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ABSTRACT

University of Southampton,
Faculty of Physical and Applied Science

School of Physics and Astronomy

DOCTOR OF PHILOSOPHY

“Family Symmetries With Extra Dimensions”

by Toby John Burrows

Possibly one of the most interesting unanswered questions posed by the Standard
Model is an explanation for the existence of three light generations of matter. Perhaps
the most conservative extension to the Standard Model to offer an explanation is to
include a symmetry between the families. One of the most promising candidates for

this symmetry is the discrete group A4, the symmetry group of the tetrahedron.

Extra dimensions have long been considered to be included in a final “Theory
Of Everything”. More recently research into String Theory has led to more interest
in extra dimensional theories. The geometry of these extra dimensions has also been

used to generate discrete symmetries which may be exploited as a family symmetry.

Grand Unified Theories seek to unify electromagnetism, the weak and the
strong forces into a single unified force at high energy. If we wish for such a unification

then restrictions are placed upon any family symmetry we may use.

We study models which seek to explain the large leptonic mixing angles together
with the small quark mixing angles and large quark hierarchy by considering models
which incorporate the use of extra dimensions together with Grand Unified and family

symmetries.
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Chapter 1

Introduction

1.1 Motivation and outline

The Standard Model with the inclusion of right-handed neutrinos explains experi-
mental data to date. However at a theoretical level there are many good reasons to
suppose that there is more physics to be discovered beyond the Standard Model. Ex-
tensions to the Standard Model include Supersymmetry (SUSY) and Grand Unified
Theories (GUTs) which are theoretically appealing, short reviews are contained in

subsections 1.4 and 1.5.

The puzzle of why there are three generations of matter is still very much an
open question. In the Standard Model the fermion masses and mixings are simply
parameters to be determined by experiment. To go beyond the Standard Model we
must propose some underlying mechanism which generates these masses and mixings.
The picture is further complicated by neutrino data which shows that in contrast to
the small mixing angles in the quark sector the leptons have quite large mixings.
Perhaps the most conservative and minimal extension of the Standard Model to
explain the existence of the three families is to propose a so-called family symmetry.
As gauge symmetries relate different particles within a family a family symmetry

relates particles between families.

The remainder of chapter 1 provides a brief introduction to the Standard Model



along with brief introductions to Supersymmetry (section 1.4) and Grand Unified
Theories (section 1.5). Section 1.6 serves as an introduction and review of family
symmetries, a review of an important A4 model is also given. Also included is a brief
overview of the Froggatt-Nielsen mechanism along with a toy model to illustrate the
concept of a family symmetry. Chapter 1 is concluded with a short introduction to

the Seesaw mechanism in section 1.6.7.

Chapter 2 introduces the concept of extra dimensions in particle physics and
the use of orbifolds is discussed. A brief review of a model presented in [3] is given
where a family symmetry is generated from the geometry of the extra dimension.

Recent models using extra dimensions are also reviewed.

Chapter 3 presents original work [1] on explaining the origin of the fermion
masses and mixings using a discrete family symmetry. The model uses a family
symmetry derived from the geometry of an extra dimension as in [3] but also extends

it from a purely leptonic theory to an SU(5) Grand Unified Theory.

Chapter 4 presents original work [2] again using a discrete family symmetry
namely A4 and orbifolded extra dimensions. The family symmetry is not derived
from the geometry of the extra dimensions but a mass hierarchy is generated in
part by bulk suppression factors originating from the size of the extra dimensions.
Another interesting feature of the model is the use of orbifolding to achieve the

vacuum alignment of the flavons.

Chapter 5 serves as a brief conclusion and summary of the thesis.

1.1.1 Weyl spinors

As left-handed and right-handed particles are treated differently under the gauge
group it is often more convenient to use a chiral basis using 2 component Weyl

Spinors.

The familiar 4-component Dirac spinor is reducible into 2 2-component Weyl



spinors

g | =[] (1.1.1)

YR n'e

If the Dirac spinor has the same undotted and dotted Weyl spinors (n = ¢, ¥, = ¥R)
then it is called a Majorana* spinor. The hermitian conjugate of a left-handed spinor

is a right-handed spinor and vice-versa:

()" =n®. (1.1.2)

Whether the indices « are raised or lowered is important, they are raised and lowered
by the anti-symmetric Levi-Civita tensors ¢*? or €qp in the obvious way (, = eagCﬁ ,
similarly for the dotted versions. In this thesis we will in general omit the indices for
simplicity, with the understanding that two left-handed spinors contract as (n = (*1q

and for right-handed spinors as ¢fnf = Cinm.

Dirac and Majorana masses

In the above notation a 4-component Dirac spinor ¥p is given by:

vy — fa.

, and WUp = (x“ Q) : (1.1.3)
Xt

We shall now rewrite the Dirac Lagrangian using this notation,

ﬁD = z‘\i/ny“E?M\I/D - mD\i/D\I/D (1.1.4)

= i&16" 0, + ixa" O’ — mp(Ex + €T x1). (1.1.5)
If we contrast this with a Majorana spinor given by:

Ty = % , and Uy = <§a gj_y). (1.1.6)
6 «

*After Ettore Majorana, born 1906, Catania, Sicily and presumed disappeared at sea 1938 [4].



then the Lagrangian may be rewritten in the 2-component Weyl form as:

- 1 B
Ly = %\I'MW@L\I/M — §mM\I’M‘PM (1.1.7)

= i€lgh 0,6 — Smu(ee + 1€ (118)

We can now see that the Dirac mass couples left and right-handed fields (£x) to-
gether whereas the Majorana masses couple left-handed and right-handed fields to
themselves, (£€) and (£7¢T).

Right and Left-handed notation

Often in GUTs when we need to unify right-handed and left-handed fields within the
same representation it is useful to remember that the charge conjugate of a right-
handed field transforms as a left-handed field. In this thesis we shall either use the
notation ¥y, and ©¥g to denote left and right-handed fields or we shall use ¢ and ¥°.
The advantage of the latter notation is that we can place the charge conjugate of a

right-handed field in a GUT representation with left-handed fields.

1.2 The Standard Model

Particles in nature exhibit similar properties, this is suggestive of symmetries which
these particles obey. The weak interactions suggest that fermions be grouped into
doublets, and the quarks must come in three colours. The need for three colours
originally arose from the requirement that three quarks with the same quantum
numbers live within hadrons, therefore to be compatible with the Pauli exclusion
principle they each needed to be a different colour. Additional support for the three
colours comes from decay widths and annihilation cross sections. This suggests that
strong interactions could be described by SU(3) and weak interactions by SU(2).
Electromagnetic interactions don’t change the quantum numbers of the interacting
particles so a U(1) group can also be used. The Standard Model [5] is based upon
the gauge group:

SU(3)c x SU(2)r, x U(1). (1.2.1)



Though colour was initially an ad-hoc introduction it is now viewed on a much more
fundamental level. In an analogous way to the electric charge being the source of the
electric field then colour charge is the source of the colour field. Weak interactions
have “charge” given by the third component of weak isospin 75. Only left-handed
particles are charged under weak isospin, right-handed particles are placed into singlet
representations a summary of charges under the Standard Model is given in table
1.1. Excluding right-handed neutrinos which will be addressed in subsection 1.6.7,
the Standard Model contains 15 matter fields within each generation: there are 2
left-handed lepton fields (ve,e™); and 1 right-handed lepton e;g, there are 6 left-
handed quark fields 3 x (u,d);, and 6 right-handed quark fields 3 x ur and 3 x dr
in both cases the factor of 3 comes from the fact that there are 3 colours. The
SU(3)¢ is the gauge group of Quantum Chromodynamics (QCD) which describes
the coloured particles i.e. quarks and gluons. The rest of the Standard Model gauge
group is the Electroweak group SU(2);, x U(1)y which is broken at low energies. The
electroweak gauge bosons are the weak gauge bosons W+, W~, Z° and the photon ~y
of the electromagnetic interactions. Electromagnetic interactions originate from the
interchange of the neutral gauge boson from SU(2), as well as the gauge boson from
U(1), as such the charge of the U(1) group is not the same as the electric charge the
electric charge is given by the Gell-Mann-Nishijima relation Qe = T3 + % where
T3 is isospin, the third generator associated with SU(2)r, and Y is the hypercharge

from the U(1)y gauge group.

The Higgs mechanism Fermion mass terms cannot simply arise in the Lagrangian
as they are excluded by the Standard Model gauge group. Taking a Dirac electron
mass term as an example, mee® is not invariant under SU(2)y,. Since electrons obvi-
ously do have mass this is solved by using the Higgs doublet ¢. Since ¢ is an SU(2)y,
doublet we can form invariant terms by using ¢ together with the lepton doublet [,
and similarly for the quark Dirac mass terms. These terms are contained within the

yukawa sector of the Lagrangian:

Lyuk = yijq_Lm;uRj + yzljtiuqbd}zj +ylLiger; + y,i,jl_LiQ;VRj + h.c. (1.2.2)



Generations Quantum Numbers
helicity 1 2 3 Q T3 Yw
Ve vy vy 0 1/2 -1
e/, /) ). | -1 -1/2 -1

L
<u> <c> <t> 2/3  1/2  1/3
), \s), \V),|-1/3 -1/2 1/3
eRr UR R -1 0 -2

R
UR CR tr 2/3 0 4/3
dr SR br -1/3 0o -2/3

Table 1.1: The particle content of the Standard Model

The quantum numbers under the electroweak gauge group. The electric charge is labelled
@, the third component of isospin is given by T35 and weak hypercharge is given by Y. The
up(u), down(d), strange(s), charm(c) top(t) and bottom(b) quark fields have three colours
which have been omitted in the table. The weak isospin partuners of the electron(e), muon(u)
and tau-on(7) are the neutrinos v, v, v-. The primes on the down strange and bottom quarks
are to label the interaction eigenstates which are superpositions of the mass eigenstates i.e.
the observed particles. This superposition is described by the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. Not listed in the table is the Higgs boson which transforms as an SU(2)y,
doublet with hypercharge of 1.

The i and j are family indices with the SU(2); and SU(3)¢ indices having been sup-
pressed for simplicity. The Yukawa couplings ¢/ of the Higgs boson to the fermions
govern the masses of the Standard Model fermions, after spontaneous symmetry

breaking where the Higgs boson obtains a vacuum expectation value (VEV).

The above Yukawa interactions can only give rise to Dirac masses, where a
left-handed and right-handed fermion, or equivalently the charge conjugate of a right-
handed fermion as displayed above, are coupled together to form a term mprgrfrfr.
Majorana mass terms couple left-handed fields to left-handed fields and right-handed
fields to right-handed fields. Of the fields introduced so far it is possible to introduce
such masses for the right-handed neutrinos, vg, only. We are allowed to do this
because the right-handed neutrinos are neutral under the Standard Model gauge

group and so a mass term Mvgrg is not forbidden.

The down, strange and bottom quarks in table 1.1 are shown in their interaction



eigenstates which are superpositions of the observed mass eigenstates, the mixing
between these states is given by the CKM matrix. The CKM matrix is given by the
product of two unitary matrices which diagonalise y,, and yq. If VuL’R diagonalises
Yy by VuLtuHRJr and similarly VdL’R for yg4, then the CKM matrix Vegy is given by

Vexkm = VuLVdLT. The norm of the elements of the CKM matrix are given by [6]:

0.97 0.23 0.004

Vorm(Mywear)l ~ | 0.23 0.97 0.04 | - (1.2.3)

0.008 0.04 0.99

The CKM matrix can be parametrised a number of ways the most famous of which

is probably the Wolfenstein parametrisation [7]:

2 .
1- )‘7 A AN (p—in)
Vekm = A 1 /\_22 AN2 (1.2.4)
AN (1 — p —in) —AN? 1

where A ~ 0.22, A ~ 0.82,p ~ —0.22,n ~ 0.22 at the weak scale. At one loop order
only the parameter A changes significantly and even at two loop order A remains
the same order of magnitude up to GUT scales [8]. The Yukawa couplings are the
majority of the unknown parameters in the Standard Model. In the quark sector
they correspond to 6 quark masses, 3 mixing angles and a complex phase. For the
lepton sector we also have 6 lepton masses, 3 mixing angles and a complex phase
assuming that the light neutrinos have only Dirac masses. If we include the right-
handed neutrino Majornana masses then the number of free parameters obviously

increases.

In addition to these parameters the Standard Model has the following pa-
rameters: in the Higgs sector the vacuum expectation value and quartic coupling
coefficient. In the gauge sector: the SU(3)c gauge coupling g3, the SU(2); gauge
coupling ¢ and the U(1)y gauge coupling ¢’. There is also fqcp which parametrises

the CP violation of the strong interactions.



1.3 Neutrinos

Neutrinos are unique among the fermions of the Standard Model in that they are
uncharged. This special status allows the neutrinos more freedom in the way a mass
term may be written down. For charged fermions the only allowed mass term in the
so-called Dirac mass. The Dirac mass term connects fields of opposite handedness,
a Dirac mass term therefore looks like mprr¢. However for the neutral neutrinos
don’t have such a constraint and we may write down a so-called Majorana mass term
connecting fields of the same chirality. The Majorana mass term has the form my;vv
or mprv°re. We can immediately see that the Dirac mass is the only type of mass term
that we may write down for a charged fermion without violating charge conservation.
This stems from a Majorana particle being its own anti-particle, a Majorana mass
vertex creates two identical fields, if the field carried a non-zero charge the mass
vertex would clearly not conserve the charge. Charged fermions therefore must be
Dirac particles where their anti-particle has opposite chirality and the mass vertex

creates two oppositely charged particles.

Though we may write down neutrinos with Majorana mass, that doesn’t nec-
essarily mean that they are Majorana particles in the real world. One important
prediction of Majorana neutrinos is the existence of neutrino-less double beta decay
(6Bo,) which can only arise if the neutrinos are Majorana particles. Numerous ex-
periments have been devised to look for such a decay, see [9] for a review of 50,
Even though we may write a Majorana mass for the neutrino there is nothing to stop
us from also writing down a Dirac mass at the same time, such a possibility makes
the various Seesaw mechanisms possible providing a natural explanation for the very

small observed neutrino masses.

Neutrino oscillations imply the existence of neutrino mass, thus the Standard
Model (without the right-handed neutrino) must be an incomplete description of
nature. The existence of a neutrino mass is to date the only evidence of physics
beyond the Standard Model in the realm of particle physics. The Standard Model
doesn’t contain a right-handed neutrino and as such there is no coupling of the form

v, Hlv® which would give the neutrinos mass after symmetry breaking in the same



manner as other particles of the Standard Model. A straightforward way to extend
the Standard Model to include neutrino mass would therefore seem to be to include
a right-handed neutrino, this would also make the model symmetric with respect to
quarks and leptons. However there are problems with this seemingly easy extension
of the Standard Model. The first problem we see immediately is that the Yukawa
coupling y, Hiv® we would naturally expect to be of the same order as the quark
and charged leptons. However experiment suggests that neutrino masses are at least
a factor of 10 smaller than the smallest of the quark and charged lepton masses.
Therefore neutrino mass not only implies the existence of the right-handed neutrinos
but also the existence of some new physics which would enable us to understand why
we have such small neutrino masses. A plausible explanation for the small neutrino
masses lies in the Seesaw mechanism which makes use of the neutrinos being unique
among known fermions in that they can have Majorana mass as described earlier. It
has been commented [10] that we may have a better explanation of the 10% factor
in neutrino masses than we do for the similar 10° factor between the top quark and
electron masses for which at this present time there is no accepted explanation. The
Seesaw mechanism and varieties of it are described below in section 1.6.7. Though
the Seesaw mechanism provides an elegant and natural explanation for the lightness
of neutrinos there are alternatives to the Seesaw which also seek to explain the small
neutrino masses. In such theories the neutrinos can be either Dirac or Majorana
fields, they often predict observable charged lepton lepton-flavour violating signals,
detection of which could help eliminate some of several theoretical explanations for

the origin of the neutrino masses.

1.3.1 Data

As neutrinos are massive, the masses and mixings are as important parameters to
understanding nature as the masses and mixings of the charged lepton and quark
sectors. Neutrino oscillations arise from a simple quantum mechanical phenomenon
during their propagation causing flavour changes. Oscillations are possible due to
the existence of lepton mixing in an entirely analogous manner to quark mixing. In

quark mixing we have the CKM matrix describing the mixing whereas the leptonic



version is called the Pontecorvo-Maki-Nakagawa-Sakata matrix (commonly MNS but
also known as the PMNS or MNSP matrix). If we consider a basis where the charged
lepton mass matrix is diagonal then we may write the neutrino mass and flavour
states as:

V; = UZ'QVQ. (131)

The neutrinos with Roman indices are the mass (observed) eigenstates and the neu-
trinos with Greek indices are the flavour (interaction) eigenstates. The matrix U,
is the MNS matrix which relates the two sets of states, in this way we can easily see
how neutrino oscillations occur. Every flavour eigenstate is a linear combination of
mass eigenstates which will change during propagation as each mass eigenstate will
have a phase factor e’Fi*. Since neutrinos are very light then we may take m < p;
and therefore E; = {/p? + mf ~p(l1+ % +...), then each mass state has an energy
given by E; ~ E + % We can now calculate approximately the probability of the
oscillation between two flavour states when a neutrino propagates a given distance.

If we call this distance L then the transition probability from state « to 3 is given

by
mzL 2

P, = ‘UmU;ﬁe—iﬁ (1.3.2)

We can express P, in terms of deviations from the identity matrix as P,g = 043 +

D,z with the deviation D,g given by:

D.s = —42 R(UiUpiUajUgj) sin 1B + 23(U,,;UpiUa;Uj;) sin 5F
1>]

(1.3.3)

The key point is that although the overall mass scale isn’t measurable the

2 _m? is, a summary of the oscillation data is given in

squared difference Am?j =m; —m;

table 1.2.

The angles in table 1.2 refer to the standard parametrisation of the neutrino

10



Parameter best fit 20 30
Am3, [107%eV?] | 7.657035 | 7.25-8.11 | 7.05-8.34

Am?, [1073eV?] | 2407077 | 2.18-2.64 | 2.07-2.75

sin? 019 0.30470:022 | 0.27-0.35 | 0.25-0.37
sin? 03 0.50739% | 0.39-0.63 | 0.36-0.67
sin? 013 0.017391% | <0.040 | <0.056

Table 1.2: Neutrino Data
Best-fit values, 1o errors, 20 and 3o intervals (1 d.o.f.) for the three flavour neutrino oscil-
lation parameters from global data (from [11]).

mixing matrix:

C13C12 S$12€13 513

U= (1.3.4)

—3812C23 — $23513C12 C€23C12 — $23512513 $523C13 |’
823812 — §13C23C12 —523C12 — 513512C23 C23C13

where ¢;;, s;; refer to cos6;; and sin 0;; respectively. The angle 613 is referred to as
the solar angle 6, 03 is the atmospheric angle 6q and finally the angle 613 is the

reactor angle 6,.. The names of the various angles refer to the types of experiment

used to measure them.

