Non-intrusive load monitoring using prior models of general appliance types


Parson, Oliver, Ghosh, Siddhartha, Weal, Mark and Rogers, Alex (2012) Non-intrusive load monitoring using prior models of general appliance types. In, Proceedings of theTwenty-Sixth Conference on Artificial Intelligence (AAAI-12), Toronto, CA, 22 - 26 Jul 2012. , 356-362.

Download

[img] PDF - Post print
Download (451Kb)
[img] PDF - Publishers print
Restricted to internal admin

Download (625Kb) | Request a copy

Description/Abstract

Non-intrusive appliance load monitoring is the process of disaggregating a household's total electricity consumption into its contributing appliances. In this paper we propose an approach by which individual appliances can be iteratively separated from an aggregate load. Unlike existing approaches, our approach does not require training data to be collected by sub-metering individual appliances, nor does it assume complete knowledge of the appliances present in the household. Instead, we propose an approach in which prior models of general appliance types are tuned to specific appliance instances using only signatures extracted from the aggregate load. The tuned appliance models are then used to estimate each appliance's load, which is subsequently subtracted from the aggregate load. This process is applied iteratively until all appliances for which prior behaviour models are known have been disaggregated. We evaluate the accuracy of our approach using the REDD data set, and show the disaggregation performance when using our training approach is comparable to when sub-metered training data is used. We also present a deployment of our system as a live application and demonstrate the potential for personalised energy saving feedback.

Item Type: Conference or Workshop Item (Paper)
Related URLs:
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: Faculty of Physical Sciences and Engineering > Electronics and Computer Science > Agents, Interactions & Complexity
ePrint ID: 336812
Date Deposited: 06 Apr 2012 13:18
Last Modified: 14 Apr 2014 11:39
Research Funder: EPSRC
Projects:
Intelligent Agents for Home Energy Management
Funded by: EPSRC (EP/I000143/1)
Led by: Alexander Carl Rogers
1 November 2010 to 31 March 2014
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/336812

Actions (login required)

View Item View Item