No ·NO from NO synthase


Schmidt, Harald H.H.W., Hofmann, Heinrich, Schindler, Ursula, Shutenko, Zhanna S., Cunningham, David D. and Feelisch, Martin (1996) No ·NO from NO synthase. Proceedings of the National Academy of Sciences of the United States of America, 93, (25), 14492-14497.

Download

[img]
Preview
PDF
Download (298Kb) | Preview

Description/Abstract

The nitric-oxide synthase (NOS; EC 1.14.13.39) reaction is formulated as a partially tetrahydrobiopterin (H4Bip)-dependent 5-electron oxidation of a terminal guanidino nitrogen of L-arginine (Arg) associated with stoichiometric consumption of dioxygen (O2) and 1.5 mol of NADPH to form L-citrulline (Cit) and nitric oxide (.NO). Analysis of NOS activity has relied largely on indirect methods such as quantification of nitrite/nitrate or the coproduct Cit; we therefore sought to directly quantify .NO formation from purified NOS. However, by two independent methods, NOS did not yield detectable .NO unless superoxide dismutase (SOD; EC 1.15.1.1) was present. In the presence of H4Bip, internal .NO standards were only partially recovered and the dismutation of superoxide (O2-.), which otherwise scavenges. .NO to yield ONOO-, was a plausible mechanism of action of SOD. Under these conditions, a reaction between NADPH and ONOO- resulted in considerable overestimation of enzymatic NADPH consumption. SOD lowered the NADPH:Cit stoichiometry to 0.8-1.1, suggesting either that additional reducing equivalents besides NADPH are required to explain Arg oxidation to .NO or that .NO was not primarily formed. The latter was supported by an additional set of experiments in the absence of H4Bip. Here, recovery of internal .NO standards was unaffected. Thus, a second activity of SOD, the conversion of nitroxyl (NO-) to .NO, was a more likely mechanism of action of SOD. Detection of NOS-derived nitrous oxide (N2O) and hydroxylamine (NH2OH), which cannot arise from .NO decomposition, was consistent with formation of an .NO precursor molecule such as NO-. When, in the presence of SOD, glutathione was added, S-nitrosoglutathione was detected. Our results indicate that .NO is not the primary reaction product of NOS-catalyzed Arg turnover and an alternative reaction mechanism and stoichiometry have to be taken into account.

Item Type: Article
ISSNs: 1091-6490 (electronic)
Related URLs:
Keywords: NADPH, superoxide dismutase, hydroxylamine, nitroxyl, peroxynitrite
Subjects: Q Science > QP Physiology
Q Science > QR Microbiology > QR180 Immunology
Divisions: Faculty of Medicine > Infection, Inflammation and Immunity
ePrint ID: 337890
Date Deposited: 29 Jun 2012 13:51
Last Modified: 27 Mar 2014 20:21
URI: http://eprints.soton.ac.uk/id/eprint/337890

Actions (login required)

View Item View Item

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics