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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING 

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE 

Doctor of Philosophy 

 
MODEL-BASED APPROACHES FOR RECOGNISING PEOPLE  

BY THE WAY THEY WALK OR RUN 

by Chew-Yean Yam 

Using biological traits, such as fingerprints, iris patterns and voice print, in 

identification and authentication has gained increasing attention due to the demand for 

a more secure environment. The potential of human walking as a biometric has only 

attracted interest in the computer vision community since the last decade. 

Nevertheless, the potential of human running gait as a biometric remains largely 

unexplored. Here, we propose an approach for an automated non-invasive/markerless 

person identification system by not only the walking, but also the running gait to 

explore the potential of these two biomechanically distinct gaits. Two motion models 

both invariant to walking and running, have been developed based on the concept of 

harmonic motion. The first is a bilateral symmetric model made up of an upper and a 

lower pendulum, representing the thigh and the lower leg, joined at the knee. The 

upper pendulum is simple harmonic motion whilst the lower pendulum uses an 

empirical model requiring parameter selection for the different gait mode and lacks 

analytical attributes. The second model has a forced coupled oscillator to describe the 

knee rotation as legs are considered to be imperfect pendula with energy loss. 

  The rhythm and pattern of gaits are automatically extracted by a temporal evidence 

gathering technique with the motion models as the underlying temporal templates. The 

spatio-temporal characteristics of the gait patterns are described by a Fourier 

representation, which are in turn used to create unique gait signatures for the purpose 
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of identification. Performance analysis demonstrates the potential of gait as a 

biometric, with running being more potent. This technique not only performs well in 

discriminating individuals, but also appears capable of distinguishing the gender and 

gait mode. Moreover, analysis shows that the knee rotation contributes significantly to 

discrimination capability.  

  Based on the hypothesis that human walking and running gaits are intimately related 

by the musculo-skeletal structure and that the walking pattern is the phase-modulated 

version of running (or vice versa), a unique mapping/transform between individuals’ 

walking and running gait is developed, making the signature invariant to gait mode. 

Furthermore, this mapping can be used alone as a compressed signature or to buttress 

the original signature to further improve the recognition capability. Then, a generic 

relationship between walking and running has been investigated via a neural network. 

Due to the current size of the experimental dataset, the structure of the two signature 

spaces could not be drawn, at least not by this approach. However, results do suggest 

its possible existence.   

  The effect of different camera views is an important application issue. The gait 

pattern perceived by machine vision at different viewpoints has been investigated. The 

frequency description of the gait pattern is linearly dependent on the camera sagittal 

view angle. The changes of both the magnitude and the phase component are 

symmetric about the fronto-parallel view. This linearity offers a convenient way to 

map the angular motion obtained from various camera sagittal views to the true 

motion, for the convenience of gait analysis. More importantly, this linearity can be 

exploited to develop view invariant gait signatures.  

  The new and interesting findings of this work not only benefit biometrics research, 

but may also draw attention from other communities such as biomechanics and 

graphics applications.  
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Bilateral symmetry Symmetry of left and right. 

Double float Period when both limbs are not on the ground, i.e. airborne. 

Double support Period when both limbs are in contact with the ground. 

Forced walk A walk with a prescribed step frequency or step length and 

speed. 

Free/Preferred 

walk 

A walk in which a person adopts whatever speed and step length 

or step frequency he/she chosen. 

Gait cycle The basic unit of measurement in gait analysis. It is defined as 

the period from the initial contact of one foot to the following 

initial contact of the same foot, i.e. two steps. In other words, it 

is the time interval between successive instances of initial 

contact of the same foot. 

Heel strike The instance when the heel contacts the ground. 

Kinematics The description of motion of joints but does not consider the 

forces that cause the actions. 

Kinetics Study of the internal forces (i.e. muscle forces) and external 

forces (ground reaction forces) that cause movement. 

Single support Period when only one limb is in contact with the ground. 

Speed controlled 

walk 

A walk with specified speed: i.e. treadmill walking. 

 xii



Step The period from heel strike of one foot to heel strike of the other 

foot. 

Step length The projected distance between two positions of the same 

anatomical point on the left and right feet along an anterior-

posterior line drawn in the direction of ambulation 

Step/stride 

frequency 

The number of steps/stride per unit of time. 

Stride length The projected distance between two positions of an anatomical 

point on the same foot along an anterior-posterior line drawn in 

the direction of ambulation. 

Swing phase The period of single support during the gait cycle. 
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Chapter 1 : Prelude 

An average human does not exist! 

