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ABSTRACT

University of Southampton,

Faculty of Physical and Applied Science

School of Physics and Astronomy

DOCTOR OF PHILOSOPHY

“Family Symmetries With Extra Dimensions”

by Toby John Burrows

Possibly one of the most interesting unanswered questions posed by the Standard

Model is an explanation for the existence of three light generations of matter. Perhaps

the most conservative extension to the Standard Model to offer an explanation is to

include a symmetry between the families. One of the most promising candidates for

this symmetry is the discrete group A4, the symmetry group of the tetrahedron.

Extra dimensions have long been considered to be included in a final “Theory

Of Everything”. More recently research into String Theory has led to more interest

in extra dimensional theories. The geometry of these extra dimensions has also been

used to generate discrete symmetries which may be exploited as a family symmetry.

Grand Unified Theories seek to unify electromagnetism, the weak and the

strong forces into a single unified force at high energy. If we wish for such a unification

then restrictions are placed upon any family symmetry we may use.

We study models which seek to explain the large leptonic mixing angles together

with the small quark mixing angles and large quark hierarchy by considering models

which incorporate the use of extra dimensions together with Grand Unified and family

symmetries.
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Chapter 1

Introduction

1.1 Motivation and outline

The Standard Model with the inclusion of right-handed neutrinos explains experi-

mental data to date. However at a theoretical level there are many good reasons to

suppose that there is more physics to be discovered beyond the Standard Model. Ex-

tensions to the Standard Model include Supersymmetry (SUSY) and Grand Unified

Theories (GUTs) which are theoretically appealing, short reviews are contained in

subsections 1.4 and 1.5.

The puzzle of why there are three generations of matter is still very much an

open question. In the Standard Model the fermion masses and mixings are simply

parameters to be determined by experiment. To go beyond the Standard Model we

must propose some underlying mechanism which generates these masses and mixings.

The picture is further complicated by neutrino data which shows that in contrast to

the small mixing angles in the quark sector the leptons have quite large mixings.

Perhaps the most conservative and minimal extension of the Standard Model to

explain the existence of the three families is to propose a so-called family symmetry.

As gauge symmetries relate different particles within a family a family symmetry

relates particles between families.

The remainder of chapter 1 provides a brief introduction to the Standard Model

1



along with brief introductions to Supersymmetry (section 1.4) and Grand Unified

Theories (section 1.5). Section 1.6 serves as an introduction and review of family

symmetries, a review of an important A4 model is also given. Also included is a brief

overview of the Froggatt-Nielsen mechanism along with a toy model to illustrate the

concept of a family symmetry. Chapter 1 is concluded with a short introduction to

the Seesaw mechanism in section 1.6.7.

Chapter 2 introduces the concept of extra dimensions in particle physics and

the use of orbifolds is discussed. A brief review of a model presented in [3] is given

where a family symmetry is generated from the geometry of the extra dimension.

Recent models using extra dimensions are also reviewed.

Chapter 3 presents original work [1] on explaining the origin of the fermion

masses and mixings using a discrete family symmetry. The model uses a family

symmetry derived from the geometry of an extra dimension as in [3] but also extends

it from a purely leptonic theory to an SU(5) Grand Unified Theory.

Chapter 4 presents original work [2] again using a discrete family symmetry

namely A4 and orbifolded extra dimensions. The family symmetry is not derived

from the geometry of the extra dimensions but a mass hierarchy is generated in

part by bulk suppression factors originating from the size of the extra dimensions.

Another interesting feature of the model is the use of orbifolding to achieve the

vacuum alignment of the flavons.

Chapter 5 serves as a brief conclusion and summary of the thesis.

1.1.1 Weyl spinors

As left-handed and right-handed particles are treated differently under the gauge

group it is often more convenient to use a chiral basis using 2 component Weyl

Spinors.

The familiar 4-component Dirac spinor is reducible into 2 2-component Weyl

2



spinors

Ψ =







ψL

ψR






=







ζα

η†α̇






. (1.1.1)

If the Dirac spinor has the same undotted and dotted Weyl spinors (η = ζ, ψL ≡ ψR)

then it is called a Majorana∗ spinor. The hermitian conjugate of a left-handed spinor

is a right-handed spinor and vice-versa:

(η†α̇)† = ηα. (1.1.2)

Whether the indices α are raised or lowered is important, they are raised and lowered

by the anti-symmetric Levi-Civita tensors ǫαβ or ǫαβ in the obvious way ζα = ǫαβζ
β,

similarly for the dotted versions. In this thesis we will in general omit the indices for

simplicity, with the understanding that two left-handed spinors contract as ζη = ζαηα

and for right-handed spinors as ζ†η† = ζ†α̇η
†α̇.

Dirac and Majorana masses

In the above notation a 4-component Dirac spinor ΨD is given by:

ΨD =







ξα

χ†α̇






, and Ψ̄D =

(

χα ξ†α̇

)

. (1.1.3)

We shall now rewrite the Dirac Lagrangian using this notation,

LD = iΨ̄Dγ
µ∂µΨD −mDΨ̄DΨD (1.1.4)

= iξ†σ̄µ∂µξ + iχσ̄µ∂µχ
† −mD(ξχ+ ξ†χ†). (1.1.5)

If we contrast this with a Majorana spinor given by:

ΨM =







ξα

ξ†α̇






, and Ψ̄M =

(

ξα ξ†α̇

)

. (1.1.6)

∗After Ettore Majorana, born 1906, Catania, Sicily and presumed disappeared at sea 1938 [4].
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then the Lagrangian may be rewritten in the 2-component Weyl form as:

LM =
i

2
Ψ̄Mγ

µ∂µΨM − 1

2
mMΨ̄MΨM (1.1.7)

= iξ†σ̄µ∂µξ −
1

2
mM(ξξ + ξ†ξ†). (1.1.8)

We can now see that the Dirac mass couples left and right-handed fields (ξχ) to-

gether whereas the Majorana masses couple left-handed and right-handed fields to

themselves, (ξξ) and (ξ†ξ†).

Right and Left-handed notation

Often in GUTs when we need to unify right-handed and left-handed fields within the

same representation it is useful to remember that the charge conjugate of a right-

handed field transforms as a left-handed field. In this thesis we shall either use the

notation ψL and ψR to denote left and right-handed fields or we shall use ψ and ψc.

The advantage of the latter notation is that we can place the charge conjugate of a

right-handed field in a GUT representation with left-handed fields.

1.2 The Standard Model

Particles in nature exhibit similar properties, this is suggestive of symmetries which

these particles obey. The weak interactions suggest that fermions be grouped into

doublets, and the quarks must come in three colours. The need for three colours

originally arose from the requirement that three quarks with the same quantum

numbers live within hadrons, therefore to be compatible with the Pauli exclusion

principle they each needed to be a different colour. Additional support for the three

colours comes from decay widths and annihilation cross sections. This suggests that

strong interactions could be described by SU(3) and weak interactions by SU(2).

Electromagnetic interactions don’t change the quantum numbers of the interacting

particles so a U(1) group can also be used. The Standard Model [5] is based upon

the gauge group:

SU(3)C × SU(2)L × U(1). (1.2.1)

4



Though colour was initially an ad-hoc introduction it is now viewed on a much more

fundamental level. In an analogous way to the electric charge being the source of the

electric field then colour charge is the source of the colour field. Weak interactions

have “charge” given by the third component of weak isospin T3. Only left-handed

particles are charged under weak isospin, right-handed particles are placed into singlet

representations a summary of charges under the Standard Model is given in table

1.1. Excluding right-handed neutrinos which will be addressed in subsection 1.6.7,

the Standard Model contains 15 matter fields within each generation: there are 2

left-handed lepton fields (νe, e
−)L and 1 right-handed lepton e+R, there are 6 left-

handed quark fields 3 × (u, d)L and 6 right-handed quark fields 3 × uR and 3 × dR

in both cases the factor of 3 comes from the fact that there are 3 colours. The

SU(3)C is the gauge group of Quantum Chromodynamics (QCD) which describes

the coloured particles i.e. quarks and gluons. The rest of the Standard Model gauge

group is the Electroweak group SU(2)L×U(1)Y which is broken at low energies. The

electroweak gauge bosons are the weak gauge bosons W+,W−, Z0 and the photon γ

of the electromagnetic interactions. Electromagnetic interactions originate from the

interchange of the neutral gauge boson from SU(2)L as well as the gauge boson from

U(1), as such the charge of the U(1) group is not the same as the electric charge the

electric charge is given by the Gell-Mann-Nishijima relation Qem = T3 + Y
2 where

T3 is isospin, the third generator associated with SU(2)L, and Y is the hypercharge

from the U(1)Y gauge group.

The Higgs mechanism Fermion mass terms cannot simply arise in the Lagrangian

as they are excluded by the Standard Model gauge group. Taking a Dirac electron

mass term as an example, meec is not invariant under SU(2)L. Since electrons obvi-

ously do have mass this is solved by using the Higgs doublet φ. Since φ is an SU(2)L

doublet we can form invariant terms by using φ together with the lepton doublet l,

and similarly for the quark Dirac mass terms. These terms are contained within the

yukawa sector of the Lagrangian:

Lyuk = yiju q̄Liφ̃uRj + yijd q̄LiφdRj + yije l̄LiφeRj + yijν l̄Liφ̃νRj + h.c. (1.2.2)

5



Generations Quantum Numbers

helicity 1 2 3 Q T3 YW

L

(

νe

e

)

L

(

νµ

µ

)

L

(

ντ

τ

)

L

0

−1

1/2

−1/2

−1

−1

(

u

d′

)

L

(

c

s′

)

L

(

t

b′

)

L

2/3

−1/3

1/2

−1/2

1/3

1/3

R

eR µR τR -1 0 -2

uR cR tR 2/3 0 4/3

dR sR bR -1/3 0 -2/3

Table 1.1: The particle content of the Standard Model
The quantum numbers under the electroweak gauge group. The electric charge is labelled

Q, the third component of isospin is given by T3 and weak hypercharge is given by YW . The

up(u), down(d), strange(s), charm(c) top(t) and bottom(b) quark fields have three colours

which have been omitted in the table. The weak isospin partners of the electron(e), muon(µ)

and tau-on(τ) are the neutrinos ve, vµ, ντ . The primes on the down strange and bottom quarks

are to label the interaction eigenstates which are superpositions of the mass eigenstates i.e.

the observed particles. This superposition is described by the Cabibbo-Kobayashi-Maskawa

(CKM) matrix. Not listed in the table is the Higgs boson which transforms as an SU(2)L

doublet with hypercharge of 1.

The i and j are family indices with the SU(2)L and SU(3)C indices having been sup-

pressed for simplicity. The Yukawa couplings yij of the Higgs boson to the fermions

govern the masses of the Standard Model fermions, after spontaneous symmetry

breaking where the Higgs boson obtains a vacuum expectation value (VEV).

The above Yukawa interactions can only give rise to Dirac masses, where a

left-handed and right-handed fermion, or equivalently the charge conjugate of a right-

handed fermion as displayed above, are coupled together to form a term mLRfLfR.

Majorana mass terms couple left-handed fields to left-handed fields and right-handed

fields to right-handed fields. Of the fields introduced so far it is possible to introduce

such masses for the right-handed neutrinos, νR, only. We are allowed to do this

because the right-handed neutrinos are neutral under the Standard Model gauge

group and so a mass term MνRνR is not forbidden.

The down, strange and bottom quarks in table 1.1 are shown in their interaction

6



eigenstates which are superpositions of the observed mass eigenstates, the mixing

between these states is given by the CKM matrix. The CKM matrix is given by the

product of two unitary matrices which diagonalise yu and yd. If V L,R
u diagonalises

yu by V L
u yuV

R
u

†
and similarly V L,R

d for yd, then the CKM matrix VCKM is given by

VCKM ≡ V L
u V

L
d

†
. The norm of the elements of the CKM matrix are given by [6]:

|VCKM(Mweak)| ∼

















0.97 0.23 0.004

0.23 0.97 0.04

0.008 0.04 0.99

















. (1.2.3)

The CKM matrix can be parametrised a number of ways the most famous of which

is probably the Wolfenstein parametrisation [7]:

VCKM =

















1 − λ2

2 λ Aλ3(ρ− iη)

−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1

















(1.2.4)

where λ ∼ 0.22, A ∼ 0.82, ρ ∼ −0.22, η ∼ 0.22 at the weak scale. At one loop order

only the parameter A changes significantly and even at two loop order A remains

the same order of magnitude up to GUT scales [8]. The Yukawa couplings are the

majority of the unknown parameters in the Standard Model. In the quark sector

they correspond to 6 quark masses, 3 mixing angles and a complex phase. For the

lepton sector we also have 6 lepton masses, 3 mixing angles and a complex phase

assuming that the light neutrinos have only Dirac masses. If we include the right-

handed neutrino Majornana masses then the number of free parameters obviously

increases.

In addition to these parameters the Standard Model has the following pa-

rameters: in the Higgs sector the vacuum expectation value and quartic coupling

coefficient. In the gauge sector: the SU(3)C gauge coupling g3, the SU(2)L gauge

coupling g and the U(1)Y gauge coupling g′. There is also θQCD which parametrises

the CP violation of the strong interactions.
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1.3 Neutrinos

Neutrinos are unique among the fermions of the Standard Model in that they are

uncharged. This special status allows the neutrinos more freedom in the way a mass

term may be written down. For charged fermions the only allowed mass term in the

so-called Dirac mass. The Dirac mass term connects fields of opposite handedness,

a Dirac mass term therefore looks like mDνν
c. However for the neutral neutrinos

don’t have such a constraint and we may write down a so-called Majorana mass term

connecting fields of the same chirality. The Majorana mass term has the form mMνν

ormMν
cνc. We can immediately see that the Dirac mass is the only type of mass term

that we may write down for a charged fermion without violating charge conservation.

This stems from a Majorana particle being its own anti-particle, a Majorana mass

vertex creates two identical fields, if the field carried a non-zero charge the mass

vertex would clearly not conserve the charge. Charged fermions therefore must be

Dirac particles where their anti-particle has opposite chirality and the mass vertex

creates two oppositely charged particles.

Though we may write down neutrinos with Majorana mass, that doesn’t nec-

essarily mean that they are Majorana particles in the real world. One important

prediction of Majorana neutrinos is the existence of neutrino-less double beta decay

(ββ0ν) which can only arise if the neutrinos are Majorana particles. Numerous ex-

periments have been devised to look for such a decay, see [9] for a review of ββ0ν .

Even though we may write a Majorana mass for the neutrino there is nothing to stop

us from also writing down a Dirac mass at the same time, such a possibility makes

the various Seesaw mechanisms possible providing a natural explanation for the very

small observed neutrino masses.

Neutrino oscillations imply the existence of neutrino mass, thus the Standard

Model (without the right-handed neutrino) must be an incomplete description of

nature. The existence of a neutrino mass is to date the only evidence of physics

beyond the Standard Model in the realm of particle physics. The Standard Model

doesn’t contain a right-handed neutrino and as such there is no coupling of the form

yνHlν
c which would give the neutrinos mass after symmetry breaking in the same

8



manner as other particles of the Standard Model. A straightforward way to extend

the Standard Model to include neutrino mass would therefore seem to be to include

a right-handed neutrino, this would also make the model symmetric with respect to

quarks and leptons. However there are problems with this seemingly easy extension

of the Standard Model. The first problem we see immediately is that the Yukawa

coupling yνHlν
c we would naturally expect to be of the same order as the quark

and charged leptons. However experiment suggests that neutrino masses are at least

a factor of 106 smaller than the smallest of the quark and charged lepton masses.

Therefore neutrino mass not only implies the existence of the right-handed neutrinos

but also the existence of some new physics which would enable us to understand why

we have such small neutrino masses. A plausible explanation for the small neutrino

masses lies in the Seesaw mechanism which makes use of the neutrinos being unique

among known fermions in that they can have Majorana mass as described earlier. It

has been commented [10] that we may have a better explanation of the 106 factor

in neutrino masses than we do for the similar 106 factor between the top quark and

electron masses for which at this present time there is no accepted explanation. The

Seesaw mechanism and varieties of it are described below in section 1.6.7. Though

the Seesaw mechanism provides an elegant and natural explanation for the lightness

of neutrinos there are alternatives to the Seesaw which also seek to explain the small

neutrino masses. In such theories the neutrinos can be either Dirac or Majorana

fields, they often predict observable charged lepton lepton-flavour violating signals,

detection of which could help eliminate some of several theoretical explanations for

the origin of the neutrino masses.

1.3.1 Data

As neutrinos are massive, the masses and mixings are as important parameters to

understanding nature as the masses and mixings of the charged lepton and quark

sectors. Neutrino oscillations arise from a simple quantum mechanical phenomenon

during their propagation causing flavour changes. Oscillations are possible due to

the existence of lepton mixing in an entirely analogous manner to quark mixing. In

quark mixing we have the CKM matrix describing the mixing whereas the leptonic

9



version is called the Pontecorvo-Maki-Nakagawa-Sakata matrix (commonly MNS but

also known as the PMNS or MNSP matrix). If we consider a basis where the charged

lepton mass matrix is diagonal then we may write the neutrino mass and flavour

states as:

νi = Uiανα. (1.3.1)

The neutrinos with Roman indices are the mass (observed) eigenstates and the neu-

trinos with Greek indices are the flavour (interaction) eigenstates. The matrix Uiα

is the MNS matrix which relates the two sets of states, in this way we can easily see

how neutrino oscillations occur. Every flavour eigenstate is a linear combination of

mass eigenstates which will change during propagation as each mass eigenstate will

have a phase factor eiEit. Since neutrinos are very light then we may take m ≪ pi

and therefore Ei =
√

p2 +m2
i ∼ p(1+

m2

i

2E2 + . . . ), then each mass state has an energy

given by Ei ∼ E +
m2

i

2E . We can now calculate approximately the probability of the

oscillation between two flavour states when a neutrino propagates a given distance.

If we call this distance L then the transition probability from state α to β is given

by

Pαβ =

∣

∣

∣

∣

UiαU
∗
iβe

−im2
i L

2E

∣

∣

∣

∣

2

. (1.3.2)

We can express Pαβ in terms of deviations from the identity matrix as Pαβ = δαβ +

Dαβ with the deviation Dαβ given by:

Dαβ = −4
∑

i>j

ℜ(U∗
αiUβiUαjU

∗
βj) sin2

(

∆m2
ij

4E

)

+ 2ℑ(U∗
αiUβiUαjU

∗
βj) sin

(

∆m2
ij

2E

)

(1.3.3)

The key point is that although the overall mass scale isn’t measurable the

squared difference ∆m2
ij = m2

i −m2
j is, a summary of the oscillation data is given in

table 1.2.

The angles in table 1.2 refer to the standard parametrisation of the neutrino
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Parameter best fit 2σ 3σ

∆m2
21

[

10−5eV2
]

7.65+0.23
−0.20 7.25-8.11 7.05-8.34

∆m2
31

[

10−3eV2
]

2.40+0.12
−0.11 2.18-2.64 2.07-2.75

sin2 θ12 0.304+0.022
−0.016 0.27-0.35 0.25-0.37

sin2 θ23 0.50+0.07
−0.06 0.39-0.63 0.36-0.67

sin2 θ13 0.01+0.016
−0.011 ≤ 0.040 ≤ 0.056

Table 1.2: Neutrino Data
Best-fit values, 1σ errors, 2σ and 3σ intervals (1 d.o.f.) for the three flavour neutrino oscil-

lation parameters from global data (from [11]).

mixing matrix:

U =

















c13c12 s12c13 s13

−s12c23 − s23s13c12 c23c12 − s23s12s13 s23c13

s23s12 − s13c23c12 −s23c12 − s13s12c23 c23c13

















, (1.3.4)

where cij, sij refer to cos θij and sin θij respectively. The angle θ12 is referred to as

the solar angle θ⊙, θ23 is the atmospheric angle θ@ and finally the angle θ13 is the

reactor angle θr. The names of the various angles refer to the types of experiment

used to measure them.

1.3.2 Tri-Bimaximal mixing

The data in table 1.2 is consistent with the so-called Tri-Bimaximal mixing scheme

first proposed by Harrison, Perkins and Scott [12]. This scheme has:

sin2 θ⊙ = 1/3, (1.3.5)

sin2 θ@ = 1/2, (1.3.6)

sin2 θr = 0, (1.3.7)
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leading to the MNS mixing matrix of:

UMNS =

















√

2
3

√

1
3 0

−
√

1
6

√

1
3

√

1
2

√

1
6 −

√

1
3

√

1
2

















, (1.3.8)

contrast these large mixing angles with the quark sector and we see that the mixings

in the lepton sector are very much larger than the quark sector (the Cabibbo angle is

the largest quark mixing angle at sin θC ∼ 0.23). Such a mismatch is a challenge for

models which seek to unify leptons and quarks within some shared symmetry(s). The

focus of this thesis will be the construction of models which predict Tri-Bimaximal

mixing.