1.3.2 Tri-Bimaximal mixing

The data in table 1.2 is consistent with the so-called Tri-Bimaximal mixing scheme

first proposed by Harrison, Perkins and Scott [12]. This scheme has:

sin? 0o, = 1/3, (1.3.5)
sin?fq = 1/2, (1.3.6)
sin® 6, = 0, (1.3.7)
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leading to the MNS mixing matrix of:

2 1
3 3 0

Unns = _\ﬁ \ﬁ \ﬁ : (1.3.8)

6 3 2

1 1 /1

Vi Vi
contrast these large mixing angles with the quark sector and we see that the mixings
in the lepton sector are very much larger than the quark sector (the Cabibbo angle is
the largest quark mixing angle at sin ¢ ~ 0.23). Such a mismatch is a challenge for
models which seek to unify leptons and quarks within some shared symmetry(s). The

focus of this thesis will be the construction of models which predict Tri-Bimaximal

mixing.

1.4 Supersymmetry

Supersymmetry is a symmetry between bosons and fermions. It can be realised in
nature if we assume that each particle with spin j has a supersymmetric partner
with spin j + 1/2. The particle spectrum is therefore doubled, we can assign the
particles to supermultiplets. The vector supermultiplet contains the gauge bosons
and the chiral multiplet contains the matter fields. However the supersymmetric
particles “sparticles” have so far not been observed in nature which leaves us with
two possibilities: 1) Supersymmetry is an nice idea but it has nothing to do with
reality or 2) Supersymmetry is not exact and the sparticles are heavier than the
particles and thus haven’t been observed yet. Support for 2 is widespread as there

are many good reasons for believing in supersymmetry:

Supersymmetry solves the hierarchy problem: The hierarchy problem [13] of
the Standard Model stems from the Higgs mass being quadratically dependent on the
cutoff at which new physics appears. The Higgs mass as yet hasn’t been measured
experimentally however we know that since it sets the scale of electroweak breaking

it must be O(10%) GeV. If the new physics appears at the Planck scale then the ratio
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Multiplet
Chiral Vector
J=1/2 | J=0 J=1 | J=1/2
L. ugr,dr | 4o, g, dr g 7
IL,er Ip,ép | WE WO | W WO
Hy, Hy Hy, Hy B B

Table 1.3: A list of the Standard Model particles alongside their su-
persymmetric partners in the MSSM

of the Higgs mass and the cutoff is O(10~'7) which would require fine tuning between
the tree level mass and the radiative corrections. Supersymmetry solves the hierarchy
problem by introducing new diagrams to the contribution to the quadratic divergence
of the Higgs mass, these diagrams exactly cancel the Standard Model contributions
due to the -1 introduced due to the fermion loop.

Supersymmetry offers an explanation for dark matter: There is a commonly
assumed symmetry called “R-parity” in supersymmetric models, for example see [13]
for details. A consequence of this symmetry is that there should exist a stable
supersymmetric particle, to so-called LSP (lightest supersymmetric particle). such

a particle could be a viable candidate for a dark matter WIMP (weakly interacting

massive particle).

Supersymmetry is required by String Theory: String theory is one of the
most promising candidates for a theory of everything. In many string theories super-
symmetry is a natural part of the theory. If we wish to reconcile some quantum field
theory with general relativity at some high energy scale in some string theory then
supersymmetry will have to be included at some point.
Supersymmetry unifies the coupling constants: Another extremely nice fea-
ture of supersymmetry at low energy is that there is apparent unification of the
coupling constants. The Standard Model doesn’t quite unify the coupling constants
however if superpartners are introduced at around the TeV scale then the coupling

constants evolve differently and the three couplings run together.
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Figure 1.1: Running coupling constants, from [13]
The dotted lines represent the evolution of the coupling constants in the absence of Super-
symmetry. The solid lines show that when Supersymmetry is included the coupling constants
unify.

1.5 Review of Grand Unified Theories

The Standard Model relates charged leptons and neutrinos under the SU(2), sym-
metry which is broken via the Higgs mechanism. In a similar way it may be possible
to relate quarks and leptons under some larger symmetry at a higher energy scale
which is broken to the Standard Model at low energies. Apart from gravity each of
the known forces, electromagnetism, the weak and strong forces, is associated with a
Lie algebra, this suggests that it may be possible to unify the forces within a single

simple Lie algebra, such theories are called Grand Unified Theories (GUTSs).

If such a GUT were to exist then because the Standard Model gauge group is
rank 4 therefore any GUT group must be rank 4 or larger. Of rank 4 Lie groups there
are nine which have one coupling strength. Georgi and Glashow argued [14] that seven
of these nine groups may be excluded since they don’t have complex representations,
this leaves is with SU(5) and SU(3) ® SU(3). As SU(3) ® SU(3) cannot accommodate
integer and fractional charges SU(5) is the only viable rank 4 GUT group. Though
we will mainly use SU(5) other gauge groups are available of particular note is SO(10)
which has a 16 dimensional representation which naturally contains a right-handed
neutrino (15 Standard Model fields + right-handed neutrino). Many string theories

make use of the group Eg whose dynkin diagram is shown in figure 1.2, by removing
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the right-most root we eventually get to SU(5) and the Standard Model. Though
proving nothing this does suggest the route to take to build from the Standard Model
through GUTSs to a String Theory.

1.5.1 The SU(5) Grand Unified Theory

The SU(5) grand unified model was one of the first attempts to unify the Standard
Model within an larger gauge group, the model is often referred to as the Georgi-
Glashow model after Howard Georgi and S. L. Glashow [14]. The 15 left-handed
fields of the Standard Model may be placed into a 5 @ 10 of SU(5):

ds 0 uf —ul wu d,
d° —up 0wl wu, d
S=1ae | 10=1 ¢ —u¢ 0 wy dy|- (1.5.1)
e —Uy —U, —up, 0 €
v —d, —d, —dy, —e® 0

The SU(5) group has 24 generators which can be represented by generalised Gell-

Mann matrices. The 24 gauge bosons transform as the adjoint representation as:

G — j% G, G Xxe Ye
G.., Gy j% G.p, Xxe Ye
24 = Ghr G, Ghpp — \2/% Xy Yy ' (1.5.2)
X, X Xy WT; +25 W
Y, Y. Y, w- ey SR

In addition to the 12 gauge bosons of the Standard Model the Georgi-Glashow theory

also includes 12 new Baryon-Lepton number violating X and Y bosons.

Charge prediction: A useful feature of the SU(5) GUT is the prediction of charges

of the particles. Since the quarks and leptons are assigned to the same multiplet then
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Figure 1.2: Dynkin diagrams of GUT groups
Dynkin diagrams of GUT groups: by removing the right-most root from the diagram

of Eg we find that we go through the gauge groups E; — Eg — SO(10) — SU(5) —
SM reaching the Standard Model gauge group
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Figure 1.3: Proton Decay via SU(5) Gauge Bosons
The new SU(5) gauge bosons, often called leptoquark bosons, introduce new transitions
between quarks and leptons. These new transitions result in proton decay.

their charges must be related as the trace of any generator of SU(5) must be zero.

Acting the charge operator on the fundamental representation gives us:

Tr@Q = TI'((]dC,QdC,(JdC,e,O) =0. (153)

This gives us the prediction that the charge on the d-quark must be % the charge of

the electron i.e. —%. The theory also predicts the charge of the u-quark being —1—%.

Proton Decay and Doublet-Triplet splitting: The X and Y gauge bosons can
induce proton decay because they introduce transitions between quarks and leptons,
such transitions violate lepton and baryon number but the difference B — L is con-

served in these transitions. Some example decays are shown in figure 1.3.

In SU(5) the breaking of the electroweak symmetry is achieved by a 5-plet of

Higgs fields, the minimum of the potential is chosen to be:

(Hs)=v | o] - (1.5.4)

Where the fourth and fifth entries correspond to the SU(2) doublet of the Standard
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Figure 1.4: Triplet Higgs mediate nucleon decay
A rather troublesome feature of the SU(5) model is the appearance of coloured triplet Higgs.
These transitions must be suppressed to get a realistic rate of proton decay.

Model. Since the colour triplet Higgs fields couple to all fermions with mass they can

induce proton decay via the diagram in figure 1.4.

GUT relations: In the SU(5) GUT theory both the charged lepton and down
quark yukawa couplings are given by terms of the form y;; H5;10; if the Higgs multi-
plet is taken to be in the fundamental representation (i.e. 5) then the yukawa matrices
Yeharged leptons Ydown Will be transposes of each other this leads to the relation, at the

GUT scale, that the masses will be related:

Me = Mg (1.5.5)
my, = Mg (1.5.6)
My = Mp. (1.5.7)

Such a relation is in conflict with data which is a problem for the SU(5) theory.
However mechanisms have been proposed [15] that allow an SU(5) GUT to evade

these relations.

1.5.2 Georgi-Jarlskog mechanism

The GUT mass relations (equations (1.5.5),(1.5.6),(1.5.7)) predicted by the SU(5)
theory are in contradiction with experiment. Though we won’t make use of it in
this thesis, a mechanism exists [15] which allows an SU(5) gauge theory to correctly
predict the GUT mass relations. The key idea is that in addition to the 5 of Higgs
a 45 of Higgs fields is introduced. This is the other choice of the representation we

can choose for the Higgs since 5 ® 10 = 5 @ 45. The particular form of the VEV of
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the 45 introduces a factor of 3 in the mass matrices for the charged leptons relative
to the down quark mass matrix which gives correct GUT relations. Perhaps the best
way to understand the mechanism is to review the model presented in [15], the field
content is as follows (note:group indices have been omitted for simplicity): We have
right-handed 5-plets of SU(5)

Fip,j=1-3 (1.5.8)

and also left-handed 10-plets

T ,j=1-3. (1.5.9)

There are three 5s and a 45 of Higgs

0
0
Hs; | (Hs;) = | o , j=1-3 (1.5.10)
0
vy
100 0 O
010 0 O
His ((His®)=K|001 0 0> (1.5.11)
000-30
000 0 O

where the matrix representing the VEV of the 45-plet is the projection in the 5"
direction in the third tensor index where there is a non-zero VEV. If we consider the

yukawa sector of the Lagrangian is given by:

Ly ={AT\ [ Fop + ATy Fig+ BT F3p}Hsy /11
+ CTQLFQRH45/K
+ {DT2 1 Tor, + ET317 Ts 1} Hso /o

+ FTQ%’}/OTgLH53/IU3 + h.c. (1512)
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The Higgs multiplets obtain VEVs (equations (1.5.10,1.5.11)) giving mass matrices

of the form:

0D 0 040
Mup=1DOF| > Mdwm=|AC 0| (1.5.13)
0 FE 0 0B
0 A O
Mecharged lepton = | A —3C 0 | - (1.5.14)
0 0 B

The required factor of —3 arises because of the particular form of the VEV we have
chosen for the 45. The choice of VEV for H,5% isn’t entirely random, The first three
entries in the “matrix” 0% — 46946,, must be equal to preserve colour symmetry and
because the 45 is an irreducible representation it must be traceless resulting in the

factor of -3:

100 0

o 010 0
69 — 469 6y = . (1.5.15)

001 0

000 -3

Note when we diagonalise mgown and Mcharged lepton We find the down quark mass
is given by ATA/ and the electron mass by ‘g—‘g resulting in the correct GUT mass

relations:

1
me = gmdown (1516)
My, = 3Mstrange (1.5.17)
mr = Mpottom - (1518)

To complete the story we would also have to predict the size of the coefficients in
the Lagrangian and forbid a term in the 11 entry of mgown and Mcharged leptons DUt

the mechanism shows that SU(5) GUTs can give correct GUT mass relations. The

20



mechanism isn’t restricted to SU(5) GUTs models have been proposed using GUT

groups other than SU(5) for example Pati-Salam and SO(10) [16,17].

1.6 Review of family symmetries

In contrast to GUTs a family symmetry is a symmetry between the different gener-
ations of matter, that is to say it is some symmetry between electrons, muons and
tau-ons or between down, strange and bottom quarks. If we consider what this fam-
ily symmetry may be then we must look at what is consistent with data so far, the
largest family symmetry group that is consistent with the Standard Model is U(3)§’0T.
This corresponds to and independent U(3)s for the left-handed quark doublet ¢, the
quark singlets u¢ and d¢, the left-handed lepton doublet [ and the lepton singlet e€.
If we include the right-handed neutrino v¢ then the maximal family symmetry grows
to U(3)]6p. On the other hand if the family symmetry is to be made compatible with a
GUT group then the maximal family symmetry is reduced. For example an SO(10)
GUT has a maximal family symmetry group of U(3) as all the Standard Model fam-
ilies belong to the same SO(10) representation, for SU(5) including a right-handed

neutrino v¢ the maximal family symmetry is U(3)§’c (a 5,10 and 1).

In order to explain the observed masses and mixing angles the family symmetry
must be broken. We break the family symmetry by using fields which acquire a VEV
giving mass terms in the Lagrangian. Such fields are called “flavons” due to the
connection with flavourf.In the following subsection we shall give a review of several
recent family symmetry models and give a very simple model illustrating a family

symmetry leading directly to fermion masses and mixing angles.

1.6.1 Non-Abelian family symmetries

We need not restrict ourselves to continuous groups, we may also use discrete groups.
Discrete groups have more lower dimensional representations than continuous groups,

non-Abelian groups also have irreducible representations with dimension greater than

fThe subscript f denotes a family symmetry rather than a gauge symmetry
Such fields are alternatively termed “familons” for the same reason, or sometimes “spurions”.
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one allowing them to relate different generations. For these reasons non-Abelian

discrete groups would seem to be a promising candidate for a theory of flavour.

The basic idea is to assign the gauge representations to the flavour representa-
tion of the non-Abelian group and then write down the yukawa couplings. Because
of the choice of representations the structure of the Yukawa sector is restricted and,

after the Higgs boson(s) obtain a VEV, the mass matrices are restricted.

Among the non-Abelian discrete groups Ay is very useful. Ay allows the two
quark mass matrices (myp, Mdown) to be diagonalised by the same unitary transfor-
mation giving no mixing at leading order. However large mixing can be achieved
in the lepton sector because of the Majorana nature of the neutrinos. This gives
the possibility of achieving TBM (section 1.3.2) which is as noted earlier is a good

approximation to the available data.

1.6.2 The A, group and its representations

In this section we will provide a brief overview of the A4 group. In particular deriving
the explicit calculation of terms containing products of A4 representations. The Ay
group is the group of even permutations of 4 objects. There are 47! = 12 elements.
This group is also the symmetry group of the tetrahedron, the odd permutations can
be seen as the exchange of two vertices which can’t be obtained with a rigid solid. If we
let a generic permutation be denoted by (1,2,3,4) — (n1,n2,n3,n4) = (n1n2N3N4).

Ay can be generated by the two basic permutations S and T where S = (4321) and
T = (2314). We can check that the following relation holds:

S% =13 = (ST)® = 1. (1.6.1)

This relation is characteristic of A4 and is called the presentation of the group.
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Equivalence classes of Ay

There are 4 equivalence classes ( h and k belong to the same equivalence class if there

is a member of the group g such that ghg=! = k):

C1:1=(1234) (1.6.2)
C2:T = (2314), 5T (4132), TS = (3241),STS = (1423) (1.6.3)
C3:T?% = (3124), ST? = (4213),T%S = (2431), TST = (1342) (1.6.4)
C4: S = (4321), T?ST = (3412), TST? = (2143). (1.6.5)

For a finite group the squared dimensions for each inequivalent representation sum
to N, the number of transformations in the group (N=12 for A4). There are 4
inequivalent representations of Ay three singlets 1,1’,1” and a triplet 3. The three

singlets representations are:

1: S=1T=1 (1.6.6)
1: S=1T=¢""=y (1.6.7)
17: 8 =1T=¢"/5=u2 (1.6.8)

The triplet representation in the basis where S is diagonal is constructed from:

10 0 010
S=lo_10l- T=001]- (1.6.9)
00 -1 100

Characters of Ay

The characters of a group Xf of each element ¢ are defined as the trace of the
matrix that maps the element in a representation R. Equivalent representations
have the same characters and the characters have the same value for all the elements
in an equivalence class. Characters satisfy g Xfxg * = N§BS. Also the character

for an element A in a direct product of representations is a product of characters
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Class | x1 | x1 | xa7 | X3
Ch 1 1 1 3
(s 1 w | w? 0
Cs 1| w? | w 0
Cy 1 1 1 -1

Table 1.4: The A4 Character table

fxg* = N6, that there are no more

irreducible representations other than 1,1’,1” and 3.

From the character table we can see, by using > g X
R®S _ R, S : : :
Xn = XiXxpand is also equal to the sum of characters in each representation that

appears in the decomposition of R ® S.

From the character table 1.4 we can see that there are no more inequivalent ir-
reducible representations of A4 than 1,1’,1” and 3. We can also see the multiplication

rules:

3x3=1+1+1"+3+3 (1.6.10)
'x1=1" (1.6.11)
'x1"=1 (1.6.12)
1" x1"=1. (1.6.13)

If we have two triplets 3, ~ (a1,a2,a3) and 3, ~ (b1,be,b3) we can obtain the

irreducible representations from their product:

1 = a1b; + asbs + agbs (1.6.14)
1" = ayby + w?asbs + wasbs (1.6.15)
1" = a1by + wasby + w?asbs (1.6.16)
3s ~ (agbs, asby, a1bs) (1.6.17)
3a ~ (agbe,aibs, azby). (1.6.18)

Another representation

So far we have used the representation where the matrix S is diagonal. In this thesis

we will construct models in a different basis where we arrange T to be diagonal
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through a unitary transformation:

100 -1 2 2
1
T=VIVi=|ow o0 | s':vsszg 9 _1 2 (1.6.19)
00 w? 2 2 -1
where
11 1
1
1 w w?

In this basis the product composition rules are different:

1 = a1by + asbs + agbs (1.6.21)
1 = aszbs + a1by + asby (1.6.22)
1" = agby + a1b3 + agby (1.6.23)

1
3 ~ §(2a1b1 — aghs — azba, 2a3bs — arba — agby, 2a2bs — a1bs —azby)  (1.6.24)

1
3a ~ §(azb3 — azba, a1by — azby, a1bz — azby). (1.6.25)

1.6.3 Recent models

By way of introducing the concept of family symmetries we will give a short (and
by no means complete) list of recent papers which contain “family symmetry” in the

title.

Both Abelian and non-Abelian groups have been considered as possible can-
didates for a family symmetry. A brief search of the literature indicates that non-
Abelian groups seem to be favoured at the present time. We may split the non-
Abelian groups into models using continuous and discrete groups. Of the models
using continuous groups [18] uses an extended GUT model based on the Pati-Salam
GUT group, the model uses a SO(3) family symmetry. A slightly larger family sym-

metry group, SU(3) is used in [19], an additional feature of the model is the prediction
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of Bi-maximal mixing. The model given in [20] uses an SU(2) family symmetry along
with a supersymmetric extension of the Standard Model, in this model the first two
families transform as doublets with the third family transforming as a singlet. The
model given in [21] uses an O(2) family symmetry in the leptonic sector, the model

predicts a vanishing 613 mixing angle.

Discrete family symmetries have also been the subject of much interest in the
literature. We will consider the group A4 later on and indeed it is a good candidate
for a discrete family symmetry as it is the smallest discrete group with a triplet
representation. The model given in [22] uses A4 as a family symmetry, [22] uses a
SUSY GUT model based on SU(5) and predicts Tri-Bimaximal mixing. The larger
group As is the symmetry group of the icosahedron and is considered as a family
symmetry in [23], the model predicts golden ratio neutrino mixing. Smaller discrete
groups are also candidates for a family symmetry S3 the group of all permutations
of 3 objects is considered in [24] in combination with an Eg GUT group. Finally [25]
considers Dg as a candidate for a family symmetry and identifies a cold dark matter

candidate.