V. T. Inman, Human Walking, 1981. 

 

Today’s crime, ever more hostile and involving more advanced technology, has 

fanned the demand for a more secure environment. Attempts range from the simple, 

like locking a door, to more sophisticated (or experimental) methods, such as 

employing biometrics in identification and authentication. Scanning iris and 

fingerprints, voice prints and entering a PIN (Personal Identity Number) to gain access 

to controlled premises is no longer limited to the scenes in Hollywood movies. Rather, 

they are daily practices in today’s society, as much technology has been infused into 

sophisticated security measures. An emerging and fast-growing worldwide crime is 

identity theft, increasing nearly 500% a year in the United Kingdom alone 

[Penycate'01]. Identity fraud may become one of the most serious crimes and can result 

in significant financial loss, or even terrorist acts. To counter-attack this intolerable 

crime, biometrics have gained increasing attention and momentum.  
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1.1 What are Biometrics 

Biometrics concern any human physiological and/or behavioural characteristics 

[Jain'99] which are (i) universal, every person should have that characteristic; (ii) 

unique, no two people should be the same in terms of that characteristic; (iii) 

permanent, invariant with time; and (iv) collectable, can be measured quantitatively. 

Since biometrics are concerned with using one's biological characteristics, it provides a 

more reliable means in countering identity fraud. The concept of identifying people 

based on physical characteristics is not new. Human and animals recognize one 

another by their physical characteristics, voice and odour. Archaeological artifacts 

show that our ancestors recognised the individuality of fingerprint impressions on their 

picture drawings [Moenssens'71]. Biological characteristics that have been explored 

for their potential as biometrics so far are face, fingerprints, hand geometry, 

keystrokes, hand vein geometry, iris patterns, retinal scan, signature, voice print, facial 

thermograms, body odour, DNA (DeoxyriboNucleic Acid), gait and ear. As many are 

still in their infancy, not all have been deployed in the real world.  

Aiming to address the huge losses due to credit card fraud, a trial scheme 

asking shoppers for their thumbprint on the back of cheques or credit card receipts (in 

addition to the traditional signature recognition [Fairhurst'94]) is already underway in 

the UK. In order to improve security and speed in immigration, some airports now 

employ biometrics. For example, Iceland's main airport will employ face-recognition 

technology to help improve security, whereas Saudi Arabia will use iris patterns and 

fingerprints to prevent terrorism in the month of the Hajj pilgrimage. The attractive 

advantages of biometrics are the combination of high speed processing with a high 

level of security. Hong Kong is preparing to introduce one of the world’s most 

advanced identity cards in an attempt to curb illegal immigration. An embedded 

computer chip on the card will hold personal details as well as the owner’s 

thumbprints. This will help to speed up border checks. There are approximately 

200,000 people travelling across the border between the former UK colony and the 

mainland China a day. The idea of using biometric identity checks such as fingerprints, 

iris pattern, hand geometry or voice print in a "smart" passport has also attracted the 
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interest of the UK Passport Office, aimed to prevent identity fraud. Many biological 

traits, be it physical or behavioural, could be a novel and feasible idea to be used as a 

biometric. However, the primary question is to design a system which can meet the 

ever increasing application requirement with currently available technology, of which 

most are in their infancy. 

A typical biometric system operates in two modes, enrolment and 

identification. The enrolment phase will capture biometric measurements from a given 

subject. Relevant information from the raw measurement is then harvested by a feature 

extractor, and feature information is stored in a database.  Some form of label 

associated to a subject may be generated. This is essentially a computer vision problem 

(for visual-based biometrics). Here, identification is synonymous with classification. 

The system senses the biometric measurements from a subject, extracts features from 

the raw measurements, and searches for possible matches within the database using the 

features thus extracted. This is essentially a pattern recognition problem.  

Enrolment 
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Figure 1.1: Architecture of a typical biometric system. 

 



Figure 1.1 illustrates the architecture of a typical biometric system. This 

system consists of four vital interdependent components: acquisition, representation, 

and feature extraction (in both the enrolment and identification mode), and 

classification (in identification mode only). 

(i) Acquisition   

Often, acquisition will affect the performance of the system. This concerns 

the quality and suitability of the input data and also the segmentation 

process. Here, the biometric reader is a digital video camera and the data 

acquired is a sequence of digital images capturing a moving person. The 

separation of the input data from irrelevant information is critical. Input 

data in computer vision generally refers to an object of interest whilst 

irrelevant information often refers to the background. In our approach, as 

we shall see later, the desired object is the moving thigh and lower leg 

described by edge information. However, the ‘ultimate’ input data is the 

angular motion of the thigh and lower leg (desired information for creating 

the signature vector), while irrelevant information is the complement of 

that (such as the background and noise, or even any moving or articulating 

objects that do not move like human lower limbs).  