1.4 Supersymmetry

Supersymmetry is a symmetry between bosons and fermions. It can be realised in

nature if we assume that each particle with spin j has a supersymmetric partner

with spin j ± 1/2. The particle spectrum is therefore doubled, we can assign the

particles to supermultiplets. The vector supermultiplet contains the gauge bosons

and the chiral multiplet contains the matter fields. However the supersymmetric

particles “sparticles” have so far not been observed in nature which leaves us with

two possibilities: 1) Supersymmetry is an nice idea but it has nothing to do with

reality or 2) Supersymmetry is not exact and the sparticles are heavier than the

particles and thus haven’t been observed yet. Support for 2 is widespread as there

are many good reasons for believing in supersymmetry:

Supersymmetry solves the hierarchy problem: The hierarchy problem [13] of

the Standard Model stems from the Higgs mass being quadratically dependent on the

cutoff at which new physics appears. The Higgs mass as yet hasn’t been measured

experimentally however we know that since it sets the scale of electroweak breaking

it must be O(102) GeV. If the new physics appears at the Planck scale then the ratio
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Multiplet

Chiral Vector

J = 1/2 J = 0 J = 1 J = 1/2

qL, uR, dR q̃L, ũR, d̃R g g̃

lL, eR l̃L, ẽR W±,W 0 W̃±, W̃ 0

H̃1, H̃2 H1,H2 B B̃

Table 1.3: A list of the Standard Model particles alongside their su-
persymmetric partners in the MSSM

of the Higgs mass and the cutoff is O(10−17) which would require fine tuning between

the tree level mass and the radiative corrections. Supersymmetry solves the hierarchy

problem by introducing new diagrams to the contribution to the quadratic divergence

of the Higgs mass, these diagrams exactly cancel the Standard Model contributions

due to the -1 introduced due to the fermion loop.

Supersymmetry offers an explanation for dark matter: There is a commonly

assumed symmetry called “R-parity” in supersymmetric models, for example see [13]

for details. A consequence of this symmetry is that there should exist a stable

supersymmetric particle, to so-called LSP (lightest supersymmetric particle). such

a particle could be a viable candidate for a dark matter WIMP (weakly interacting

massive particle).

Supersymmetry is required by String Theory: String theory is one of the

most promising candidates for a theory of everything. In many string theories super-

symmetry is a natural part of the theory. If we wish to reconcile some quantum field

theory with general relativity at some high energy scale in some string theory then

supersymmetry will have to be included at some point.

Supersymmetry unifies the coupling constants: Another extremely nice fea-

ture of supersymmetry at low energy is that there is apparent unification of the

coupling constants. The Standard Model doesn’t quite unify the coupling constants

however if superpartners are introduced at around the TeV scale then the coupling

constants evolve differently and the three couplings run together.
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Figure 1.1: Running coupling constants, from [13]
The dotted lines represent the evolution of the coupling constants in the absence of Super-

symmetry. The solid lines show that when Supersymmetry is included the coupling constants

unify.

1.5 Review of Grand Unified Theories

The Standard Model relates charged leptons and neutrinos under the SU(2)L sym-

metry which is broken via the Higgs mechanism. In a similar way it may be possible

to relate quarks and leptons under some larger symmetry at a higher energy scale

which is broken to the Standard Model at low energies. Apart from gravity each of

the known forces, electromagnetism, the weak and strong forces, is associated with a

Lie algebra, this suggests that it may be possible to unify the forces within a single

simple Lie algebra, such theories are called Grand Unified Theories (GUTs).

If such a GUT were to exist then because the Standard Model gauge group is

rank 4 therefore any GUT group must be rank 4 or larger. Of rank 4 Lie groups there

are nine which have one coupling strength. Georgi and Glashow argued [14] that seven

of these nine groups may be excluded since they don’t have complex representations,

this leaves is with SU(5) and SU(3)⊗SU(3). As SU(3)⊗SU(3) cannot accommodate

integer and fractional charges SU(5) is the only viable rank 4 GUT group. Though

we will mainly use SU(5) other gauge groups are available of particular note is SO(10)

which has a 16 dimensional representation which naturally contains a right-handed

neutrino (15 Standard Model fields + right-handed neutrino). Many string theories

make use of the group E8 whose dynkin diagram is shown in figure 1.2, by removing
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the right-most root we eventually get to SU(5) and the Standard Model. Though

proving nothing this does suggest the route to take to build from the Standard Model

through GUTs to a String Theory.

1.5.1 The SU(5) Grand Unified Theory

The SU(5) grand unified model was one of the first attempts to unify the Standard

Model within an larger gauge group, the model is often referred to as the Georgi-

Glashow model after Howard Georgi and S. L. Glashow [14]. The 15 left-handed

fields of the Standard Model may be placed into a 5̄⊕ 10 of SU(5):

5̄ =

































dcr

dcg

dcb

e−

ν

































,10 =

































0 ucb −ucg ur dr

−ucb 0 ucr ug dg

ucg −ucr 0 ub db

−ur −ug −ub 0 ec

−dr −dg −db −ec 0

































. (1.5.1)

The SU(5) group has 24 generators which can be represented by generalised Gell-

Mann matrices. The 24 gauge bosons transform as the adjoint representation as:

24 =

































Grr − 2B√
30

Grg Grb Xc
r Y c

r

Ggr Ggb − 2B√
30

Ggb Xc
g Y c

g

Gbr Gbg Gbb − 2B√
30

Xc
b Y c

b

Xr Xg Xb
W 3√

2
+ 3B√

30
W+

Yr Yg Yb W− −W 3√
2

+ 3B√
30

































. (1.5.2)

In addition to the 12 gauge bosons of the Standard Model the Georgi-Glashow theory

also includes 12 new Baryon-Lepton number violating X and Y bosons.

Charge prediction: A useful feature of the SU(5) GUT is the prediction of charges

of the particles. Since the quarks and leptons are assigned to the same multiplet then
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E8

E7

E6

SO(10)

SU(5)

Standard Model

Figure 1.2: Dynkin diagrams of GUT groups
Dynkin diagrams of GUT groups: by removing the right-most root from the diagram
of E8 we find that we go through the gauge groups E7 → E6 → SO(10) → SU(5) →
SM reaching the Standard Model gauge group
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Figure 1.3: Proton Decay via SU(5) Gauge Bosons
The new SU(5) gauge bosons, often called leptoquark bosons, introduce new transitions

between quarks and leptons. These new transitions result in proton decay.

their charges must be related as the trace of any generator of SU(5) must be zero.

Acting the charge operator on the fundamental representation gives us:

TrQ = Tr(qdc , qdc , qdc , e, 0) = 0. (1.5.3)

This gives us the prediction that the charge on the d-quark must be 1
3 the charge of

the electron i.e. −1
3 . The theory also predicts the charge of the u-quark being +2

3 .

Proton Decay and Doublet-Triplet splitting: The X and Y gauge bosons can

induce proton decay because they introduce transitions between quarks and leptons,

such transitions violate lepton and baryon number but the difference B − L is con-

served in these transitions. Some example decays are shown in figure 1.3.

In SU(5) the breaking of the electroweak symmetry is achieved by a 5-plet of

Higgs fields, the minimum of the potential is chosen to be:

〈H5〉 = v

































0

0

0

0

1

































. (1.5.4)

Where the fourth and fifth entries correspond to the SU(2) doublet of the Standard
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Figure 1.4: Triplet Higgs mediate nucleon decay
A rather troublesome feature of the SU(5) model is the appearance of coloured triplet Higgs.

These transitions must be suppressed to get a realistic rate of proton decay.

Model. Since the colour triplet Higgs fields couple to all fermions with mass they can

induce proton decay via the diagram in figure 1.4.

GUT relations: In the SU(5) GUT theory both the charged lepton and down

quark yukawa couplings are given by terms of the form yijH5̄i10j if the Higgs multi-

plet is taken to be in the fundamental representation (i.e. 5̄) then the yukawa matrices

ycharged lepton, ydown will be transposes of each other this leads to the relation, at the

GUT scale, that the masses will be related:

me = md (1.5.5)

mµ = ms (1.5.6)

mτ = mb. (1.5.7)

Such a relation is in conflict with data which is a problem for the SU(5) theory.

However mechanisms have been proposed [15] that allow an SU(5) GUT to evade

these relations.

1.5.2 Georgi-Jarlskog mechanism

The GUT mass relations (equations (1.5.5),(1.5.6),(1.5.7)) predicted by the SU(5)

theory are in contradiction with experiment. Though we won’t make use of it in

this thesis, a mechanism exists [15] which allows an SU(5) gauge theory to correctly

predict the GUT mass relations. The key idea is that in addition to the 5 of Higgs

a 45 of Higgs fields is introduced. This is the other choice of the representation we

can choose for the Higgs since 5̄ ⊗ 10 = 5⊕ 45. The particular form of the VEV of
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the 45 introduces a factor of 3 in the mass matrices for the charged leptons relative

to the down quark mass matrix which gives correct GUT relations. Perhaps the best

way to understand the mechanism is to review the model presented in [15], the field

content is as follows (note:group indices have been omitted for simplicity): We have

right-handed 5-plets of SU(5)

FjR, j = 1 − 3 (1.5.8)

and also left-handed 10-plets

TjL, j = 1 − 3. (1.5.9)

There are three 5s and a 45 of Higgs

H5j , 〈H5j〉 =

































0

0

0

0

vj

































, j = 1 − 3 (1.5.10)

H45 , 〈H45
a5
c 〉 = K

































1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −3 0

0 0 0 0 0

































, (1.5.11)

where the matrix representing the VEV of the 45-plet is the projection in the 5th

direction in the third tensor index where there is a non-zero VEV. If we consider the

yukawa sector of the Lagrangian is given by:

Ly = {AT̄1LF2R +A′T̄2LF1R +BT̄3LF3R}H51/µ1

+ CT̄2LF2RH45/K

+ {DT2
T
Lγ

0T2L +ET3
T
Lγ

0T3L}H52/µ2

+ FT2
T
Lγ

0T3LH53/µ3 + h.c. (1.5.12)
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The Higgs multiplets obtain VEVs (equations (1.5.10,1.5.11)) giving mass matrices

of the form:

mup =

















0 D 0

D 0 F

0 F E

















, mdown =

















0 A′ 0

A C 0

0 0 B

















, (1.5.13)

mcharged lepton =

















0 A 0

A′ −3C 0

0 0 B

















. (1.5.14)

The required factor of −3 arises because of the particular form of the VEV we have

chosen for the 45. The choice of VEV for H45
a5
c isn’t entirely random, The first three

entries in the “matrix” δac − 4δa4δb4 must be equal to preserve colour symmetry and

because the 45 is an irreducible representation it must be traceless resulting in the

factor of -3:

δac − 4δa4δb4 =

























1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

























. (1.5.15)

Note when we diagonalise mdown and mcharged lepton we find the down quark mass

is given by AA′

C and the electron mass by AA′

3C resulting in the correct GUT mass

relations:

me =
1

3
mdown (1.5.16)

mµ = 3mstrange (1.5.17)

mτ = mbottom. (1.5.18)

To complete the story we would also have to predict the size of the coefficients in

the Lagrangian and forbid a term in the 11 entry of mdown and mcharged lepton, but

the mechanism shows that SU(5) GUTs can give correct GUT mass relations. The
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mechanism isn’t restricted to SU(5) GUTs models have been proposed using GUT

groups other than SU(5) for example Pati-Salam and SO(10) [16,17].

1.6 Review of family symmetries

In contrast to GUTs a family symmetry is a symmetry between the different gener-

ations of matter, that is to say it is some symmetry between electrons, muons and

tau-ons or between down, strange and bottom quarks. If we consider what this fam-

ily symmetry may be then we must look at what is consistent with data so far, the

largest family symmetry group that is consistent with the Standard Model is U(3)5f
†.

This corresponds to and independent U(3)f for the left-handed quark doublet q, the

quark singlets uc and dc, the left-handed lepton doublet l and the lepton singlet ec.

If we include the right-handed neutrino νc then the maximal family symmetry grows

to U(3)6f . On the other hand if the family symmetry is to be made compatible with a

GUT group then the maximal family symmetry is reduced. For example an SO(10)

GUT has a maximal family symmetry group of U(3)f as all the Standard Model fam-

ilies belong to the same SO(10) representation, for SU(5) including a right-handed

neutrino νc the maximal family symmetry is U(3)3f (a 5̄,10 and 1).

In order to explain the observed masses and mixing angles the family symmetry

must be broken. We break the family symmetry by using fields which acquire a VEV

giving mass terms in the Lagrangian. Such fields are called “flavons” due to the

connection with flavour‡.In the following subsection we shall give a review of several

recent family symmetry models and give a very simple model illustrating a family

symmetry leading directly to fermion masses and mixing angles.

1.6.1 Non-Abelian family symmetries

We need not restrict ourselves to continuous groups, we may also use discrete groups.

Discrete groups have more lower dimensional representations than continuous groups,

non-Abelian groups also have irreducible representations with dimension greater than

†The subscript f denotes a family symmetry rather than a gauge symmetry
‡Such fields are alternatively termed “familons” for the same reason, or sometimes “spurions”.
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one allowing them to relate different generations. For these reasons non-Abelian

discrete groups would seem to be a promising candidate for a theory of flavour.

The basic idea is to assign the gauge representations to the flavour representa-

tion of the non-Abelian group and then write down the yukawa couplings. Because

of the choice of representations the structure of the Yukawa sector is restricted and,

after the Higgs boson(s) obtain a VEV, the mass matrices are restricted.

Among the non-Abelian discrete groups A4 is very useful. A4 allows the two

quark mass matrices (mup,mdown) to be diagonalised by the same unitary transfor-

mation giving no mixing at leading order. However large mixing can be achieved

in the lepton sector because of the Majorana nature of the neutrinos. This gives

the possibility of achieving TBM (section 1.3.2) which is as noted earlier is a good

approximation to the available data.

1.6.2 The A4 group and its representations

In this section we will provide a brief overview of the A4 group. In particular deriving

the explicit calculation of terms containing products of A4 representations. The A4

group is the group of even permutations of 4 objects. There are 4!
2 = 12 elements.

This group is also the symmetry group of the tetrahedron, the odd permutations can

be seen as the exchange of two vertices which can’t be obtained with a rigid solid. If we

let a generic permutation be denoted by (1, 2, 3, 4) → (n1, n2, n3, n4) = (n1n2n3n4).

A4 can be generated by the two basic permutations S and T where S = (4321) and

T = (2314). We can check that the following relation holds:

S2 = T 3 = (ST )3 = 1. (1.6.1)

This relation is characteristic of A4 and is called the presentation of the group.
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Equivalence classes of A4

There are 4 equivalence classes ( h and k belong to the same equivalence class if there

is a member of the group g such that ghg−1 = k):

C1 : I = (1234) (1.6.2)

C2 : T = (2314), ST (4132), TS = (3241), STS = (1423) (1.6.3)

C3 : T 2 = (3124), ST 2 = (4213), T 2S = (2431), TST = (1342) (1.6.4)

C4 : S = (4321), T 2ST = (3412), TST 2 = (2143). (1.6.5)

For a finite group the squared dimensions for each inequivalent representation sum

to N, the number of transformations in the group (N=12 for A4). There are 4

inequivalent representations of A4 three singlets 1,1′,1′′ and a triplet 3. The three

singlets representations are:

1 : S = 1 T = 1 (1.6.6)

1′ : S = 1 T = e2πi/3 = ω (1.6.7)

1′′ : S = 1 T = e4πi/3 = ω2. (1.6.8)

The triplet representation in the basis where S is diagonal is constructed from:

S =

















1 0 0

0 −1 0

0 0 −1

















, T =

















0 1 0

0 0 1

1 0 0

















. (1.6.9)

Characters of A4

The characters of a group χRg of each element g are defined as the trace of the

matrix that maps the element in a representation R. Equivalent representations

have the same characters and the characters have the same value for all the elements

in an equivalence class. Characters satisfy
∑

g χ
R
g χ

S
g
∗

= NδRS . Also the character

for an element h in a direct product of representations is a product of characters
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Class χ1 χ1′ χ1′′ χ3

C1 1 1 1 3

C2 1 ω ω2 0

C3 1 ω2 ω 0

C4 1 1 1 -1

Table 1.4: The A4 Character table
From the character table we can see, by using

∑

g χ
R
g χ

S
g

∗

= NδRS , that there are no more

irreducible representations other than 1,1′,1′′ and 3.

χR⊗Sh = χRh χ
S
hand is also equal to the sum of characters in each representation that

appears in the decomposition of R⊗ S.

From the character table 1.4 we can see that there are no more inequivalent ir-

reducible representations of A4 than 1, 1′, 1′′ and 3. We can also see the multiplication

rules:

3 × 3 = 1 + 1′ + 1′′ + 3 + 3 (1.6.10)

1′ × 1′ = 1′′ (1.6.11)

1′ × 1′′ = 1 (1.6.12)

1′′ × 1′′ = 1′. (1.6.13)

If we have two triplets 3a ∼ (a1, a2, a3) and 3b ∼ (b1, b2, b3) we can obtain the

irreducible representations from their product:

1 = a1b1 + a2b2 + a3b3 (1.6.14)

1′ = a1b1 + ω2a2b2 + ωa3b3 (1.6.15)

1′′ = a1b1 + ωa2b2 + ω2a3b3 (1.6.16)

3s ∼ (a2b3, a3b1, a1b2) (1.6.17)

3a ∼ (a3b2, a1b3, a2b1). (1.6.18)

Another representation

So far we have used the representation where the matrix S is diagonal. In this thesis

we will construct models in a different basis where we arrange T to be diagonal
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through a unitary transformation:

T ′ = V TV † =

















1 0 0

0 ω 0

0 0 ω2

















, S′ = V SV † =
1

3

















−1 2 2

2 −1 2

2 2 −1

















(1.6.19)

where

V =
1√
3

















1 1 1

1 ω2 ω

1 ω ω2

















. (1.6.20)

In this basis the product composition rules are different:

1 = a1b1 + a2b3 + a3b2 (1.6.21)

1′ = a3b3 + a1b2 + a2b1 (1.6.22)

1′′ = a2b2 + a1b3 + a3b1 (1.6.23)

3s ∼
1

3
(2a1b1 − a2b3 − a3b2, 2a3b3 − a1b2 − a2b1, 2a2b2 − a1b3 − a3b1) (1.6.24)

3a ∼ 1

2
(a2b3 − a3b2, a1b2 − a2b1, a1b3 − a3b1). (1.6.25)

1.6.3 Recent models

By way of introducing the concept of family symmetries we will give a short (and

by no means complete) list of recent papers which contain “family symmetry” in the

title.

Both Abelian and non-Abelian groups have been considered as possible can-

didates for a family symmetry. A brief search of the literature indicates that non-

Abelian groups seem to be favoured at the present time. We may split the non-

Abelian groups into models using continuous and discrete groups. Of the models

using continuous groups [18] uses an extended GUT model based on the Pati-Salam

GUT group, the model uses a SO(3) family symmetry. A slightly larger family sym-

metry group, SU(3) is used in [19], an additional feature of the model is the prediction
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of Bi-maximal mixing. The model given in [20] uses an SU(2) family symmetry along

with a supersymmetric extension of the Standard Model, in this model the first two

families transform as doublets with the third family transforming as a singlet. The

model given in [21] uses an O(2) family symmetry in the leptonic sector, the model

predicts a vanishing θ13 mixing angle.

Discrete family symmetries have also been the subject of much interest in the

literature. We will consider the group A4 later on and indeed it is a good candidate

for a discrete family symmetry as it is the smallest discrete group with a triplet

representation. The model given in [22] uses A4 as a family symmetry, [22] uses a

SUSY GUT model based on SU(5) and predicts Tri-Bimaximal mixing. The larger

group A5 is the symmetry group of the icosahedron and is considered as a family

symmetry in [23], the model predicts golden ratio neutrino mixing. Smaller discrete

groups are also candidates for a family symmetry S3 the group of all permutations

of 3 objects is considered in [24] in combination with an E6 GUT group. Finally [25]

considers D6 as a candidate for a family symmetry and identifies a cold dark matter

candidate.

1.6.4 Review of an A4 model given in [26]

An important model regarding A4 family symmetry is given in [26] which we shall,

by way of an introduction to A4 models, briefly review here. The model predicts

Tri-Bimaximal neutrino mixing and is of the direct kind. The right-handed leptons

ec, µc, τ c are assigned to the A4 singlet representations 1,1′′,1′ respectively. The

Higgs doublets hu,d are invariant under the A4 symmetry. The Yukawa interactions

in the leptonic sector are as follows:

Ll = yee
c(ϕT l) + yµµ

′′c(ϕT l)
′ + yττ

′c(ϕT l)
′′ + xaξ(ll) + xb(ϕSll) + h.c.+ . . . (1.6.26)

where the dots indicate higher order terms. As in [26] we shall omit the Higgs fields

hu,d and the cut-off scale Λ, for example the term yee
c(ϕT l) means ye

hd

Λ e
c(ϕT l) and

similarly ξ(ll) means ξ
Λ2 (hulhul). The reader will note that terms allowed by the

flavour symmetry such as interchanging ϕT ↔ ϕS and (ll) are absent, this is crucial

26



to the model and their absence is motivated by extra discrete symmetries. We then

assume that the flavon fields ϕT ,ϕS ,ξ develop VEVs of:

〈ϕT 〉 = (vT , 0, 0) (1.6.27)

〈ϕS〉 = (vS , vS , vS) (1.6.28)

〈ξ〉 = u. (1.6.29)

After the Higgs and flavon fields obtain their VEVs from equation (1.6.26) we are

left with the mass terms:

Ll = vd
vT
Λ

(yeee
c + yµµµ

c + yτττ
c)

+ xav
2
u

u

Λ2
(νeνe + 2νµντ )

+ xbv
2
u

2vS
3Λ2

(νeνe + νµνµ + ντντ − νeνµ − νµντ − ντνe) + h.c.+ . . . (1.6.30)

In the charged lepton sector the A4 symmetry is broken to GT a subgroup of A4

generated by T and isomorphic to Z3. In the neutrino sector the A4 is broken to GS

which is generated by S and isomorphic to Z2. The mass matrices are then given by:

me = vd
vT
Λ

















ye 0 0

0 yµ 0

0 0 yτ

















(1.6.31)

mν =
v2
u

Λ

















a+ 2b/3 −b/3 −b/3

−b/3 2b/3 a− b/3

−b/3 a− b/3 2b/3

















(1.6.32)

where a and b are given by:

a ≡ 2xa
u

Λ
, b ≡ 2xb

vS
Λ
. (1.6.33)

The neutrino mass matrix is diagonalised by the familiar HPS matrix given in equa-

tion (1.3.8). The vacuum alignment proceeds via the introduction of driving fields
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〈H〉

ψ Ac A ψc

〈φ〉

Figure 1.5: The Froggatt-Nielsen mechanism
The Froggatt-Nielsen mechanism gives rise to an effective mass term for ψ via a heavy

messenger field.

and minimising the resulting scalar potential. The details are given in [26] and the

same procedure is used in section 3.4.