1.6.4 Review of an A, model given in [26]

An important model regarding A4 family symmetry is given in [26] which we shall,
by way of an introduction to A4 models, briefly review here. The model predicts
Tri-Bimaximal neutrino mixing and is of the direct kind. The right-handed leptons
e, u, 7¢ are assigned to the Ay singlet representations 1,1”,1’ respectively. The
Higgs doublets h, 4 are invariant under the A4 symmetry. The Yukawa interactions

in the leptonic sector are as follows:

L) = yee(orl) + yu,ul/c(goTl)' + 1y, 7o) + 2, E(11) + mp(psll) + hee. + ... (1.6.26)

where the dots indicate higher order terms. As in [26] we shall omit the Higgs fields
hy,q and the cut-off scale A, for example the term y.e(¢rl) means ye%ec(goqﬂl) and
similarly £(Il) means %(hulhul). The reader will note that terms allowed by the

flavour symmetry such as interchanging ¢rp < ¢g and (Il) are absent, this is crucial
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to the model and their absence is motivated by extra discrete symmetries. We then

assume that the flavon fields pr,05,6 develop VEVs of:

(¢r) = (vr,0,0) (1.6.27)
(ps) = (vs,vs,vs) (1.6.28)
(&) = u. (1.6.29)

After the Higgs and flavon fields obtain their VEVs from equation (1.6.26) we are
left with the mass terms:
vr
L1 = va (yeee® +yupup +y:77°)

u
+ xaviﬁ(ueue + 2v,v7)

2
+ xbv2£(yel/e + vy + VrVr — Vel — vy — V) + hie 4+ ... (1.6.30)

In the charged lepton sector the A4 symmetry is broken to G a subgroup of Ay
generated by T and isomorphic to Zs. In the neutrino sector the Ay is broken to Gg

which is generated by S and isomorphic to Z5. The mass matrices are then given by:

Ye 0 0
ur
Me = de 0 Yy 0 (1.6.31)
00y,

a+2b/3 —b/3  —b/3
2
Uu
my = —b/3 2/3 a—b/3 (1.6.32)

~b/3 a—b/3 2b/3

where a and b are given by:

i Vg
= 2x,—, = 2xp—. 1.6.
a T A b be (1.6.33)

The neutrino mass matrix is diagonalised by the familiar HPS matrix given in equa-

tion (1.3.8). The vacuum alignment proceeds via the introduction of driving fields
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Figure 1.5: The Froggatt-Nielsen mechanism
The Froggatt-Nielsen mechanism gives rise to an effective mass term for ¢ via a heavy
messenger field.

and minimising the resulting scalar potential. The details are given in [26] and the

same procedure is used in section 3.4.

1.6.5 The Froggatt-Nielsen mechanism

A mass generation mechanism we shall make use of in later chapters is the Froggatt-
Nielsen mechanism [27]. The mechanism makes use of higher order diagrams via

tree-level diagrams using heavy fields, the so-called messenger fields.

The diagram in figure 1.5 shows the simplest example of the Froggatt-Nielsen
mechanism. The fields labelled A, A¢ are the heavy Froggatt-Nielsen messenger fields.
These fields have a mass M4 given by the mass term M4 A°A (represented by the x
vertex). The messengers must also have appropriate Standard Model (or indeed GUT
group) and family symmetry charge assignments, this is relevant to the placement
of the Higgs and ¢ insertions. The heavy messenger fields are integrated out, in the

case of figure 1.5 this gives rise to an effective superpotential term of:

) o
w = 7 (H) 60 = myy (1.6.34)

the effective mass is therefore mgy = % (H). We are not restricted by the number
of messenger fields we choose to include in the theory, figure 1.6 gives a more general
diagram of the mechanism. The diagram features two messenger fields A and B with

associated mass terms M4 A°A and MpB¢B and the flavons ¢, and ¢,. We could of

course go on and include messengers C, D, ... and extra flavons however we must bear
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Figure 1.6: A more general diagram of the Froggatt-Nielsen mecha-

nism
In this diagram we have a more general Froggatt-Nielsen mechanism with two flavons and
two different messenger fields.

in mind that the charges of the messenger fields must be such that the diagrams are
allowed. For example in figure 1.6 if ¢, and ¢ have U(1)proggatt—Nielsen charges —1, 41
respectively, the Higgs and matter fields ¢, ¢¢ are uncharged then the messenger fields
A°¢, A, B¢, B must be charged 0,0, 1, —1 respectively. The superpotential term giving

the effective mass is given by:

_ (%a) (D0) ¢l
w = m <H> PP = mdﬂ/J”L/J (1.6.35)

‘s . 1 {Pa){dw)
giving the effective mass of My, = Aae -

1.6.6 A U(1) toy model family symmetry

To illustrate the use of family symmetries we introduce a simple toy model using a
U(1) family symmetry commuting with the Standard Model gauge group. The family
symmetry is broken by introducing a flavon ¢ which acquires a vacuum expectation
value (¢). Since the model is only being used to illustrate the use of a family symmetry
we will only concern ourselves with the down type quarks. The charges under the

family symmetry are given in table 1.5.

According to the charge assignment the mass terms include powers of the flavon

field ¢ in order to be invariant under the flavour symmetry in addition to the gauge
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Field | U(1)
Hy 0
¢ -1
dq
do
ds
dy
d3
ds

S = NN

Table 1.5: U(1) Charge Assignments
Charge assignments for the toy model given in section 1.6.6 using a simple U(1) family
symmetry assignment.

symmetry. The effective superpotential is given:
W ~ dsd5H ¢ dsds H ¢\’ dodsH
~ agdslig + a7 ) @3¢t + Vi 203ty

¢\’ ¢\ ¢\
<M> d2d§Hd+<M> d3d§Hd+<M> dgdin

6\’ ¢\ ¢\’
<M> d2d§Hd+<M> dldng+<M> dldﬁHd. (1636)

The above superpotential generates the entries of the mass matrix, for example: the

(Mgown )31 term includes 4 powers of the ratio % We take M to be some large mass

scale relative to the VEV of the flavon ¢, in actual fact the scale M will be the
(9) _

mass of some Froggatt-Nielsen messenger particle. By making the ratio 77 = € small

enough then we can generate a hierarchy in the down quark mass matrix:
mgoc |43 2. (1.6.37)

If a theory of family symmetry is to be compatible with Grand Unified Theories then
all members of a given GUT multiplet must have the same U(1); charge. To give a
flavour of how family symmetry may be extended into GUT theories we can simply

extend the above toy model. In the above case since u; and u both belong to the
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Figure 1.7: The Type | seesaw diagram.
The Seesaw mechanism provides a natural explanation of the smallness of the observed Neu-
trino masses.

10-plet representation then they must carry the same family charge as d; this leads

to an effective superpotential of:

¢\’ ¢\’
W ~ U3U§Hu + <M> U@,USHU + <M> UngHu

4 4 4
<%> ugus Hy, + <%> usu Hy, + <%> usuiH,
6 6 8
<%> uguiHy, + <%> ujusHy, + <%> uiuiHy. (1.6.38)

This effective superpotential gives us a mass matrix proportional to:
my o< | 6 4 2. (1.6.39)

The above toy model is simple but unfortunately not realistic, however it does illus-

trate the use of a family symmetry in generating fermion masses and mixings.

1.6.7 The Seesaw mechanism

Similar to the Froggatt-Nielsen mechanism there is the well known seesaw mecha-
nism [28-30]. This mechanism generates effective light neutrino masses by integrating
out a heavy right-handed neutrino. The diagram in Figure 1.7 shows a type I seesaw

mechanism.

We expect the right-handed neutrino Majorana masses to be heavier than the
Dirac neutrino masses. This is because the Standard Model gauge group doesn’t

protect the right-handed mass Mgrgr. As the right-handed neutrino transforms as a
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singlet under the Standard Model the mass term Mgprr°v¢ is invariant unlike the
Dirac mass terms which are generated by the spontaneous symmetry breaking of the
Higgs mechanism and are only non-zero after SU(2), has been broken. As we expect
Mpggr to be large we can then integrate out the right-handed neutrinos to obtain

effective masses for the light neutrinos. The masses are given approximately by:

mrr = —(mLR)(MRR)_l(mLR)T. (1.6.40)

To see where equation 1.6.40 originates it is instructive to consider a simple
case with only one family. In this case we have only one left-handed neutrino v
and only one singlet right-handed neutrino ¥ v¢. As discussed before the mass term
mpvv is forbidden by the Standard Model gauge group whereas the right-handed
Majorana mass Mprrr°v¢ is allowed. The Dirac mass term myrrv° is allowed as we
can make use of the Higgs doublet to construct a yukawa term y, Hlv® which results
in a Dirac mass after H obtains a VEV. We therefore have a mixture of Dirac and

Majorana mass terms which we can express in a 2 X 2 matrix:

0 m v
L~V MYy = ( L e . . (1.6.41)

mrLr MRR 1%

Since we expect mrr <€ Mpgr as mpr will be at the electroweak scale and Mgp
will be at the GUT scale we can immediately find the approximate eigenvalues of
the neutrino mass matrix. Using the trace of the matrix we can see that the largest
eigenvalue will be approximately given by Mgrgr and the smallest eigenvalue will be
given by —% as the determinant —(myr)? must remain invariant and is given

by the product of the eigenvalues. This is exactly the result quoted above in equation

1.6.40 when applied to the simpler case of only one generation. The exact result for

$Note that ¢ is not the charge conjugate of v but rather the charge conjugate of the right-handed

c
neutrino. To make a link to section 1.1.1: v =vg = <£a> whereas v° = (vr)° = ( ?) = (Xa) .
0 x' 0
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Figure 1.8: The type Il seesaw mechanism

the one generation case are given below:

1

myp = 5 (MRR + \/M}%R + 4(mLR)2> (1.6.42)
1

mo = 5 <MRR — \/M}%R + 4(mLR)2> (1643)

by expanding the square root we can extract the approximate result we derived above.
Equation 1.6.40 is obtained by generalising to the three generations of neutrino where

now mrgr and Mgrpr are 3 X 3 matrices.

The mechanism described above is not the only way to obtain the light neutrino
masses. Though we will not make use of them there are other seesaw mechanisms
which we shall include here for completeness. The type II seesaw mechanism requires

the use of a SU(2)y, triplet Higgs A as shown in Figure 1.8.

The seesaw formula equation 1.6.40 must now be modified to include a new

term myy, which was previously absent. The new formula reads:

Megrective = mrr, — (mrr)(Mrr)  (mzr)T. (1.6.44)

Again taking the simple example of only one generation of matter the new mass term

my, appears in the top left of the neutrino mass matrix:

mrrL MLR

3
Il

(1.6.45)
mrr Mgrr

We can intuitively see from Figure 1.8 that mp;, will be O((H)* /Mn).

We refer the reader to [10] for a detailed review of neutrino physics. Neutrino
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mass mechanisms have also been proposed [31] using one-loop diagrams rather than

the tree level diagrams we have reviewed here, further details are given in [32].
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Chapter 2

Extra dimensions

In this section we will provide a brief introduction to extra dimensions and describe
some recent models. We will also describe models which use both extra dimensions

and the family symmetries introduced in section 1.6.

2.1 Introduction

Extra dimensional theories are not new, they have been around since the 1920’s
when they were introduced by Kaluza and Klein [33,34]. The original motivation
was to unify electromagnetism with gravity by identifying the photon field with the
fifth component (g,5) of the (five dimensional) metric tensor. More recently it was
realised that consistent string theories will require extra dimensions this led to a
resurgence of work on theories with extra dimensions in the 1980’s. Regardless of their
motivation all extra dimensional theories must be able to hide the extra dimensions
from observation. Omne possible mechanism for hiding the extra dimensions is to
assume that unlike the four large dimensions we know about the extra dimensions
are finite in size and compactified. In order to detect these compact extra dimensions
one would then need to probe the length scales at which the compact dimensions
live. Thus in order to hide the extra dimensions we simply make the length scales of
the compact dimensions small enough that the energies required to probe them are

sufficiently high. The consequences of the extra dimensions will then be hidden from
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observers living at lower energy scales.

2.2 A 5D toy model

One important consequence of extra dimensions is the existence of so-called Kaluza-
Klein (KK) modes, we can use a simple model to illustrate how these KK modes arise.
We shall consider a 5 dimensional theory with the extra dimension parametrised by

y. A massless Klein-Gordon particle has an equation of motion of:

Monp(at,y) = (0#8, — 89, p(a",y) =0 (2.2.1)

where M runs over all the spacetime indices and p running over the usual four
dimensional spacetime indices (¢, z1, z2, 3). We then compactify the extra dimension

on a circle of radius R, i.e. we make the identification:
y—y+2rR (2.2.2)

We are then able to expand the field ¢ as a Fourier series on the extra dimensional

space

p(at,y) = Z o™ ()Y (2.2.3)
with k given by
oz, y) = ¢(a,y + 2 R) (2.2.4)
= Z o™ (a#)emky = Z o) () etk ly+2mR) (2.2.5)
= eznk27rR =1 (226)
1

=k =5 (2.2.7)
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Applying the equation of motion (equation 2.2.1) to this expansion gives us:

Mo = (00" — 0,0" — 0,0")p = 0 (2.2.8)
> (8,0 — 0,0")p™ (at)e ™/ R = 0 (2.2.9)
. 2 .
> (@L@“qﬁ(”) (zH)eimv/ B 4 %Qﬁ(”) (:c“)emy/3> =0 (2.2.10)
3 (8,0 + m™?) g (k) ein/ B = o, (2.2.11)

n

We are then left with an equation of motion for a set of particles ¢ (z#) with a mass
m = %- Thus one 5D particle has been split into an infinite set of 4D particles with
ever increasing mass. If want a 4D theory where the extra dimension is hidden we
need to require that the KK modes are too heavy to be observed, since the first mode
has a mass of 1—1% this allows us to set a limit on how large the compact dimension

may be.

2.3 The S'/Z, orbifold

In the previous section we compactified the extra dimensions on a circle with the
identification y — y + 27 R, where R is the radius of the extra dimension. We don’t
have to restrict ourselves to circles (and toroids). We can make use of orbifolds as
our extra dimensional space. In order to describe an orbifold it is best to describe

exactly what we mean by a circle.

2.3.1 The S! circle

The circle S' circle is formed from the quotient space R'/A where A is a one dimen-
sional lattice. As this is 1d there is only one lattice vector e so points z € R! are
identified as © ~ x + ne where n € Z and e = 2n R where R is the radius of the extra

dimension.
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Figure 2.1: The S!'/Z; orbifold

The fundamental domain is shown in bold. It lies between the two fixed points at 0 and 7R

2.3.2 Orbifolding

We define our first Zo orbifolding by identifying x ~ —z. If our coordinate x on
our circle is defined to be —mR < x < wR then it is easy to see that the orbifolding
maps the region with z > 0 to the region x < 0. There are two points which are
mapped to themselves, these are the fixed points of the orbifold at x = 0,7R. The
fundamental domain of the orbifold is now half of the original circle. The fixed points

and fundamental domain are shown in figure 2.1. The orbifold is called S!/Z.

2.3.3 A second orbifolding

We can create the orbifold Zzi—lz’g by imposing another parity on the orbifold S'/Zs.
We define a new set of coordinates x’ on our orbifold by 2/ = z+ %R and then make the
identification 2/ — —z’. What we have done is apply a translation T : x — z+7R/2
and then a parity Z : x — —xz i.e. we have applied the operator ZT. We have again
halved the size of our fundamental domain. Our orbifold now has a fundamental

domain of 0 < z < ”—2R. The previous orbifold shown in figure 2.1 had two fixed

points which were equivalent whereas now the two fixed points are inequivalent.
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Figure 2.2: The S'/(Zy x Z'5) orbifold.
The size of the fundamental domain has been halved and the fixed points are no longer
equivalent.

2.4 Model building using orbifolds

In the context of model building the importance of orbifolds is that we can associate
an automorphism with a reflection in the internal space, for our purposes this will

be in a gauge or flavour space.

ZQ L Iy — 91‘5 = —X5 (2.4.1)

Zy :r — Ppr (2.4.2)

where r is the representation of some gauge group G and P, is the representation
matrix of the automorphism. The requirement that the state be invariant under the

orbifold action is given by:

Cbr(l’;u _335) = Pr¢r(xua $5). (2'4'3)

This condition must be satisfied by fields living in the orbifolded space, we can make
use of it by choosing P, such that fields we don’t want to be light can transform
non-trivially e.g. have a negative parity under a Zs orbifolding. The fields with a
negative parity therefore cannot be zero modes (which have an even parity under
the orbifolding) and are heavy i.e. an odd KK mode of which the lightest has mass
%. To illustrate this mechanism in the particular case of gauge fields we give a toy

model breaking an SU(3) gauge symmetry using orbifold projection.
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2.4.1 A simple example using an SU(3) gauge theory

The representation matrix of the automorphism for the fundamental representation is

taken to be Pg = diag(—1,—1,1). The 3-plets under SU(3) therefore have to satisfy:

¢3(p, —75) = P3g3 (v, vs5) (2.4.4)

this condition implies that at the fixed point located at x5 = 0 the fields must satisfy:
¢3(xy, x5 = 0) = P3gpz(xy, x5 = 0) (2.4.5)

also since TR and —m R coincide then the following must also be true:
¢3(zy, mR) = P3gg(z,, mR). (2.4.6)

It is easy to see that the eigenvalues of P3 are £1, of we denote the eigenstates of P3
as g4

gbi(xu, —LE5) = Pg(ﬁi(l’u,x{,) = j:(bi(xu,xg,). (2.4.7)

As before we can expand the 5D states in the extra space as Fourier modes giving:

nrs
Oy (zp,5) nZ;) m (ZE“) Cos <?) (2.4.8)

—(zy, xs) Z a:u sin (%) . (2.4.9)

At this point it should be noticed that only the ¢ has a massless mode gbf) the other
modes are heavy. As we shall see below the SU(3) gauge group has been broken to
SU(2) x U(1), here we have seen that the triplet has been split into a SU(2) doublet

and a singlet U(1) field. If we assign a positive parity to the triplet i.e:

¢3(—x5) = +P3¢3(7s5) (2.4.10)

then the SU(2) doublet gains a negative parity with the U(1) singlet having a positive

parity, this leads to the doublet becoming heavy and the singlet remaining light.
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However we have the alternative choice of assigning a negative parity to the triplet
giving us the opposite case, a light doublet and heavy singlet. In chapter 4 we
shall consider a model where we require the particle content of a complete multiplet
at zero mode level in an orbifolded bulk space, we achieve this by introducing two
multiplets with opposite parities. To use the above example this would be analogous
to obtaining the particle content of a complete zero mode bulk triplet by using two
bulk triplets one with positive parity and one with negative parity. The singlet would
be derived from the positive parity triplet and the doublet from the negative parity

triplet.