 (ii) Representation 

Given a complex digital representation, in this case, a sequence of digital 

images, a system must be able to automatically extract desired features or 

objects and describe them by some (hopefully meaningful) representation. 

Furthermore, this representation should be common across the population, 

and yet unique on an individual basis. As human locomotion is all about 

dynamic characteristics, the angular motion of the lower limb is extracted 

automatically and the angles will be a meaningful representation, rather 

than intensity values of a series of digital imagery. An efficacious 

acquisition technique should extract only the dynamics of the human lower 
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limb and not just any moving object, for example, a pair of articulating 

chopsticks is not desired!  

 (iii) Feature extraction 

Feature extraction is the essence of the entire system. Promising features 

for recognition are representations that differ minimally for the same 

identity (minimum intra-class variance), and differ maximally for those 

belonging to different identities (maximum inter-class variance). At this 

stage, important information from a series of images have been reduced 

and represented by the motion angles. In our approach, Fourier magnitude 

and phase are used to describe the spatio-temporal characteristics, the 

essence of human unique walking and running dynamics. Thus, these 

features are used to form the gait signature for identification purposes. 

(iv) Classification 

Classification is eventually a similarity function which quantifies the 

difference between two instances of measurements to associate the test 

data with a possible class within a database, or to reject the test data if the 

similarity measurement is below a threshold. This is effectively an 

identification process. Here, a basic and simple classifier has been 

employed in attempt to reveal the genuine discriminatory capability of the 

selected feature sets.  

1.2 Gait as a Biometric 

Before asking the question why gait is well suited as a biometric, let us define 

what is gait. Gait is defined as a particular manner of locomotion. Recall that the 

criteria of a biometric are universality, uniqueness, permanence and collectability. Gait 

is universal as every normal person does move on foot. As yet, there have been few 

studies providing quantitative measurements on the uniqueness of gait. Nevertheless, 

encouraging experimental results from many gait recognition techniques (most using 
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walking gait) do suggest that gait is indeed unique. Furthermore, this is supported by 

medical and psychology observations. However, the permanence of gait is not as 

enduring as other biometrics such as fingerprints. Gait will change with age 

[Samson'01], that is a child’s gait is different from an adult’s gait, whilst an adult gait 

is yet different from an elderly person’s gait. Besides, gait may be affected by mood 

[Bader'99], drunkenness, pregnancy [Foti'00], disease (e.g. Parkinson’s), footwear and 

load [Zwick'98]. However, these factors do not hinder an attempt to unleash the 

potential of human locomotion as a means of identification. In practice, gait may not 

be as prominent as other established biometrics such as fingerprints, though, it can be 

used together with other biometrics to achieve demanding performance or to act as an 

identity filter in a large population. Since CCTVs are not unusual in today’s society 

(there are approximately 200,000 CCTV in  the UK and this number is increasing), gait 

as a biometric will have no difficulty in gaining public acceptance. Furthermore, 

recognition by the way one walks has least impact on privacy issues, unlike one’s 

DNA. 

Any biometric has its strengths and limitations, which often concern 

application and social issues. Whether a particular biological characteristic is a valid 

biometric is dependent upon the requirement of a given application. Fingerprint, iris 

and retinal patterns may enjoy uniqueness across large populations, but can be difficult 

to collect, as they require substantial co-operation from the subjects. On the other hand, 

face, ear and signature can be easily acquired, but they may be easily obscured or 

disguised. Gait may have the potential to overcome these limitations. One of the 

unique advantages of using gait as a biometric is that it can be perceived from a 

distance, making acquisition non-invasive and convenient. Biometrics such as the iris 

and retinal patterns and face require high resolution images but surveillance cameras 

are often of poor resolution. Gait will not suffer from this shortcoming because the 

body has a proportionally larger area compared with the eyes or face. Furthermore, gait 

cannot be easily disguised without impeding one's natural gait (which will only attract 

attention).  Thus, gait appears to be a potential biometric. 
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1.3 Allied Research 

CASSIUS: 'Tis Cinna; I do know him by his gait;  

         He is a friend. 

       [Enter CINNA] 

Julius Caesar - W. Shakespeare 

There is considerable evidence in the literature that humans have the natural 

ability in recognising friends by the way they walk; psychological studies confirmed 

that we can discriminate the gender of a walker [Kozlowski'77]. We can also recognise 

ourselves and acquaintances by a dynamic light display of the walking pattern 

[Cutting'77] without familiarity cues. It is suggested that gait could be used as a 

reliable means of discriminating individuals, especially when the face is obscured 

[Stevenage'99] because individuals show unique characteristics in their walking 

mechanics [Bianchi'98]. Thus, not only walking gait patterns display individual 

uniqueness, but also gender and age differences. Studies of human locomotion found 

that male walkers tend to swing their shoulders more while female walkers tend to 

swing their hips more [Mather'94]. Recently, the walking styles of children and adult 

have been categorised via computer vision techniques [Davis'01].  

