has to be calculated using the IV estimate of β and the untransformed
right hand side variables. An Hausman test can be calculated by carrying out

the artificial regression of Y ∗ =
· bkHY
GY

¸
on X∗ =

· bkPZHX bkPZHX
0 PZGX

¸
and constructing a Wald test, W , on the first K coefficients, using the following
correction:

Wiv =Wols

(RSSA+RSSB)iv
[NT−2K]

(RSSA+RSSB)ols
[NT−2K]

=Wols
(RSSA +RSSB)iv
(RSSA +RSSB)ols

,

where quantities with subscript iv are referred to the initial model and the ones
with subscript ols are referred to the transformed model.
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6 Appendix 2

Let us compare an IV estimator and an OLS estimator on the model in de-
viations. In this context, an artificial regression of the type used in Appendix
1 does not help in constructing a test robust for the presence of non spheri-
cal errors. In what follows, we explain why it is the case and we indicate an
alternative procedure.

Consider the artificial regression of Y ∗ =
·
GY
GY

¸
onX∗ =

·
PZGX PZGX
0 GX

¸
.

By applying Lemma 13 and 14 in O’Brien and Patacchini (2003, Appendix 4),

we get that bβ∗ = " bβivd − bβwgbβwg
#
. The disturbances ε∗ =

·
PZGu
Gu

¸
have a

covariance matrix E (ε∗ε∗0) = σ2
·
PZ PZ
PZ IN(T−1)

¸
, as GG0 = IN(T−1).

In this case, the transformations of the data used in the two sets of equations
are not orthogonal and V ar(Y ∗) is not diagonal. We have

V ar(Y ∗) =
·
GV ar(Y )G0 GV ar(Y )G0

GV ar(Y )G0 GV ar(Y )G0

¸
=

·
σ2IN(T−1) σ2IN(T−1)
σ2IN(T−1) σ2IN(T−1)

¸
.

If now eX =

·
PZGX 0
0 GX

¸
,

V ar(bβ∗) = (X∗0X∗)−1X∗0V ar(Y ∗)X∗(X∗0X∗)−1

= A−1( eX0 eX)−1 eX0V ar(Y ∗) eX( eX0 eX)−1A−10 .
Next, we calculate this variance by separating the different components.eX 0V ar(Y ∗) eX =

·
X0G0P 0Z 0
0 X0G0

¸·
σ2IN(T−1) σ2IN(T−1)
σ2IN(T−1) σ2IN(T−1)

¸·
PZGX 0
0 GX

¸
= σ2

·
X0G0P 0Z X0G0P 0Z
X 0G0 X0G0

¸ ·
PZGX 0
0 GX

¸
= σ2

·
X0G0P 0ZGX X 0G0P 0ZGX
X0G0P 0ZGX X0QX

¸
.

( eX0 eX)−1 = · (X0G0P 0ZGX)
−1

0

0 (X 0QX)−1

¸
.

Thus
( eX0 eX)−1 eX0V ar(Y ∗) eX 0( eX 0 eX)−1
= σ2

·
(X0G0P 0ZGX)

−1 0

0 (X 0QX)−1

¸
×·

X 0G0P 0ZGX X0G0P 0ZGX
X 0G0P 0ZGX X 0QX

¸·
(X0G0P 0ZGX)

−1 0

0 (X 0QX)−1

¸
= σ2

·
I I

(X0QX)−1 [X0G0P 0ZGX] I

¸ ·
(X 0G0P 0ZGX)

−1 0

0 (X 0QX)−1

¸
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= σ2
·
(X0G0P 0ZGX)

−1
(X 0QX)−1

(X0QX)−1 (X 0QX)−1

¸
and

A−1( eX0 eX)−1 eX 0V ar(Y ∗) eX0( eX0 eX)−1A−10
= σ2

·
I −I
0 I

¸ ·
(X0G0P 0ZGX)

−1 (X0QX)−1

(X0QX)−1 (X0QX)−1

¸ ·
I 0
−I I

¸
(8)

= σ2
·
(X 0G0P 0ZGX)