2.4.2 Gauge fields

We can perform the same analysis with the gauge fields. The boundary condition for

the 4D vector fields are

Al (2, —T5)ta = AZ(xu,m)PtaP_l. (2.4.11)

It is easy to verify that the only gauge bosons with + parity i.e. the only massless
ones, are those of the SU(2) x U(1) subgroup of SU(3). In terms of parity the

generators of SU(3) look like:

If we do the explicit calculation then only the gauge bosons associated with Ay for

i € {1,2,3,8} survive:

010 0—¢0
A= 100 , Ay = i 00 (2.4.13)
000 00O
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100 100

A3 = 0-=10]1: Ag = 01 0 . (2.4.14)

Sl

000 00 -2

This shows the two key features of orbifolded extra dimensions namely that 1) Gauge
symmetry can be reduced by orbifolding the extra dimensions and 2) Bulk multiplets
under the larger gauge symmetry are split. The multiplets only survive the projection
only partially. The appearance of split multiplets is a natural feature of an orbifold

model.

We will now review some existing models from the literature which make use

of orbifolded extra dimensions.

2.5 Recent models

In this section we shall give a brief overview of recent models using orbifolded extra

dimensions.

2.5.1 The Kawamura model [35]

The model proposed by Kawamura [35] makes use of an orbifolded extra dimension
and is based on the gauge group SU(5). As described above the orbifold has two
fixed points located at x5 = 0 and x5 = ”TR. The parity of a bulk field under the two

parities Zo and Z), is described by:

¢($u7$5) - ¢($u7 _335) = P¢($u,$5) (251)

¢(a", 25) — o(at, —a5) = P'o(a", 25) (2.5.2)

where 2% = x5 + ”—2R. The Lagrangian is invariant under the two Z5 transformations
and by definition the eigenvalues of P and P’ are £1. The eigenstates are labelled

¢, ,¢_, and ¢__ according to their eigenvalues under P and P’ respectively.
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We can Fourier expand the eigenstates as:

Gt (2, 5) Z mcﬁf?(m)cos(”}f) (2.5.3)
n=0
Do (2 25) = Z F B ) cos (210 (25.4)

G4 (2, x5) = Z 2n+1 xu)sin <M> (2.5.5)

R
=1 ( ) (2n + 2)z
2n+2 . 5
G——(xpy,x5) = Z ——¢ () sin <7> (2.5.6)
n=0 TR R
where n is an integer. At this point it is important to note that the fields qﬁfﬁ ,
fﬁﬂ), qb(_ziﬂ), ¢(_2ﬁ+2) acquire masses 21?, 2"5 L 2"5 L and 2";{ 2 respectively. A

consequence of this is that only the fields with all positive parities have a massless
state. Also some fields will vanish entirely at the fixed points for example: the fields
Gy (xH x5 = 0) = ¢__(a*, x5 = 0) = 0 at the fixed point located at z5 = 0. The
model assumes that the visible world is located at the x5 = 0 fixed point referred to
as a “wall”. The matter content of the theory consisting of the three families quark
and lepton chiral supermultiplets (®5 + ®1¢) is placed on the wall at x5 = 0. The
gauge and Higgs bosons live in the 5D bulk and as such have parity assignments under
the orbifoldings Zy x Z). The parity assignment is such that the SU(5) gauge group
is broken to the Standard Model gauge group, a natural consequence of this gauge
breaking is that the Higgs pentaplets are split into doublet and triplet representations
of the SU(2)z, and SU(3)¢ groups respectively. The parity assignments are such that
the coloured triplets acquire a negative parity and as such are not present at he
zero mode level i.e. they are heavy and doublet-triplet splitting has occurred. By
including the Standard Model matter at the z5 = 0 fixed point in a complete multiplet
unaffected by the orbifolding and placing the gauge and Higgs bosons in the bulk,

the model accounts for the appearance of both complete and split multiplets.

2.5.2 The Asaka-Buchmiiller-Covi model [36]

We will now describe a model by Asaka, Buchmiiller and Covi [36] using 2 extra

compact dimensions which are again compactified on an orbifold. The model is based
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on the larger GUT group SO(10), however the extension from SU(5) to SO(10) is
not trivial since Ggps is not a symmetric subgroup of SO(10). The two symmetric
subgroups of SO(10) are the Pati-Salam and extended Georgi-Glashow gauge groups,
SU(4) x SU(2) x SU(2) and SU(5) x U(1) respectively. However it is interesting to
note that the maximal common subgroup of these groups is the extended Standard

Model gauge group SM’ = SM x U(1).

The starting point for the model is N’ = 1 supersymmetric Yang-Mills in 6D.
The extra dimensions are compactified on the torus i.e. M = R* x T2. The goal is to
obtain a 4D N=1 Yang-Mills theory with extended standard model symmetry. The
breaking of the extended SUSY in 4D and the breaking of the gauge group leads to
the theory on the orbifold M = T?/(Zy x Z59 x Z§%). The authors consider the

N=1 Yang-Mills theory in 6 dimensions, the Lagrangian is
1 _
LeM — Tr(—EVMNVMN +iATM Dy A). (2.5.7)

Where Vyy = t*V{; and A = t*A®, here t* are the generators of SO(10). Dy A =

OmA — ig[Var, A] and Viyy = [Dar, Dn]/(ig). The I' matrices are given by
I = , TP = ., I®= (2.5.8)

with 4® = I and {T'5;,I'y} = 2N = diag(1, —1, -1, -1, -1, —1). The gaugino A is

composed of two Weyl fermions of opposite chirality in 4d,
A= (A1, —id2), 15A1 = —A1, A2 = Ao (2.5.9)

Overall the gaugino has negative 6d chirality I'7A = —A, where I'7 = diag(vys, —7s5).

2.5.3 Compactification

The model compactifies the two extra dimensions on a torus T? so that the theory

lives on M = R* x T2, The fields ® = (Vijs,A) can then be expanded in using the

44



T6

2T Ry

Gaa Gy

p----- *

Gps
GSO(IO) 27TR1 5
Figure 2.3: The T2/(Z x Zps x Zgg) orbifold from [36]

The orbifold used in [36], Ry and Ry are the radii of the torus. There are 3 orbifoldings:
1 breaking the extended supersymmetry and 2 breaking the gauge group. The orbifoldings

leave fixed points with different gauge groups associated with them and are labelled. Gg
is flipped SU(5) and results from the combination of both the Pati-Salam and extended
Georgi-Glashow gauge breaking.

Fourier expansion:

1 . [ mx ne

here Ry and Rs are the two radii of the torus as shown in figure 2.3.

The orbifold shown in figure 2.3 is formed by using three orbifoldings each of
which reduce the size of the fundamental domain by a factor of 2. The first orbifolding
identifies the right and left halves of the torus leaving a fundamental domain half the
size of the original torus which can be viewed as a pillow since the upper and lower
edges are identified. The procedure is repeated twice more to leave a fundamental
domain one eighth the size of the original torus. This is the fundamental domain
shown in figure 2.3. The small rectangle shown is folded along the dotted line to
form a pillow and the upper and lower edges are glued along with the left and right
edges. The orbifold is left as a pillow with the fixed points located at the corners.
The fixed points are labelled according to the gauge group which survives at that
particular fixed point. This is because the some gauge bosons have been assigned
a negative parity which makes them heavy, but also causes their wavefunctions to
be vanishing at particular fixed points. For example, at the Pati-Salam fixed point
only the wavefunctions of the Pati-Salam gauge bosons (some of which are heavy)
are present, the remaining gauge bosons from the SO(10)/Gps group are vanishing

at this fixed point.
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The vector field is hermitian so the coefficients satisfy the relation VJ\(/[ m-n)
VA(Jm’")T. By integrating over the extra dimensions we can obtain the 4d effective
Lagrangian. Note that we are only including terms below O(1/R) so there are only

bilinear terms in the 4d Lagrangian. We make a convenient choice of variables for

the 4d scalars by rearranging into the mass eigenstate basis given by:

(m,n) o { (m,n) n m,n)

@) = s (—R’l V") + Vs (x)) (2.5.11)
(m,n) ? (m, n) m . (m,n)

1I = [/ —V 2.5.12

2 2
where M (m,n) = \/(ﬂ) + (R%) . The 4d Lagrangian for the gauge and scalar

fields is then given by:

£i}i _ ZTI" V(mn Tv(m n)uv + M(m ’I’L) Vﬂ(mm)Tv(m,n)ﬂ

+ (%Hém’nﬁa“ﬂgm’"” + M(m, n)2H§m’")TH§m’n)
+ 9" e

— M(m,n)(Vmotorm™™ 4 gear™ Ty mny) (2.5.13)

where Vu(v ") — O V(m n) E?VVM(m’"). The massless states are the zero modes, the
higher modes in the Kaluza-Klein expansion are massive with the mass given by
M(m,n). The basis for the scalars II; 5 is chosen such that they are in the mass

(m,n)

eigenstates with IIj being the Goldstone bosons from the broken higher dimen-

(m,n)

sional Lorentz symmetry. The Goldstone bosons IIj are not observed as they
are eaten by the higher KK modes which then acquire a mass. From the higher
dimensional viewpoint a gauge transformation corresponds to an infinite number of
gauge transformations which mix up the KK modes of different levels. After the
mode expansion is made the theory has an infinite number of gauge transformations
parametrised by the KK numbers m and n. However later on we shall be compact-
ifying on an orbifold where m and n can no longer assume arbitrary values, due to

the non-trivial orbifolding conditions. From the 4d perspective the possible gauge

transformations are reduced breaking the higher dimensional gauge symmetry to a
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smaller symmetry in 4 dimensions.

The gaugino part of the Lagrangian integrates to:

£ =S5 m(x " oA vy g A

m .\ < (myn) | (m,n
_ <R_1 _ZR_2> XA e, (2.5.14)

This is the kinetic term for a Dirac fermion Ap = (A1, A\2) with a mass M (m,n).
To summarise in total there is the vector V“(m’n), scalars HYZ’“) and A\p forming a
massive N’ = 1 vector multiplet in 4d. However when we look at the massless sector

of the theory we have unwanted N' = 2 symmetry, this extended supersymmetry is

removed by orbifolding to obtain the effective A/ = 1 theory in 4 dimensions.

When we look at the particle content of the theory we have a massive N’ = 1
vector multiplet consisting of the gauge bosons V), the scalars II; » and and massive
Dirac fermion A\p. However this massive gauge boson N = 1 vector multiplet may
be represented by a N = 1 massless vector multiplet V = (V,, A1) together with a
chiral supermultiplet V' = (IIj 2, A2). These two multiplets form a massive N’ = 2
vector supermultiplet:

v, 11
v=| " (2.5.15)

A1 A2

The scalar field IT; from the chiral multiplet V' becomes the longitudinal component
of the massive gauge boson. The other scalar IIs remains in the particle spectrum at

the massive level along with the Weyl fermion s.

2.5.4 SUSY orbifold breaking

Rather than compactifying on the torus the authors compactify the extra dimensions

on the orbifold T?/Zy where parities are assigned under the reflection (xs,zg) —
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(—x5, —x¢) to the vectors and scalars.

PV,(x, —xs, —z6) P! = +Vu(z, x5, z6) (2.5.16)

PVs g(x, —xs, —SUG)P_1 = —Vs6(x, x5, 26) (2.5.17)

where the choice P = I is made, so for the Fourier modes we are left with

Vu(_m,—n) _ _|_Vu(m,n) =+ Vu(m,n)T’ (2.5.18)
V5(7gm,—n) _ _Vs(’%ﬂ,”) =4 V5(,T6n’n)T' (2.5.19)

This eliminates the scalar zero modes, also the number of massive modes is halved.
Because the derivatives 05 are odd under the reflection the two Weyl fermions

(A1, A2) must have opposite parities,

P)\l(l‘,—$5,—$6)P_1 = +)\1(JE,ZE5,ZE6), (2.5.20)

P)\g(l‘,—$5,—$6)P_1 = —)\Q(ZE,ZL‘5,ZEG), (2.5.21)

(Vi A1) and (Vs6, A2) form vector and chiral multiplets respectively, only the vector
multiplets have zero modes. The orbifolding has therefore broken the extended N' = 2
symmetry to A" = 1 in 4D. The gauge bosons and gauginos form a gauge superfield
which is the special case of a vector superfield where the condition V' = V1 is preserved
by the gauge transformation. The general form of the gauge superfield can be given

in the Wess-Zumino gauge as:

V(x,0,0) =0c"0V,(z) + i000X(x)

__ 1
— 000 (x) + 50000D(x) (2.5.22)

where V,, and )\ are the gauge bosons and gauginos respectively with the field D

being an auxiliary field.
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2.5.5 Gauge breaking by orbifolding

Here breaking of the SO(10) gauge group must be done by using two parities Ppg
and Pgg which define the symmetric subgroups of SO(10), Pati-Salam Gpg =
SU(4) x SU(2) x SU(2) and Georgi-Glashow Ggg = SU(5) x U(1). In the vec-

tor representation these parities are

o2 0 0 0 0 o9 0 0 0 0
00000 0 —00 0 00

Fec=10 00,0 0| PPs=| 0 0 —000 0 (2.5.23)
00 0a0 0 0 0 000
000 0oy 0 0 0 0o

where g, 09 are the familiar Pauli matrices. We require for the vector fields and

gauginos Ai:

PacV(x, —x5, —x6 + 7TR2/2)P§é = +V,(x, 25,26 + TR2/2), (2.5.24)

PpsV,(z, —x5 + TR /2, —x6)Ppg = +V, (2,5 + 7R1/2,26).  (2.5.25)

Thus fields belonging to the symmetric subgroup G have positive parity and those
of SO(10)/G, have negative parity. The Z, parity requires the scalars and gauginos

Ao to have negative parity. Because of the Z, parity we also require:

PacVse(x, —x5, —x6 + 7TR2/2)PG_(1; = —Vse(x, 25,26 + TR2/2), (2.5.26)

PpsV5,6(:E, —T5 + 7TR1/2, —ZEG)P];é = —‘/576(:E, x5 + 7TR1/2, :EG). (2.5.27)

The mode expansions of the fields ®(z, x5, x¢) is explicitly:

(2m,2n) 2mxs  2nxg
¢+++ (z) cos < 7 + 2 > , (2.5.28)

1 1
) =
S F\/m Z 29m.00n,0

(2m,2n+1) 2ms n (2n + 1)z

Q- = 7r\/R1—R Z¢++— (95) cos < R, Ry ) ’

(2.5.29)
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om + 1 2
(@m + s mﬁ) (2.5.30)

(2m+1, 2n
b, | =
ot m/—RlR Z¢ )C°S< R R

(2m+1,2n+1) 2m+1)zs  (2n+ 1)xg
= 5o 2.5.31
- Rle ; o (x) cos < 7 + 7 , (2.5.31)

1 (2m+1 2n+1) . <(2m + 1)335 (271 + 1).%'6)
b, =—
Ty R Ry £ Z o=t (z)sin Ry + Rs ’

2m+1D)zs  2nwzg

o = (2m+1 2n) . 95
i - —R1R2Z¢ (x)sm 7 + Ry ) (2.5.33)

(2.5.32)

(@m2n1) )y 2mxs  (2n + 1)a:6>
b= E , 2.5.34
T R1R2 Pt )Sm< R R (2:5.34)
m,2n) 2mxs  2nxg
S — § 2m,2 2.5.35
w\/l%l—R P “< R R, ) (2.5.35)

where the subscripts, + and —, on the fields refer to the parities under the Super-
symmetry breaking, Pati-Salam and Georgi-Glashow orbifoldings respectively. Again
the only fields with zero modes are those with parities all positive, they form a V' =1
massless vector multiplet in the adjoint representation of the unbroken extended stan-
dard model group. All the other fields with one or more negative parities combine to

form massive vector multiplets.

limiting cases: We can take the limiting cases of Ry — 0 with Ry fixed and
Ry — 0 with R; fixed. In both these cases we are effectively dealing with a 5
dimensional theory. In the first case the dependence on R; disappears and we are
dealing with a 5 dimensional theory with the extra dimension compactified onto a
one dimensional orbifold with two fixed points. In this case there will be SO(10)
and Pati-Salam fixed points with the effective four dimensional theory broken to the
Pati-Salam group (SU(4) x SU(2) x SU(2)). In the second case the dependence
on Ry disappears and the one dimensional orbifold has SO(10) and Georgi-Glashow
fixed points with the effective four dimensional theory broken to Georgi-Glashow
(SU(5) x U(1)). It is only when R; and Ry are finite is the gauge group broken to
the extended standard model. If we take one of the compact radii to be large then
the Fourier series expansion becomes a Fourier transform and we would no longer be
left with the extended standard model in 4 dimensions, we would have either Georgi-

Glashow or Pati-Salam in 5d depending on which extra dimension was taken to be
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large.

2.5.6 Adding matter to the theory

Adding matter to the 6d SUSY theory is easy, consider the case of the 10-plet of
Higgs fields. It contains two complex scalars H and H', and a fermion h = (h,h’).
The chiralities are ysh = h,vsh’ = —h’ in 4d with an overall positive 6d chirality
I'zh = h.

The Lagrangian reads:

. 1 _ — —
Lpiees — |DMH|2+|DMH’|2—§g2(HT t*H+H'""t"H" 2 +ihl'M Dy h—iv/2g(RAH+RAH +c.c).
(2.5.36)

Again we integrate over the compact dimensions to get:

EZilggs _ Z iﬁ(mv"),}/ua‘uh(m,n) + iﬁ(mv"),}/ua‘uh/(m,n)

m,n

mo N (mn) (mn)
— — iR .
—i—(Rl sz) +c.c
+0, Hm™ gr romn) o A (m,n)2 H o)t prmn)

+9, H' M gr ') M ()2 HIM M) (25.37)

2.5.7 Higgs parities

We can now define the action of the parities on the Higgs multiplets H = (H, h) and
H' = (H',h'). For the Z3 we can choose

PH(z,—x5,—x¢) = +H(x, x5, z6) (2.5.38)

PH'(x, x5, —x6) = —H' (v, x5, 26) (2.5.39)
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with P = I. As is the case with the 45-plet this breaks the extended supersymmetry

present in 4d. For Z§“ we choose
PogH(x,—x5,—x¢ + TR /2) = +H(x, 25,26 + TR2/2) (2.5.40)
PooH' (v, —x5, —16 + TR2/2) = —H'(x, 15,26 + TR2/2) (2.5.41)

The parity Ppg gives us the desired doublet-triplet splitting, again the same mech-
anism is used to break the gauge symmetry as well as providing the doublet-triplet

splitting. The action of Ppg is given by:

PpsH(x,—x5+ mR1/2,—x¢) = +H(x,x5 + TR1/2, z¢), (2.5.42)

PpsH'(x,—x5 +TR1/2,—x6) = —H'(x, 75 + TR1 /2, x¢). (2.5.43)

Again we have a SU(2) N/ = 1 supermultiplet as the zero modes and the SU(3) triplet
is heavy. If we were to chose the signs the other way round we would get a massless
colour triplet and heavy weak doublet. In order to obtain the two Higgs doublets as
zero modes we have to introduce two 10-plets of Higgs with parities different with

respect to Z§C.

2.6 Family symmetry from extra dimensions

In this section we review [3] which introduces the possibility that discrete symme-
tries can arise from orbifold compactifications. In this particular case the group Ay
which we will then extend to a GUT model in chapter 3. The model described in sec-
tion 2.5.2 is built around a non-twisted torus and the orbifold forms a square “pillow”.
This “pillow” can be seen as having the symmetry of a square in the same manner
as the orbifold with twist angle # = 7/3 has the symmetry of a tetrahedron. The
symmetry group of the square is the Dihedral group D4 and has been considered as
a possible family symmetry for example see [37]. In order to modify the model given
in [36] to incorporate the Dy symmetry, the 3 families of the standard model would
need to be arranged into the 4 inequivalent singlet and 1 doublet representations of

the Dy group.
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1+~

7 Z1 1 Ts5

Figure 2.4: The Orbifold T?/Z,. The fundamental domain is outlined in
bold and forms a tetrahedron. Regions labelled by A,B,C and D are identified.
The fixed points are labelled z; and are symmetrically permuted under the
symmetry group Aj.