1.4 Current Approaches 

Human motion analysis has gained increasing attention from computer vision 

researchers motivated by a wide spectrum of applications such as surveillance, 

medical, man-machine interface and animation. The major areas of research are motion 

analysis [Akita'84, Chen'92], tracking [Cai'96, Polana'94], recognizing biological 

motion [Boyd'97, Campbell'95], and as an emerging biometric. Investigation on gait as 

a biometric only began less than a decade ago. Perhaps the earliest work derived a gait 

signature from a spatio-temporal pattern of a walking person for recognition purposes 

[Niyogi'94]. Murase et. al. projected images of human walking in eigenspace and used 

the eigenvectors for gait recognition [Murase'96]. Then, dense optical flow [Little'98] 

was exploited where an instantaneous motion description that varies with the type of 
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motion and the moving objects was developed. Huang combined canonical space 

transformation based on Canonical Analysis with eigenspace transformation for feature 

extraction to extract a gait signature [Huang'99]. The potential of image self-similarity 

[Abdelkader'01], area-based metrics [Foster'01], static body parameters [Johnson'01], 

velocity moments [Shutler'01] and symmetry [Hayfron-Acquah'01] have been used to 

generate gait signatures.  Recently, stride and cadence has been investigated as gait 

parameters for recognition [Abdelkader'02], besides, continuous Hidden Markov 

Models have been applied to explore the structural and transitional characteristics of 

gait [Kale'02]. Gait recognition is not only limited to the computer vision community, 

another medium, an in-air sonar-based method, has been deployed in recognising 

walking people [Sabatini'98]. Gait can also be combined with other more established 

biometrics such as face [Shakhnarovich'01] or fingerprint to further improve 

performance. Current approaches discussed so far are mainly based on statistical 

measurements. A statistical approach assumes a statistical basis to describe whole body 

motion for pattern classification. This approach may not have in-built knowledge of 

the gait pattern or characteristics, and may require much training to achieve good 

performance.  

However, the significant information in (or the characteristics of) a gait pattern 

is not merely the presence, or even the numerical values of a set of features. Rather, it 

is the interaction and inter-relationship of the structural description. In a model-based 

approach, one must be able to quantify and extract structural information, and access 

the structural similarity of the gait. It is a formulation of a hierarchical description of a 

more complex system that is built up from primitive attributes. For example, a human 

lower limb resembles a pair of articulated sticks joined at a point. Biological modelling 

is exceptionally intricate, partly because nature has infinite variations and there are 

numerous (uncontrollable) factors, both internal (the human body itself) and external 

(e.g. the environment) to be considered. Although there exist methods for modelling 

human walking, these have not been deployed for identification purposes. Perhaps, the 

only model-based approach in human gait recognition was pioneered by Cunado and 

Nash who explored the potential of the Velocity Hough Transform (VHT) [Nash'97] 
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and simple pendular motion described by a Fourier series [Cunado'99a]. This approach 

models human walking as a pendulum representing the thigh, with the fulcrum at the 

hip joint. It combines the VHT with a Fourier series to extract the motion of the hip 

and thigh within a gait cycle. The gait signature is then derived from the Fourier series. 

Visually, leg movements during walking and running resemble a compound pendulum, 

that is the leg periodically swings at a fulcrum. Thus, adapting pendular motion to 

model human locomotion is natural. This idea has also been elaborated by the 

biomechanicists into two directions [Zatsiorky'94]: i) leg movement as free oscillation, 

and ii) leg movement as forced oscillation. As discussed, both the statistical- and 

model-based approaches demonstrate encouraging results and undoubtedly, more 

techniques are emerging. 

1.5 Next Questions 

Until now, a considerable amount of research has focused on human walking, 

with encouraging results confirming the potential of using walking gait as a biometric. 

This leads to a question on whether human running gait can offer equivalent, if not 

better, quality for identifying people. Although walking and running are distinct gaits 

as defined by biomechanics, interestingly, it has been demonstrated that there occur 

topological similarities in the co-ordination patterns between the thigh and the lower 

leg in walking and running, which co-existed with functional differences throughout a 

gait cycle [Li'99]. The next question is: can these two distinct gaits be described by the 

same structural motion model incorporating their inter-dependency? Since walking and 

running are intimately related by the skeleto-muscular structure, there must exist some 

correlation between them. The next irresistible question is: can we, (or how can we) 

describe this intimate relationship?  