−1 − (X0QX)−1 0

(X 0QX)−1 (X 0QX)−1

¸·
I 0
−I I

¸
= σ2

·
(X 0G0P 0ZGX)

−1 − (X0QX)−1 0

0 (X 0QX)−1

¸
. (9)

If we run the artificial regression, the postulated variance-covariance matrix is
different. It will be proportional to

(X∗0X∗)−1 = (A0 eX 0 eXA)−1 = A−1( eX 0 eX)−1A−10
=

·
I −I
0 I

¸ ·
(X 0G0P 0ZGX)

−1 0

0 (X 0QX)−1

¸ ·
I 0
−I I

¸
=

·
(X0G0P 0ZGX)

−1 − (X0QX)−1

0 (X0QX)−1

¸ ·
I 0
−I I

¸
=

·
(X0G0P 0ZGX)

−1 + (X0QX)−1 − (X 0QX)−1

− (X0QX)−1 (X 0QX)−1

¸
.

The fact that the equation sets in the auxiliary regression constructed are not
orthogonal is not taken into consideration. A wrong answer will also come from
the White’s estimators. They are not robust to the presence of inter-groups
correlation. The use of a Newey-West robust OLS estimator would not help
either. The variance covariance matrix exhibits a pattern of cross sectional
dependence (i.e. particular form of non stationarity persistent when N goes
to infinity) that is not supported by these estimators. Therefore, a consistent
estimator for the variance of the difference of the two estimates (upper left
part of matrix (9)) needs to be constructed step by step. We need to recover
the matrices involved and a consistent estimate of σ. Recall that for the first
set we are performing an IV estimation by running OLS on a transformed
model. Therefore it is known that the OLS sum of squares are not a consistent
estimate of the variance of the initial disturbances because the transformed
model produces a non spherical variance-covariance matrix. The sum of squares
of the residuals coming from the initial model with the IV estimator should be
used instead.
However, notice that

bεiv = y −Xbβiv
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can be written as bεiv = y −Xbβols +Xbβols −Xbβiv
= bεols +X ³bβols − bβiv´

and therefore

bε0ivbεiv = bε0olsbεols + ³bβols − bβiv´0X0X
³bβols − bβiv´ .

The sum of squares of the residuals coming from the initial model with the
IV estimator is equal to the OLS sum of squares plus a function of the contrast
between the two estimators, which is what we want to test eventually. This
contaminates the variance estimate. Therefore, in order to get a consistent
estimator of the variance we can rely only on the second set.
We run OLS on the first set of equations and use White robust standard er-

rors. They produce a consistent estimator of X0V ar(Y )X under the assumption
that V ar(Y ) = σ2Ω, a block diagonal matrix.
We get

X0V ar(GY )X = X0G0P 0Z
£
σ2Ω

¤
PZGX

= σ2 (X 0G0P 0ZΩPZGX) .

So

(X 0X)−1X0V ar(Y )X0(X0X)−1

= σ21 (X
0G0P 0ZGX)

−1
(X0G0P 0ZΩPZGX) (X

0G0P 0ZGX)
−1
.

In order to get the matrix of interest, we will divide the estimate of this
variance by the obtained bσ21.
Denote Ψ = (X0G0P 0ZGX)

−1 (X0G0P 0ZΩPZGX) (X
0G0P 0ZGX)

−1
.

Similarly, run OLS on the first set of equations and use White robust stan-
dard errors.
We get

X0V ar(GY )X = X 0G0
£
σ2Ω

¤
GX

= σ2 (X0G0ΩGX) .

So

(X0X)−1X 0V ar(Y )X0(X0X)−1

= σ22 (X
0QX)−1 (X0G0ΩGX) (X0QX)−1 .

Denote Θ = (X0QX)−1 (X0G0ΩGX) (X0QX)−1 .
A robust and consistent estimator of the precision matrix in the Wald test

is2 hdV ar ³bβivd − bβwg´i−1 = bσ22 (Ψ−Θ) .
2Note that the precision matrix may not always be positive definite in finite samples.
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