1.6.5 The Froggatt-Nielsen mechanism

A mass generation mechanism we shall make use of in later chapters is the Froggatt-

Nielsen mechanism [27]. The mechanism makes use of higher order diagrams via

tree-level diagrams using heavy fields, the so-called messenger fields.

The diagram in figure 1.5 shows the simplest example of the Froggatt-Nielsen

mechanism. The fields labelled A,Ac are the heavy Froggatt-Nielsen messenger fields.

These fields have a mass MA given by the mass term MAA
cA (represented by the ×

vertex). The messengers must also have appropriate Standard Model (or indeed GUT

group) and family symmetry charge assignments, this is relevant to the placement

of the Higgs and φ insertions. The heavy messenger fields are integrated out, in the

case of figure 1.5 this gives rise to an effective superpotential term of:

w =
〈φ〉
MA

〈H〉ψψc = mψψψ
c (1.6.34)

the effective mass is therefore mφ = 〈φ〉
MA

〈H〉. We are not restricted by the number

of messenger fields we choose to include in the theory, figure 1.6 gives a more general

diagram of the mechanism. The diagram features two messenger fields A and B with

associated mass terms MAA
cA and MBB

cB and the flavons φa and φb. We could of

course go on and include messengers C,D, . . . and extra flavons however we must bear
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ψ Ac A Bc B ψc

〈H〉 〈φa〉 〈φb〉

Figure 1.6: A more general diagram of the Froggatt-Nielsen mecha-
nism

In this diagram we have a more general Froggatt-Nielsen mechanism with two flavons and

two different messenger fields.

in mind that the charges of the messenger fields must be such that the diagrams are

allowed. For example in figure 1.6 if φa and φb have U(1)Froggatt−Nielsen charges −1,+1

respectively, the Higgs and matter fields ψ,ψc are uncharged then the messenger fields

Ac, A,Bc, B must be charged 0, 0, 1,−1 respectively. The superpotential term giving

the effective mass is given by:

w =
〈φa〉 〈φb〉
MAMB

〈H〉ψψc = m′
ψψψ

c (1.6.35)

giving the effective mass of m′
ψ = 〈φa〉〈φb〉

MAMB
.

1.6.6 A U(1) toy model family symmetry

To illustrate the use of family symmetries we introduce a simple toy model using a

U(1) family symmetry commuting with the Standard Model gauge group. The family

symmetry is broken by introducing a flavon φ which acquires a vacuum expectation

value 〈φ〉. Since the model is only being used to illustrate the use of a family symmetry

we will only concern ourselves with the down type quarks. The charges under the

family symmetry are given in table 1.5.

According to the charge assignment the mass terms include powers of the flavon

field φ in order to be invariant under the flavour symmetry in addition to the gauge
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Field U(1)

Hd 0

φ -1

d1 4

d2 2

d3 0

dc1 2

dc2 1

dc3 0

Table 1.5: U(1) Charge Assignments
Charge assignments for the toy model given in section 1.6.6 using a simple U(1) family

symmetry assignment.

symmetry. The effective superpotential is given:

W ∼ d3d
c
3Hd +

(

φ

M

)

d3d
c
2Hd +

(

φ

M

)2

d2d
c
3Hd

(

φ

M

)3

d2d
c
2Hd +

(

φ

M

)2

d3d
c
1Hd +

(

φ

M

)2

d3d
c
1Hd

(

φ

M

)4

d2d
c
1Hd +

(

φ

M

)5

d1d
c
2Hd +

(

φ

M

)6

d1d
c
1Hd. (1.6.36)

The above superpotential generates the entries of the mass matrix, for example: the

(mdown)31 term includes 4 powers of the ratio φ
M . We take M to be some large mass

scale relative to the VEV of the flavon φ, in actual fact the scale M will be the

mass of some Froggatt-Nielsen messenger particle. By making the ratio 〈φ〉
M = ǫ small

enough then we can generate a hierarchy in the down quark mass matrix:

md ∝

















ǫ6 ǫ5 ǫ4

ǫ4 ǫ3 ǫ2

ǫ2 ǫ 1

















. (1.6.37)

If a theory of family symmetry is to be compatible with Grand Unified Theories then

all members of a given GUT multiplet must have the same U(1)f charge. To give a

flavour of how family symmetry may be extended into GUT theories we can simply

extend the above toy model. In the above case since ui and uci both belong to the
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ν νc νc ν

〈H〉 〈H〉

Figure 1.7: The Type I seesaw diagram.
The Seesaw mechanism provides a natural explanation of the smallness of the observed Neu-

trino masses.

10-plet representation then they must carry the same family charge as di this leads

to an effective superpotential of:

W ∼ u3u
c
3Hu +

(

φ

M

)2

u3u
c
2Hu +

(

φ

M

)2

u2u
c
3Hu

(

φ

M

)4

u2u
c
2Hu +

(

φ

M

)4

u3u
c
1Hu +

(

φ

M

)4

u3u
c
1Hu

(

φ

M

)6

u2u
c
1Hu +

(

φ

M

)6

u1u
c
2Hu +

(

φ

M

)8

u1u
c
1Hu. (1.6.38)

This effective superpotential gives us a mass matrix proportional to:

mu ∝

















ǫ8 ǫ6 ǫ4

ǫ6 ǫ4 ǫ2

ǫ4 ǫ2 1

















. (1.6.39)

The above toy model is simple but unfortunately not realistic, however it does illus-

trate the use of a family symmetry in generating fermion masses and mixings.

1.6.7 The Seesaw mechanism

Similar to the Froggatt-Nielsen mechanism there is the well known seesaw mecha-

nism [28–30]. This mechanism generates effective light neutrino masses by integrating

out a heavy right-handed neutrino. The diagram in Figure 1.7 shows a type I seesaw

mechanism.

We expect the right-handed neutrino Majorana masses to be heavier than the

Dirac neutrino masses. This is because the Standard Model gauge group doesn’t

protect the right-handed mass MRR. As the right-handed neutrino transforms as a
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singlet under the Standard Model the mass term MRRν
cνc is invariant unlike the

Dirac mass terms which are generated by the spontaneous symmetry breaking of the

Higgs mechanism and are only non-zero after SU(2)L has been broken. As we expect

MRR to be large we can then integrate out the right-handed neutrinos to obtain

effective masses for the light neutrinos. The masses are given approximately by:

mLL = −(mLR)(MRR)−1(mLR)T . (1.6.40)

To see where equation 1.6.40 originates it is instructive to consider a simple

case with only one family. In this case we have only one left-handed neutrino ν

and only one singlet right-handed neutrino § νc. As discussed before the mass term

mLLνν is forbidden by the Standard Model gauge group whereas the right-handed

Majorana mass MRRν
cνc is allowed. The Dirac mass term mLRνν

c is allowed as we

can make use of the Higgs doublet to construct a yukawa term yνHlν
c which results

in a Dirac mass after H obtains a VEV. We therefore have a mixture of Dirac and

Majorana mass terms which we can express in a 2 × 2 matrix:

L ∼ νTM νν =

(

ν νc

)









0 mLR

mLR MRR

















ν

νc









. (1.6.41)

Since we expect mLR ≪ MRR as mLR will be at the electroweak scale and MRR

will be at the GUT scale we can immediately find the approximate eigenvalues of

the neutrino mass matrix. Using the trace of the matrix we can see that the largest

eigenvalue will be approximately given by MRR and the smallest eigenvalue will be

given by − (mLR)2

MRR
as the determinant −(mLR)2 must remain invariant and is given

by the product of the eigenvalues. This is exactly the result quoted above in equation

1.6.40 when applied to the simpler case of only one generation. The exact result for

§Note that νc is not the charge conjugate of ν but rather the charge conjugate of the right-handed

neutrino. To make a link to section 1.1.1: ν = νL =

0

@

ξα

0

1

A whereas νc = (νR)c =

0

@

0

χ†α̇

1

A

c

=

0

@

χα

0

1

A.
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〈H〉 〈H〉

∆

ν ν

Figure 1.8: The type II seesaw mechanism

the one generation case are given below:

m1 =
1

2

(

MRR +
√

M2
RR + 4(mLR)2

)

(1.6.42)

m2 =
1

2

(

MRR −
√

M2
RR + 4(mLR)2

)

(1.6.43)

by expanding the square root we can extract the approximate result we derived above.

Equation 1.6.40 is obtained by generalising to the three generations of neutrino where

now mLR and MRR are 3 × 3 matrices.

The mechanism described above is not the only way to obtain the light neutrino

masses. Though we will not make use of them there are other seesaw mechanisms

which we shall include here for completeness. The type II seesaw mechanism requires

the use of a SU(2)L triplet Higgs ∆ as shown in Figure 1.8.

The seesaw formula equation 1.6.40 must now be modified to include a new

term mLL which was previously absent. The new formula reads:

Meffective = mLL − (mLR)(MRR)−1(mLR)T. (1.6.44)

Again taking the simple example of only one generation of matter the new mass term

mLL appears in the top left of the neutrino mass matrix:

Mν =









mLL mLR

mLR MRR









. (1.6.45)

We can intuitively see from Figure 1.8 that mLL will be O(〈H〉2 /M∆).

We refer the reader to [10] for a detailed review of neutrino physics. Neutrino
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mass mechanisms have also been proposed [31] using one-loop diagrams rather than

the tree level diagrams we have reviewed here, further details are given in [32].
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Chapter 2

Extra dimensions

In this section we will provide a brief introduction to extra dimensions and describe

some recent models. We will also describe models which use both extra dimensions

and the family symmetries introduced in section 1.6.

2.1 Introduction

Extra dimensional theories are not new, they have been around since the 1920’s

when they were introduced by Kaluza and Klein [33, 34]. The original motivation

was to unify electromagnetism with gravity by identifying the photon field with the

fifth component (gµ5) of the (five dimensional) metric tensor. More recently it was

realised that consistent string theories will require extra dimensions this led to a

resurgence of work on theories with extra dimensions in the 1980’s. Regardless of their

motivation all extra dimensional theories must be able to hide the extra dimensions

from observation. One possible mechanism for hiding the extra dimensions is to

assume that unlike the four large dimensions we know about the extra dimensions

are finite in size and compactified. In order to detect these compact extra dimensions

one would then need to probe the length scales at which the compact dimensions

live. Thus in order to hide the extra dimensions we simply make the length scales of

the compact dimensions small enough that the energies required to probe them are

sufficiently high. The consequences of the extra dimensions will then be hidden from
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observers living at lower energy scales.

2.2 A 5D toy model

One important consequence of extra dimensions is the existence of so-called Kaluza-

Klein (KK) modes, we can use a simple model to illustrate how these KK modes arise.

We shall consider a 5 dimensional theory with the extra dimension parametrised by

y. A massless Klein-Gordon particle has an equation of motion of:

∂M∂Mφ(xµ, y) = (∂µ∂µ − ∂y∂y)φ(xµ, y) = 0 (2.2.1)

where M runs over all the spacetime indices and µ running over the usual four

dimensional spacetime indices (t, x1, x2, x3). We then compactify the extra dimension

on a circle of radius R, i.e. we make the identification:

y → y + 2πR (2.2.2)

We are then able to expand the field φ as a Fourier series on the extra dimensional

space

φ(xµ, y) =
∑

n

φ(n)(xµ)einky (2.2.3)

with k given by

φ(xµ, y) = φ(xµ, y + 2πR) (2.2.4)

⇒
∑

n

φ(n)(xµ)einky =
∑

n

φ(n)(xµ)eink(y+2πR) (2.2.5)

⇒ eink2πR = 1 (2.2.6)

⇒ k =
1

R
. (2.2.7)
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Applying the equation of motion (equation 2.2.1) to this expansion gives us:

∂M∂Mφ = (∂t∂
t − ∂xi

∂xi − ∂y∂
y)φ = 0 (2.2.8)

∑

n

(∂µ∂
µ − ∂y∂

y)φ(n)(xµ)einy/R = 0 (2.2.9)

∑

n

(

∂µ∂
µφ(n)(xµ)einy/R +

n2

R2
φ(n)(xµ)einy/R

)

= 0 (2.2.10)

∑

n

(∂µ∂
µ +m(n)2)φ(n)(xµ)einy/R = 0. (2.2.11)

We are then left with an equation of motion for a set of particles φ(n)(xµ) with a mass

m(n) = n
R . Thus one 5D particle has been split into an infinite set of 4D particles with

ever increasing mass. If want a 4D theory where the extra dimension is hidden we

need to require that the KK modes are too heavy to be observed, since the first mode

has a mass of 1
R this allows us to set a limit on how large the compact dimension

may be.

2.3 The S1/Z2 orbifold

In the previous section we compactified the extra dimensions on a circle with the

identification y → y + 2πR, where R is the radius of the extra dimension. We don’t

have to restrict ourselves to circles (and toroids). We can make use of orbifolds as

our extra dimensional space. In order to describe an orbifold it is best to describe

exactly what we mean by a circle.

2.3.1 The S1 circle

The circle S1 circle is formed from the quotient space R1/Λ where Λ is a one dimen-

sional lattice. As this is 1d there is only one lattice vector e so points x ∈ R1 are

identified as x ∼ x+ne where n ∈ Z and e = 2πR where R is the radius of the extra

dimension.
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Figure 2.1: The S1/Z2 orbifold
The fundamental domain is shown in bold. It lies between the two fixed points at 0 and πR

2.3.2 Orbifolding

We define our first Z2 orbifolding by identifying x ∼ −x. If our coordinate x on

our circle is defined to be −πR ≤ x ≤ πR then it is easy to see that the orbifolding

maps the region with x ≥ 0 to the region x ≤ 0. There are two points which are

mapped to themselves, these are the fixed points of the orbifold at x = 0, πR. The

fundamental domain of the orbifold is now half of the original circle. The fixed points

and fundamental domain are shown in figure 2.1. The orbifold is called S1/Z2.

2.3.3 A second orbifolding

We can create the orbifold S1Z2×Z′
2

by imposing another parity on the orbifold S1/Z2.

We define a new set of coordinates x′ on our orbifold by x′ = x+ πR
2 and then make the

identification x′ → −x′. What we have done is apply a translation T : x→ x+πR/2

and then a parity Z : x→ −x i.e. we have applied the operator ZT . We have again

halved the size of our fundamental domain. Our orbifold now has a fundamental

domain of 0 ≤ x ≤ πR
2 . The previous orbifold shown in figure 2.1 had two fixed

points which were equivalent whereas now the two fixed points are inequivalent.
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Figure 2.2: The S1/(Z2 × Z′
2) orbifold.

The size of the fundamental domain has been halved and the fixed points are no longer

equivalent.

2.4 Model building using orbifolds

In the context of model building the importance of orbifolds is that we can associate

an automorphism with a reflection in the internal space, for our purposes this will

be in a gauge or flavour space. Z2 : x5 → θx5 = −x5 (2.4.1)Z2 : r → Prr (2.4.2)

where r is the representation of some gauge group G and Pr is the representation

matrix of the automorphism. The requirement that the state be invariant under the

orbifold action is given by:

φr(xµ,−x5) = Prφr(xµ, x5). (2.4.3)

This condition must be satisfied by fields living in the orbifolded space, we can make

use of it by choosing Pr such that fields we don’t want to be light can transform

non-trivially e.g. have a negative parity under a Z2 orbifolding. The fields with a

negative parity therefore cannot be zero modes (which have an even parity under

the orbifolding) and are heavy i.e. an odd KK mode of which the lightest has mass

1
R . To illustrate this mechanism in the particular case of gauge fields we give a toy

model breaking an SU(3) gauge symmetry using orbifold projection.
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2.4.1 A simple example using an SU(3) gauge theory

The representation matrix of the automorphism for the fundamental representation is

taken to be P3 = diag(−1,−1, 1). The 3-plets under SU(3) therefore have to satisfy:

φ3(xµ,−x5) = P3φ3(xµ, x5) (2.4.4)

this condition implies that at the fixed point located at x5 = 0 the fields must satisfy:

φ3(xµ, x5 = 0) = P3φ3(xµ, x5 = 0) (2.4.5)

also since πR and −πR coincide then the following must also be true:

φ3(xµ, πR) = P3φ3(xµ, πR). (2.4.6)

It is easy to see that the eigenvalues of P3 are ±1, of we denote the eigenstates of P3

as φ±

φ±(xµ,−x5) = P3φ±(xµ, x5) = ±φ±(xµ, x5). (2.4.7)

As before we can expand the 5D states in the extra space as Fourier modes giving:

φ+(xµ, x5) =

∞
∑

n=0

1√
2δn,0πR

φ
(n)
+ (xµ) cos

(nx5

R

)

(2.4.8)

φ−(xµ, x5) =
∞
∑

n=1

1√
πR

φ
(n)
− (xµ) sin

(nx5

R

)

. (2.4.9)

At this point it should be noticed that only the φ+ has a massless mode φ
(0)
+ the other

modes are heavy. As we shall see below the SU(3) gauge group has been broken to

SU(2)×U(1), here we have seen that the triplet has been split into a SU(2) doublet

and a singlet U(1) field. If we assign a positive parity to the triplet i.e:

φ3(−x5) = +P3φ3(x5) (2.4.10)

then the SU(2) doublet gains a negative parity with the U(1) singlet having a positive

parity, this leads to the doublet becoming heavy and the singlet remaining light.
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However we have the alternative choice of assigning a negative parity to the triplet

giving us the opposite case, a light doublet and heavy singlet. In chapter 4 we

shall consider a model where we require the particle content of a complete multiplet

at zero mode level in an orbifolded bulk space, we achieve this by introducing two

multiplets with opposite parities. To use the above example this would be analogous

to obtaining the particle content of a complete zero mode bulk triplet by using two

bulk triplets one with positive parity and one with negative parity. The singlet would

be derived from the positive parity triplet and the doublet from the negative parity

triplet.

2.4.2 Gauge fields

We can perform the same analysis with the gauge fields. The boundary condition for

the 4D vector fields are

Aaµ(xµ,−x5)ta = Aaµ(xµ, x5)PtaP
−1. (2.4.11)

It is easy to verify that the only gauge bosons with + parity i.e. the only massless

ones, are those of the SU(2) × U(1) subgroup of SU(3). In terms of parity the

generators of SU(3) look like:

ta ∼

















+ + −

+ + −

− − +

















(2.4.12)

If we do the explicit calculation then only the gauge bosons associated with λ1 for

i ∈ {1, 2, 3, 8} survive:

λ1 =

















0 1 0

1 0 0

0 0 0

















, λ2 =

















0 −i 0

i 0 0

0 0 0

















(2.4.13)
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λ3 =

















1 0 0

0 −1 0

0 0 0

















, λ8 =
1√
3

















1 0 0

0 1 0

0 0 −2

















. (2.4.14)

This shows the two key features of orbifolded extra dimensions namely that 1) Gauge

symmetry can be reduced by orbifolding the extra dimensions and 2) Bulk multiplets

under the larger gauge symmetry are split. The multiplets only survive the projection

only partially. The appearance of split multiplets is a natural feature of an orbifold

model.

We will now review some existing models from the literature which make use

of orbifolded extra dimensions.

2.5 Recent models

In this section we shall give a brief overview of recent models using orbifolded extra

dimensions.

2.5.1 The Kawamura model [35]

The model proposed by Kawamura [35] makes use of an orbifolded extra dimension

and is based on the gauge group SU(5). As described above the orbifold has two

fixed points located at x5 = 0 and x5 = πR
2 . The parity of a bulk field under the two

parities Z2 and Z′
2 is described by:

φ(xµ, x5) → φ(xµ,−x5) = Pφ(xµ, x5) (2.5.1)

φ(xµ, x′5) → φ(xµ,−x′5) = P ′φ(xµ, x′5) (2.5.2)

where x′5 = x5 + πR
2 . The Lagrangian is invariant under the two Z2 transformations

and by definition the eigenvalues of P and P ′ are ±1. The eigenstates are labelled

φ++,φ+−,φ−+ and φ−− according to their eigenvalues under P and P ′ respectively.
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We can Fourier expand the eigenstates as:

φ++(xµ, x5) =

∞
∑

n=0

1√
2δn,0πR

φ
(2n)
++ (xµ) cos

(

2nx5

R

)

(2.5.3)

φ+−(xµ, x5) =
∞
∑

n=0

1√
πR

φ
(2n+1)
+− (xµ) cos

(

(2n + 1)x5

R

)

(2.5.4)

φ−+(xµ, x5) =

∞
∑

n=0

1√
πR

φ
(2n+1)
−+ (xµ) sin

(

(2n + 1)x5

R

)

(2.5.5)

φ−−(xµ, x5) =

∞
∑

n=0

1√
πR

φ
(2n+2)
−− (xµ) sin

(

(2n + 2)x5

R

)

(2.5.6)

where n is an integer. At this point it is important to note that the fields φ
(2n)
++ ,

φ
(2n+1)
+− , φ

(2n+1)
−+ , φ

(2n+2)
−− acquire masses 2n

R , 2n+1
R , 2n+1

R and 2n+2
R respectively. A

consequence of this is that only the fields with all positive parities have a massless

state. Also some fields will vanish entirely at the fixed points for example: the fields

φ−+(xµ, x5 = 0) = φ−−(xµ, x5 = 0) = 0 at the fixed point located at x5 = 0. The

model assumes that the visible world is located at the x5 = 0 fixed point referred to

as a “wall”. The matter content of the theory consisting of the three families quark

and lepton chiral supermultiplets (Φ5̄ + Φ10) is placed on the wall at x5 = 0. The

gauge and Higgs bosons live in the 5D bulk and as such have parity assignments under

the orbifoldings Z2 × Z′
2. The parity assignment is such that the SU(5) gauge group

is broken to the Standard Model gauge group, a natural consequence of this gauge

breaking is that the Higgs pentaplets are split into doublet and triplet representations

of the SU(2)L and SU(3)C groups respectively. The parity assignments are such that

the coloured triplets acquire a negative parity and as such are not present at he

zero mode level i.e. they are heavy and doublet-triplet splitting has occurred. By

including the Standard Model matter at the x5 = 0 fixed point in a complete multiplet

unaffected by the orbifolding and placing the gauge and Higgs bosons in the bulk,

the model accounts for the appearance of both complete and split multiplets.

2.5.2 The Asaka-Buchmüller-Covi model [36]

We will now describe a model by Asaka, Buchmüller and Covi [36] using 2 extra

compact dimensions which are again compactified on an orbifold. The model is based
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on the larger GUT group SO(10), however the extension from SU(5) to SO(10) is

not trivial since GSM is not a symmetric subgroup of SO(10). The two symmetric

subgroups of SO(10) are the Pati-Salam and extended Georgi-Glashow gauge groups,

SU(4) × SU(2) × SU(2) and SU(5) × U(1) respectively. However it is interesting to

note that the maximal common subgroup of these groups is the extended Standard

Model gauge group SM′ = SM × U(1).

The starting point for the model is N = 1 supersymmetric Yang-Mills in 6D.

The extra dimensions are compactified on the torus i.e. M = R4 ×T2. The goal is to

obtain a 4D N=1 Yang-Mills theory with extended standard model symmetry. The

breaking of the extended SUSY in 4D and the breaking of the gauge group leads to

the theory on the orbifold M = T 2/(Z2 × ZPS2 × ZGG2 ). The authors consider the

N=1 Yang-Mills theory in 6 dimensions, the Lagrangian is

LYM6d = Tr(−1

2
VMNV

MN + iΛΓMDMΛ). (2.5.7)

Where VM = taV a
M and Λ = taΛa, here ta are the generators of SO(10). DMΛ =

∂mΛ − ig[VM ,Λ] and VMN = [DM ,DN ]/(ig). The Γ matrices are given by

Γµ =









γµ 0

0 γµ









, Γ5 =









0 iγ5

iγ5 0









, Γ6 =









0 γ5

−γ5 0









(2.5.8)

with γ5 = I and {ΓM ,ΓN} = 2ηMN = diag(1,−1,−1,−1,−1,−1). The gaugino Λ is

composed of two Weyl fermions of opposite chirality in 4d,

Λ = (λ1,−iλ2), γ5λ1 = −λ1, γ5λ2 = λ2. (2.5.9)

Overall the gaugino has negative 6d chirality Γ7Λ = −Λ, where Γ7 = diag(γ5,−γ5).

2.5.3 Compactification

The model compactifies the two extra dimensions on a torus T2 so that the theory

lives on M = R4 × T2. The fields Φ = (VM ,Λ) can then be expanded in using the

44



GPS

Gfl

GSO(10)

GGG

x5

x6

2πR1

2πR2

Figure 2.3: The T2/(Z× ZPS × ZGG) orbifold from [36]
The orbifold used in [36], R1 and R2 are the radii of the torus. There are 3 orbifoldings:

1 breaking the extended supersymmetry and 2 breaking the gauge group. The orbifoldings

leave fixed points with different gauge groups associated with them and are labelled. Gfl

is flipped SU(5) and results from the combination of both the Pati-Salam and extended

Georgi-Glashow gauge breaking.

Fourier expansion:

Φ(x, x5, x6) =
1

2π
√
R1R2

∑

m,n

Φ(m,n)(x) exp

{

i

(

mx5

R1
+
nx6

R2

)}

(2.5.10)

here R1 and R2 are the two radii of the torus as shown in figure 2.3.

The orbifold shown in figure 2.3 is formed by using three orbifoldings each of

which reduce the size of the fundamental domain by a factor of 2. The first orbifolding

identifies the right and left halves of the torus leaving a fundamental domain half the

size of the original torus which can be viewed as a pillow since the upper and lower

edges are identified. The procedure is repeated twice more to leave a fundamental

domain one eighth the size of the original torus. This is the fundamental domain

shown in figure 2.3. The small rectangle shown is folded along the dotted line to

form a pillow and the upper and lower edges are glued along with the left and right

edges. The orbifold is left as a pillow with the fixed points located at the corners.

The fixed points are labelled according to the gauge group which survives at that

particular fixed point. This is because the some gauge bosons have been assigned

a negative parity which makes them heavy, but also causes their wavefunctions to

be vanishing at particular fixed points. For example, at the Pati-Salam fixed point

only the wavefunctions of the Pati-Salam gauge bosons (some of which are heavy)

are present, the remaining gauge bosons from the SO(10)/GPS group are vanishing

at this fixed point.

45



The vector field is hermitian so the coefficients satisfy the relation V
(−m,−n)
M =

V
(m,n)†
M . By integrating over the extra dimensions we can obtain the 4d effective

Lagrangian. Note that we are only including terms below O(1/R) so there are only

bilinear terms in the 4d Lagrangian. We make a convenient choice of variables for

the 4d scalars by rearranging into the mass eigenstate basis given by:

Π
(m,n)
1 (x) =

i

M(m,n)

(

m

R1
V

(m,n)
5 (x) +

n

R2
V

(m,n)
6 (x)

)

(2.5.11)

Π
(m,n)
2 (x) =

i

M(m,n)

(

− n

R2
V

(m,n)
5 (x) +

m

R1
V

(m,n)
6 (x)

)

(2.5.12)

where M(m,n) =

√

(

m
R1

)2
+
(

n
R2

)2
. The 4d Lagrangian for the gauge and scalar

fields is then given by:

L(1)
4d =

∑

m,n

Tr(−1

2
Ṽ (m,n)†
µν Ṽ (m,n)µν +M(m,n)2V (m,n)†

µ V (m,n)µ

+ ∂µΠ
(m,n)†
2 ∂µΠ

(m,n)†
2 +M(m,n)2Π

(m,n)†
2 Π

(m,n)
2

+ ∂µΠ
(m,n)†
1 ∂µΠ

(m,n)
1

−M(m,n)(V (m,n)†
µ ∂µΠ

(m,n)
1 + ∂µΠ

(m,n)†
1 V (m,n)

µ )) (2.5.13)

where Ṽ
(m,n)
µν = ∂µV

(m,n)
ν − ∂νV

(m,n)
µ . The massless states are the zero modes, the

higher modes in the Kaluza-Klein expansion are massive with the mass given by

M(m,n). The basis for the scalars Π1,2 is chosen such that they are in the mass

eigenstates with Π
(m,n)
1 being the Goldstone bosons from the broken higher dimen-

sional Lorentz symmetry. The Goldstone bosons Π
(m,n)
1 are not observed as they

are eaten by the higher KK modes which then acquire a mass. From the higher

dimensional viewpoint a gauge transformation corresponds to an infinite number of

gauge transformations which mix up the KK modes of different levels. After the

mode expansion is made the theory has an infinite number of gauge transformations

parametrised by the KK numbers m and n. However later on we shall be compact-

ifying on an orbifold where m and n can no longer assume arbitrary values, due to

the non-trivial orbifolding conditions. From the 4d perspective the possible gauge

transformations are reduced breaking the higher dimensional gauge symmetry to a
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smaller symmetry in 4 dimensions.

The gaugino part of the Lagrangian integrates to:

L(2)
4 =

∑

m,n

Tr(iλ
(m,n)
1 γµ∂µλ

(m,n)
1 + iλ

(m,n)
2 γµ∂µλ

(m,n)
2

−
(

m

R1
− i

n

R2

)

λ
(m,n)
1 λ

(m,n)
2 + c.c.). (2.5.14)

This is the kinetic term for a Dirac fermion λD = (λ1, λ2) with a mass M(m,n).

To summarise in total there is the vector V
(m,n)
µ , scalars Π

(m,n)
1,2 and λD forming a

massive N = 1 vector multiplet in 4d. However when we look at the massless sector

of the theory we have unwanted N = 2 symmetry, this extended supersymmetry is

removed by orbifolding to obtain the effective N = 1 theory in 4 dimensions.

When we look at the particle content of the theory we have a massive N = 1

vector multiplet consisting of the gauge bosons Vµ, the scalars Π1,2 and and massive

Dirac fermion λD. However this massive gauge boson N = 1 vector multiplet may

be represented by a N = 1 massless vector multiplet V = (Vµ, λ1) together with a

chiral supermultiplet V ′ = (Π1,2, λ2). These two multiplets form a massive N = 2

vector supermultiplet:

V =









Vµ Π1,2

λ1 λ2









. (2.5.15)

The scalar field Π1 from the chiral multiplet V ′ becomes the longitudinal component

of the massive gauge boson. The other scalar Π2 remains in the particle spectrum at

the massive level along with the Weyl fermion λ2.

2.5.4 SUSY orbifold breaking

Rather than compactifying on the torus the authors compactify the extra dimensions

on the orbifold T2/Z2 where parities are assigned under the reflection (x5, x6) →
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(−x5,−x6) to the vectors and scalars.

PVµ(x,−x5,−x6)P
−1 = +Vµ(x, x5, x6) (2.5.16)

PV5,6(x,−x5,−x6)P
−1 = −V5,6(x, x5, x6) (2.5.17)

where the choice P = I is made, so for the Fourier modes we are left with

V (−m,−n)
µ = +V (m,n)

µ = + V (m,n)†
µ , (2.5.18)

V
(−m,−n)
5,6 = −V (m,n)

5,6 = + V
(m,n)†
5,6 . (2.5.19)

This eliminates the scalar zero modes, also the number of massive modes is halved.

Because the derivatives ∂5,6 are odd under the reflection the two Weyl fermions

(λ1, λ2) must have opposite parities,

Pλ1(x,−x5,−x6)P
−1 = +λ1(x, x5, x6), (2.5.20)

Pλ2(x,−x5,−x6)P
−1 = −λ2(x, x5, x6), (2.5.21)

(Vµ, λ1) and (V5,6, λ2) form vector and chiral multiplets respectively, only the vector

multiplets have zero modes. The orbifolding has therefore broken the extended N = 2

symmetry to N = 1 in 4D. The gauge bosons and gauginos form a gauge superfield

which is the special case of a vector superfield where the condition V = V † is preserved

by the gauge transformation. The general form of the gauge superfield can be given

in the Wess-Zumino gauge as:

V (x, θ, θ̄) =θ̄σµθVµ(x) + iθθθ̄λ̄(x)

− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x) (2.5.22)

where Vµ and λ are the gauge bosons and gauginos respectively with the field D

being an auxiliary field.
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2.5.5 Gauge breaking by orbifolding

Here breaking of the SO(10) gauge group must be done by using two parities PPS

and PGG which define the symmetric subgroups of SO(10), Pati-Salam GPS =

SU(4) × SU(2) × SU(2) and Georgi-Glashow GGG = SU(5) × U(1). In the vec-

tor representation these parities are

PGG =

































σ2 0 0 0 0

0 σ2 0 0 0

0 0 σ2 0 0

0 0 0 σ2 0

0 0 0 0 σ2

































, PPS =

































−σ0 0 0 0 0

0 −σ0 0 0 0

0 0 −σ0 0 0

0 0 0 σ0 0

0 0 0 0 σ0

































(2.5.23)

where σ0, σ2 are the familiar Pauli matrices. We require for the vector fields and

gauginos λ1:

PGGVµ(x,−x5,−x6 + πR2/2)P
−1
GG = +Vµ(x, x5, x6 + πR2/2), (2.5.24)

PPSVµ(x,−x5 + πR1/2,−x6)P
−1
PS = +Vµ(x, x5 + πR1/2, x6). (2.5.25)

Thus fields belonging to the symmetric subgroup Gs have positive parity and those

of SO(10)/Gs have negative parity. The Z2 parity requires the scalars and gauginos

λ2 to have negative parity. Because of the Z2 parity we also require:

PGGV5,6(x,−x5,−x6 + πR2/2)P
−1
GG = −V5,6(x, x5, x6 + πR2/2), (2.5.26)

PPSV5,6(x,−x5 + πR1/2,−x6)P
−1
PS = −V5,6(x, x5 + πR1/2, x6). (2.5.27)

The mode expansions of the fields Φ(x, x5, x6) is explicitly:

Φ+++ =
1

π
√
R1R2

∑

m,n

1

2δm,0δn,0
φ

(2m,2n)
+++ (x) cos

(

2mx5

R1
+

2nx6

R2

)

, (2.5.28)

Φ++− =
1

π
√
R1R2

∑

m,n

φ
(2m,2n+1)
++− (x) cos

(

2mx5

R1
+

(2n+ 1)x6

R2

)

, (2.5.29)
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Φ+−+ =
1

π
√
R1R2

∑

m,n

φ
(2m+1,2n)
+−+ (x) cos

(

(2m+ 1)x5

R1
+

2nx6

R2

)

, (2.5.30)

Φ+−− =
1

π
√
R1R2

∑

m,n

φ
(2m+1,2n+1)
+−− (x) cos

(

(2m+ 1)x5

R1
+

(2n + 1)x6

R2

)

, (2.5.31)

Φ−++ =
1

π
√
R1R2

∑

m,n

φ
(2m+1,2n+1)
−++ (x) sin

(

(2m+ 1)x5

R1
+

(2n + 1)x6

R2

)

, (2.5.32)

Φ−+− =
1

π
√
R1R2

∑

m,n

φ
(2m+1,2n)
−+− (x) sin

(

(2m+ 1)x5

R1
+

2nx6

R2

)

, (2.5.33)

Φ−−+ =
1

π
√
R1R2

∑

m,n

φ
(2m,2n+1)
−−+ (x) sin

(

2mx5

R1
+

(2n+ 1)x6

R2

)

, (2.5.34)

Φ−−− =
1

π
√
R1R2

∑

m,n

φ
2m,2n)
−−− (x) sin

(

2mx5

R1
+

2nx6

R2

)

, (2.5.35)

where the subscripts, + and −, on the fields refer to the parities under the Super-

symmetry breaking, Pati-Salam and Georgi-Glashow orbifoldings respectively. Again

the only fields with zero modes are those with parities all positive, they form a N = 1

massless vector multiplet in the adjoint representation of the unbroken extended stan-

dard model group. All the other fields with one or more negative parities combine to

form massive vector multiplets.

limiting cases: We can take the limiting cases of R1 → 0 with R2 fixed and

R2 → 0 with R1 fixed. In both these cases we are effectively dealing with a 5

dimensional theory. In the first case the dependence on R1 disappears and we are

dealing with a 5 dimensional theory with the extra dimension compactified onto a

one dimensional orbifold with two fixed points. In this case there will be SO(10)

and Pati-Salam fixed points with the effective four dimensional theory broken to the

Pati-Salam group (SU(4) × SU(2) × SU(2)). In the second case the dependence

on R2 disappears and the one dimensional orbifold has SO(10) and Georgi-Glashow

fixed points with the effective four dimensional theory broken to Georgi-Glashow

(SU(5) × U(1)). It is only when R1 and R2 are finite is the gauge group broken to

the extended standard model. If we take one of the compact radii to be large then

the Fourier series expansion becomes a Fourier transform and we would no longer be

left with the extended standard model in 4 dimensions, we would have either Georgi-

Glashow or Pati-Salam in 5d depending on which extra dimension was taken to be
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large.

2.5.6 Adding matter to the theory

Adding matter to the 6d SUSY theory is easy, consider the case of the 10-plet of

Higgs fields. It contains two complex scalars H and H ′, and a fermion h = (h, h′).

The chiralities are γ5h = h, γ5h
′ = −h′ in 4d with an overall positive 6d chirality

Γ7h = h.

The Lagrangian reads:

Lhiggs
6d = |DMH|2+|DMH

′|2−1

2
g2(H†taH+H ′†taH ′)2+ihΓMDMh−i

√
2g(hΛH+hΛcH ′+c.c).

(2.5.36)

Again we integrate over the compact dimensions to get:

Lhiggs
4d =

∑

m,n

ih
(m,n)

γµ∂µh
(m,n) + ih′

(m,n)
γµ∂µh

′(m,n)

+(
m

R1
− i

n

R2
)h

(m,n)
h′(m,n) + c.c.

+∂µH
(m,n)†∂µH(m,n) +M(m,n)2H(m,n)†H(m,n)

+∂µH
′(m,n)†∂µH ′(m,n) +M(m,n)2H ′(m,n)†H ′(m,n). (2.5.37)

2.5.7 Higgs parities

We can now define the action of the parities on the Higgs multiplets H = (H,h) and

H ′ = (H ′, h′). For the Z2 we can choose

PH(x,−x5,−x6) = +H(x, x5, x6) (2.5.38)

PH ′(x,−x5,−x6) = −H ′(x, x5, x6) (2.5.39)
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with P = I. As is the case with the 45-plet this breaks the extended supersymmetry

present in 4d. For ZGG2 we choose

PGGH(x,−x5,−x6 + πR2/2) = +H(x, x5, x6 + πR2/2) (2.5.40)

PGGH
′(x,−x5,−x6 + πR2/2) = −H ′(x, x5, x6 + πR2/2) (2.5.41)

The parity PPS gives us the desired doublet-triplet splitting, again the same mech-

anism is used to break the gauge symmetry as well as providing the doublet-triplet

splitting. The action of PPS is given by:

PPSH(x,−x5 + πR1/2,−x6) = +H(x, x5 + πR1/2, x6), (2.5.42)

PPSH
′(x,−x5 + πR1/2,−x6) = −H ′(x, x5 + πR1/2, x6). (2.5.43)

Again we have a SU(2) N = 1 supermultiplet as the zero modes and the SU(3) triplet

is heavy. If we were to chose the signs the other way round we would get a massless

colour triplet and heavy weak doublet. In order to obtain the two Higgs doublets as

zero modes we have to introduce two 10-plets of Higgs with parities different with

respect to ZGG2 .

2.6 Family symmetry from extra dimensions

In this section we review [3] which introduces the possibility that discrete symme-

tries can arise from orbifold compactifications. In this particular case the group A4

which we will then extend to a GUT model in chapter 3. The model described in sec-

tion 2.5.2 is built around a non-twisted torus and the orbifold forms a square “pillow”.

This “pillow” can be seen as having the symmetry of a square in the same manner

as the orbifold with twist angle θ = π/3 has the symmetry of a tetrahedron. The

symmetry group of the square is the Dihedral group D4 and has been considered as

a possible family symmetry for example see [37]. In order to modify the model given

in [36] to incorporate the D4 symmetry, the 3 families of the standard model would

need to be arranged into the 4 inequivalent singlet and 1 doublet representations of

the D4 group.
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x5

x6
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z3 z2

γ 1 + γ

1

A

A B

BC

CD

D

Figure 2.4: The Orbifold T2/Z2. The fundamental domain is outlined in
bold and forms a tetrahedron. Regions labelled by A,B,C and D are identified.
The fixed points are labelled zi and are symmetrically permuted under the
symmetry group A4.

2.6.1 The A4 orbifold T2/Z2

The Orbifold introduced in [3] is based on the twisted torus with the twist angle

θ = 60◦. We set R1 = R2, as shown in figure 2.4. We then perform the Z2 orbifolding

which folds the rhombus into a tetrahedron giving rise to the A4 symmetry, this

symmetry will later be exploited as a family symmetry.