1.6 Objectives  

Our objective here is to develop a new approach for an automated non-invasive 

model-based human identification system by walking and running. We will need to 

extract a series of measurements of leg motion by computer vision techniques, taking 
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into account spatial and temporal properties. In order to do so a model invariant to gait 

mode, as such able to describe both walking and running, is essential. Meaningful 

labelling associating the unique pattern of walking and running is significant in order 

to achieve a convincing recognition rate. As walking and running are intimately 

related, we aim to seek the relationship between these two distinct but systematically 

related gaits and attempt to create signatures that are invariant to these gaits. 

Furthermore, generalisation capabilities such as immunity to noise, resolution, and 

camera view angle shall be incorporated into the approach. 

1.7 Contributions 

 The major contributions to this area of biometrics research are as follows: 

1. A novel approach to an automated non-invasive person recognition system 

has been developed using computer vision techniques. We have explored the 

potential of using walking and running gaits as biometrics, with running gait 

being more potent [Yam'02b].  

2. Two new motion models invariant to walking and running have been developed 

based on the concept of pendular motion and the biomechanics of human 

locomotion: firstly a bilateral symmetric model [Yam'01] and secondly a 

forced coupled oscillator model [Yam'02a]. These models can be extended, if 

necessary, to describe both legs simultaneously by introducing a phase-lock of 

a half a period. 

a. The bilateral symmetric model which requires only 13 parameters (in 

implementation) is capable of describing both the thigh and the lower 

leg motion of walking and running. This model requires fewer 

parameters as compared with the earlier model [Cunado'99b] which 

demands 18 parameters to describe only the thigh motion for walking. 

The thigh motion is described by a simple harmonic motion whilst the 

lower leg rotation is empirical and therefore, selection of one parameter 
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is necessary for different gait modes. This model can extract the motion 

of both gaits well when used as the underlying temporal template within 

a feature extractor.  

b. The forced coupled oscillator model consists of two pendula: an upper 

pendulum with a simple harmonic motion representing the thigh, and a 

lower pendulum (which is influenced by the force introduced by the 

upper pendulum) representing the lower leg. Despite the gait mode, this 

model is capable of capturing the motion of the thigh and lower leg 

distinctly well as compared to that of the bilateral symmetric model 

when used within the feature extractor. Furthermore, this model does 

not require any parameter selection.  

3. The gait signature is formed by multiplying the corresponding phase and 

magnitude components of the Fourier description, yielding a phase-weighted 

magnitude spectrum. It proved to be a useful representation achieving higher 

discriminatory capability as compared to using magnitude components alone. 

As human locomotion is defined by kinematics (range of joints’ motion) and 

kinetics (forces that cause the motion), and the fact that it satisfies spatial- and 

temporal-symmetry, magnitude and phase, together play a significant role in 

describing the dynamics. 

4. Statistical measurements and performance analysis show that the knee rotation 

contributes significantly to discrimination capability as compared with the thigh 

rotation. This could be due to the fact that knee rotation has more variations 

across the population and also the range of motion is of a relatively greater 

magnitude. Furthermore, it is also demonstrated that the class separation within 

the signature space of running gait is higher then that of walking, and this effect 

is reflected in the performance analyses. Therefore, running gait is a more 

potent cue for recognition. This is also supported by biomechanics observations 

that there are several styles of running. Performance analyses show that this 

biometric approach which uses the forced coupled oscillator as the underlying 
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temporal template outperforms the one that uses the bilateral symmetric model 

by an average increase of 15.2% and 10.6% recognition rate (on a dataset of 20 

subjects and 6 samples for each subject) for the cases of running and walking, 

respectively. Also, this approach can tolerate various application issues 

including noise and resolution. Moreover, it can classify not only individual, 

but also gender and gait mode.    

5. A novel method employing the concept of phase-modulation has been found 

useful in describing the unique relationship of an individual walking and 

running patterns [Yam'02c]. This unique mapping also provides a convenient 

means of transforming one gait mode to the other. Gait signatures are made 

invariant to gait mode by exploiting this transform. The mapping, which can 

capture the motion features of both gaits, is highly unique across the 

population, achieving perfect classification rates (in this dataset). This can be 

used as a condensed form of signature, or to buttress the original gait signature.  

6. A neural network has been employed to investigate the existence of a generic 

relationship between the walking and running patterns across a population. 

Observations do suggest that this generic mapping may exist. However, due  

to the size of this dataset, conclusions are that the structure of such a 

relationship could not be drawn.  

