Molecular mechanisms of nitrovasodilator bioactivation


Noack, E. and Feelisch, Martin (1991) Molecular mechanisms of nitrovasodilator bioactivation. Basic Research in Cardiology, 86 , supplement 2, 37-50. (PMID:1683227).

Download

Full text not available from this repository.

Description/Abstract

All nitrovasodilators act intracellularly by a common molecular mechanism. This is characterized by the release of nitric oxide (NO). They are, thus, prodrugs or carriers of the active principle NO, responsible for endothelial controlled vasodilation. The rate of NO-formation strongly correlates with the activation of the soluble guanylate cyclase in vitro, resulting in a stimulation of cGMP synthesis. Nitrovasodilators thus are therapeutic substitutes for endogenous EDRF/NO. The pathways of bioactivation, nevertheless, differ substantially, depending on the individual chemistry of the nitrovasodilator. Besides NO, numerous other reaction products such as nitrite and nitrate anions are formed. The guanylate cyclase is only activated if NO is liberated. In the case of organic nitrates such as GTN, NO is only formed if certain thiol compounds are present as an essential cofactor. The rate of NO-formation correlates with the number of nitrate ester groups and proceeds with a simultaneous nitrite formation (with a ratio of 1:14 in the presence of cysteine). Nitrosamines such as molsidomine do not need thiol compounds for bioactivation. They directly liberate NO from the ring-open A-forms. This process basically depends on the presence of oxygen as electron acceptor from the sydnonimine molecule. Therefore, besides NO also superoxide radicals are formed, which may react with the generated NO under formation of nitrate ions. Organic nitrites (such as amyl nitrite) require the preceding interaction with a mercapto group to form a S-nitrosothiol intermediate, from which finally NO radicals are liberated. Nitrosothiols (like S-nitroso-acetyl-penicillamine) and sodium nitroprusside spontaneously release NO. The molecules themselves do not possess a direct enzyme activating potency. In the presence of thiol compounds organic nitrites (e.g., amyl nitrite) and nitrosothiols may act as intermediary products of NO generation.

Item Type: Article
ISSNs: 0300-8428 (print)
1435-1803 (electronic)
Subjects: R Medicine > R Medicine (General)
R Medicine > RM Therapeutics. Pharmacology
Divisions: Faculty of Medicine > Infection, Inflammation and Immunity
ePrint ID: 337917
Date Deposited: 29 May 2012 11:37
Last Modified: 27 Mar 2014 20:21
URI: http://eprints.soton.ac.uk/id/eprint/337917

Actions (login required)

View Item View Item