2.6.2 The orbifold with θ = π/3

We are working with a quantum field theory in 6 dimensions with the 2 extra dimen-

sions compactified onto an orbifold T2/Z2. The extra dimensions are complexified

such that z = x5 + ix6 are the coordinates on the extra space. The torus T2 is defined

by identifying the points:

z → z + 1, (2.6.1)

z → z + γ γ = ei
π
3 . (2.6.2)
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We have set the length 2πR1,2 to unity for clarity. The orbifolding is defined by the

parity Z2 identifying:

z → −z, (2.6.3)

(x5, x6) → (−x5,−x6),

leaving the orbifold to be represented by the bold triangular region shown in figure 2.4.

The orbifold has 4 fixed points which are unchanged under the symmetries of the

orbifold, equations (2.6.3),(2.6.1),(2.6.2). The orbifold can be described as a regular

tetrahedron with the fixed points as the vertices. The 6d spacetime symmetry is

broken by the orbifolding, previously the symmetry consisted of 6d translations and

proper Lorentz transformations∗. We are now left with a 4d space-time symmetry

and a discrete symmetry of rotations and translations due to the special geometry of

the orbifold. We can generate this group with the transformations:

S : z → z + 1
2 , (2.6.4)

T : z → ωz , ω ≡ γ2. (2.6.5)

These two generators are even permutations of the four fixed points:

S : (z1, z2, z3, z4) → (z4, z3, z2, z1), (2.6.6)

T : (z1, z2, z3, z4) → (z2, z3, z1, z4). (2.6.7)

The above two transformations generate the group A4 which is the symmetry of

the tetrahedron (see section 1.6.2 for an introduction to A4). This can be verified

by showing that S and T obey the characteristic relations, the presentation, of the

generators of A4,

S2 = T 3 = (ST )3 = 1. (2.6.8)

∗if we had allowed improper Lorentz transformations,i.e. reflections, then rather than A4 we
would have S4 the group of permutations of 4 objects

54



2.6.3 Irreducible representations of A4

The 4d representations of the A4 generators can be block diagonalised to give the

irreducible representations of the A4 group

S =

























0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

























, T =

























0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

























which satisfy the presentation of the group, equation (2.6.8). Since the only irre-

ducible representations of A4 are a triplet and 3 singlet representations (see sec-

tion 1.6.2) then the 4d representation is not irreducible.

Since this 4d representation is reducible then we can block diagonalise the

generators using a matrix U given by:

U =
1

2

























+1 +1 +1 +1

−1 +1 +1 −1

+1 −1 +1 −1

+1 +1 −1 −1

























and we find that:

Sblock diagonal =

























1 · · · 0 · · ·
...

. . .

0 S3

...
. . .

























, Tblock diagonal =

























1 · · · 0 · · ·
...

. . .

0 T3

...
. . .

























where T3 and S3 are the generators of A4 in the 3D irreducible representation given
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by:

S3 =

















1 0 0

0 −1 0

0 0 −1

















, T3 =

















0 0 1

1 0 0

0 1 0

















. (2.6.9)

2.6.4 Parametrising multiplets

If we are to place fields at the fixed points of the orbifold then we will need to

parametrise a 4 dimensional representation in terms of singlet and triplet represen-

tations as in [3]. We now briefly summarise the results of [3] to build a dictio-

nary from a 6d orbifolded theory to an effective 4d one. If we consider a multiplet

u = (u1, u2, u3, u4)
T transforming as:

S : u → Su

T : u → Tu,

we can now make a change of basis defining v = (v0, v1, v2, v3)
T = Uu transforming

as:

S : v → (USU †)v

T : v → (UTU †)v

with the v0 component transforming as a singlet and the v1,2,3 components trans-

forming with T3 and S3 as triplets. This gives us a parametrisation for a multiplet

u = (u1, u2, u3, u4)
T . We can decompose the reducible quadruplet into a triplet and

invariant singlet irreducible representations:

























u1

u2

u3

u4

























=
1

2

























v0

v0

v0

v0

























+
1

2

























−v1 + v2 + v3

+v1 − v2 + v3

+v1 + v2 − v3

−v1 − v2 − v3

























.

56



As noted in [3] this parametrisation is not unique, this is a result of a property

of the A4 generators. We can generalise the transformations of the brane multiplet

in the following way:

S : a → Sa (2.6.10)

T : a → ωraTa ≡ Traa (2.6.11)

where ω is the first cubic root of unity and ra = 0,±1. This clearly still satisfies the

presentation of the group equation (2.6.8) and we can repeat the block diagonalising

procedure to find the parametrisation if ra 6= 0. If we take the case where ra = +1,

we again block diagonalise the generators S and Tra :

S =

























0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

























, Tra =

























0 0 ω 0

ω 0 0 0

0 ω 0 0

0 0 0 ω

























(2.6.12)

with a matrix Uω which was not explicitly given in [3]:

Uω =
1

2

























+ω2 +ω2 +ω2 +ω2

−1 +1 +1 −1

+ω2 −ω2 +ω2 −ω2

+ω +ω −ω −ω

























. (2.6.13)

This splits the four dimensional representation into the irreducible triplet and singlet

parts:

UωSU
†
ω =

























1 · · · 0 · · ·
...

. . .

0 S3

...
. . .

























, UωTraU
†
ω =

























ω · · · 0 · · ·
...

. . .

0 T3

...
. . .

























. (2.6.14)
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This leaves us with a different parametrisation of a brane multiplet:

























u1

u2

u3

u4

























=
ω

2

























v0

v0

v0

v0

























+
1

2

























−v1 + ωv2 + ω2v3

+v1 − ωv2 + ω2v3

+v1 + ωv2 − ω2v3

−v1 − ωv2 − ω2v3

























. (2.6.15)

We can repeat the process for the ra = −1 case or we can simply take the complex

conjugate of equation (2.6.15).

It should be noted that the 1 dimensional representation of S and T found

from equation (2.6.14) is that of the 1′ representation of A4 (S = 1, T = ω). This

is because we have decomposed the quadruplet 4 into irreducible representations as

4 = 1′⊕3. In the first case (ra = 0) we decomposed the quadruplet as 4 = 1⊕3, the

1 dimensional representation is S = 1, T = 1, simply read from the block diagonal

forms of S and T . As in [3] we label the 4 dimensional reducible representations

R0,−1,+1, R0 decomposes into a triplet plus an invariant singlet R+1 decomposes into

a triplet plus an non-invariant singlet 1′ and finally R−1 decomposes into a triplet

plus a non-invariant singlet 1′′. Brane singlets are given by a vector of the form

asinglet = (ac/2, ac/2, ac/2, ac/2)
T , i.e. brane fields having the same value at each

fixed point. Brane Triplets a = (a1, a2, a3)are in one of three representations R0,±1

given by

aR1 = aR−1∗ =
1

2

























−a1 + ωa2 + ω2a3

+a1 − ωa2 + ω2a3

+a1 + ωa2 − ω2a3

−a1 − ωa2 − ω2a3

























, aR0 =
1

2

























−a1 + a2 + a3

+a1 − a2 + a3

+a1 + a2 − a3

−a1 − a2 − a3

























(2.6.16)

depending on which singlet the triplets are forming in the superpotential. Bulk

singlets depend on the extra coordinates and transform as Sξ(z) = ξ(z + 1/2) and

Tξ(z) = ξ(ωz). We require these decompositions because we will want to construct

non-invariant singlets from products of triplets and if we were to restrict ourselves to
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the first parametrisation we would be unable to do so.

2.6.5 Bulk and brane Fields

Following [3] we now look at the coupling of a bulk multiplet: B(z) = (B1(z),B2(z),B3(z)),

transforming as a triplet of A4 and the brane triplet a = (a1, a2, a3) transforming as

R0, as in equation (2.6.16). The transformations of B are:

S : B′(zS) = S3B(z) zS = z +
1

2
(2.6.17)

S : B′(zT ) = T3B(z) zT = ωz. (2.6.18)

We can write a bilinear in a and B given by:

J =
∑

iK

αiKa
R0

i BK(z)δi (2.6.19)

where αiK is a four by three matrix of constant coefficients, and δi = δ(z− zi) where

zi are the fixed points. We want J to be invariant under A4 then we choose:

αiK =
1

2

























−1 +1 +1

+1 −1 +1

+1 +1 −1

−1 −1 −1

























.

Since a is in the R0 representation after integration over extra dimensions:

J =
1

4
(−v1 + v2 + v3)(−B1(z1) + B2(z1) + B3(z1))

+
1

4
(+v1 − v2 + v3)(+B1(z2) − B2(z2) + B3(z2))

+
1

4
(+v1 + v2 − v3)(+B1(z3) + B2(z3) − B3(z3))

+
1

4
(+v1 + v2 + v3)(+B1(z4) + B2(z4) + B3(z4)). (2.6.20)
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If the triplet B(z) acquires a constant VEV 〈B(z)〉 = (B1,B2,B3) then J becomes:

J = v1B1 + v2B2 + v3B3.

We can do the same for a bilinear J ′ given by:

J ′ =
∑

iK

α′
iKaiBK(z)δi

which transforms as a 1′ with the matrix α′
iK given by:

α′
iK =

1

2

























−1 +ω +ω2

+1 −ω +ω2

+1 +ω −ω2

−1 −ω −ω2

























.

After integrating over z and after B has acquired a constant VEV we find that:

J ′ = v1B1 + ωv2B2 + ω2v3B3.

We can obtain the 1′′ singlet by simply substituting α′
iK by its complex conjugate to

get α′′
iK .

2.7 Other discrete symmetries from orbifolding

As noted in [38] A4 is not the only discrete symmetry that can be exploited from the

geometry of the orbifold compactification. We noted above that if we had allowed

reflections then the group generated by the compactification would not have been A4,

the group of even permutations of 4 objects, but the group generated would be S4,

the group of all permutations of 4 objects. We shall simply list a number of T2/ZN
orbifolds and the associated discrete symmetry in table 2.1. Such orbifolds may be

used to form a theory of family symmetry similar to [3] and [1].
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Orbifold SymmetryT/Z2 A4, S4,D4T/Z3 D3, S3T/Z4 D4T/Z6 D6
∼= D3 × Z2

∼= S3 × Z2

Table 2.1: Orbifolds and their symmetries
A list of 2 dimensional orbifolds and the discrete symmetries that may be associated with

them. Orbifolds can have different symmetries depending on the twist angle of the torus and

the symmetry that they are orbifolded by, see [38] for details.

2.8 GUT models with family symmetry and orbifolding

Recently a model [39] has been proposed that incorporates a GUT group with a fam-

ily symmetry while also making use of orbifolding extra compact dimensions. The

model is based on the SU(5) GUT group and has a single extra dimension compact-

ified on the orbifold. The GUT group is broken by giving a negative parity to those

gauge bosons not belonging to the Standard Model gauge group, this mechanism also

solves the doublet-triplet splitting problem by rendering the coloured Higgs triplets

heavy. In addition to the model proposed by Kawamura [35] the model also has an

A4 family symmetry and also makes use of a Froggatt-Nielsen mechanism. The 5̄-plet

of matter transforms as a triplet of A4 and the three families of 10-plets transform as

the three singlet representations of A4. The third family of 10’s is placed at a fixed

point and the first two families are placed in the bulk, this leads to a suppression of

the yukawa coupling in these bulk fields as a bulk field and its zero mode are related

by:

B =
1√
πR

B0 + . . . . (2.8.1)

This is made use of alongside the Froggatt-Nielsen mechanism to obtain realistic

masses and mixings. A complication of placing the first two families in the bulk is

that the same GUT breaking mechanism leads to the splitting of the multiplets. This

is rectified by introducing an extra copy of the first families into the bulk which trans-

form with opposite parities thus leaving a complete particle content. The doubling of

the first two families also allows too rigid GUT relations (eqns. (1.5.5),1.5.6),(1.5.7))

to be avoided so the introduction of a Georgi-Jarlskog mechanism is not required.
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Chapter 3

A4 family symmetry from SU(5)

GUTs in 6d

3.1 Introduction

The pattern of quark and lepton masses and mixing angles remains central to any

attempt to construct a theory of physics beyond the Standard Model. As discussed

in section 1.6 the most obvious extension to the Standard Model is to introduce some

symmetry between the families, a so-called family or flavour symmetry. A particular

difficulty is reconciling the large mixing angles in the lepton sector with the relatively

small mixing angles in the quark sector.

If we restrict ourselves to the lepton sector then it is comparatively straightfor-

ward to build models that are compatible with data. As discussed in section 1.3.2 the

so-called “Tri-Bimaximal mixing” scheme of Harrison, Perkins and Scott [12] is com-

patible with data, such a mixing scheme results from a MNS matrix of a particular

form:

UTB =

















− 2√
6

1√
3

0

1√
6

1√
3

1√
2

1√
6

1√
3
− 1√

2

















. (3.1.1)
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The ansatz of TBM lepton mixing matrix is interesting due to its symmetry properties

which seem to call for a possibly discrete non-Abelian Family Symmetry in nature

[40]. There has been a considerable amount of theoretical work in which the observed

TBM neutrino flavour symmetry may be related to some Family Symmetry [3,26,41–

53, 53–89]. These models may be classified according to the way that TBM mixing

is achieved, namely either directly or indirectly [90]. The direct models are based on

A4 or S4, or a larger group that contains these groups as a subgroup, and in these

models some of the generators of the Family Symmetry survive to form at least part

of the neutrino flavour symmetry. In the indirect models, typically based on ∆(3n2)

or ∆(6n2), none of the generators of the Family Symmetry appear in the neutrino

flavour symmetry [90].

In the approach in [39] the A4 is simply assumed to exist in the 5d theory.

However it has been shown how an A4 Family Symmetry could have a dynamical

origin as a result of the compactification of a 6d theory down to 4d [3]. Similar

considerations have been applied to other discrete family symmetries [38], and the

connection to string theory of these and other orbifold compactifications has been

discussed in [91]. According to [3], the A4 appears as a symmetry of the orbifold

fixed points on which 4d branes, which accommodate the matter fields, reside, while

the flavons which break A4 are in the bulk. The formulation of a theory in 6d is also

closer in spirit to string theories which are formulated in 10d where such theories are

often compactified in terms of three complex compact dimensions. The 6d theory

here will involve one complex compact dimension z.

In this chapter we formulate a realistic direct model in which an A4 Family

Symmetry arises dynamically from an SU(5) SUSY GUT in 6d. The A4 Family

Symmetry emerges as a result of the compactification of the extra complex compact

dimension z, assuming a particular orbifolding. SO(10) in 6d has been considered

in [36], with the extra dimensions compactified on a rectangular torus. In order

to realize an A4 Family Symmetry upon compactification, we shall generalise the

formalism of 6d GUTs in [36] to the case of compactification on a twisted torus. Then,

starting from an SU(5) SUSY GUT in 6d, we shall show how theA4 Family Symmetry

can result from the symmetry of the orbifold fixed points after compactification,
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assuming a particular twist angle θ = 60◦ and a particular orbifold T2/(Z2 × ZSM
2 ).

Unlike the model in [39], the resulting model has all three ten-plets Ti, as well as

the pentaplet F , located on the 3-branes at the fixed points. However, as in [39],

we shall assume an additional U(1) Froggatt-Nielsen Family Symmetry to account

for inter-family mass hierarchies. We emphasise that this model is the first which

combines the idea of orbifold GUTs with A4 family symmetry resulting from the

orbifolding.

The layout of the remainder of the chapter is as follows. In Section 3.2 we

generalise the formulation of 6d GUTs (usually compactified on a rectangular torus)

to the general case of compactification on a twisted torus with a general twist angle

θ. Then we show how compactification of the SU(5) SUSY GUT in 6d on an orbifoldT2/(Z2 × ZSM
2 ) leads to an effective 4d theory with N = 1 SUSY preserved but the

SU(5) GUT broken to the Standard Model (SM) gauge group. We also show how

Higgs doublet-triplet splitting emerges if the Higgs fields are in the bulk. In Section

3.3 we present the SU(5) SUSY GUT model in 6d in which the A4 Family Symmetry

emerges after the above compactification. We specify the superfield content and

symmetries of the model and provide a dictionary for the realization of the 4d effective

superpotential in terms of the 6d A4 invariants. From the effective 4d superpotential

we show how a successful pattern of quark and lepton masses and mixing, including

Tri-Bimaximal neutrino mixing, can emerge. In Section 3.4 we comment on the

vacuum alignment and subleading corrections expected in the model. Section 3.5

concludes the chapter.

3.2 SU(5) GUTs in six dimensions on a twisted torus

We are considering a N = 1 supersymmetric Yang-Mills theory in 6 dimensions, the

Lagrangian is given by equation (2.5.7). The gaugino Λ is composed of two Weyl

fermions of opposite chirality in 4d as given in equation (2.5.9).
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2πR1 = 4πR2 x5

x6

z4 z1

z3 z2

θ

2πR2

Figure 3.1: The Twisted Torus
The twisted torus, R1 and R2 are the radii and θ is the twist angle (later we shall specify

θ = π/3, R1 = 2R2 and orbifold to leave a fundamental domain shown in bold above).

3.2.1 Compactification on a twisted torus

We compactify the two extra dimensions on a twisted torus T2 so that the theory

lives on M = R4 × T2. The torus is defined by:

(x5, x6) → (x5 + 2πR1, x6) (3.2.1)

(x5, x6) → (x5 + 2πR2 cos θ, x6 + 2πR2 sin θ). (3.2.2)

We can expand the SU(5) gauge multiplet fields Φ = (VM ,Λ) using the mode expan-

sion:

Φ(x, x5, x6) =
1

2π
√
R1R2 sin θ

∞
∑

m,n=0

Φ(m,n)(x) exp

{

i

(

m

R1
{x5 −

x6

tan θ
} +

nx6

R2 sin θ

)}

,

(3.2.3)

where R1 and R2 are the two radii of the torus and θ is the angle of twist as shown

in figure 3.1. The limit θ → 0 represents an unphysical limit where the coordinates

of the two extra dimensions coincide. To visualise this we can think of constructing

the torus from a cylinder by gluing the two ends together, the limit θ → 0 would be

equivalent to putting an infinite number of twists on the cylinder before gluing the

ends together. Such a torus would be unphysical as travelling any length along the

cylinder requires travelling an infinite number of turns around the cylinder. Later
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the radii will be set such that R1 = 2R2 and θ = π/3. The first orbifolding in the

x5 direction halves the area of the torus to give the rhombus shown in figure 3.1.

A further orbifolding identifies the three corners of the bold triangle leaving the

fundamental domain one quarter of the original size which is shown in bold. This

fundamental domain has a tetrahedral symmetry which will later be exploited as a

family symmetry. The compactification proceeds as described earlier in section 2.5.3

Our choice of variables for the 4d scalars is modified from equations (2.5.11, 2.5.12)

due to the twisted torus:

Π
(m,n)
1 (x) =

i

M(m,n)

(

m

R1
V

(m,n)
5 (x) +

(

m

R1 tan θ
− n

R2 sin θ

)

V
(m,n)
6 (x)

)

(3.2.4)

Π
(m,n)
2 (x) =

i

M(m,n)

(

−
(

m

R1 tan θ
− n

R2 sin θ

)

V
(m,n)
5 (x) +

m

R1
V

(m,n)
6 (x)

)

(3.2.5)

where M(m,n) = 1
sin θ

√

(

m
R1

)2
+
(

n
R2

)2
− 2mn cos θ

R1R2
. The 4d Lagrangian for the

gauge and scalar fields is then given by equation (2.5.13).

The gaugino part of the Lagrangian integrates to equation (2.5.14). As before

in section 2.5.3 this is the kinetic term for a Dirac fermion λD = (λ1, λ2) with a mass

M(m,n). Our particle content consists of the vector V
(m,n)
µ , scalars Π

(m,n)
1,2 and λD

forming a massive N = 1 vector multiplet in 4d. Again when we look at the massless

sector of the theory we have unwanted N = 2 symmetry which can be removed by

orbifolding, as we now discuss.

Instead of compactifying on the torus we can compactify on the orbifold T2/Z2

where we assign parities, equations (2.5.16-2.5.21), under the reflection (x5, x6) →

(−x5,−x6) to the vectors and scalars as given in section 2.5.4. Only the vector

multiplet, (Vµ, λ1), has zero modes whereas the chiral multiplet, (V5,6, λ2), has none.

The orbifolding breaks the extended N = 2 SUSY in 4d down to N = 1 SUSY.
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3.2.2 Gauge symmetry breaking using the orbifold T2/(Z2 × ZSM
2 )

The zero modes obtained from the compactification on T2/Z2 form a N = 1 SUSY

SU(5) theory in 4d. The breaking of the SU(5) gauge group down to that of the

Standard Model can be achieved by another orbifolding. We make a coordinate shift

to a new set of coordinates:

(x′5, x
′
6) = (x5 + πR1, x6) (3.2.6)

and introduce a second parity ZSM
2 on these new coordinatesZSM

2 : (x′5, x
′
6) → (−x′5,−x′6). (3.2.7)

By using a single parity PSM ,

PSM =

































−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 +1 0

0 0 0 0 +1

































(3.2.8)

we shall require that:

PSMVµ(x,−x5 + πR1/2,−x6)P
−1
SM = +Vµ((x, x5 + πR1/2, x6). (3.2.9)

Gauge boson fields of the Standard Model thus have positive parity and fields be-

longing to SU(5)/GSM have negative parity. The orbifold is now T2/(Z2 × ZSM2 ).
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Explicitly the expansion for the fields with any combination of parities is:

Φ++(x, x5, x6) =
1

π
√
R1R2 sin θ

∑

m≥0

1

2δm,0δn,0
φ

(2m,n)
++ (x)

× cos

(

2m

R1
{x5 −

x6

tan θ
} +

nx6

R2 sin θ

)

(3.2.10)

Φ+−(x, x5, x6) =
1

π
√
R1R2 sin θ

∑

m≥0

φ
(2m+1,n)
+− (x)

× cos

(

(2m+ 1)

R1
{x5 −

x6

tan θ
} +

nx6

R2 sin θ

)

(3.2.11)

Φ−−(x, x5, x6) =
1

π
√
R1R2 sin θ

∑

m≥0

φ
(2m,n)
−− (x)

× sin

(

2m

R1
{x5 −

x6

tan θ
} +

nx6

R2 sin θ

)

(3.2.12)

Φ−+(x, x5, x6) =
1

π
√
R1R2 sin θ

∑

m≥0

φ
(2m+1,n)
−+ (x)

× sin

(

(2m+ 1)

R1
{x5 −

x6

tan θ
} +

nx6

R2 sin θ

)

. (3.2.13)

Only fields with both parities positive have zero modes.

3.2.3 Higgs and doublet-triplet splitting

So far we have just considered the gauge sector of SUSY SU(5). Adding the MSSM

Higgs to the 6d SUSY theory is straightforward. In the SU(5) GUT theory these are

contained in the 5-plet and 5-plet of Higgs fields. These are two complex scalars H

and H ′, and a fermion h = (h, h′). The chiralities are γ5h = h, γ5h
′ = −h′ in 4d with

an overall positive 6d chirality Γ7h = h.

The Lagrangian is given by equation (2.5.37). Again we integrate over the

compact dimensions to get,

Lhiggs
4d =

∑

m,n

ih
(m,n)

γµ∂µh
(m,n) + ih′

(m,n)
γµ∂µh

′(m,n)

+(
m

R1
− i

(

n

R2 sin θ
− m

R1 tan θ

)

)h
(m,n)

h′(m,n) + c.c.

+∂µH
(m,n)†∂µH(m,n) +M(m,n)2H(m,n)†H(m,n)

+∂µH
′(m,n)†∂µH ′(m,n) +M(m,n)2H ′(m,n)†H ′(m,n). (3.2.14)
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For the first orbifolding parity we choose

PH(x,−x5,−x6) = +H(x, x5, x6) (3.2.15)

PH ′(x,−x5,−x6) = +H ′(x, x5, x6) (3.2.16)

with P = I.

For the gauge breaking orbifold we choose:

PSMH(x,−x5 + πR1/2,−x6) = H(x, x5 + πR1/2, x6) (3.2.17)

PSMH
′(x,−x5 + πR1/2,−x6) = H ′(x, x5 + πR1/2, x6) (3.2.18)

It is easy to see with the form of PSM that the first three entries gain a minus sign

which makes them heavy whereas the last two entries are left unchanged leaving them

light, resulting in a light doublet and a heavy coloured triplet.

3.3 A4 family symmetry from 6d SU(5) SUSY GUTs

The model will involve an A4 family symmetry which is not assumed to exist in

the 6d theory, but which originates after the compactification down to 4d. The way

this happens is quite similar to the discussion in [3] based on the orbifold T2/(Z2)

but differs somewhat due to the different orbifold considered here, namely T2/(Z2 ×ZSM
2 ). This is discussed in section 2.6, where we also briefly summarise all the results

required in order to formulate our model, as necessary in order to make this thesis

self-contained. Using the formalism of the previous section and section 2.6, we now

present the model.

The basic set-up of the model is depicted in figure 3.2 and the essential features

may be summarised as follows. The model assumes a 6d gauge N = 1 SUSY SU(5)

Yang-Mills theory compactified down to 4d Minkowski space with two extra dimen-

sions compactified on a twisted torus with a twist angle of θ = 60◦ and R1 = 2R2.

Upon compactification, without orbifolding, the 6d supersymmetry would become

extended to N = 2 SUSY in 4d. However the N = 2 SUSY is reduced to N = 1
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x5

x6

SU(5)

SM

SU(5) SM

SU(5)

z3

z4
z1

z2

Figure 3.2: The orbifold giving rise to A4 symmetry
The orbifold compactification of a 6d N = 1 SUSY SU(5) GUT which gives rise to an effective

4d theory with the N = 1 SUSY SM gauge group together with A4 Family Symmetry after

compactification. The gauge symmetry at the four fixed points is explicitly labelled. Matter

fields are localised at the fixed points as discussed in section 2.6 and in [3].

SUSY by use of a particular orbifolding and a further orbifolding is used to break the

gauge symmetry to the SM, as discussed in Section 2. Due to the tetrahedral pattern

of fixed points on the torus, the compactified extra dimensions have some additional

symmetry left over from the 6d Poincaré spacetime symmetry, which is identified as a

Family Symmetry corresponding to the A4 symmetry group of the tetrahedron. The

particular gauge breaking orbifolding also leads to the 5-plets of Higgs splitting into

a light doublet and heavy coloured triplet. It should be noted that the four fixed

points of the tetrahedral orbifold are inequivalent in that they have different gauge

groups associated with them. The A4 symmetry is a symmetry of the standard model

gauge bosons only and not the full SU(5) gauge group. The gauge bosons belonging

to SU(5)/GSM have negative parity under the second gauge breaking orbifolding so

these fields do not transform as trivial singlets under the A4 as the standard model

gauge bosons do. The model is therefore A4 × SM not A4 × SU(5).

The model is further specified by matter fields located on the 3-branes in various

configurations, at the fixed points shown in figure 3.2. These matter fields are 4d fields

with components at the 4 fixed points as described in [3]. Matter fields carry an extra

U(1) family dependent charge which is in turn broken by two A4 singlet Froggatt-

Nielsen flavons θ, θ′ which live on the fixed points. Realistic charged fermion masses

and mixings are produced using these Froggatt-Nielsen flavons θ, θ′ together with

the bulk flavon ϕT which breaks A4 but preserves the T generator. Tri-Bimaximal
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mixing of the neutrinos is achieved using further bulk flavons ϕS which breaks A4

but preserves the S generator, and the singlet bulk flavon ξ. A full list of the particle

content of the model minus the gauge fields is given in Table 3.1 and we shall briefly

describe here. The three 5̄ (F ) are grouped into an A4 triplet as are the three right-

handed neutrinos (N). The ten-plets (T1,2,3) are assigned to the three different singlet

representations of A4. The 5-plet transforms as a trivial A4 singlet and the 5̄-plet

transforms in the 1′ representation. The A4 family symmetry is broken via the use

of two A4 triplet flavons ϕT and ϕS which obtain VEVs in the (1, 0, 0) and (1, 1, 1)

directions respectively. There are also two singlet flavons transforming in the trivial

singlet representation of A4. In this scheme, at the leading order, the ϕT give mass

to the charged leptons and to the down quarks while the aϕS , ξξ̃ give mass to the

neutrinos. In order to enforce this separation there is also a Z3 charge under which

the ten-plets, pentaplets, right-handed neutrinos, ϕS , ξ, ξ̃ flavons and higgs bosons

carry a charge of ω. The ϕT flavon is left invariant under this Z3 symmetry as are

the Froggatt-Nielsen flavons. The ten-plets also carry positive U(1) Froggatt-Nielsen

charge which is broken by two flavons ( θ, θ′) both carrying negative charge. The

Froggatt-Nielsen flavons transform in the A4 singlet representations, θ transforms

as a 1 while θ′ transforms as a 1′. In addition to the gauge, A4, U(1) Froggatt-

Nielsen, and Z3 symmetries there is also a U(1)R symmetry. The effective N = 1

superpotential carries a U(1)R charge of +2 since the integration measure d2θ carries

a charge of -2. This symmetry also has the feature of forbidding certain unwanted

terms, in particular the proton decay operator FTTT has an R-charge of +4. The R-

symmetry also contains the discrete R-parity so baryon and lepton number violating

operators are also forbidden. The superpotential of the theory is a sum of a bulk

term depending on bulk fields, plus terms localised at the four fixed points. The

4D superpotential is produced from the 6D theory by integrating over the extra

dimensions and assuming a constant background value for the bulk supermultiplets

ϕS(z), ϕT (z) and ξS(z) as in ref [3].

3.3.1 Superfield content
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Superfield N F T1 T2 T3 H5 H5 ϕT ϕS ξ, ξ̃ θ θ′

SU(5) 1 5 10 10 10 5 5 1 1 1 1 1

SM 1 (dc,l) (u′′c1,q
′′
1,e

′′c
1) (u′c2,q

′
2,e

′c
2) (uc

3
,q3,ec

3
) Hu H ′

d ϕT ϕS ξ, ξ̃ θ θ′

A4 3 3 1′′ 1′ 1 1 1′ 3 3 1 1 1′

U(1) 0 0 4 2 0 0 0 0 0 0 -1 -1Z3 ω ω ω ω ω ω ω 1 ω ω 1 1

U(1)R 1 1 1 1 1 0 0 0 0 0 0 0

Brane/bulk brane brane brane brane brane bulk bulk bulk bulk bulk brane brane

Table 3.1: Superfield content of the model
Superfield content and their transformation properties under the symmetries of the model. Note that the SU(5) GUT symmetry is broken by the

compactification, while the A4 Family Symmetry is only realized after the compactification. The matter fields are located at the fixed points on 3-branes,

while the Higgs fields live in the 6d bulk. The Froggatt-Nielsen flavons are all located at the fixed point 3-branes while the A4 flavons all live in the bulk.
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After compactification, an effective 4d superpotential may be written down, using the

dictionary for the realisation of the 4d terms in terms of the local 6d A4 invariants

given in Table 3.2. Using this dictionary, we decompose the effective 4d superpotential

into several parts:

w = wup + wdown + wcharged lepton + wν + wd + . . . (3.3.1)

The term wd is concerned with vacuum alignment whose effect will be discussed later.

The first three terms give rise to the fermion masses after A4, U(1) and electroweak

symmetry breaking and they are:

wup ∼ 1

Λ
Huq3u

c
3 +

θ′2

Λ3
Hu(q

′
2u
c
3 + q3u

′c
2) +

θ′4 + θ′θ3

Λ5
Huq

′
2u

′c
2

+
θ′4 + θ′θ3

Λ5
Hu(q

′′
1u

c
3 + q3u

′′c
1) +

θ′6 + θ′3θ3 + θ6

Λ7
Hu(q

′
2u

′′c
1 + q′′1u

′c
2)

+
θ′8 + θ′5θ3 + θ′2θ6

Λ9
Huq

′′
1u

′′c
1, (3.3.2)

wdown ∼ 1

Λ3
H ′
d(d

cϕT )′′q3 +
θ′2

Λ5
H ′
d(d

cϕT )′′q′2 +
θ2

Λ5
H ′
d(d

cϕT )′q′2

+
θ′θ
Λ5
H ′
d(d

cϕT )q′2 +
θ′4 + θ′θ3

Λ7
H ′
d(d

cϕT )′′q′′1

+
θ′2θ2

Λ7
H ′
d(d

cϕT )′q′′1 +
θ′3θ + θ4

Λ7
H ′
d(d

cϕT )q′′1 , (3.3.3)

wcharged lepton ∼ 1

Λ3
H ′
d(lϕT )′′ec3 +

θ′2

Λ5
H ′
d(lϕT )′′ec′2 +

θ2

Λ5
H ′
d(lϕT )′ec′2

+
θ′θ
Λ5
H ′
d(lϕT )ec′2 +

θ′4 + θ′θ3

Λ7
H ′
d(lϕT )′′ec′′1

+
θ′2θ2

Λ7
H ′
d(lϕT )′ec′′1 +

θ′3θ + θ4

Λ7
H ′
d(lϕT )ec′′1. (3.3.4)

Terms in contained within wup originate from two A4 singlet ten-plets of SU(5)

together with the trivial A4 singlet of the Higgs pentaplet, each field carries a Z3

charge of ω and the ten-plets may also carry a U(1) Froggatt-Nielsen charge. The

Froggatt-Nielsen charge is also carried by the gauge singlet and A4 singlet flavons
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θ, θ′ which allow an invariant term to be written down. Terms in both wdown and

wcharged lepton originate from terms of the form H5̄(FϕT )1,1′,1′′Ti where the term

(FϕT )1,1′,1′′ is a singlet component of the product of the two A4 triplet fields F

(the 5̄ of SU(5)) and ϕT (the A4 flavon). Since the ten-plet Ti may also carry a

Froggatt-Nielsen charge then the fields θ, θ′ may also be included. In both wdown

and wcharged lepton certain entries are forbidden at first order e.g. the term H ′
d(lϕT )ec3

which would fill out the 13 entry of the mass matrix is not a trivial A4 singlet.

The dimensionless coefficients of each term in the superpotential have been

omitted and they aren’t predicted by the flavour symmetry, though they are all

expected to be of the same order. It should be noted that the up mass matrix mu

is not symmetric since the Lagrangian is invariant under the standard model and

not SU(5). The powers of the cut-off Λ are determined by the dimensionality of the

various fields, recalling that brane fields have mass dimension 1 and bulk fields have

mass dimension 2 in 6d.

The neutrinos have both Dirac and Majorana masses:

wν ∼ yD

Λ
Hu(Nl) +

1

Λ
(xaξ + x̃aξ̃)(NN) +

xb
Λ

(ϕSNN) (3.3.5)

where ξ̃ is a linear combination of two independent ξ type fields which has a vanishing

VEV and therefore doesn’t contribute to the neutrino masses.

Using the alignment mechanism in [39] and described in section 3.4, the scalar

components of the supermultiplets will be assumed to obtain VEVs according to the

following scheme:

〈ϕT 〉
Λ

=
1√

π2R1R2 sin θ
(vT , 0, 0), (3.3.6)

〈ϕS〉
Λ

=
1√

π2R1R2 sin θ
(vS , vS , vS), (3.3.7)

〈ξ〉
Λ

=
1√

π2R1R2 sin θ
u, (3.3.8)

〈θ〉
Λi

= ti, (3.3.9)

〈θ′〉
Λi

= t′i (3.3.10)
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4d 6d

Huq3u
c
3

∑

i q3iu
c
3iHu(z)δi

θ6θ′2Huq
′′
1u

c′′
1

∑

i θ
6
i θ

′2
i Hu(z)q

′′
1 iu

c′′
1 iδi

θ′4Huq
′
2u
c′
2

∑

i θ
′4
i Hu(z)q

′
2iu

c′
2iδi

θ′8Huq
′′
1u

c′′
1

∑

i θ
′8
i Hu(z)q

′′
1 iu

c′′
1iδi

θ3θ′3Huq
′
2u
c′′
1

∑

i θ
3
i θ

′3
i Hu(z)q

′
2iu

c′′
1iδi

θ′4Huq
′′
1u

c
3

∑

i θ
′4
i Hu(z)q1

′′
i u

c
3iδi

θ4H ′
d(d

cϕT )q′′1
∑

iK θ
4
iH

′
d(z)(d

cR0
iαiKϕTK(z))q′′1 i

θ2θ′2H ′
d(d

cϕT )′q′′1
∑

iK θ
2
i θ

′2
i H′

d(z)(d
cR0

iα
′
iKϕTK(z))′q′′1 iδi

θθ′H ′
d(d

cϕT )q′2
∑

iK θiθ
′
iH

′
d(z)(d

cR0
iαiKϕTK(z))q′2iδi

H ′
d(d

cϕT )′′q3
∑

iK H′
d(z)(d

cR0
iα

′′
iKϕTK(z))′′q3iδi

Hu(Nl)
∑

iHu(z)(N
R0

i lR0

i )δi

ξ(NN)
∑

i ξ(z)(N
R0

i NR0

i )δi

ϕS(NN)
∑

iK ϕSK(z)αiKN
R0

i NR0

i δi

Table 3.2: Dictionary of terms
A dictionary for the realisation of the 4d terms in the superpotential in terms of the local

6d A4 invariants. The 4d terms are obtained by integrating out the extra dimensions and

assuming a constant background value for the bulk multiplets, as discussed in section 1.6.2

where the notation is defined. The delta function, δi = δ(z − zi) where zi are the fixed

points, restricts the couplings to the fixed points.

where i = u, d, e allowing for different messenger masses [43]. Since the brane fields

live in 4 dimensions the messengers will also be 4 dimensional particles so that the

mechanism in [43], allowing different messenger masses, can be applied in this sce-

nario. Also recall that the dimensions of the torus are now fixed

R1 = 2R2 and sin θ =
√

3/2. (3.3.11)

In the remainder of this thesis we shall give results in terms of R1,R2 and sin θ. It

should be noted that they are however fixed to the values in Eqn. (3.3.11). Note that

the flavon VEVs vT , vS and u are defined to be dimensionless since the bulk fields

have mass dimension of 2.
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3.3.2 Higgs VEVs

The Higgs multiplets live in the bulk this gives the required doublet-triplet splitting.

The value of the Higgs VEVs at the fixed points is what will enter in the Yukawa

couplings, so the values of we are interested in will be averages over the fixed points

zi:

〈
∑

i

Hu(zi)〉 =
vu√

π2R1R2 sin θ
, 〈
∑

i

H ′
d(zi)〉 =

vd√
π2R1R2 sin θ

(3.3.12)

where vu and vd have mass dimension 1. The electroweak scale will be determined

by:

v2
u + v2

d ≈ (174GeV )2, (3.3.13)

v2
u ≡

∫

d2z| 〈Hu(z)〉 |2, (3.3.14)

v2
d ≡

∫

d2z| 〈H ′
d(z)〉 |2. (3.3.15)

Because we are using an extra dimensional setup a suppression factor s will enter

into our mass matrices since a bulk field and its zero mode are given by:

B =
1√

π2R1R2 sin θ
B0 + {higher order contributions} (3.3.16)

which results in the suppression factor:

s =
1√

π2R1R2 sin θΛ2
< 1. (3.3.17)

R1,R2 and sin θ are given by equation (3.3.11). The size of s is discussed below in

section 3.3.3.

3.3.3 Quark and lepton mass matrices

We can now calculate the fermion mass matrices from the effective 4d superpotential,

using the flavon and Higgs VEVs and expansion parameters above, (using a left-right
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convention throughout):

mu ∼

















t6ut
′
u
2 + t′u

8 + t3ut
′
u
5 t6u + t3ut

′
u
3 + t′u

6 t′ut
3
u + t′u

4

t6u + t3ut
′
u
3 + t′u

6 t3ut
′
u + t′u

4 t′u
2

t′ut
3
u + t′u

4 t′u
2 1

















svu, (3.3.18)

md ∼

















t4d + t′d
3td t

2
dt

′
d
2 t3dt

′
d + t′d

4

tdt
′
d t2d t′d

2

. . . . . . 1

















s2vT vd, (3.3.19)

me ∼

















t4e + t′e
3te tet

′
e . . .

t2et
′
e
2 t2e . . .

t3et
′
e + t′e

4 t′e
2 1

















s2vT vd, (3.3.20)

where we have achieved different values for tu, td and te via different messenger masses

Λu,Λd and Λe and the dots represent contributions from subleading operators as

discussed in section 3.4.

Down sector

For the down quark mass matrix, md, we can choose td ∼ ǫ and t′d ∼ ǫ2/3 to give:

md ∼

















ǫ3 ǫ10/3 ǫ8/3

ǫ5/3 ǫ2 ǫ4/3

. . . . . . 1

















vT s
2vd. (3.3.21)

For example, assuming a value ǫ ≈ 0.15 allows the order unity coefficients to be tuned

to O(ǫ) to give acceptable down-type quark mass ratios. The 11 element of the mass

matrix is of order ǫ3, which needs to be tuned to order ǫ4 using the dimensionless

coefficients we have omitted to write in the superpotential. The dots again represent

subleading operators as discussed in section 3.4.
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Up sector

The up quark matrix is given by:

mu ∼

















ǭ8 ǭ6 ǭ4

ǭ6 ǭ4 ǭ2

ǭ4 ǭ2 1

















svu (3.3.22)

with tu ∼ t′u ∼ ǭ. Again we have left out the O(1) coefficients for each term,

which for ǭ ≈ 0.22, may be tuned to give acceptable up-type quark mass ratios.

The CKM mixing angles will arise predominantly from the down-mixing angles, but

with possibly significant corrections from the up-mixing angles, depending on the

unspecified operators represented by dots. In general there will be corrections to all

the Yukawa matrices as discussed later. Since the top mass is given by the size of s,

we would expect a value around s ∼ 0.5.

Charged lepton mass matrix

The mass matrix for the charged lepton sector is of the form:

me ∼

















t4e + t′e
3te tet

′
e . . .

t2et
′
e
2 t2e . . .

t3et
′
e + t′e

4 t′e
2 1

















s2vT vd =

















ǫ3 ǫ5/3 . . .

ǫ10/3 ǫ2 . . .

ǫ8/3 ǫ4/3 1

















vT s
2vd. (3.3.23)

with te ∼ ǫ and t′e ∼ ǫ2/3. The dots again represent subleading operators as discussed

in section 3.4.