7. The automated evidence gathering extraction technique successfully extracted 

the angular motion of both the thigh and the lower leg within the range of –50o 

to 50o camera sagittal view angle. More importantly, the Fourier description 

of the lower limb’s dynamics are found to be linearly related to the camera 

sagittal view angle.  Interestingly, both the magnitude and the phase change is 

symmetric about the fronto-parellel view. Thus, gait signatures can be made 

invariant within a limited range of sagittal view angle by exploiting this linear 

transformation.  
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8. The new feature extraction technique together with the human locomotion 

model has been found beneficial in aiding automated non-invasive and 

markerless leg motion extraction for clinical application [Yam'02d]. 

1.8 At a Glance 

Chapter 2 reviews the biomechanics of walking and running gaits while 

Chapter 3 illustrates the data acquisition phase and feature extraction. Chapter 4 

reveals the development of the bilateral symmetry and forced coupled oscillator model 

describing the angular motion of human walking and running gaits and the comparison 

of both models. Also, the relevancy of using pendular motion in describing human 

motion is drawn. Chapter 5 illustrates the creation of the gait signature, the 

classification process, performance analyses under various conditions, and the 

significance of lower leg rotation in discriminating between individuals. Chapter 6 

explores the relationship of individuals’ walking and running gaits, and also the 

generic relationship of a population’s walking and running patterns, whilst Chapter 7 

investigates how the camera sagittal view angle is related to the gait signature and how 

the signature is made view angle invariant. Last but not least, Chapter 8 draws the 

conclusions and discusses future work beside suggesting possible deployment of these 

new findings in other areas. 
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Chapter 2 : Human Gait 

Gait is a manner or a particular way of locomotion. Humans and humanoids 

have been walking and running for thousands of years, and it is critical for survival and 

evolution. Yet, only recently have we had the tools to study human locomotion 

scientifically. This chapter will introduce some early studies of human locomotion and 

the biomechanical similarities and differences between walking and running, which 

form the essential foundation of this work. Besides the pattern of human gait, some 

possible gait parameters for deployment in biometrics are also discussed. 
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2.1 Early Studies of Human Locomotion 

 
(a) 

 
(b) 

Figure 2.1: Ancient Greek illustration depicting the difference of (a) running and (b) 
sprinting gait with individual uniqueness. 

Even 2500 years ago, the study of human locomotion (sprinting, running and 

walking) was reflected in ancient Greek art, see Figure 2.1. There is a rich treasury of 

illustrations which depict the differences between sprinting, running and walking as 

well as the variations among different individuals. Aristotle (384-322 B.C.) was the 

first person to study the gaits of animals, including that of humans. He observed that 

when one walks, the gait is symmetric and the body moves in an undulating manner. 

His observations read 

 “ … for just as tall men walk with their 

spines bellied (undulated) forward, and when their 

right shoulder is leading in a forward direction 

their left hip, rather inclined backwards, …” 

Part 7, On the Gait of Animals – Aristotle

 
   “ If a man were to walk parallel to a wall in 

sunshine, the line described by the shadow of his 

head would be not straight but zigzag, becoming 

lower as he bends, and higher when he stands and 

lifts himself up.” 

Part 7, On the Gait of Animals – Aristotle
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Artists have also shown interest in human locomotion. Leonardo da Vinci 

(1452-1519) was aware of the complexity of human movement and the difficulties in 

studying gait without appropriate tools such as photographic equipment. He observed 

and illustrated the principles of human motion in order to accurately represent human 

locomotion activities in his paintings. He also observed that the anatomy of the human 

body is symmetric and that the need to maintain balance while moving is essential, as 

depicted in Figure 2.2.  

(a) 

 

 
(b) 

Figure 2.2: (a) Illustration of human body symmetry and (b) a fragment of a variety of 
human locomotion. From Leonardo da Vinci’s Elements of the Science of Man (pp 

175) by K.D. Keele, 1983, New York: Academic Press. 

Then, the study of human locomotion was revisited by Borelli (1608-1679) 

[Cavanagh'90] who was interested in the mechanical principles of locomotion, 

representing the starting point for the study of biomechanics of locomotion. Later, the 

Weber Brothers (1836) investigated human gait, both walking and running with simple 

instrumentation, and suggested that the lower limbs act like a pendulum. However, 

these awaited scientific justification. More advanced mathematical techniques and 

reliable instrumentation were necessary to probe into the study of locomotion. 

Muybridge (1830-1894) was the first to employ photographic techniques extensively to 

record locomotion, see Figure 2.3. These quality sequential images allowed 

researchers to scrutinise the motions and counter-balance the inadequacy of the human 

eye. This offers new insights for scientists in studying human locomotion. 
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Figure 2.3: A plate from Muybridge’s image sequences showing a man running at a 
distance pace.  From The Human Figure in Motion (plate 18) by E. Muybridge, 1955, 

New York: Dover. 