2.6.1 The A, orbifold T2/7,

The Orbifold introduced in [3] is based on the twisted torus with the twist angle
0 = 60°. We set Ry = Rs, as shown in figure 2.4. We then perform the Z5 orbifolding
which folds the rhombus into a tetrahedron giving rise to the A4 symmetry, this

symmetry will later be exploited as a family symmetry.

2.6.2 The orbifold with § = /3

We are working with a quantum field theory in 6 dimensions with the 2 extra dimen-
sions compactified onto an orbifold T?/Z3. The extra dimensions are complexified
such that z = x5 +ixg are the coordinates on the extra space. The torus T? is defined

by identifying the points:

2oz + 1, (2.6.1)

W[y

z— 247y y=¢'s, (2.6.2)
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We have set the length 27 R; 5 to unity for clarity. The orbifolding is defined by the

parity Zo identifying:

PR— (2.6.3)

(1175,1136) - (_$57_:E6)7

leaving the orbifold to be represented by the bold triangular region shown in figure 2.4.
The orbifold has 4 fixed points which are unchanged under the symmetries of the
orbifold, equations (2.6.3),(2.6.1),(2.6.2). The orbifold can be described as a regular
tetrahedron with the fixed points as the vertices. The 6d spacetime symmetry is
broken by the orbifolding, previously the symmetry consisted of 6d translations and
proper Lorentz transformations*. We are now left with a 4d space-time symmetry
and a discrete symmetry of rotations and translations due to the special geometry of

the orbifold. We can generate this group with the transformations:

S:z—z+1, (2.6.4)

T:z2— wz |, w=7% (2.6.5)

These two generators are even permutations of the four fixed points:

S i (21,22, 23,24) — (21,23, 22, 21), (2.6.6)

T (21,252,23,24) - (Z27Z37217Z4)‘ (267)

The above two transformations generate the group A4 which is the symmetry of
the tetrahedron (see section 1.6.2 for an introduction to A4). This can be verified
by showing that S and T obey the characteristic relations, the presentation, of the

generators of Ay,

SP=T3=(ST)}=1. (2.6.8)

*if we had allowed improper Lorentz transformations,i.e. reflections, then rather than A4 we
would have S4 the group of permutations of 4 objects
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2.6.3 Irreducible representations of A,

The 4d representations of the A4 generators can be block diagonalised to give the

irreducible representations of the A4 group

0001 0010
0010 1000
S: ,T:
0100 0100
1000 0001

which satisfy the presentation of the group, equation (2.6.8). Since the only irre-
ducible representations of A, are a triplet and 3 singlet representations (see sec-

tion 1.6.2) then the 4d representation is not irreducible.

Since this 4d representation is reducible then we can block diagonalise the

generators using a matrix U given by:

+1 41 +1 41
1]1-1+1+4+1-1
U==z
2
+1-1+1 -1
+141 -1 -1
and we find that:
1 0 1 0
Sblock diagonal — . 7Tblock diagonal —
0 Ss 0 T3

where T3 and S3 are the generators of A4 in the 3D irreducible representation given
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10 O 001
53 =lo-10 , 3 = 100] - (2.6.9)
00 —1 010

2.6.4 Parametrising multiplets

If we are to place fields at the fixed points of the orbifold then we will need to
parametrise a 4 dimensional representation in terms of singlet and triplet represen-
tations as in [3]. We now briefly summarise the results of [3] to build a dictio-
nary from a 6d orbifolded theory to an effective 4d one. If we consider a multiplet

u = (uy,us,u3,uy)’ transforming as:

S:u— Su

T:u— Tu,

we can now make a change of basis defining v = (vg, vy, v2,v3)7 = Uu transforming

as:

S:v— (USU

T:v— (UTU

with the vy component transforming as a singlet and the vy 3 components trans-
forming with T35 and S3 as triplets. This gives us a parametrisation for a multiplet
u = (u1,uz,u3,us)’. We can decompose the reducible quadruplet into a triplet and

invariant singlet irreducible representations:

Uul Vo —v1 + U2 + V3
U9 11| vo 1| +v1 — v +vs
= — + =
2
us V0 +v1 + v — U3
Uy Vo —U1 — V2 — U3
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As noted in [3] this parametrisation is not unique, this is a result of a property
of the A4 generators. We can generalise the transformations of the brane multiplet

in the following way:

S:a— Sa (2.6.10)

T:a— wTa=T,,a (2.6.11)

where w is the first cubic root of unity and r, = 0,4+1. This clearly still satisfies the
presentation of the group equation (2.6.8) and we can repeat the block diagonalising
procedure to find the parametrisation if r, # 0. If we take the case where r, = +1,

we again block diagonalise the generators S and 7, :

0001 00wo
0010 w000
g_ T = (2.6.12)
0100 0w00
1000 000w

with a matrix U, which was not explicitly given in [3]:

+w? +w? +w? +w?

1 -1 +1 41 -1
U, == . (2.6.13)

tw? —w? 4w? —w?

fw fw —w —w

This splits the four dimensional representation into the irreducible triplet and singlet

parts:

U.SUL =" , U, UL =" . (2.6.14)
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This leaves us with a different parametrisation of a brane multiplet:

Uy Vo —v1 + wug + wlug
Us w | v 1 | +v1 — wuy + w?us
= 5 + 5 . (2.6.15)
us Vo +v1 + wuy — w?us
Uyg Vo —U1 — W2 — w2v3
We can repeat the process for the r, = —1 case or we can simply take the complex

conjugate of equation (2.6.15).

It should be noted that the 1 dimensional representation of S and T found
from equation (2.6.14) is that of the 1’ representation of A4 (S = 1,7 = w). This
is because we have decomposed the quadruplet 4 into irreducible representations as
4 =1'®3. In the first case (r, = 0) we decomposed the quadruplet as 4 = 16 3, the
1 dimensional representation is S = 1,7 = 1, simply read from the block diagonal
forms of S and T. As in [3] we label the 4 dimensional reducible representations
Ro,—1,+1, Ro decomposes into a triplet plus an invariant singlet R4 decomposes into
a triplet plus an non-invariant singlet 1’ and finally R_; decomposes into a triplet
plus a non-invariant singlet 1”. Brane singlets are given by a vector of the form
Usinglet = (ac/2,a:/2,0a./2,a./2)T, i.e. brane fields having the same value at each

fixed point. Brane Triplets a = (a1, a2, az)are in one of three representations R +1

given by
—a1 +was + w2a3 —a1 + az +as
2
1 | +a1 —wag + w“as 1| 4+a1r—az+as
a® =R = a0 = - (2.6.16)
2 ) ’ 2
+a; + waz — w”as +a1 + a2 —as
—a] — way — w2a3 —a1 — ag — as

depending on which singlet the triplets are forming in the superpotential. Bulk
singlets depend on the extra coordinates and transform as S¢(z) = £(z + 1/2) and
TE(z) = {(wz). We require these decompositions because we will want to construct

non-invariant singlets from products of triplets and if we were to restrict ourselves to
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the first parametrisation we would be unable to do so.

2.6.5 Bulk and brane Fields

Following [3] we now look at the coupling of a bulk multiplet: B(z) = (B1(2), Ba2(2), Bs(2)),
transforming as a triplet of A4 and the brane triplet a = (a1, a2, a3) transforming as
Ro, as in equation (2.6.16). The transformations of B are:

S:B'(z5) = 93B(2) 25 =2+ % (2.6.17)

S:B'(2r) = T3B(2) 27 = wz. (2.6.18)
We can write a bilinear in a and B given by:

J = aixalBg(2)6; (2.6.19)
iK

where ;i is a four by three matrix of constant coefficients, and §; = d(z — z;) where

z; are the fixed points. We want J to be invariant under A4 then we choose:

-1+1+1
1| +1—-1+1

QK = )
+1+1 -1
-1-1-1

Since a is in the R representation after integration over extra dimensions:

J = i(—vl + vy + v3)(—B1(21) + Ba(21) + B3(21))

+ 1(4_@1 — 9 + 1)3)(—|—B1(22) — B2(Z2) + B3(Z2))

4
+ i(JF’Ul +v2 — v3)(+B1(23) + Ba(z3) — Bs(23))
+ i(+v1 + v + v3)(+B1(z1) + Ba(z4) + B3(24)). (2.6.20)
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If the triplet B(z) acquires a constant VEV (B(z)) = (B1, B2, B3) then J becomes:
J =v1B1 + v2B3 + v3Bs3.
We can do the same for a bilinear J’ given by:
J = Z ol ra;Bg(2)5;
iK

which transforms as a 1’ with the matrix o/, given by:

—1 4w +w?
1| +1 —w +w?
/ _
ik = )
+1 4w —w?

1 —w —w?

After integrating over z and after B has acquired a constant VEV we find that:

J =v1B1 + wvaBg + w2v3B3.

We can obtain the 1” singlet by simply substituting o/, by its complex conjugate to

1/
get o

2.7 Other discrete symmetries from orbifolding

As noted in [38] A4 is not the only discrete symmetry that can be exploited from the
geometry of the orbifold compactification. We noted above that if we had allowed
reflections then the group generated by the compactification would not have been Ay,
the group of even permutations of 4 objects, but the group generated would be Sy,
the group of all permutations of 4 objects. We shall simply list a number of T2/Z
orbifolds and the associated discrete symmetry in table 2.1. Such orbifolds may be

used to form a theory of family symmetry similar to [3] and [1].
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Orbifold Symmetry

T/Z5 Ay, 84, Dy
T/Z3 D3, S5
T/Z4 D4

—U/ZG DﬁngnggSi),XZQ

Table 2.1: Orbifolds and their symmetries
A list of 2 dimensional orbifolds and the discrete symmetries that may be associated with
them. Orbifolds can have different symmetries depending on the twist angle of the torus and
the symmetry that they are orbifolded by, see [38] for details.

2.8 GUT models with family symmetry and orbifolding

Recently a model [39] has been proposed that incorporates a GUT group with a fam-
ily symmetry while also making use of orbifolding extra compact dimensions. The
model is based on the SU(5) GUT group and has a single extra dimension compact-
ified on the orbifold. The GUT group is broken by giving a negative parity to those
gauge bosons not belonging to the Standard Model gauge group, this mechanism also
solves the doublet-triplet splitting problem by rendering the coloured Higgs triplets
heavy. In addition to the model proposed by Kawamura [35] the model also has an
Ay family symmetry and also makes use of a Froggatt-Nielsen mechanism. The 5-plet
of matter transforms as a triplet of A4 and the three families of 10-plets transform as
the three singlet representations of A4. The third family of 10’s is placed at a fixed
point and the first two families are placed in the bulk, this leads to a suppression of
the yukawa coupling in these bulk fields as a bulk field and its zero mode are related
by:
1

B=—B"+.. .. 2.8.1
= ( )

This is made use of alongside the Froggatt-Nielsen mechanism to obtain realistic
masses and mixings. A complication of placing the first two families in the bulk is
that the same GUT breaking mechanism leads to the splitting of the multiplets. This
is rectified by introducing an extra copy of the first families into the bulk which trans-
form with opposite parities thus leaving a complete particle content. The doubling of
the first two families also allows too rigid GUT relations (eqns. (1.5.5),1.5.6),(1.5.7))

to be avoided so the introduction of a Georgi-Jarlskog mechanism is not required.
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Chapter 3

Ay family symmetry from SU(5)
GUTs in 6d

3.1 Introduction

The pattern of quark and lepton masses and mixing angles remains central to any
attempt to construct a theory of physics beyond the Standard Model. As discussed
in section 1.6 the most obvious extension to the Standard Model is to introduce some
symmetry between the families, a so-called family or flavour symmetry. A particular
difficulty is reconciling the large mixing angles in the lepton sector with the relatively

small mixing angles in the quark sector.

If we restrict ourselves to the lepton sector then it is comparatively straightfor-
ward to build models that are compatible with data. As discussed in section 1.3.2 the
so-called “Tri-Bimaximal mixing” scheme of Harrison, Perkins and Scott [12] is com-
patible with data, such a mixing scheme results from a MNS matrix of a particular

form:

2 1
v
Urp = 4 1 1 (3.1.1)
V6 V3 V2
111
V6 V3 V2

(@)
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The ansatz of TBM lepton mixing matrix is interesting due to its symmetry properties
which seem to call for a possibly discrete non-Abelian Family Symmetry in nature
[40]. There has been a considerable amount of theoretical work in which the observed
TBM neutrino flavour symmetry may be related to some Family Symmetry [3,26,41—
53,53-89]. These models may be classified according to the way that TBM mixing
is achieved, namely either directly or indirectly [90]. The direct models are based on
Ay or Sy, or a larger group that contains these groups as a subgroup, and in these
models some of the generators of the Family Symmetry survive to form at least part
of the neutrino flavour symmetry. In the indirect models, typically based on A(3n?)
or A(6n?), none of the generators of the Family Symmetry appear in the neutrino

flavour symmetry [90].

In the approach in [39] the Ay is simply assumed to exist in the 5d theory.
However it has been shown how an A4 Family Symmetry could have a dynamical
origin as a result of the compactification of a 6d theory down to 4d [3]. Similar
considerations have been applied to other discrete family symmetries [38], and the
connection to string theory of these and other orbifold compactifications has been
discussed in [91]. According to [3], the A4 appears as a symmetry of the orbifold
fixed points on which 4d branes, which accommodate the matter fields, reside, while
the flavons which break A4 are in the bulk. The formulation of a theory in 6d is also
closer in spirit to string theories which are formulated in 10d where such theories are
often compactified in terms of three complex compact dimensions. The 6d theory

here will involve one complex compact dimension z.

In this chapter we formulate a realistic direct model in which an A4 Family
Symmetry arises dynamically from an SU(5) SUSY GUT in 6d. The A4 Family
Symmetry emerges as a result of the compactification of the extra complex compact
dimension z, assuming a particular orbifolding. SO(10) in 6d has been considered
in [36], with the extra dimensions compactified on a rectangular torus. In order
to realize an A4 Family Symmetry upon compactification, we shall generalise the
formalism of 6d GUTs in [36] to the case of compactification on a twisted torus. Then,
starting from an SU(5) SUSY GUT in 6d, we shall show how the A4 Family Symmetry

can result from the symmetry of the orbifold fixed points after compactification,
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assuming a particular twist angle # = 60° and a particular orbifold T2/(Zy x Z5M).
Unlike the model in [39], the resulting model has all three ten-plets T;, as well as
the pentaplet F', located on the 3-branes at the fixed points. However, as in [39)],
we shall assume an additional U(1) Froggatt-Nielsen Family Symmetry to account
for inter-family mass hierarchies. We emphasise that this model is the first which
combines the idea of orbifold GUTs with A4 family symmetry resulting from the

orbifolding.

The layout of the remainder of the chapter is as follows. In Section 3.2 we
generalise the formulation of 6d GUTs (usually compactified on a rectangular torus)
to the general case of compactification on a twisted torus with a general twist angle
6. Then we show how compactification of the SU(5) SUSY GUT in 6d on an orbifold
T2/(Zy x Z5M) leads to an effective 4d theory with A" = 1 SUSY preserved but the
SU(5) GUT broken to the Standard Model (SM) gauge group. We also show how
Higgs doublet-triplet splitting emerges if the Higgs fields are in the bulk. In Section
3.3 we present the SU(5) SUSY GUT model in 6d in which the A4 Family Symmetry
emerges after the above compactification. We specify the superfield content and
symmetries of the model and provide a dictionary for the realization of the 4d effective
superpotential in terms of the 6d A4 invariants. From the effective 4d superpotential
we show how a successful pattern of quark and lepton masses and mixing, including
Tri-Bimaximal neutrino mixing, can emerge. In Section 3.4 we comment on the
vacuum alignment and subleading corrections expected in the model. Section 3.5

concludes the chapter.

3.2 SU(5) GUTs in six dimensions on a twisted torus

We are considering a AN/ = 1 supersymmetric Yang-Mills theory in 6 dimensions, the
Lagrangian is given by equation (2.5.7). The gaugino A is composed of two Weyl

fermions of opposite chirality in 4d as given in equation (2.5.9).
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23 22

Z4 21 2rR1 = 47 Ry
Figure 3.1: The Twisted Torus

The twisted torus, R; and Ry are the radii and 6 is the twist angle (later we shall specify
0 = /3, R1 = 2Ry and orbifold to leave a fundamental domain shown in bold above).

3.2.1 Compactification on a twisted torus

We compactify the two extra dimensions on a twisted torus T? so that the theory

lives on M = R* x T2. The torus is defined by:

(x5, 76) — (25 + 2Ry, 76) (3.2.1)

(x5,26) — (x5 + 2w R2 cos 6,26 + 2m Ry sin ). (3.2.2)

We can expand the SU(5) gauge multiplet fields ® = (Vj, A) using the mode expan-

sion:

1 0 m x nr
() = g 2o, P e {Z (Rl 15~ Sang! ¥ Rysing )
(3.2.3)

where Ry and Ry are the two radii of the torus and 6 is the angle of twist as shown
in figure 3.1. The limit § — 0 represents an unphysical limit where the coordinates
of the two extra dimensions coincide. To visualise this we can think of constructing
the torus from a cylinder by gluing the two ends together, the limit # — 0 would be
equivalent to putting an infinite number of twists on the cylinder before gluing the
ends together. Such a torus would be unphysical as travelling any length along the

cylinder requires travelling an infinite number of turns around the cylinder. Later
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the radii will be set such that Ry = 2Ry and 6 = 7/3. The first orbifolding in the
x5 direction halves the area of the torus to give the rhombus shown in figure 3.1.
A further orbifolding identifies the three corners of the bold triangle leaving the
fundamental domain one quarter of the original size which is shown in bold. This
fundamental domain has a tetrahedral symmetry which will later be exploited as a
family symmetry. The compactification proceeds as described earlier in section 2.5.3
Our choice of variables for the 4d scalars is modified from equations (2.5.11, 2.5.12)

due to the twisted torus:

(m,n) o l ﬂ (m,n) m . n (m,n)
() = M(m,n) (Rl Vi) + (Rl tanf  Rpsin 9) Y (x)>

(3.2.4)
g ! m n (m.n) m . (mmn)
II S S _ m
? (=) M(m,n) ( <R1 tanf Rs sin9> Vs (x) + R, Vs (33)>
(3.2.5)

2 2
where M(m,n) = ﬁ\/(%) + (R%) — %. The 4d Lagrangian for the

gauge and scalar fields is then given by equation (2.5.13).

The gaugino part of the Lagrangian integrates to equation (2.5.14). As before
in section 2.5.3 this is the kinetic term for a Dirac fermion Ap = (A1, A2) with a mass

)

M(m,n). Our particle content consists of the vector Vu(m’n , scalars II and A\p

(m,n)
1,2

forming a massive A/ = 1 vector multiplet in 4d. Again when we look at the massless
sector of the theory we have unwanted N' = 2 symmetry which can be removed by

orbifolding, as we now discuss.