Neutrino sector

In the neutrino sector, after the fields develop VEVs and the gauge singlets N become

heavy the seesaw mechanism takes place as discussed in detail in [41]. After the
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seesaw mechanism the effective mass matrix for the light neutrinos is given by:

mν ∼
1

3a(a+ b)

















3a+ b b b

b 2ab+b2

b−a
b2−ab−3a2

b−a

b b2−ab−3a2

b−a
2ab+b2

b−a

















s(vu)
2

Λ
, (3.3.24)

where

a ≡ 2xau

(yD)2
, b ≡ 2xbvS

(yD)2
.

The neutrino mass matrix is diagonalised by the transformation

UTν mνUν = diag(m1,m2,m3)

with Uν given by:

Uν =

















−
√

2/3 1/
√

3 0

1/
√

6 1/
√

3 1/
√

2

1/
√

6 1/
√

3 −1/
√

2

















(3.3.25)

which is of the TBM form in equation (1.3.8). However, although we have TBM

neutrino mixing in this model we do not have exact TBM lepton mixing due to fact

that the charged lepton mass matrix is not diagonal in this basis. Thus there will be

charged lepton mixing corrections to TBM mixing resulting in mixing sum rules as

discussed in [42, 92–98]. Due to the inexact TBM we can estimate the mixing angle

θ13 from the from of the mass matrix mup. The prediction is that θ13 ∼ ǭ4 ∼ 0.002

which is consistent with current data (table 1.2).

3.4 Vacuum alignment and subleading corrections

The resulting A4 model is of the direct kind discussed in [90] in which the vacuum

alignment is achieved via F-terms resulting in the A4 generator S being preserved

in the neutrino sector. The vacuum alignment is achieved by the superpotential wd

introduced in [39], where we have absorbed the mass dimension into the coefficients
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Field ϕT ϕS ξ ξ̃ ϕT0 ϕS0 ξ0Z3 1 ω ω ω 1 ω ω

U(1)R 0 0 0 0 2 2 2

Brane/Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk

Table 3.3

The flavon fields and driving fields leading to the vacuum alignment.

gi, fi.

wd = M(ϕTϕ
T
0 ) + g(ϕT0 ϕTϕT ) + g1(ϕ

S
0ϕSϕS)

+ (f1ξ + f2ξ̃)ϕ
S
0ϕS + f3ξ0(ϕSϕS)

+ f4ξ0ξξ̃ + f5ξ0ξ
2 + f6ξ0ξ̃

2, (3.4.1)

involving additional gauge singlets, the driving fields ϕT0 , ϕ
S
0 and ξ0 in Table 3.3. The

above form of the driving superpotential wd and the vanishing of the F-terms,

∂w

∂ϕT0
=

∂w

∂ϕS0
=
∂w

∂ξ0
= 0, (3.4.2)

yields the vacuum alignment anticipated in the previous section. For more details

see [39]. Note that the FN flavons θ, θ′ require no special vacuum alignment and their

VEVs may be generated dynamically by a radiative symmetry breaking mechanism.

The ratio of VEVs of θ, θ′ will depend on the details of all the Yukawa couplings

involving these flavons from which the desired VEVs can emerge. In general we do

not address the question of the correlation of flavon VEVs here.

3.4.1 Subleading corrections

Subleading corrections in the mass matrices arise from shifts in the VEVs of the

flavons, these corrections arise from higher order operators entering into the super-
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potential wd. The shifted VEVs including such corrections are of the general form:

〈ϕT 〉 /Λ =
1√

π2R1R2 sin θ
(vT + δvT , δvT , δvT ) (3.4.3)

〈ϕS〉 /Λ =
1√

π2R1R2 sin θ
(vS + δvS1, vS + δvS2, vS + δvS3) (3.4.4)

〈ξ〉 /Λ =
1√

π2R1R2 sin θ
u (3.4.5)

〈ξ̃〉 /Λ =
1√

π2R1R2 sin θ
δu′ (3.4.6)

as discussed in [39], [26]. ϕT obtains a correction proportional to the VEV of ϕS ,

where ϕS obtains a correction in an arbitrary direction. The VEV of ξ̃, which was

zero at leading order, obtains a small correction. The shift in the VEV of ξ has been

absorbed into a redefinition of u since at this stage u is a free parameter.

3.4.2 Corrections to mup

The leading order terms in the up sector are of the form θmθ′nHuqiuj. Terms are

gauge and A4 singlets, to create higher order terms we need to introduce flavon fields.

The most straightforward way to do this is to introduce terms that contain factors

quadratic in ϕT relative to the leading order terms, since ϕT is an A4 triplet we need

two fields in order to construct a singlet. Such terms will lead to entries in the mass

matrix suppressed by a factor of v2
T . Because of the Z3 symmetry the flavon fields

ϕS , ξ, ξ̃ must enter at the three flavon level so entries will be suppressed by a factor

of v2
Su, v

3
S and u3 relative to the leading order term.

3.4.3 Corrections to mdown and mcharged lepton

In the down mass matrix subleading corrections fill in the entries indicated by dots.

Entries in the matrix are generated by terms of the form θmθ′nH ′
d((d

cϕT )qi+(lϕT )eci ),

higher order terms can come from replacing ϕT with a product of flavon fields or

including the effect of the corrections to the VEV of ϕT . We can replace ϕT with

ϕTϕT , this is compatible with the Z3 charges and results in corrections with the

same form as mdown but with an extra overall suppression of vT . If we include the
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corrections to the VEV of ϕT then we fill in the entries indicated by dots in eqn.

(3.3.19), the corrections are of the form:

md ∼

















ǫ8/3δvT ǫ8/3δvT ǫ8/3δvT

ǫ4/3δvT ǫ4/3δvT ǫ4/3δvT

δvT δvT δvT

















s2vd. (3.4.7)

The corrections to the charged lepton mass matrix are, up to O(1) coefficients, the

transpose of the above matrix:

me ∼

















ǫ8/3δvT ǫ4/3δvT δvT

ǫ8/3δvT ǫ4/3δvT δvT

ǫ8/3δvT ǫ4/3δvT δvT

















s2vd. (3.4.8)

Following ref. [39], δv/v ∼ O(ǫ2) leading to negligible corrections to the leading

order md,me mass matrices.

3.4.4 Corrections to mν

The Dirac mass term (Hu(Nl)) can be modified with an insertion of the ϕT flavon,

producing corrections suppressed by svT . The leading Dirac mass correction is the

term Hu(ϕTNl). This leads to a correction to the Dirac mass matrix suppressed by

a factor of svT relative to the leading order (LO) term.

mLR = mLO

LR + ∆mLR = yDsvu

















1 0 0

0 0 1

0 1 0

















+ vus
2vT

















2/3 0 0

0 0 1/6

0 −5/6 0

















(3.4.9)

The Majorana mass term can receive corrections from a number of higher order terms

since the (NN) term can be a 1, 1′, 1′′ or 3. The higher order terms all consist of

insertions of 2 flavon fields where the leading order terms have only one insertion e.g.
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the term (NN)′(ϕTϕS)′′ obeys the Z3 symmetry, is an A4 singlet and results in a

higher order correction to the terms (xaξ + x̃aξ̃)(NN) + xb(ϕSNN). If we call the

correction to the Majorana mass matrix δmRR then for this example the correction

is given below,

mRR = mLO

RR + δmRR (3.4.10)

mLO

RR = xasuΛ

















1 0 0

0 0 1

0 1 0

















+
xbsvSΛ

3

















2 −1 −1

−1 2 −1

−1 −1 2

















(3.4.11)

δmRR = s2ΛvT vS

















0 1 0

1 0 0

0 0 1

















. (3.4.12)

Such corrections have a relative suppression of svT,S to the leading order term. After

the seesaw mechanism this leads to an effective mass matrix with every entry sup-

pressed by a factor of svT,S. This leads to corrections to the neutrino Tri-Bimaximal

mixing angles of order svT,S:

mν + ∆mν = mLRm
−1
RRm

t
LR = (mLO

LR + ∆mLR)(mLO
RR + ∆mRR)−1(mLO

LR + ∆mLR)t

(∆mν)ij
(mν)ij

∼ O(svT,S). (3.4.13)

The magnitude of vT depends on the ratio of the top and bottom quark Yukawa

couplings, but may be roughly between vT ∼ O(ǫ2) − O(ǫ) leading to significant

corrections to Tri-Bimaximal mixing. The flavon shifts δvS also give corrections to

the leading order term (xb(ϕSNN)), however if vT ∼ O(ǫ2) these corrections are

of O(ǫ2) they enter at the same order of magnitude as the corrections from higher

order corrections. If however vT ∼ O(ǫ) then the correction enters at the order of

ǫ.The effect of the VEV of ξ̃, which was zero at leading order, and obtains a small

correction, leads to a small shift in the overall scale of the right-handed neutrino

masses. And, as already remarked, the shift in the VEV of ξ has been absorbed into

a redefinition of u, which we are free to do since u is a free parameter.

84



3.5 Conclusion

We have proposed a model in which an A4 Family Symmetry arises dynamically from

an N = 1 SU(5) SUSY GUT in 6d. The A4 Family Symmetry emerges as a result of

the compactification of the extra complex compact dimension z, assuming a particular

twist angle θ = 60◦ and a particular orbifold T2/(Z2 ×ZSM
2 ) which breaks the N = 1

SU(5) SUSY GUT in 6d down to the effective 4d N = 1 SUSY SM gauge group.

In this model the A4 Family Symmetry emerges after compactification as a residual

symmetry of the full 6d spacetime symmetry of 6d translations and proper Lorentz

transformations. It should be noted that had improper Lorentz transformations been

included then the residual symmetry would have been S4 and not A4. The model also

involves other symmetries, in particular we assume a Froggatt-Nielsen U(1) Family

Symmetry and other ZN symmetries in order to achieve a realistic model.

We emphasise that the SU(5) GUT symmetry is broken by the compactifica-

tion, while the A4 Family Symmetry is only realized after the compactification. The

matter fields are located at the fixed points on 3-branes, while the Higgs fields live in

the 6d bulk. The Froggatt-Nielsen flavons are all located at the fixed point 3-branes

while the A4 flavons all live in the bulk. We have adopted an A4 classification scheme

of quarks and leptons compatible with the SU(5) symmetry. We have also used a

Froggatt-Nielsen mechanism for the inter-family mass hierarchies. By placing the 5

and 5 of Higgs in the 6d bulk we have avoided the doublet-triplet splitting problem by

making the coloured triplets heavy. The model naturally has TB mixing at the first

approximation and reproduces the correct mass hierarchies for quarks and charged

leptons and the CKM mixing pattern. The presence of SU(5) GUTs means that the

charged lepton mixing angles are non-zero resulting in predictions such as a lepton

mixing sum rule of the kind discussed in [42,92].

In conclusion, this chapter represents the first realistic 6d orbifold SU(5) SUSY

GUT model in the literature which leads to an A4 Family Symmetry after compact-

ification. We emphasise that the motivation for building such higher dimensional

models is purely bottom-up, namely to make contact with high energy theories and

to solve the conceptual problems with GUT theories such as Higgs doublet-triplet
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splitting and the origin of Family Symmetry in a higher dimensional setting. The

hope is that 6d models such as the one presented here, based on one extra complex

dimension z, may provide a useful stepping-stone towards a 10d fully unified string

theory (including gravity, albeit perhaps decoupled in some limit) in which GUT

breaking and the emergence of Family Symmetry can both be naturally explained as

the result of the compactification of three extra complex dimensions.
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Chapter 4

A4 × SU(5) SUSY GUT of flavour

in 8d

4.1 Introduction

In chapter 3 we described a model using an A4 family symmetry derived from the

geometry of an extra dimensional space. The A4 symmetry is broken in the direct

manner using two triplet flavons which acquire a particular alignment in their VEVs.

In order to obtain the correct alignment further so-called driving fields are intro-

duced. These driving fields have the required symmetries such that upon minimising

the scalar potential the required VEVs emerge. However when breaking the GUT

symmetry we didn’t’ have to resort to higgsing the GUT symmetry down to the

Standard Model we are able to make unwanted particles heavy by giving them parity

assignments under certain orbifoldings. A similar idea has been explored [99] where

orbifolding is used to obtain a particular VEV alignment in family symmetry models.

The purpose of this chapter is to formulate the first realistic SU(5) SUSY GUT

model with A4 family symmetry in 8d where the vacuum alignment is straightfor-

wardly achieved by the use of boundary conditions on orbifolds of the four compact

dimensions. We emphasise that we are motivated to consider an 8d theory by the

desire to achieve vacuum alignment in an elegant way using orbifold boundary con-

ditions. It is not possible to implement this idea with lower dimensional models such
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as the the 5d model in [39] or the 6d model in chapter 3 since the desired alignment

mechanism is not possible under a single orbifolding. This is due to the require-

ment that the two triplet flavons ϕT and ϕS have different boundary conditions in

order to have the different alignments at the zero mode level. Working in 8d also

brings additional benefits, for example the inter-family mass hierarchies will arise

in part due to suppression factors arising from an asymmetric geometric dilution of

the wavefunctions in the four compact dimensions, although a U(1) Froggatt-Nielsen

family symmetry will also be required. In the 8d model the 4 extra dimensions are

compactified onto 2 complex directions which are each orbifolded with Z2 and Z3

symmetries. These orbifoldings are also used to specify non-trivial boundary con-

ditions on the various multiplets which break the SU(5) gauge symmetry and the

extended N = 4 symmetry to leave an effective N = 1 Standard Model theory in

4 dimensions. It is worth noting that due to the orbifoldings the first two families

of 10-plets are duplicated introducing new GUT scale mass particles to the theory,

although such a feature removes any desirable GUT predictions it also removes some

unwanted GUT mass relations.

The layout of the remainder of the chapter is as follows. In Section 4.2 we

introduce the model and show how the 8 dimensions are compactified upon twoT2/(Z2 × Z3) orbifolds leading to gauge and SUSY breaking as above. We specify

the superfield content and symmetries of the model. We describe the transformation

of the fields under these orbifoldings which leads to an effective 4d Standard Model

theory from the 8d SU(5) theory. We first show how the GUT group is broken and

how this naturally leads to doublet-triplet splitting of the Higgs multiplets. We then

discuss vacuum alignment in the 8d theory, and show how boundary conditions can

lead to the desired alignment directions. We also discuss the values of the Higgs

and flavon VEVs, including the effects of bulk suppression factors. In Section 4.3

we write down the effective 4d superpotential and the resulting mass matrices. We

also analyse contributions from terms beyond the leading order to the mass matrices.

Section 4.4 concludes the paper.
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4.2 The model

We are considering a model in 8 dimensions with the extra dimensions compactified

on two 2d orbifolds as described in sec. 2.3. The SU(5) gauge group lives in the full 8d

bulk, with the 8d space compactified to 4d Minkowski space × 4d compact dimensions

with the two complex compact dimensions described by the coordinates z1 and z2.

We suppose that the 8d space is compactified by orbifolding. In the z1 direction theZ2 orbifolding breaks the gauge symmetry and gives the alignment of the A4 flavon

ϕS , while the Z3 orbifold breaks the extended supersymmetry as described below. In

the z2 direction the Z2 orbifolding also breaks the gauge symmetry to the Standard

Model in exactly the same way as in the z1 direction, while the Z3 symmetry is used

to give the alignment of the A4 flavon ϕT as described in sec. 4.2.5 and [99].

We suppose that some of the matter and Higgs fields do not feel the full 8d

but are restricted to live in a 6d subspace of the full 8d theory. The second family of

10’s, T2, live in the z1 direction along with both Higgs multiplets, H5 and H5. The

first family of 10’s, T1, is placed in the z2 direction. Similarly, the flavons ϕS , ξ and

θ′′ live in the z1 direction, with ϕT and θ in the z2 direction. We confine the other

matter fields to live in a 4d subspace, with the three families of 5̄ matter, F , and

the third family of 10’s, T3, along with the three families of right-handed neutrinos,

N , located at the 4 dimensional fixed point z1 = z2 = 0, with the Yukawa couplings

given by the overlap of the wavefunctions at this fixed point. The particle content of

the model is summarised in table 4.1.

A schematic diagram of the model is shown in figure 4.1. As both the z1 and z2

directions have a Z2 orbifolding breaking the gauge symmetry, doublet-triplet split-

ting of the Higgs multiplets occurs. However this results in half the 10-plet becoming

heavy. To overcome this, an extra copy of 10’s must be included in both directions

with opposite parity under the Z2 symmetry. This results in the complete matter

content and also allows us to escape unwanted GUT mass relations. In addition to

the unwanted GUT mass relations the doubling of the first two families also prevents
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Superfield N F T1 T2 T3 H5 H5 ϕT ϕS ξ θ θ′′

SU(5) 1 5 10 10 10 5 5 1 1 1 1 1

SM 1 (dc,l) (uc
1
,q1,ec

1
) (uc

2
,q2,ec

2
) (uc

3
,q3,ec

3
) Hu Hd ϕT ϕS ξ θ θ′′

A4 3 3 1′′ 1′ 1 1 1′ 3 3 1 1 1′′

U(1) 0 0 2 1 0 0 0 0 0 0 -1 -1Z3 ω ω ω ω ω ω ω 1 ω ω 1 1

U(1)R 1 1 1 1 1 0 0 0 0 0 0 0

Location z1 = z2 = 0 z1 = z2 = 0 z1 = 0 z2 = 0 z1 = z2 = 0 z2 = 0 z2 = 0 z1 = 0 z2 = 0 z2 = 0 z1 = 0 z2 = 0

Table 4.1: The particle content and symmetries of the model.
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T2/(ZSM
2 × Z3)

T2/(ZSM
2 × ZSUSY

3 )

T2, H5̄, H5

ϕS, ξ, θ
′′

ϕT , T1, θ

z2

z1

F, T3, N

SU(5)

Figure 4.1: A Schematic diagram of the model.
The SU(5) gauge group is in the 8d bulk, represented here by the entire (z1, z2) plane, while

matter and Higgs fields are confined to 6d subspaces, represented by the complex coordinate

directions z1 and z2, or to the 4d subspace, represented by the point at the origin. The

First and Second families are placed in the z2 and z1 directions respectively. Because there

is a gauge breaking orbifolding, in both directions, half of the 10-plets become heavy so

additional multiplets are introduced in both directions with opposite parity to obtain the full

SM particle content.

good GUT predictions such as the Gatto-Sartori-Tonin [100] and Georgi-Jarlskog

relations. The 8 dimensional theory has an A4 family symmetry which is broken

by three flavons ϕT , ϕS and ξ. The vacuum alignment of the flavons is achieved by

imposing non-trivial boundary conditions on the flavons so that only the required

alignment has a zero-mode. In addition to the A4 flavour symmetry there is volume

suppression for superpotential terms involving 6d fields. This suppression, however,

turns out to be insufficient to account for realistic masses and mixings. To obtain

a realistic pattern we also exploit the Froggatt-Nielsen mechanism [27] with a U(1)

symmetry and the two Froggatt-Nielsen flavons θ and θ′′ living in the different orb-
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ifolded directions. We also make use of U(1)R and Z3 symmetries as shown in table

4.1.

4.2.1 The T2/(Z2 × Z3) orbifolds

The orbifolding can be used to break both the gauge symmetry and SUSY [36]. As

discussed earlier in chapter 3 a model has also been proposed that combine these

two ideas to give an extra dimensional GUT theory with a family symmetry arising

from the compactification of the extra dimensions. In the present model we will

not insist that the family symmetry is dynamically generated from the compactified

geometry of extra dimensions, but merely suppose that it pre-exists in the 8d theory.

However the part of the orbifold T2/Z2 described in this section is the same as that

described in [1, 3] where the A4 is dynamically generated. The new feature here is

that we shall use orbifold boundary conditions to give the desired vacuum alignment

for the flavons which break A4, thereby yielding TB neutrino mixing. We complexify

the extra dimensions x5, x6 so that they are described by one complex coordinate

z1 = x5 + ix6. The extra dimensions are compactified on the a twisted torus defined

by identifying the following translations:

z1 → z1 + 1 (4.2.1)

z1 → z1 + γ (4.2.2)

where γ = eiπ/3 and we have set 2πRz1 , the length of the extra dimension, to unity.

We then impose the following identification:Z2 : z1 → −z1. (4.2.3)

This defines the orbifold T2/Z2 as in [1, 3]. We can also impose a Z3 symmetry in

order to define the orbifold T2/(Z2 × Z3), we impose the following identification:Z3 : z1 → ωz1. (4.2.4)
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Combining eqns. (4.2.1)-(4.2.4) gives the definition of the orbifold T2/(Z2×Z3) which

is the complex direction denoted by z1 in figure 4.1. We follow an analogous procedure

for the remaining 2 extra dimensions by defining z2 = x7+ix8 and imposing the above

definitions substituting z2 for z1. In other words, we apply T2/(Z2 × Z3) orbifolding

separately in each of the z1 and z2 spaces. The overall orbifold has a single fixed point

invariant under both the Z2 and Z3 transformations which is located at z1,2 = 0. It

is at this 4d point that the Yukawa interactions occur.