Nevertheless, gait has only been quantified very recently. Murray was the first 

to characterise walking gait for pathologically normal men and women [Murray'67, 

Murray'64, Murray'70]. Simultaneous displacements of walking patterns are obtained 

by interrupted-light photography where the subjects are attached with reflective 

markers at specific anatomical landmarks. This marked the beginning of systematic 

scientific studies of human locomotion employing more sophisticated tools and 

techniques.  

2.2 Biomechanics of Walking and Running 

Gait is known as one of the most universal and yet one of the most complex 

forms of all human activities. This rhythmic motion involves a high level of interaction 

between the central nervous system and various muscles. Functional and independent 

locomotion entails the ability to (i) support the upright body; (ii) maintain balance in 

the upright position; and (iii) execute the stepping movement. The Encyclopaedia of 

Science and Technology, volume 2 (pp 699-702), defines biomechanics as the field that 
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combines the disciplines of biology and engineering mechanics and using the tools of 

physics, mathematics and engineering to quantitatively describe the properties of 

biological materials. The biomechanics of locomotion can be studied in two different 

lights. Kinematics is the description of motion of joints but does not consider the forces 

that cause the actions. Kinetics is a study of the internal forces (e.g. muscle forces) and 

external forces (e.g. ground reaction forces) that cause those movements. Here, we are 

more interested in kinematics rather than kinetics in describing gait as we are only 

concerned with the output of this biomechanical system. That is, computer vision sees 

nothing more than the appearance!  

Running is a natural extension of walking, with significant biomechanical 

differences [Ounpuu'94, Thordarson'97]. The running cycle, however, is not solely 

discriminated from walking by velocity; you cannot just walk fast to claim that you are 

running! By biomechanics definitions, walking and running are distinguished firstly by 

the stride duration, stride length, velocities and the range of motion made by the limbs. 

That is, the kinematics of running differs from that of walking where the joints' motion 

increases significantly as the velocity increases. A second difference concerns the 

existence of periods of double support or double float. This is determined by the 

duration of the stance phase. A gait cycle is divided into the stance phase and the 

swing phase, which usually comprises approximately 60% and 40% respectively of a 

normal walking cycle, see Figure 2.4(a). A normal walking gait cycle may also be 

described in terms of double support and single support. On the other hand, there are 

two periods of double float in running, see Figure 2.4(b). Double float is when neither 

foot is in contact with the ground, which can also be seen clearly on Figure 2.3. 

Therefore, for running, the stance phase must be less than 50% of the gait cycle and 

correspondingly, the swing phase must be more than 50% of the gait cycle (i.e. the 

remainder). The duration of the stance phase and the swing phase depends on the 

running velocity. The stance phase duration is inversely proportional to the velocity 

while the duration of the swing phase is proportional to the velocity. Unlike walking, 

there are several manners in which the foot contacts the ground. During walking, the 

heel contacts the ground followed by a foot-flat stance. For running, the majority 
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(approximately 80%) of runners (rear foot or heel strikers) make initial ground contact 

along the posterolateral border of the foot while the minority (midfoot striker) initially 

contact the ground with the midlateral border of the foot. This will give a range of 

variation in running patterns. One interesting point to note is that the range of motion 

of the hip increases as the progression speed increases in the case of walking, but it 

decreases in the case of running [Hreljac'95]. 

Interestingly, there exist some similarities between these two distinct gaits 

under certain conditions. Li et. al. compared the co-ordination patterns of walking and 

running at similar speed and stride frequency [Li'99]. They observed that under similar 

speed and stride frequency, there occurs topological similarities in the co-ordination 

patterns between the thigh and the lower leg in walking and running. These co-exist 

with functional differences throughout the gait cycle, especially in the transition from 

the stance to swing phase. The thigh and the lower leg co-ordination pattern for 

running and walking is quite similar except between 20% - 40% of the gait cycle. They 

also observed that during walking, the thigh swings forward at toe-off, but it swings 

backward during running.  
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(a) Gait cycle and terminology used for walking. 
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(b) Gait cycle and terminology used for running. 