Instead of compactifying on the torus we can compactify on the orbifold T2/Z
where we assign parities, equations (2.5.16-2.5.21), under the reflection (z5,z¢) —
(—x5,—x6) to the vectors and scalars as given in section 2.5.4. Only the vector
multiplet, (V},, A1), has zero modes whereas the chiral multiplet, (V5¢, A2), has none.

The orbifolding breaks the extended N’ = 2 SUSY in 4d down to N/ =1 SUSY.
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3.2.2 Gauge symmetry breaking using the orbifold T2/(Z, x Z3M)

The zero modes obtained from the compactification on T2/Z5 form a N' = 1 SUSY
SU(5) theory in 4d. The breaking of the SU(5) gauge group down to that of the
Standard Model can be achieved by another orbifolding. We make a coordinate shift

to a new set of coordinates:
(5, 26) = (x5 + TRy, x6) (3.2.6)
and introduce a second parity Z5™ on these new coordinates
Z5M (2l xf) — (—ak, —xf). (3.2.7)

By using a single parity Psys,

-10 0 0 O
0-10 0 O
Psu=10 0 -1 0 o0 (3.2.8)
0 0 0 +10
0 0 0 0 +1

we shall require that:
PsyVy(z, —x5 + 7R1/2, —x6) Poyy = +Viu((2, x5 + 7R1/2, 6). (3.2.9)

Gauge boson fields of the Standard Model thus have positive parity and fields be-

longing to SU(5)/Gsar have negative parity. The orbifold is now T2/(Zy x Z5M).
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Explicitly the expansion for the fields with any combination of parities is:

1 1 (2m,n)
@ 9 ) = ’
05 20) = g 2 B O @

NIeg

X cos z—m{x - }+
Ry 57 tano Rysin

1 (2m+1,n)
o, _ S L y :
+—(x, 25, 76) Ny oy (z)

(2m+1) x6
X cos < ) {z5 tanﬁ} +

O__(z,75,26) = (_2Tn) (r)

1
7/ R1Rosinf m§>:0 ¢

. 2m T nTg
X JR— —
St ( Ry {s tan 9} + Rosinf

O, (z,25,26) =

1 (2m+1,n)
T 2 O @)

Rosin6

nIxeg

. ((2m+1) 6
xosm ( Ry {zs tanH} *

Only fields with both parities positive have zero modes.

3.2.3 Higgs and doublet-triplet splitting

Rosin6

(3.2.10)

(3.2.11)

(3.2.12)

(3.2.13)

So far we have just considered the gauge sector of SUSY SU(5). Adding the MSSM

Higgs to the 6d SUSY theory is straightforward. In the SU(5) GUT theory these are

contained in the 5-plet and 5-plet of Higgs fields. These are two complex scalars H

and H', and a fermion h = (h, h'). The chiralities are v5h = h,ysh' = —h’ in 4d with

an overall positive 6d chirality I'vh = h.

The Lagrangian is given by equation (2.5.37). Again we integrate over the

compact dimensions to get,

EZilggS = Z z’ﬁ(m’n)’y“auh(m’") + iﬁ(m’n)’y"auh'(m’")

m,n

+r =i PR

R_l ! Rssin6 B Ry tan6

_|_6HH(m7")T8MH(m7") + M (m,n)?Hmm1t primn)

_‘_a“H/(m,n)TauH/(m,n) + M(m, n)2H/(m,n)TH/(m,n) )
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For the first orbifolding parity we choose

PH(z,—x5,—x¢) = +H(x, x5, z6) (3.2.15)

PH'(z,—x5,—16) = +H'(z, x5, 76) (3.2.16)

with P = 1.

For the gauge breaking orbifold we choose:

PsyrH(z,—x5 + 7Ry /2, —26) = H(x, 25 + mR1/2, 26) (3.2.17)

PsyH' (2, —x5 + mR1 /2, —x6) = H' (2,25 + TR1/2, 76) (3.2.18)

It is easy to see with the form of Pgjys that the first three entries gain a minus sign
which makes them heavy whereas the last two entries are left unchanged leaving them

light, resulting in a light doublet and a heavy coloured triplet.

3.3 A, family symmetry from 6d SU(5) SUSY GUTs

The model will involve an A4 family symmetry which is not assumed to exist in
the 6d theory, but which originates after the compactification down to 4d. The way
this happens is quite similar to the discussion in [3] based on the orbifold T2/(Z3)
but differs somewhat due to the different orbifold considered here, namely T2/(Zy x
Z5M). This is discussed in section 2.6, where we also briefly summarise all the results
required in order to formulate our model, as necessary in order to make this thesis
self-contained. Using the formalism of the previous section and section 2.6, we now

present the model.

The basic set-up of the model is depicted in figure 3.2 and the essential features
may be summarised as follows. The model assumes a 6d gauge N' =1 SUSY SU(5)
Yang-Mills theory compactified down to 4d Minkowski space with two extra dimen-
sions compactified on a twisted torus with a twist angle of 6 = 60° and Ry = 2R».
Upon compactification, without orbifolding, the 6d supersymmetry would become

extended to AN/ = 2 SUSY in 4d. However the N/ = 2 SUSY is reduced to N/ = 1
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T6

SU(5) 23 223 SM
SU(5)
2z ¢ SM
SU(5) “1 L5

Figure 3.2: The orbifold giving rise to A4 symmetry
The orbifold compactification of a 6d N = 1 SUSY SU(5) GUT which gives rise to an effective
4d theory with the N' =1 SUSY SM gauge group together with A4 Family Symmetry after
compactification. The gauge symmetry at the four fixed points is explicitly labelled. Matter
fields are localised at the fixed points as discussed in section 2.6 and in [3].

SUSY by use of a particular orbifolding and a further orbifolding is used to break the
gauge symmetry to the SM, as discussed in Section 2. Due to the tetrahedral pattern
of fixed points on the torus, the compactified extra dimensions have some additional
symmetry left over from the 6d Poincaré spacetime symmetry, which is identified as a
Family Symmetry corresponding to the A4 symmetry group of the tetrahedron. The
particular gauge breaking orbifolding also leads to the 5-plets of Higgs splitting into
a light doublet and heavy coloured triplet. It should be noted that the four fixed
points of the tetrahedral orbifold are inequivalent in that they have different gauge
groups associated with them. The A4 symmetry is a symmetry of the standard model
gauge bosons only and not the full SU(5) gauge group. The gauge bosons belonging
to SU(5)/Gspr have negative parity under the second gauge breaking orbifolding so
these fields do not transform as trivial singlets under the A4 as the standard model

gauge bosons do. The model is therefore A4 x SM not A4 x SU(5).

The model is further specified by matter fields located on the 3-branes in various
configurations, at the fixed points shown in figure 3.2. These matter fields are 4d fields
with components at the 4 fixed points as described in [3]. Matter fields carry an extra
U(1) family dependent charge which is in turn broken by two A4 singlet Froggatt-
Nielsen flavons #, 0" which live on the fixed points. Realistic charged fermion masses
and mixings are produced using these Froggatt-Nielsen flavons 6,6’ together with

the bulk flavon @7 which breaks A4 but preserves the T' generator. Tri-Bimaximal
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mixing of the neutrinos is achieved using further bulk flavons ¢g which breaks Ay
but preserves the S generator, and the singlet bulk flavon £. A full list of the particle
content of the model minus the gauge fields is given in Table 3.1 and we shall briefly
describe here. The three 5 (F') are grouped into an A4 triplet as are the three right-
handed neutrinos (V). The ten-plets (71 2,3) are assigned to the three different singlet
representations of A4. The 5-plet transforms as a trivial A4 singlet and the 5-plet
transforms in the 1’ representation. The Ay family symmetry is broken via the use
of two Ay triplet flavons ¢ and ¢g which obtain VEVs in the (1,0,0) and (1,1,1)
directions respectively. There are also two singlet flavons transforming in the trivial
singlet representation of A4. In this scheme, at the leading order, the pr give mass
to the charged leptons and to the down quarks while the apg, £€ give mass to the
neutrinos. In order to enforce this separation there is also a Z3 charge under which
the ten-plets, pentaplets, right-handed neutrinos, ¢g,¢ ,€ flavons and higgs bosons
carry a charge of w. The pr flavon is left invariant under this Z3 symmetry as are
the Froggatt-Nielsen flavons. The ten-plets also carry positive U(1) Froggatt-Nielsen
charge which is broken by two flavons ( 6,6’) both carrying negative charge. The
Froggatt-Nielsen flavons transform in the A4 singlet representations, 6 transforms
as a 1 while ¢ transforms as a 1’. In addition to the gauge, A4, U(1) Froggatt-
Nielsen, and Z3 symmetries there is also a U(1)g symmetry. The effective N' = 1
superpotential carries a U(1)x charge of 42 since the integration measure d?6 carries
a charge of -2. This symmetry also has the feature of forbidding certain unwanted
terms, in particular the proton decay operator F'T'I'T has an R-charge of +4. The R-
symmetry also contains the discrete R-parity so baryon and lepton number violating
operators are also forbidden. The superpotential of the theory is a sum of a bulk
term depending on bulk fields, plus terms localised at the four fixed points. The
4D superpotential is produced from the 6D theory by integrating over the extra

dimensions and assuming a constant background value for the bulk supermultiplets

vs(z), pr(z) and Es(z) as in ref [3].

3.3.1 Superfield content
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€.

Superfield N F Ty T Ty Hs | Hs | o1 | w5 | &, £l 0 o'
SU(5) 1 5 10 10 10 5 5 1 1 1 1
SM 1| @) | W5ae”) | Wsase's) | @haes) | Ho | Hy | o7 | 0s | £€] 0 0’
Ay 3 3 1 1 1 1 1 3 3 1 1 1
U(1) 0 0 4 2 0 0 0 0 0 0 -1 -1

Z3 w w w w w w w 1 w w 1 1
Ul)r 1 1 1 1 1 0 0 0 0 0 0 0

Brane/bulk | brane | brane brane brane brane bulk | bulk | bulk | bulk | bulk | brane | brane

Table 3.1: Superfield content of the model
Superfield content and their transformation properties under the symmetries of the model. Note that the SU(5) GUT symmetry is broken by the
compactification, while the A4 Family Symmetry is only realized after the compactification. The matter fields are located at the fixed points on 3-branes,
while the Higgs fields live in the 6d bulk. The Froggatt-Nielsen flavons are all located at the fixed point 3-branes while the A4 flavons all live in the bulk.



After compactification, an effective 4d superpotential may be written down, using the
dictionary for the realisation of the 4d terms in terms of the local 6d A4 invariants
given in Table 3.2. Using this dictionary, we decompose the effective 4d superpotential

into several parts:

W = Wyp + Waown + Wcharged lepton +w, +wg+ ... (331)

The term wy is concerned with vacuum alignment whose effect will be discussed later.
The first three terms give rise to the fermion masses after A4, U(1) and electroweak

symmetry breaking and they are:

Wyp ~ %Huq?ﬂ?), + i—/jHu(QQU?), +qzuy) + %Hﬂéu,;
+ %Hu(%’ug, +qsu") + a 9//\379 O a4 ')
A 9'513;” O e (3.3.2)
- § 07 L8 .,
Wdown ™~ FHd(dC(PT) q3 + FHd(dCSOT) 4o + FHd(dC(PT) p)
+ %Hé(dcw)% + %Hé(dcw)"d{
+ %H&(d%)%’ + WHQ(CZC@T)QY, (3.3.3)

1 12 92
Wcharged lepton ™~ FHCIZ(ZSDT)UGL’C% + FHQ(ZCPT)”GC& + FHCIZ(ZQDT),ecé
0'0 o 000 .
+ 55 Hallpr)es + ——7—Hy(lpr)" e
0" o 070+ 0 .
+ THQ(ZCPT)/G 1+ THQ(ZCPT)G 1- (3.3.4)

Terms in contained within wy, originate from two Ay singlet ten-plets of SU(5)
together with the trivial A4 singlet of the Higgs pentaplet, each field carries a Z3
charge of w and the ten-plets may also carry a U(1) Froggatt-Nielsen charge. The

Froggatt-Nielsen charge is also carried by the gauge singlet and A, singlet flavons
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0,0" which allow an invariant term to be written down. Terms in both wqewn and
Weharged lepton OTiginate from terms of the form Hg(Fyr)1,1/,1#T; where the term
(F'or)11/17 is a singlet component of the product of the two A4 triplet fields F
(the 5 of SU(5)) and o7 (the A4 flavon). Since the ten-plet 7; may also carry a
Froggatt-Nielsen charge then the fields 6,0 may also be included. In both wgown
and Weharged lepton Certain entries are forbidden at first order e.g. the term H, L’i(lng)eg

which would fill out the 13 entry of the mass matrix is not a trivial A4 singlet.

The dimensionless coefficients of each term in the superpotential have been
omitted and they aren’t predicted by the flavour symmetry, though they are all
expected to be of the same order. It should be noted that the up mass matrix m,,
is not symmetric since the Lagrangian is invariant under the standard model and
not SU(5). The powers of the cut-off A are determined by the dimensionality of the
various fields, recalling that brane fields have mass dimension 1 and bulk fields have

mass dimension 2 in 6d.

The neutrinos have both Dirac and Majorana masses:

v N+ L i) (NN
wVNK u( )+K(wa§+xa§)( )+

L

A (PsNN) (3.3.5)

where € is a linear combination of two independent ¢ type fields which has a vanishing

VEV and therefore doesn’t contribute to the neutrino masses.

Using the alignment mechanism in [39] and described in section 3.4, the scalar
components of the supermultiplets will be assumed to obtain VEVs according to the

following scheme:

{o1) 1

R z=>>- -prery AR (3.3.6)
<(’j€> - m(vs,vsjvs% (3.3.7)
% - mu, (3.3.8)
% =t (3.3.9)
<i, =t (3.3.10)



4d 6d

Hyqzu§ > 93u$; Huy(2)6i
6°0" Huqucy 2 9?9§2H (2)at uY 0
9/4Hu<Z2U 2 Zz i (Z)Q%U 2i5‘
0" Hyqfuy 2 07 L (2) g uq 0
036"3 H,,ghu’] > P07 Hy (2)gh;ucY 6
0" H,q}u’s > 04 L (2)qu ) uls0;
0*H)(d°or)q] > ik OAHL (2) (AR 007 i (2)) s

)
007 Hy(dpr) g | e 0207 B () (4™ olycor () a0
00'Hy(dpr)gh | > Oi0iH, (= )(dCROiaiK(PTK(Z))qZZ

Hl\(d°pr)" g3 Sux B (2) (R0l o1 1 (2)) 45,0
H,(N1) > Hu(2) (N IR,
E(NN) > €N NS,
ps(NN) ik P (2)aig NFONFos;

Table 3.2: Dictionary of terms
A dictionary for the realisation of the 4d terms in the superpotential in terms of the local
6d A, invariants. The 4d terms are obtained by integrating out the extra dimensions and
assuming a constant background value for the bulk multiplets, as discussed in section 1.6.2
where the notation is defined. The delta function, §; = d(z — z;) where z; are the fixed
points, restricts the couplings to the fixed points.

where i = u,d, e allowing for different messenger masses [43]. Since the brane fields
live in 4 dimensions the messengers will also be 4 dimensional particles so that the
mechanism in [43], allowing different messenger masses, can be applied in this sce-

nario. Also recall that the dimensions of the torus are now fixed

Ry =2Ry and sinf =+/3/2. (3.3.11)

In the remainder of this thesis we shall give results in terms of Rq,Re and sinf. It
should be noted that they are however fixed to the values in Eqn. (3.3.11). Note that
the flavon VEVs vp,vg and u are defined to be dimensionless since the bulk fields

have mass dimension of 2.
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3.3.2 Higgs VEVs

The Higgs multiplets live in the bulk this gives the required doublet-triplet splitting.
The value of the Higgs VEVs at the fixed points is what will enter in the Yukawa
couplings, so the values of we are interested in will be averages over the fixed points

Zi-
Uy, Vq

<§Z: Hu(z)) = V2R Rysinf’ <§Z: Halz)) = V72 R1 Ry sin 0

where v, and vy have mass dimension 1. The electroweak scale will be determined

(3.3.12)

by:
v2 4+ v2 & (174GeV)?, (3.3.13)
v2 = /d2z] (Hy(2)) %, (3.3.14)
V2= /d2z| (H(2)) 2. (3.3.15)

Because we are using an extra dimensional setup a suppression factor s will enter

into our mass matrices since a bulk field and its zero mode are given by:

1
B=———— B+ {higher order contributions} (3.3.16)

V7T2R Ry sinf

which results in the suppression factor:

1

= < 1. 3.3.17
V2R Ry sin A2 ( )

S

R1,R2 and sin@ are given by equation (3.3.11). The size of s is discussed below in

section 3.3.3.

3.3.3 Quark and lepton mass matrices

We can now calculate the fermion mass matrices from the effective 4d superpotential,

using the flavon and Higgs VEVs and expansion parameters above, (using a left-right
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convention throughout):

2 8 5 3 6 4
642 4t/ 5 13400 18 340 4t O 3 4t
e B e A S A A T #2 | st (3.3.18)
3 4 2
tuty +t, t, 1
th 15t 22 3t + )
~ 2 2 ? 3.3.19
d tat, 13t "V, (3.3.19)

1

th+ 0t tetl ..
Me ~ tztﬁf £2 .. 2, (3.3.20)
AR |
where we have achieved different values for ¢, t; and t. via different messenger masses

Ay, Ag and A, and the dots represent contributions from subleading operators as

discussed in section 3.4.

Down sector

For the down quark mass matrix, mg, we can choose t4 ~ € and t/; ~ €2/3 to give:
3 €10/3 8/3

mar~ | /3 2 A3 | vrstua (3.3.21)

For example, assuming a value € ~ 0.15 allows the order unity coefficients to be tuned
to O(e) to give acceptable down-type quark mass ratios. The 11 element of the mass
matrix is of order €3, which needs to be tuned to order e* using the dimensionless
coefficients we have omitted to write in the superpotential. The dots again represent

subleading operators as discussed in section 3.4.
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Up sector

The up quark matrix is given by:

m|

my, ~

N
L
b

SUy, (3.3.22)
el
with ¢, ~ tI, ~ & Again we have left out the O(1) coefficients for each term,
which for € ~ 0.22, may be tuned to give acceptable up-type quark mass ratios.
The CKM mixing angles will arise predominantly from the down-mixing angles, but
with possibly significant corrections from the up-mixing angles, depending on the
unspecified operators represented by dots. In general there will be corrections to all
the Yukawa matrices as discussed later. Since the top mass is given by the size of s,

we would expect a value around s ~ 0.5.

Charged lepton mass matrix

The mass matrix for the charged lepton sector is of the form:

3
th 0t tetl ... e B
Me ~ £2¢42 2 s2opvg = c10/3 2 vrs2ug. (3.3.23)
e’e e o “ e
4 2
AR A | S8 31

with ¢, ~ e and t, ~ €2/3. The dots again represent subleading operators as discussed

in section 3.4.