4.2.2 SUSY breaking

The full 8d theory is N = 1 SU(5) and the 8d bulk of the theory contains the

SU(5) gauge bosons. Because spinors in 8 dimensions contain a minimum of 16

real components then in 4 dimensions the effective theory must have N = 4 super-

symmetry [101]. In order to eliminate this extended supersymmetry we can impose

boundary conditions on the multiplets so that they become heavy and play no part

in the zero mode physics. The N = 4 vector multiplet decomposes into 3 chiral φi

and one vector V N = 1 multiplets. We can use the T2/Z3 part of the orbifolding to

eliminate the unwanted multiplets by imposing the boundary conditions:

V (xµ, z1, z2) = V (xµ, ωz1, z2) (4.2.5)

φi(x
µ, z1, z2) = ωφi(x

µ, ωz1, z2), (4.2.6)

where ω are the cube roots of unity, leaving φ = 0 at the fixed point at z1,2 = 0. We

are therefore left with an effective N = 1 theory in 4 dimensions.
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4.2.3 Gauge breaking through orbifolding

The breaking of the SU(5) gauge group down to that of the Standard Model can be

achieved by the Z2 part of the orbifolding. By using a single parity PSM ,

PSM =

































−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 +1 0

0 0 0 0 +1

































(4.2.7)

we shall require that:

PSMVµ(x,−z)P−1
SM = +Vµ(x, z). (4.2.8)

Gauge boson fields of the standard model thus have positive parity and fields belong-

ing to SU(5)/GSM have negative parity. Only fields with a positive parity have zero

modes and therefore gauge bosons not belonging to the standard model gauge group

become heavy and the gauge symmetry is broken. In our model both the z1 and z2

directions are orbifolded in this way, this allows us to relax unwanted GUT relations

between the down quark and charged lepton mass matrices.

4.2.4 Higgs and doublet-triplet splitting

So far we have just considered the gauge sector of SU(5). Adding the Higgs to the

6d theory is straightforward. In the SU(5) GUT theory these are contained in the

5-plet and 5-plet of Higgs fields. For the gauge breaking orbifold we choose:

PSMH5(x,−z1) = +H5(x, z1) (4.2.9)

PSMH5̄(x,−z1) = +H5̄(x, z1) (4.2.10)

It is easy to see with the form of PSM that the last three entries gain a minus sign

which makes them heavy whereas the first two entries are left unchanged leaving them

light, resulting in a light doublet and a heavy coloured triplet. Similarly with the 10-
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plets living in the z1 and z2 directions half the multiplet becomes heavy, however by

introducing extra multiplets with opposite parity the full particle content is restored

at zero mode. This feature also allows us to evade unwanted GUT relations.

4.2.5 Vacuum alignment, VEVs and expansion parameters

In order to break the A4 family symmetry we will impose non-trivial boundary con-

ditions on flavons under the orbifoldings so that only a particular alignment survives

to low energy. By imposing boundary conditions we are able to avoid introducing the

driving fields and avoid having to write down a possibly complicated flavon potential.

We will now describe the procedure for obtaining the alignment, closely following the

procedure developed in [99] to which we refer the reader for more details. The firstZ2 boundary condition,

ϕS(−z1) = P2ϕS(z1), (4.2.11)

requires the matrix P2 to be of order 2. For A4 we have the elements in the fourth

conjugacy class to choose from. We can choose the matrix P2 = S where S is given

by

S =

















1 0 0

0 −1 0

0 0 −1

















(4.2.12)

in the basis of A4 where S is diagonal. This makes it trivial to see which alignment

is left as a zero mode. This choice leaves a single zero mode in the (1, 0, 0) direction

in this basis. To find what this alignment is in the T diagonal basis it is a simple

matter to rotate the vector using (for example see chapter 3):

V =
1√
3

















1 ω ω2

1 ω2 ω

1 1 1

















. (4.2.13)
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This leaves us with the alignment ϕS ∝ (1, 1, 1) in the T diagonal basis. For the Z3

orbifolding we can impose the boundary condition:

ϕT (ωz2) = P3ϕT (z2) (4.2.14)

and we can choose A4 elements which have order 3. For P3 we choose P3 = T where

T =

















1 0 0

0 ω 0

0 0 ω2

















. (4.2.15)

This gives a single zero mode ϕT ∝ (1, 0, 0).

Turning to the VEVs themselves, for simplicity from now on we shall set the

radii of the compact directions to R5 = R6 = Rz1 and R7 = R8 = Rz2 , which implies

that the Higgs VEVs are given by

〈Hu(z2)〉 =
vu

√

π2R2
z1 sin θ

, 〈Hd(z1)〉 =
vd

√

π2R2
z1 sin θ

(4.2.16)

where we have included the effect of arbitrary twist angle θ on the torus [1]. For

numerical estimates we will set the twist angle to 60◦ (by choosing γ = eiπ/3 in eqn.

4.2.2) as in [1] (although in the present model this is an arbitrary choice).

A useful feature of this setup is the suppression of the Yukawa couplings of fields

living in the bulk. A field living in the 6d bulk of one of the orbifolded directions is

related to its zero mode by

F (xµ, z) =
1√
V
F 0 + . . . (4.2.17)

where the dots represent the higher, heavy modes and V is the volume of the extra

dimensional space. The above expansion produces a factor s:

s =
1√
V Λ2

. (4.2.18)
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This feature will produce suppression for couplings involving these bulk fields. Since

we are considering 6 dimensional fields that live in either the z1 or z2 direction we

will have two not necessarily equal volume factors, s1 and s2:

s1 =
1

√

π2R2
z1 sin θΛ2

=
1

√

Vz1Λ
2
< 1 (4.2.19)

and

s2 =
1

√

π2R2
z2 sin θΛ2

=
1

√

Vz2Λ
2
< 1. (4.2.20)

Including volume suppression factors, we summarise the aligned flavon VEVs

as follows,

〈ϕT 〉
Λ

=
1

√

Vz2
(vT , 0, 0), (4.2.21)

〈ϕS〉
Λ

=
1

√

Vz1
(vS , vS , vS), (4.2.22)

〈ξ〉
Λ

=
1

Vz1
u, (4.2.23)

〈θ〉
Λ

=
1

√

Vz2
t, (4.2.24)

〈θ′′〉
Λ

=
1

√

Vz1
t′′. (4.2.25)

We have defined the parameters vT , vS , t and t′′ so that they are dimensionless re-

calling that 6d fields have mass dimension two. The Froggatt-Nielsen flavons θ, θ′′

require no special vacuum alignment and are assumed to obtain VEVs t, t′′ of O(1).

Such VEVs can be obtained as in [39] by minimising the D-term scalar potential.

Obtaining VEVs of O(1) can be found by assuming appropriate mass and coupling

parameters.

4.3 Superpotentials and mass matrices

The couplings are localised at the single fixed point located at z1 = z2 = 0 in the

extra dimensional space. The action reads:
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∫

d4x

∫

d(4)z

∫

d2θw(x)δ(z1)δ(z2) + h.c. =

∫

d4x

∫

d2θw(x) + h.c. (4.3.1)

The effective superpotential w is expressed in terms of N = 1 superfields can be

decomposed into the following parts:

w = wup +wdown + wcharged lepton + wν + wflavon. (4.3.2)

The fermion masses and mixings are given by the first three parts after A4, U(1)

Froggatt-Nielsen and electroweak symmetry breaking. The wflavon part concerns the

flavon fields, however since the A4 flavon alignment is given by the non-trivial bound-

ary conditions imposed by the orbifolding we can avoid writing down explicitly the

(possibly complicated) flavon potential. However without explicitly writing the flavon

potential we do lose the ability to make specific claims on relations between the A4

flavon VEVs.

4.3.1 Superpotentials

We shall now write down the superpotentials of the model (excluding wν which is

discussed in sec. 4.3.3). We shall use Standard Model notation since the theory

is broken to the Standard Model gauge group by the compactification. We have

suppressed the coefficients in each term of the superpotentials and we would expect

such coefficients to be of O(1). We shall use the notation for fields (f)′ where the

field transforms as a 1′ and similarly (f)′′ for a 1′′ of A4.

wup ∼ 1

Λ
Huq3u

c
3 +

θ′′

Λ4
Hu{(q2)′uc3 + q3(u

c
2)

′} +
θ′′2

Λ7
Hu{(q2)′(uc2)′}

+
θ′′2

Λ6
Hu{(q1)′′uc3 + q3(u

c
1)

′′} +
θ′′3 + θ3

Λ9
Hu{(q2)′(uc1)′′ + (q1)

′′(uc2)
′}

+
θ′′θ3 + θ′′4

Λ11
Hu{(q1)′′(uc1)′′}, (4.3.3)
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wdown ∼ 1

Λ3
(Hd)

′(dcϕT )′′q3 +
θ′′

Λ6
(Hd)

′(dcϕT )′′(q2)
′ +

θ

Λ6
(Hd)

′(dcϕT )′(q2)
′

+
θ′′2

Λ8
(Hd)

′(dcϕT )′′(q1)
′′

+
θ′′θ
Λ8

(Hd)
′(dcϕT )′(q1)

′′ +
θ2

Λ8
(Hd)

′(dcϕT )(q1)
′′, (4.3.4)

wcharged lepton ∼ 1

Λ3
(Hd)

′(lϕT )′′ec3 +
θ′′

Λ6
(Hd)

′(lϕT )′′(ec2)
′ +

θ

Λ6
(Hd)

′(lϕT )′(ec2)
′

+
θ′′2

Λ8
(Hd)

′(lϕT )′′(ec1)
′′

+
θ′′θ
Λ8

(Hd)
′(lϕT )′(ec1)

′′ +
θ2

Λ8
(Hd)

′(lϕT )(ec1)
′′. (4.3.5)

4.3.2 Charged fermion mass matrices

The Higgs multiplets obtain their VEVs along with the A4 and U(1) flavons ϕT , θ
′′, θ

as in equations ( 4.2.21-4.2.25) leading to mass matrices of the following form:

mu ∼

















(s1s
3
2t

′′t3 + s41t
′′4)s22 (s31t

′′3 + s32t
3)s1s2 s

2
1t

′′2s2

(s31t
′′3 + s32t

3)s1s2 s21t
′′2s21 s1t

′′s1

s21t
′′2s2 s1t

′′s1 1

















s1vu, (4.3.6)

md ∼

















s32t
2 s22s1t

′′t s2s21t
′′2

. . . s1s2t s21t
′′

. . . . . . 1

















s1s2vT vd, (4.3.7)

me ∼

















s32t
2 . . . . . .

s22s1t
′′t s2s1t . . .

s2s
2
1t

′′2 s21t
′′ 1

















s1vT vd, (4.3.8)
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The dots in md and me are from higher order corrections to the vev of the

ϕT flavon alignment. Such corrections come from the heavier modes which have a

higher mass through orbifolding and will alter the alignment of ϕT as discussed in

section 4.2.5.

We set s1 = λ and s2 = λ3/2 with λ = 0.22, we choose for simplicity t = t′′ =

O(1). We should make clear that taking t = t′′ = O(1) means that we are not using

the Froggatt-Nielsen mechanism to provide the suppression. Instead the hierarchies

originate from the bulk suppression factors si. The mass matrices are then given by:

mu ∼

















λ7 λ5.5 λ3.5

λ5.5 λ4 λ2

λ3.5 λ2 1

















λvu. (4.3.9)

The down sector matrix is given by,

md ∼

















λ4.5 λ4 λ3.5

. . . λ2.5 λ2

. . . . . . 1

















λ2.5vT vd, (4.3.10)

where again the dots represent contributions from the corrections to the vacuum

alignment. The charged lepton mass matrix is given by,

mcharged lepton ∼

















λ4.5 . . . . . .

λ4 λ2.5 . . .

λ3.5 λ2 1

















λ2.5vT vd. (4.3.11)

In this model since the first two families are doubled, because the gauge breaking orb-

ifolding makes half of the 10-plets heavy the, GUT relation mdown = mT
charged lepton

for the first two families is not valid.

These mass matrices give us approximate quark masses and mixing angles of

the correct order of magnitude. For example the quark mixing angles are given
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roughly by,

θ12 = O(λ1.5) (4.3.12)

θ23 = O(λ2) (4.3.13)

θ13 = O(λ3.5). (4.3.14)

So far we have not specified the size of vT and vS, However from the ratio of

the top and bottom quark masses we expect

mb

mt
= λ3/2 vd

vu
vT ∼ λ2

⇒ vT ∼ λ1/2

tan β
∼ 1

2 tan β
(4.3.15)

where vd

vu
= tan β.

4.3.3 Neutrino sector

In the neutrino sector the right-handed neutrino A4 triplets live at the fixed point.

The ϕS lives in the z1 direction along with the A4 singlet flavon ξ. After these

flavons develop a vev the gauge singlets N become heavy and the seesaw mechanism

takes place similar to [39], [1] with the alteration that a zero vev A4 singlet flavon is

no longer required as the vacuum alignment is determined by boundary conditions

rather than by the use of driving fields. Thus we have,

wν ∼ yD

Λ
Hu(Nl) +

1

Λ
xaξ(NN) +

xb
Λ
ϕS(NN). (4.3.16)

After the fields develop VEVs, the gauge singlets N become heavy and the

seesaw mechanism takes place as discussed in detail in [41], leading to the effective
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mass matrix for the light neutrinos:

mν ∼
1

3a(a+ b)

















3a+ b b b

b 2ab+b2

b−a
b2−ab−3a2

b−a

b b2−ab−3a2

b−a
2ab+b2

b−a

















s1(vu)
2

Λ
(4.3.17)

where

a ≡ 2xas1u

(yD)2
, b ≡ 2xbs1vS

(yD)2
.

The neutrino mass matrix is diagonalised by the transformation

UTν mνUν = diag(m1,m2,m3)

with Uν given by:

Uν =

















−
√

2/3 1/
√

3 0

1/
√

6 1/
√

3 1/
√

2

1/
√

6 1/
√

3 −1/
√

2

















(4.3.18)

which is of the TB form in Eq. (3.1.1). However, although we have TB neutrino

mixing in this model we do not have exact TB lepton mixing due to fact that the

charged lepton mass matrix is not diagonal in this basis. Thus there will be charged

lepton mixing corrections to TB mixing resulting in mixing sum rules as discussed

in [42,92].

4.3.4 Higher order corrections

We will now discuss corrections to the mass matrices, such corrections come from

additional flavon insertion of ϕT , ϕS , ξ and θ, θ′′, and also from corrections to the

vacuum alignment of the A4 triplet flavons ϕT and ϕS .

corrections to mup

The leading order terms in the up sector are of the form θmθ′′nHuqiuj . Terms are

gauge and A4 singlets, to create higher order terms we need to introduce flavon fields.
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The most straightforward way to do this is to introduce two flavon fields (ϕTϕT )1,

since ϕT is an A4 triplet we need the two triplet fields in order to construct an A4

singlet. Such terms will lead to entries in the mass matrix suppressed by a factor of

s22v
2
T . Due to the Z3 symmetry the flavon fields ϕS , ξ, ξ̃ must enter at the three flavon

level so entries will be suppressed by a factor of s31v
2
Su, s

3
1v

3
S and s31u

3 relative to the

leading order term. Using the values assumed in sec. 4.3.2 the corrections enter at

O(λ3) relative to the leading order term.

corrections to md and me

In the down quark mass matrix sub-leading corrections fill in the entries indicated

by dots in Eq. 4.3.7. Entries in the matrix are generated by terms of the form

θmθ′′nH ′
d((d

cϕT )qi + (lϕT )eci ), higher order terms can come from replacing ϕT with

a product of flavon fields or including the effect of the corrections to the VEV of ϕT .

The obvious substitution is to replace ϕT with ϕTϕT , this is compatible with

the Z3 charges and results in corrections with the same form as mdown but with an

extra overall suppression of s2vT . Using the values assumed in sec. 4.3.2 this type of

correction enters at the level of O(λ3/2).

If we include the corrections to the alignment of the VEV of ϕT then we fill

in the entries indicated by dots in Eq. (4.3.7). Such corrections originate from

higher,heavy modes of the flavon field ϕT , such corrections would be suppressed by

an order of s2 relative to the leading order term giving corrections to the mass matrix

of the form:

δmdown ∼

















λ5 λ5 λ5

λ3.5 λ3.5 λ3.5

λ1.5 λ1.5 λ1.5

















λ2.5vT vd, (4.3.19)

i.e. the corrections are suppressed by O(λ3/2) relative to the largest term in each row

(or column for mcharged lepton).

As remarked, since the first two families are doubled, because the gauge break-

ing orbifolding makes half of the 10-plets heavy the, GUT relation mdown = mT
charged lepton
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for the first two families is not valid. It does however hold up to orders of magnitude

for the individual families so that the power of λ is the same for each family though

the (suppressed) O(1) coefficient can be different for each family.

corrections to mν

The leading order Dirac mass term for the neutrinos is Hu(Nl), sub-leading correc-

tions to this term enter with a single flavon insertion of ϕT so the resulting term

is Hu(ϕTNl) this results in the sub-leading corrections entering at the s2vT level.

Using the values assumed in section 4.3.2 the corrections enter at the O(λ3/2) level.

Corrections to the Majorana mass matrix can arise from a number of terms.

This is due to the term (NN) being a product of two triplets and can thus be a

triplet or any of the singlet representations of A4. Corrections to the Majorana

mass matrix can have one extra flavon insertion relative to the leading order terms

ξ(NN), (ϕSNN). For example the term (ϕSϕT )(NN) is allowed by the Z3 symmetry

and leads to corrections of order s2vT . After the seesaw mechanism takes place

corrections to the neutrino masses and Tri-Bimaximal mixing are of order s2vT .

Using the values assumed in section 4.3.2 these corrections are O(λ3/2) relative to

the leading order term.

4.4 Conclusion

We have proposed the first realistic N = 1 SUSY SU(5) GUT model in 8 dimen-

sions with an A4 family symmetry where the vacuum alignment is straightforwardly

achieved by the use of boundary conditions on orbifolds of the four compact di-

mensions. The low energy theory is the usual N = 1 SUSY Standard Model in 4

dimensions but with predictions for quark and lepton (including neutrino) masses

and mixing angles. For example, the low energy 4d model naturally has TB mixing

at the first approximation and reproduces the correct mass hierarchies for quarks and

charged leptons and the CKM mixing pattern. The presence of SU(5) GUTs means

that the charged lepton mixing angles are non-zero resulting in predictions such as
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lepton mixing sum rules.

We were motivated to consider an 8d theory by the desire to achieve the A4

flavon vacuum alignment in an elegant way using orbifold boundary conditions. Such

boundary conditions result in the required alignment surviving at the zero mode

level, and in relatively small corrections to the alignment resulting from heavy higher

modes. However the extra dimensional set up also provides familiar added benefits

such as orbifold gauge and SUSY breaking with doublet-triplet splitting of the 5

and 5̄ Higgs multiplets, making the coloured triplets heavy. Because the first two

generations of 10-plets are doubled, both unwanted and desirable GUT relations are

also avoided. The lack of such relations introduces more freedom into the theory. The

specific model in in table 4.1 and figure 4.1 also includes a Froggatt-Nielsen U(1)

symmetry, which, together with the bulk suppression factors, leads to the desired

inter-family hierarchies.

Finally we comment on the possible relation between the 8d orbifold GUT-

Family model considered here and string theory. At first glance there is an intriguing

similarity between the model here and the F-theory GUT recently discussed [102]. In

both cases the SU(5) GUT gauge group lives in the full 8d space, and also the matter

and Higgs fields lie on matter curves in a 6d subspace, corresponding to two extra

complex dimensions z1,2, with Yukawa couplings occurring at a 4d point [102]. How-

ever any possible connection would be more subtle than this, since firstly one must

uplift the 8d orbifold GUT-Family model here into full heterotic string theory, then

one must identify duality relations between the heterotic string theory and F-theory

as discussed in [103]. Nevertheless the 8d orbifold GUT-Family model presented here

may provide a useful link towards some future unified string theory in which GUT

breaking and the realisation of family symmetry, spontaneously broken with a par-

ticular vacuum alignment, can be explained as the result of the compactification of

extra dimensions.
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Chapter 5

Conclusion

Here we will simply provide a brief summary of the thesis. Chapters 1 and 2 serve as

an introduction to the subject of the Standard Model and extensions to it, namely

family symmetries and extra dimensions. The summaries of chapters 3 and 4 are

contained within sections 3.5 and 4.4.

We have constructed models of fermion masses and mixings based in part on

family symmetries. The model presented in chapter 3 is based upon the SU(5) GUT

group. The family symmetry is given by the A4 group which is derived from the

geometry of an orbifolded complex extra dimension. Additionally a Froggatt-Nielsen

mechanism is used to help generate the mass hierarchy and mixing angles.

In chapter 4 a similar model is presented, this time using 4 extra compact

dimensions, again A4 is used as a family symmetry however it is not assumed to

be generated from the geometry. A feature of the model is that makes use of bulk

suppression factors to generate a mass hierarchy and mixing scheme alongside a

Froggatt-Nielsen mechanism. The flavons used to break the family symmetry also

have a vacuum alignment determined by boundary conditions on the orbifold rather

than by the introduction of additional “driving” fields as in chapter 3.

Both models predict realistic fermion mass and mixing patterns, in particular

both exhibit near Tri-Bimaximal mixing in the lepton sector.
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Final comments

This thesis was supported by the STFC under the grant PPA/S/S/2006/04460.

Figure 1.1 used with permission from Steve Martin.

Feynman diagrams created using JaxoDraw [104].

This thesis was written using LATEX and .
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