Neutrino sector

In the neutrino sector, after the fields develop VEVs and the gauge singlets N become

heavy the seesaw mechanism takes place as discussed in detail in [41]. After the
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seesaw mechanism the effective mass matrix for the light neutrinos is given by:

3a+b b b
1 5(vy)?
~—_— 2ab+b2  b2—ab—3a2 | ——— 3.3.24
M 3CL(CL + b) b %—a I[)l—a = A ’ ( )
b b2—ab—3a®  2ab+b>
b—a b—a
where
_ 2zqu |, 2xp058

CTWPRT T B

The neutrino mass matrix is diagonalised by the transformation

UgmuUu = dia’g(m17 ma, m3)

with U, given by:

—-V2/31/v/3 0
U, = 1/\/6 1/\/§ 1/\/5 (3.3.25)
1/vV6 1/v3 —1/v2

which is of the TBM form in equation (1.3.8). However, although we have TBM
neutrino mixing in this model we do not have exact TBM lepton mixing due to fact
that the charged lepton mass matrix is not diagonal in this basis. Thus there will be
charged lepton mixing corrections to TBM mixing resulting in mixing sum rules as
discussed in [42,92-98]. Due to the inexact TBM we can estimate the mixing angle
13 from the from of the mass matrix m,,. The prediction is that 613 ~ et ~ 0.002

which is consistent with current data (table 1.2).

3.4 Vacuum alignment and subleading corrections

The resulting A4 model is of the direct kind discussed in [90] in which the vacuum
alignment is achieved via F-terms resulting in the A4 generator S being preserved
in the neutrino sector. The vacuum alignment is achieved by the superpotential wg

introduced in [39], where we have absorbed the mass dimension into the coefficients

80



Field er | vs | € £ 1o | o8| &
w

Z3 1 w w

Ul)gr 0 0 0 0 2 2 2
Brane/Bulk || Bulk | Bulk | Bulk | Bulk | Bulk | Bulk | Bulk

Table 3.3

The flavon fields and driving fields leading to the vacuum alignment.

glvfz

wq = M(erel) + 9(8 ereer) + 9105 @ses)
+ (fi€ + )05 s + fséo(pses)

+ fa€ol€ + f560€% + fobol?, (3.4.1)

involving additional gauge singlets, the driving fields (,DOT, <p0S and &y in Table 3.3. The

above form of the driving superpotential wy and the vanishing of the F-terms,

ow ow ow

e e A (42

yields the vacuum alignment anticipated in the previous section. For more details
see [39]. Note that the FN flavons 6, 6’ require no special vacuum alignment and their
VEVs may be generated dynamically by a radiative symmetry breaking mechanism.
The ratio of VEVs of 6,6 will depend on the details of all the Yukawa couplings
involving these flavons from which the desired VEVs can emerge. In general we do

not address the question of the correlation of flavon VEVs here.

3.4.1 Subleading corrections

Subleading corrections in the mass matrices arise from shifts in the VEVs of the

flavons, these corrections arise from higher order operators entering into the super-
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potential wy. The shifted VEVs including such corrections are of the general form:

1

V2R Ry sin 0
1

(er) /A =
(ps) /A = m
1

(€) /A = mu (3.4.5)
(&) /A = maw (3.4.6)

(v + dvp, dvp, dvr) (3.4.3)

(vs + dvgy,vs + dvge, vs + 0vUs3) (3.4.4)

as discussed in [39], [26]. @7 obtains a correction proportional to the VEV of ¢g,
where ¢g obtains a correction in an arbitrary direction. The VEV of €, which was
zero at leading order, obtains a small correction. The shift in the VEV of £ has been

absorbed into a redefinition of u since at this stage w is a free parameter.

3.4.2 Corrections to my,

The leading order terms in the up sector are of the form 060" H,g;u;. Terms are
gauge and Ay singlets, to create higher order terms we need to introduce flavon fields.
The most straightforward way to do this is to introduce terms that contain factors
quadratic in @7 relative to the leading order terms, since 7 is an A4 triplet we need
two fields in order to construct a singlet. Such terms will lead to entries in the mass
matrix suppressed by a factor of v%. Because of the Z3 symmetry the flavon fields
ps,& ,é must enter at the three flavon level so entries will be suppressed by a factor

of v%u, vg and u? relative to the leading order term.

3.4.3 Corrections to Mmyown and Mcharged lepton

In the down mass matrix subleading corrections fill in the entries indicated by dots.
Entries in the matrix are generated by terms of the form 060" H/)((d¢7)q;+(ler)e€f),
higher order terms can come from replacing @7 with a product of flavon fields or
including the effect of the corrections to the VEV of ¢r. We can replace pr with
prpr, this is compatible with the Z3 charges and results in corrections with the

same form as mgown but with an extra overall suppression of vp. If we include the

82



corrections to the VEV of ¢r then we fill in the entries indicated by dots in eqn.

(3.3.19), the corrections are of the form:

68/3(5?}1“ 68/3(5?}1“ 68/35’UT
mg ~ 64/35UT 64/35UT 64/351)T szvd. (3.4.7)
5’UT (5UT 5’UT

The corrections to the charged lepton mass matrix are, up to O(1) coefficients, the

transpose of the above matrix:

S/36vp €/35vp Sup

me ~ | S35pp M350y Sur s2vg. (3.4.8)

68/3(5?}1“ 64/35’UT 5’UT

Following ref. [39], dv/v ~ O(e?) leading to negligible corrections to the leading

order mg, m, mass matrices.

3.4.4 Corrections to m,,

The Dirac mass term (H,(NI)) can be modified with an insertion of the ¢r flavon,
producing corrections suppressed by svpr. The leading Dirac mass correction is the
term H,(@o7rNl). This leads to a correction to the Dirac mass matrix suppressed by

a factor of svr relative to the leading order (LO) term.

100 2/3 0 0
MLR = mi% + Ampp = yDSUu 001t ?)u82’l)T 0 0 1/6 (349)
010 0 —5/6 0

The Majorana mass term can receive corrections from a number of higher order terms
since the (NN) term can be a 1,1’,1” or 3. The higher order terms all consist of

insertions of 2 flavon fields where the leading order terms have only one insertion e.g.
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the term (NN)'(orps)” obeys the Zs symmetry, is an Ay singlet and results in a
higher order correction to the terms (2,& + Zo&)(NN) + xp(psNN). If we call the
correction to the Majorana mass matrix dmpgg then for this example the correction

is given below,

MmRrRr = Mip + 0MRR (3.4.10)
100 2 —1 -1
mig = Tasub [0 1 |+ xbs;)SA 12 -1 (3.4.11)
010 -1 -1 2
010
dmpr = s*Avrug 100/l (3.4.12)
001

Such corrections have a relative suppression of svr g to the leading order term. After
the seesaw mechanism this leads to an effective mass matrix with every entry sup-
pressed by a factor of svr g. This leads to corrections to the neutrino Tri-Bimaximal

mixing angles of order svr g:

my + Amy, = mppmppmy g = (MEQ + Ampg)(mEG + Ampr) " H(mES + Ampg)!
(Amy,)ij

) ~ O(svr,s). (3.4.13)

The magnitude of vy depends on the ratio of the top and bottom quark Yukawa
couplings, but may be roughly between vy ~ O(e?) — O(e) leading to significant
corrections to Tri-Bimaximal mixing. The flavon shifts dvg also give corrections to
the leading order term (z3(psNN)), however if vp ~ O(e?) these corrections are
of O(¢?) they enter at the same order of magnitude as the corrections from higher
order corrections. If however vr ~ O(e) then the correction enters at the order of
e.The effect of the VEV of &, which was zero at leading order, and obtains a small
correction, leads to a small shift in the overall scale of the right-handed neutrino
masses. And, as already remarked, the shift in the VEV of £ has been absorbed into

a redefinition of u, which we are free to do since u is a free parameter.
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3.5 Conclusion

We have proposed a model in which an A4 Family Symmetry arises dynamically from
an N =1 SU(5) SUSY GUT in 6d. The A4 Family Symmetry emerges as a result of
the compactification of the extra complex compact dimension z, assuming a particular
twist angle & = 60° and a particular orbifold T2/(Z5 x Z5M) which breaks the N = 1
SU(5) SUSY GUT in 6d down to the effective 4d N' = 1 SUSY SM gauge group.
In this model the A4 Family Symmetry emerges after compactification as a residual
symmetry of the full 6d spacetime symmetry of 6d translations and proper Lorentz
transformations. It should be noted that had improper Lorentz transformations been
included then the residual symmetry would have been S; and not A4. The model also
involves other symmetries, in particular we assume a Froggatt-Nielsen U(1) Family

Symmetry and other Zy symmetries in order to achieve a realistic model.

We emphasise that the SU(5) GUT symmetry is broken by the compactifica-
tion, while the A4 Family Symmetry is only realized after the compactification. The
matter fields are located at the fixed points on 3-branes, while the Higgs fields live in
the 6d bulk. The Froggatt-Nielsen flavons are all located at the fixed point 3-branes
while the A4 flavons all live in the bulk. We have adopted an A4 classification scheme
of quarks and leptons compatible with the SU(5) symmetry. We have also used a
Froggatt-Nielsen mechanism for the inter-family mass hierarchies. By placing the 5
and 5 of Higgs in the 6d bulk we have avoided the doublet-triplet splitting problem by
making the coloured triplets heavy. The model naturally has TB mixing at the first
approximation and reproduces the correct mass hierarchies for quarks and charged
leptons and the CKM mixing pattern. The presence of SU(5) GUTs means that the
charged lepton mixing angles are non-zero resulting in predictions such as a lepton

mixing sum rule of the kind discussed in [42,92].

In conclusion, this chapter represents the first realistic 6d orbifold SU(5) SUSY
GUT model in the literature which leads to an A4 Family Symmetry after compact-
ification. We emphasise that the motivation for building such higher dimensional
models is purely bottom-up, namely to make contact with high energy theories and

to solve the conceptual problems with GUT theories such as Higgs doublet-triplet
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splitting and the origin of Family Symmetry in a higher dimensional setting. The
hope is that 6d models such as the one presented here, based on one extra complex
dimension z, may provide a useful stepping-stone towards a 10d fully unified string
theory (including gravity, albeit perhaps decoupled in some limit) in which GUT
breaking and the emergence of Family Symmetry can both be naturally explained as

the result of the compactification of three extra complex dimensions.
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Chapter 4

Ay x SU(5) SUSY GUT of flavour
in 8d

4.1 Introduction

In chapter 3 we described a model using an Ay family symmetry derived from the
geometry of an extra dimensional space. The A4 symmetry is broken in the direct
manner using two triplet flavons which acquire a particular alignment in their VEVs.
In order to obtain the correct alignment further so-called driving fields are intro-
duced. These driving fields have the required symmetries such that upon minimising
the scalar potential the required VEVs emerge. However when breaking the GUT
symmetry we didn’t’ have to resort to higgsing the GUT symmetry down to the
Standard Model we are able to make unwanted particles heavy by giving them parity
assignments under certain orbifoldings. A similar idea has been explored [99] where

orbifolding is used to obtain a particular VEV alignment in family symmetry models.

The purpose of this chapter is to formulate the first realistic SU(5) SUSY GUT
model with A4 family symmetry in 8d where the vacuum alignment is straightfor-
wardly achieved by the use of boundary conditions on orbifolds of the four compact
dimensions. We emphasise that we are motivated to consider an 8d theory by the
desire to achieve vacuum alignment in an elegant way using orbifold boundary con-

ditions. It is not possible to implement this idea with lower dimensional models such
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as the the 5d model in [39] or the 6d model in chapter 3 since the desired alignment
mechanism is not possible under a single orbifolding. This is due to the require-
ment that the two triplet flavons ¢ and g have different boundary conditions in
order to have the different alignments at the zero mode level. Working in 8d also
brings additional benefits, for example the inter-family mass hierarchies will arise
in part due to suppression factors arising from an asymmetric geometric dilution of
the wavefunctions in the four compact dimensions, although a U(1) Froggatt-Nielsen
family symmetry will also be required. In the 8d model the 4 extra dimensions are
compactified onto 2 complex directions which are each orbifolded with Zs and Z3
symmetries. These orbifoldings are also used to specify non-trivial boundary con-
ditions on the various multiplets which break the SU(5) gauge symmetry and the
extended N' = 4 symmetry to leave an effective N' = 1 Standard Model theory in
4 dimensions. It is worth noting that due to the orbifoldings the first two families
of 10-plets are duplicated introducing new GUT scale mass particles to the theory,
although such a feature removes any desirable GUT predictions it also removes some

unwanted GUT mass relations.

The layout of the remainder of the chapter is as follows. In Section 4.2 we
introduce the model and show how the 8 dimensions are compactified upon two
T2/(Zy x Z3) orbifolds leading to gauge and SUSY breaking as above. We specify
the superfield content and symmetries of the model. We describe the transformation
of the fields under these orbifoldings which leads to an effective 4d Standard Model
theory from the 8d SU(5) theory. We first show how the GUT group is broken and
how this naturally leads to doublet-triplet splitting of the Higgs multiplets. We then
discuss vacuum alignment in the 8d theory, and show how boundary conditions can
lead to the desired alignment directions. We also discuss the values of the Higgs
and flavon VEVs, including the effects of bulk suppression factors. In Section 4.3
we write down the effective 4d superpotential and the resulting mass matrices. We
also analyse contributions from terms beyond the leading order to the mass matrices.

Section 4.4 concludes the paper.
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4.2 The model

We are considering a model in 8 dimensions with the extra dimensions compactified
on two 2d orbifolds as described in sec. 2.3. The SU(5) gauge group lives in the full 8d
bulk, with the 8d space compactified to 4d Minkowski space x 4d compact dimensions
with the two complex compact dimensions described by the coordinates z; and zo.
We suppose that the 8d space is compactified by orbifolding. In the z; direction the
Z, orbifolding breaks the gauge symmetry and gives the alignment of the A4 flavon
g, while the Z3 orbifold breaks the extended supersymmetry as described below. In
the z9 direction the Z5 orbifolding also breaks the gauge symmetry to the Standard
Model in exactly the same way as in the z; direction, while the Z3 symmetry is used

to give the alignment of the A4 flavon 7 as described in sec. 4.2.5 and [99].

We suppose that some of the matter and Higgs fields do not feel the full 8d
but are restricted to live in a 6d subspace of the full 8d theory. The second family of
10’s, 15, live in the 2; direction along with both Higgs multiplets, Hs and Hg. The
first family of 10’s, 71, is placed in the 29 direction. Similarly, the flavons g, £ and
6" live in the z; direction, with o7 and # in the zo direction. We confine the other
matter fields to live in a 4d subspace, with the three families of 5 matter, F', and
the third family of 10’s, T3, along with the three families of right-handed neutrinos,
N, located at the 4 dimensional fixed point z; = z9 = 0, with the Yukawa couplings
given by the overlap of the wavefunctions at this fixed point. The particle content of

the model is summarised in table 4.1.

A schematic diagram of the model is shown in figure 4.1. As both the z; and 2z
directions have a Z5 orbifolding breaking the gauge symmetry, doublet-triplet split-
ting of the Higgs multiplets occurs. However this results in half the 10-plet becoming
heavy. To overcome this, an extra copy of 10’s must be included in both directions
with opposite parity under the Zs symmetry. This results in the complete matter
content and also allows us to escape unwanted GUT mass relations. In addition to

the unwanted GUT mass relations the doubling of the first two families also prevents
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06

Superfield N F Ti T T Hs He | or ©0s £ 0 0"
SU(5) 1 5 10 10 10 5 5 1 1 1 1 1
SM 1 (@) | WSaues) | (usazes) | (uSases) | Hu | Ha | o7 | s | & 0 0"
Ay 3 3 1" 1 1 1 1 3 3 1 1 1
U(1) 0 0 2 1 0 0 0 0 0 0 -1 -1
Z3 w w w w w w w 1 w w 1 1
Ul)r 1 1 1 1 1 0 0 0 0 0 0 0
Location | z1=z2=0 | 21=22=0 21 =0 23 =0 21=20=0 | 22=0 | 22=0 | 21=0 | 20=0 | 20=0 | 21 =0 | 25 =0

Table 4.1: The particle content and symmetries of the model.




'H'Q/(Zsl\l % ZE?USY)

A
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SU(5)

or, T1,0

1y, Hs, Hs

> TTQ/(Z‘;M x Z3)
0,8, 0" 1

FTy, N

Figure 4.1: A Schematic diagram of the model.

The SU(5) gauge group is in the 8d bulk, represented here by the entire (21, 22) plane, while
matter and Higgs fields are confined to 6d subspaces, represented by the complex coordinate
directions z; and 22, or to the 4d subspace, represented by the point at the origin. The
First and Second families are placed in the z5 and z; directions respectively. Because there
is a gauge breaking orbifolding, in both directions, half of the 10-plets become heavy so
additional multiplets are introduced in both directions with opposite parity to obtain the full
SM particle content.

good GUT predictions such as the Gatto-Sartori-Tonin [100] and Georgi-Jarlskog
relations. The 8 dimensional theory has an A4 family symmetry which is broken
by three flavons @7, g and €. The vacuum alignment of the flavons is achieved by
imposing non-trivial boundary conditions on the flavons so that only the required
alignment has a zero-mode. In addition to the A4 flavour symmetry there is volume
suppression for superpotential terms involving 6d fields. This suppression, however,
turns out to be insufficient to account for realistic masses and mixings. To obtain
a realistic pattern we also exploit the Froggatt-Nielsen mechanism [27] with a U(1)

symmetry and the two Froggatt-Nielsen flavons # and #” living in the different orb-
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ifolded directions. We also make use of U(1)r and Z3 symmetries as shown in table

4.1.

4.2.1 The T?/(Z, x Z3) orbifolds

The orbifolding can be used to break both the gauge symmetry and SUSY [36]. As
discussed earlier in chapter 3 a model has also been proposed that combine these
two ideas to give an extra dimensional GUT theory with a family symmetry arising
from the compactification of the extra dimensions. In the present model we will
not insist that the family symmetry is dynamically generated from the compactified
geometry of extra dimensions, but merely suppose that it pre-exists in the 8d theory.
However the part of the orbifold T?/Z, described in this section is the same as that
described in [1,3] where the Ay is dynamically generated. The new feature here is
that we shall use orbifold boundary conditions to give the desired vacuum alignment
for the flavons which break Ay, thereby yielding TB neutrino mixing. We complexify
the extra dimensions x5, zg so that they are described by one complex coordinate
z1 = x5 + ixg. The extra dimensions are compactified on the a twisted torus defined

by identifying the following translations:

27—z +1 (4.2.1)

21— 21+ (4.2.2)

where v = /3 and we have set 2w R, , the length of the extra dimension, to unity.

We then impose the following identification:

ZQ 21— —Z1. (423)

This defines the orbifold T2/Z5 as in [1,3]. We can also impose a Z3 symmetry in

order to define the orbifold T2/(Z x Z3), we impose the following identification:

Zg L 21 — w2y, (4.2.4)
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Combining eqns. (4.2.1)-(4.2.4) gives the definition of the orbifold T2/(Z5 x Z3) which
is the complex direction denoted by z7 in figure 4.1. We follow an analogous procedure
for the remaining 2 extra dimensions by defining zo = x7+ixg and imposing the above
definitions substituting zs for z;. In other words, we apply T2/(Z5 x Z3) orbifolding
separately in each of the z; and 29 spaces. The overall orbifold has a single fixed point
invariant under both the Zy and Z3 transformations which is located at z;9 = 0. It

is at this 4d point that the Yukawa interactions occur.

4.2.2 SUSY breaking

The full 8d theory is N' = 1 SU(5) and the 8d bulk of the theory contains the
SU(5) gauge bosons. Because spinors in 8 dimensions contain a minimum of 16
real components then in 4 dimensions the effective theory must have N' = 4 super-
symmetry [101]. In order to eliminate this extended supersymmetry we can impose
boundary conditions on the multiplets so that they become heavy and play no part
in the zero mode physics. The N' = 4 vector multiplet decomposes into 3 chiral ¢;
and one vector V' A/ = 1 multiplets. We can use the T?/Z3 part of the orbifolding to

eliminate the unwanted multiplets by imposing the boundary conditions:

V(zH, z1,20) = V (2t w2z, 22) (4.2.5)

Gi(xt', 21, 22) = woi(at, w2y, 22), (4.2.6)

where w are the cube roots of unity, leaving ¢ = 0 at the fixed point at z; 2 = 0. We

are therefore left with an effective N’ = 1 theory in 4 dimensions.
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4.2.3 Gauge breaking through orbifolding

The breaking of the SU(5) gauge group down to that of the Standard Model can be

achieved by the Zy part of the orbifolding. By using a single parity Pgay,

-10 0 0 O
0-10 0 O
Psy=10 0 =10 0 (4.2.7)
0 0 0 +10
0 0 0 0 +1

we shall require that:

PsnViu(w, —2)Pgyy = +Viu(z, 2). (4.2.8)

Gauge boson fields of the standard model thus have positive parity and fields belong-
ing to SU(5)/Ggpr have negative parity. Only fields with a positive parity have zero
modes and therefore gauge bosons not belonging to the standard model gauge group
become heavy and the gauge symmetry is broken. In our model both the z; and 2z
directions are orbifolded in this way, this allows us to relax unwanted GUT relations

between the down quark and charged lepton mass matrices.

4.2.4 Higgs and doublet-triplet splitting

So far we have just considered the gauge sector of SU(5). Adding the Higgs to the
6d theory is straightforward. In the SU(5) GUT theory these are contained in the

5-plet and 5-plet of Higgs fields. For the gauge breaking orbifold we choose:

PSMH5(33‘,—21) = +H5(33‘,21) (429)

PsprHg(x,—21) = +Hg(x, 21) (4.2.10)

It is easy to see with the form of Pgjys that the last three entries gain a minus sign
which makes them heavy whereas the first two entries are left unchanged leaving them

light, resulting in a light doublet and a heavy coloured triplet. Similarly with the 10-
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plets living in the z; and 29 directions half the multiplet becomes heavy, however by
introducing extra multiplets with opposite parity the full particle content is restored

at zero mode. This feature also allows us to evade unwanted GUT relations.

4.2.5 Vacuum alignment, VEVs and expansion parameters

In order to break the A4 family symmetry we will impose non-trivial boundary con-
ditions on flavons under the orbifoldings so that only a particular alignment survives
to low energy. By imposing boundary conditions we are able to avoid introducing the
driving fields and avoid having to write down a possibly complicated flavon potential.
We will now describe the procedure for obtaining the alignment, closely following the
procedure developed in [99] to which we refer the reader for more details. The first

Z5 boundary condition,

es(—21) = Paps(21), (4.2.11)

requires the matrix P, to be of order 2. For A4 we have the elements in the fourth

conjugacy class to choose from. We can choose the matrix P, = S where S is given

by
10 0
S=10-1 0 (4.2.12)
00 —1

in the basis of A4 where S is diagonal. This makes it trivial to see which alignment
is left as a zero mode. This choice leaves a single zero mode in the (1,0,0) direction
in this basis. To find what this alignment is in the T diagonal basis it is a simple

matter to rotate the vector using (for example see chapter 3):

1 w w?
1
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This leaves us with the alignment ¢g o (1,1,1) in the T diagonal basis. For the Z3

orbifolding we can impose the boundary condition:

er(waz) = P3pr(22) (4.2.14)

and we can choose Ay elements which have order 3. For P3 we choose P3 = T where

T=|0w o0 |- (4.2.15)

This gives a single zero mode ¢1  (1,0,0).

Turning to the VEVs themselves, for simplicity from now on we shall set the
radii of the compact directions to Rs = Rg = R,, and Ry = Rg = R,,, which implies

that the Higgs VEVs are given by

Uy Vd
V/m2R2 sin’ /™ R2 sinf

where we have included the effect of arbitrary twist angle 6 on the torus [1]. For

(Hu(z2)) = (Hg(z1)) = (4.2.16)

numerical estimates we will set the twist angle to 60° (by choosing v = /3 in eqn.

4.2.2) as in [1] (although in the present model this is an arbitrary choice).

A useful feature of this setup is the suppression of the Yukawa couplings of fields
living in the bulk. A field living in the 6d bulk of one of the orbifolded directions is
related to its zero mode by

F(at, 2) = \/LVFO +... (4.2.17)

where the dots represent the higher, heavy modes and V is the volume of the extra

dimensional space. The above expansion produces a factor s:

(4.2.18)



This feature will produce suppression for couplings involving these bulk fields. Since
we are considering 6 dimensional fields that live in either the z; or zo direction we

will have two not necessarily equal volume factors, s; and ss:

1 1
§1 = = <1 4.2.19
T /m2R2 sinGA?  \/V, A2 ( )
and
1 1
S9 = = <1 4.2.20
2T /PRLsmON L\ /V,A? (4:2.20)
Including volume suppression factors, we summarise the aligned flavon VEVs
as follows,

<
2
—_

= S en00) (4.2.21)
@ - %Zl(vs,vs,vs), (4.222)
% _ V%u (4.2.23)
% _ ;sz’ (4.2.24)
<€:> _ 1/;1 " (4.2.25)

We have defined the parameters vy, vs,t and t” so that they are dimensionless re-
calling that 6d fields have mass dimension two. The Froggatt-Nielsen flavons 6,6"
require no special vacuum alignment and are assumed to obtain VEVs ¢,t” of O(1).
Such VEVs can be obtained as in [39] by minimising the D-term scalar potential.
Obtaining VEVs of O(1) can be found by assuming appropriate mass and coupling

parameters.

4.3 Superpotentials and mass matrices

The couplings are localised at the single fixed point located at z; = z5 = 0 in the

extra dimensional space. The action reads:
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/d4 /d /d20w (21) (ZQ)—I—hC—/d4 /d20w )+ he  (4.3.1)

The effective superpotential w is expressed in terms of N' = 1 superfields can be

decomposed into the following parts:
w = wup + Wdown + wcharged lepton + Wy + WAavon - (432)

The fermion masses and mixings are given by the first three parts after Ay, U(1)
Froggatt-Nielsen and electroweak symmetry breaking. The wqayon part concerns the
flavon fields, however since the A4 flavon alignment is given by the non-trivial bound-
ary conditions imposed by the orbifolding we can avoid writing down explicitly the
(possibly complicated) flavon potential. However without explicitly writing the flavon
potential we do lose the ability to make specific claims on relations between the Ay

flavon VEVs.

4.3.1 Superpotentials

We shall now write down the superpotentials of the model (excluding w, which is
discussed in sec. 4.3.3). We shall use Standard Model notation since the theory
is broken to the Standard Model gauge group by the compactification. We have
suppressed the coefficients in each term of the superpotentials and we would expect
such coefficients to be of O(1). We shall use the notation for fields (f)" where the

field transforms as a 1’ and similarly (f)” for a 1” of Ay.

" "2

1 0 0
wap ~ - Hugou + S ol (02)'u5 + as(u5)'} + S ol (@) (05)')

"2 n3 3
* %Hu{(ql) "ug + g3 (uf)”} + HAJH {(g2) (u))" + (q1)" (u5)"}

93 14
() ), (433)
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"

1 0
waown ~ 15 (Ha)'(d°¢1)" 43 + 75 (Ha) (d%er)" (02)' + 55 (Ha)' (d°¢r) (a2)

A6
72
+ F(Hd)/(dctpT)"(qﬁ”
9//9 ! C / 1 02 / C i
+ B0y @erY @) + 55 (Ha) (@ er) @) (13

!

1 0 0
Wcharged lepton ™~ F(Hd)/(lcpT)//eg + F(Hd)/(lcpT)//(ec2)/ + F(Hd)/(l(pT)/(ec2)/

9//2
+ 5 (Ha)'(lpr)" (e71)"
6//9 / (o _c N\ 92 / c \/I
+ 5 (Ha) (o) (1) + 5 (Ha) (lr) (e1)" (4.3.5)

4.3.2 Charged fermion mass matrices

The Higgs multiplets obtain their VEVs along with the A4 and U(1) flavons @1, 60", 6

as in equations ( 4.2.21-4.2.25) leading to mass matrices of the following form:

(1858783 + s3"Y)s3 (53" + $3t3) 5150 53" %59
My ~

(Si’t”g + s%t3)8182 8%75”28% s1t"sy | $1Vu (4.3.6)

S%t”282 s1t"sy 1

342 2, 4 2412
85t 858117t so87t

Md ~ sysot  sH! | S152VTVd, (4.3.7)
1
s%t2
Me ~ | s251t"t sos1t ... | S1VTVd; (4.3.8)

2
sos3t" s 1
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The dots in mg and m, are from higher order corrections to the vev of the
o flavon alignment. Such corrections come from the heavier modes which have a
higher mass through orbifolding and will alter the alignment of o7 as discussed in

section 4.2.5.

We set s1 = A and s9 = A3/2 with A = 0.22, we choose for simplicity ¢t = ¢/ =
O(1). We should make clear that taking t = ¢ = O(1) means that we are not using
the Froggatt-Nielsen mechanism to provide the suppression. Instead the hierarchies

originate from the bulk suppression factors s;. The mass matrices are then given by:

)\7 )\5.5 )\3.5
My ~ | \55 \& 2 | Avg. (4.3.9)
)\3.5 )\2 1
The down sector matrix is given by,
)\4.5 )\4 )\3.5
mg~ | )25 )2 /\2'5UTUd, (4.3.10)
1

where again the dots represent contributions from the corrections to the vacuum

alignment. The charged lepton mass matrix is given by,

Mcharged lepton ™ A2 )\2'5'UTUd- (4311)
A5 N2

In this model since the first two families are doubled, because the gauge breaking orb-

ifolding makes half of the 10-plets heavy the, GUT relation mgyown = mgnarged lepton

for the first two families is not valid.

These mass matrices give us approximate quark masses and mixing angles of

the correct order of magnitude. For example the quark mixing angles are given
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roughly by,

10 = O(\'P) (4.3.12)
B3 = O(N\?) (4.3.13)
013 = O(\3P). (4.3.14)

So far we have not specified the size of vy and vg, However from the ratio of

the top and bottom quark masses we expect

M 337280 o 2
mye (N

AL/ 1
- tan 3 ~ 2tan @

= vp (4.3.15)

vg _
where £ = tan 0.

4.3.3 Neutrino sector

In the neutrino sector the right-handed neutrino A4 triplets live at the fixed point.
The g lives in the z; direction along with the Ay singlet flavon £. After these
flavons develop a vev the gauge singlets N become heavy and the seesaw mechanism
takes place similar to [39], [1] with the alteration that a zero vev Ay singlet flavon is
no longer required as the vacuum alignment is determined by boundary conditions

rather than by the use of driving fields. Thus we have,

yP 1
wy, ~ S Hu(NU) + $2a(NN) +

Th

L es(VN). (4.3.16)

After the fields develop VEVs, the gauge singlets N become heavy and the

seesaw mechanism takes place as discussed in detail in [41], leading to the effective
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mass matrix for the light neutrinos:

3a+b b b
1 51(vy)?
S 2ab+b2  b2—ab—3a2 4.3.17
M 3a(a + b) b (Z—a l?—a ¢ A ( )
b b>—ab—3a®  2ab+b>
b—a b—a
where
2T,51U b 2xpS81Vs
a= b= ————.
(yP)? (yP)?

The neutrino mass matrix is diagonalised by the transformation
Uy m, U, = diag(m1, ma, m3)

with U, given by:

—-V2/31/v/3 0
U, = 1/\/6 1/\/§ 1/\/5 (4.3.18)
1/vV6 1/v3 —1/v2

which is of the TB form in Eq. (3.1.1). However, although we have TB neutrino
mixing in this model we do not have exact TB lepton mixing due to fact that the
charged lepton mass matrix is not diagonal in this basis. Thus there will be charged
lepton mixing corrections to TB mixing resulting in mixing sum rules as discussed

in [42,92)].

4.3.4 Higher order corrections

We will now discuss corrections to the mass matrices, such corrections come from
additional flavon insertion of o7, g, & and 6,6”, and also from corrections to the

vacuum alignment of the A4 triplet flavons ¢ and ¢g.

corrections to m,p

The leading order terms in the up sector are of the form 6™¢""H,q;u;. Terms are

gauge and Ay singlets, to create higher order terms we need to introduce flavon fields.
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The most straightforward way to do this is to introduce two flavon fields (prer)1,
since @p is an Ay triplet we need the two triplet fields in order to construct an Ay
singlet. Such terms will lead to entries in the mass matrix suppressed by a factor of
s3v2. Due to the Z3 symmetry the flavon fields ¢g, &, € must enter at the three flavon
level so entries will be suppressed by a factor of si{’v%u, si’v% and s3u? relative to the

leading order term. Using the values assumed in sec. 4.3.2 the corrections enter at

O(A3) relative to the leading order term.

corrections to my and m,

In the down quark mass matrix sub-leading corrections fill in the entries indicated
by dots in Eq. 4.3.7. Entries in the matrix are generated by terms of the form
0™0"" H),((d“¢1)q; + (lor)es), higher order terms can come from replacing 7 with

a product of flavon fields or including the effect of the corrections to the VEV of 7.

The obvious substitution is to replace @7 with @7, this is compatible with
the Z3 charges and results in corrections with the same form as mgown but with an
extra overall suppression of sqvp. Using the values assumed in sec. 4.3.2 this type of

correction enters at the level of O(\%/2).

If we include the corrections to the alignment of the VEV of ¢ then we fill
in the entries indicated by dots in Eq. (4.3.7). Such corrections originate from
higher,heavy modes of the flavon field 7, such corrections would be suppressed by
an order of so relative to the leading order term giving corrections to the mass matrix
of the form:

AN N

SMdown ~ | 35 (35 35 | A*Pvrug, (4.3.19)
)\1.5 )\1.5 )\1.5

i.e. the corrections are suppressed by O(A¥/2) relative to the largest term in each row

(or column for Meharged lepton)-

As remarked, since the first two families are doubled, because the gauge break-

ing orbifolding makes half of the 10-plets heavy the, GUT relation mgown = mglarged lepton
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for the first two families is not valid. It does however hold up to orders of magnitude
for the individual families so that the power of A is the same for each family though

the (suppressed) O(1) coeflicient can be different for each family.

corrections to m,,

The leading order Dirac mass term for the neutrinos is H,(N), sub-leading correc-
tions to this term enter with a single flavon insertion of @7 so the resulting term
is H,(@rNl) this results in the sub-leading corrections entering at the sovr level.

Using the values assumed in section 4.3.2 the corrections enter at the O(\3/2) level.

Corrections to the Majorana mass matrix can arise from a number of terms.
This is due to the term (NN) being a product of two triplets and can thus be a
triplet or any of the singlet representations of A4. Corrections to the Majorana
mass matrix can have one extra flavon insertion relative to the leading order terms
E(NN),(psNN). For example the term (pger)(NN) is allowed by the Z3 symmetry
and leads to corrections of order spvp. After the seesaw mechanism takes place
corrections to the neutrino masses and Tri-Bimaximal mixing are of order sour.
Using the values assumed in section 4.3.2 these corrections are O(A\%/2) relative to

the leading order term.

4.4 Conclusion

We have proposed the first realistic N' = 1 SUSY SU(5) GUT model in 8 dimen-
sions with an A4 family symmetry where the vacuum alignment is straightforwardly
achieved by the use of boundary conditions on orbifolds of the four compact di-
mensions. The low energy theory is the usual ' = 1 SUSY Standard Model in 4
dimensions but with predictions for quark and lepton (including neutrino) masses
and mixing angles. For example, the low energy 4d model naturally has TB mixing
at the first approximation and reproduces the correct mass hierarchies for quarks and
charged leptons and the CKM mixing pattern. The presence of SU(5) GUTs means

that the charged lepton mixing angles are non-zero resulting in predictions such as
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lepton mixing sum rules.

We were motivated to consider an 8d theory by the desire to achieve the Ay
flavon vacuum alignment in an elegant way using orbifold boundary conditions. Such
boundary conditions result in the required alignment surviving at the zero mode
level, and in relatively small corrections to the alignment resulting from heavy higher
modes. However the extra dimensional set up also provides familiar added benefits
such as orbifold gauge and SUSY breaking with doublet-triplet splitting of the 5
and 5 Higgs multiplets, making the coloured triplets heavy. Because the first two
generations of 10-plets are doubled, both unwanted and desirable GUT relations are
also avoided. The lack of such relations introduces more freedom into the theory. The
specific model in in table 4.1 and figure 4.1 also includes a Froggatt-Nielsen U(1)
symmetry, which, together with the bulk suppression factors, leads to the desired

inter-family hierarchies.

Finally we comment on the possible relation between the 8d orbifold GUT-
Family model considered here and string theory. At first glance there is an intriguing
similarity between the model here and the F-theory GUT recently discussed [102]. In
both cases the SU(5) GUT gauge group lives in the full 8d space, and also the matter
and Higgs fields lie on matter curves in a 6d subspace, corresponding to two extra
complex dimensions z; 2, with Yukawa couplings occurring at a 4d point [102]. How-
ever any possible connection would be more subtle than this, since firstly one must
uplift the 8d orbifold GUT-Family model here into full heterotic string theory, then
one must identify duality relations between the heterotic string theory and F-theory
as discussed in [103]. Nevertheless the 8d orbifold GUT-Family model presented here
may provide a useful link towards some future unified string theory in which GUT
breaking and the realisation of family symmetry, spontaneously broken with a par-
ticular vacuum alignment, can be explained as the result of the compactification of

extra dimensions.
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Chapter 5

Conclusion

Here we will simply provide a brief summary of the thesis. Chapters 1 and 2 serve as
an introduction to the subject of the Standard Model and extensions to it, namely
family symmetries and extra dimensions. The summaries of chapters 3 and 4 are

contained within sections 3.5 and 4.4.

We have constructed models of fermion masses and mixings based in part on
family symmetries. The model presented in chapter 3 is based upon the SU(5) GUT
group. The family symmetry is given by the A4 group which is derived from the
geometry of an orbifolded complex extra dimension. Additionally a Froggatt-Nielsen

mechanism is used to help generate the mass hierarchy and mixing angles.

In chapter 4 a similar model is presented, this time using 4 extra compact
dimensions, again A4 is used as a family symmetry however it is not assumed to
be generated from the geometry. A feature of the model is that makes use of bulk
suppression factors to generate a mass hierarchy and mixing scheme alongside a
Froggatt-Nielsen mechanism. The flavons used to break the family symmetry also
have a vacuum alignment determined by boundary conditions on the orbifold rather

than by the introduction of additional “driving” fields as in chapter 3.

Both models predict realistic fermion mass and mixing patterns, in particular

both exhibit near Tri-Bimaximal mixing in the lepton sector.
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Final comments

This thesis was supported by the STFC under the grant PPA/S/S/2006/04460.
Figure 1.1 used with permission from Steve Martin.
Feynman diagrams created using JaxoDraw [104].

This thesis was written using ITEX and slackware-.
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