Figure 2.4: Comparison of the gait cycle for walking and running. [Ounpuu'94, 
Thordarson'97] 
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2.3 Gait as a Pattern of Movement 

Gait has a composite set of  consistent characteristics or style for an individual, 

and is rhythmic and periodic. Therefore, gait is a pattern of movement. This section 

illustrates the variability for multiple simultaneous patterns of the angular motion of 

human lower limbs while walking and running. Figure 2.5 shows manually labelled 

sample data obtained from a particular subject for a gait cycle.  When a person walks 

or runs, there are vertical and forward hip motions. In our case, the overall forward 

motion is not our concern due to the data acquisition process and also the technique 

used for the feature extraction which will be described in Chapter 3. Figure 2.5(a) 

shows the hip’s vertical oscillation relative to the average vertical motion. The body 

(or trunk) oscillates through two vertical peaks and two valleys in each cycle as one 

gait cycle consists of two steps. The peaks and the valleys are dependent on the lower 

limb's positions. When walking, the valleys occur during the double support phase and 

the peaks occur during the single support, that is, when the body and the lower limbs 

are upright. Interestingly, the shape of the graph for walking is a phase shifted version 

of that for running. During running, the valleys occur during heel strike while the 

peaks occur during double-float. Figure 2.5(b-c) shows the absolute angles of the 

thigh and the lower leg rotation, respectively, for a gait cycle of a particular subject. As 

depicted, the range of the joint’s motion increases when running, as discussed in the 

previous section.  
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Walking Running 

 
 

(a) Vertical motion of a hip. 

  

(b) Absolute angles of the thigh rotation. 

(c) Absolute angles of the lower leg rotation. 

Figure 2.5: Angular motion of the lower limbs of a subject walking and running. 
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Human locomotion is naturally rhythmic producing a co-ordinated oscillatory 

behaviour [Stewart'99] which is believed to be controlled by a Central Pattern 

Generator. Gait not only satisfies geometrical symmetry (step length is similar for both 

heel strikes) but also dynamical symmetry (the frequency content of both lower limb’s 

motion is similar). As the consequence, these motions which operate in space and time, 

satisfy the rules of spatial symmetry (sequence of oscillation, i.e. swapping legs and 

arms) and temporal symmetry (generally a phase-lock of half a period).  

One of the unique characteristics of walking and running is bilateral symmetry, 

which gives the name of our first motion model. It means symmetry of left and right, 

or, if there exists some reflection that is invariant. That is, when one walks or runs the 

left arm and right leg interchange direction of swing with the right arm and left leg, 

and vice versa, with half a period phase shift. To further illustrate the bilateral 

symmetry of walking and running, Figure 2.6 shows a support graph (where the dots 

represent which foot is in contact with the ground) of these gait patterns. 

Unsurprisingly, the second half of the gait cycle is a reflection (about the midpoint of 

the cycle) of the first half for both the cases of walking and running. 

    
•  • • 
• • •  
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•    

Figure 2.6: Support graphs illustrating bilateral symmetry in walking and running gait 
patterns. 

Figure 2.7 shows the manually labelled absolute angles of rotation for the 

thighs and lower legs. This shows that the motions of the left and right leg are coupled 

by half a period phase shift. However, this is only a generalisation for normal gait. Gait 

symmetry or asymmetry is still in debate [Sadeghi'00] and could be of significant 

importance for clinicians. As our purpose is to develop a model to guide a biometric 

system in extracting leg motion, gait symmetry can be assumed. Hence, if necessary 

the same model can be extended to describe both legs simultaneously as both perform 

the same motion but with a phase-lock of a half a period. If one’s gait is lack of 

symmetry, or when symmetry is of great importance, then both legs can be modelled 

by two distinct but systematically coupled oscillators (with fixed relative phase 

difference).  
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(a) (b) 

Figure 2.7: Thigh and lower leg rotation of the left and right leg. 

These together form the foundation for the development of the new human 

locomotion models (described in Chapter 4), which serve as the basis for the novel 

automated non-invasive person recognition approach. 

2.4 Gait Parameters for Recognition 

Although there are extensive studies on the biomechanics of human 

locomotion, they have been mainly interested in understanding motions for sports 

injury and efficiency, and not for recognition purposes. For a gait biometric system to 

be efficacious, gait parameter selection is critical as they have direct impact on the 

performance. Many characteristics can be derived from human locomotion patterns. 

They can be characterised into four categories: 

(i) Kinematics  

Any characteristic that is caused by kinetic factors such as hip, knee and ankle 

angular rotation patterns, body/trunk ambulation, step length, step width, speed 

etc.  

(ii) Kinetics   

Any characteristics such as forces, moments or torques acting on a body.  
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(iii) Dynamics  

Any characteristic (usually derived from kinematics and kinetics 

characteristics) that entail continuous changes such as symmetry of the limbs’ 

angular motion, ambulatory velocity etc. 

(iv) Physiological  

Any quantifiable biological characteristics such as body height, leg length etc. 

Recently, various gait parameters have been used for identification purposes. 

Some examples are cycle time, stance/swing ratio and double support time [Davis'02]; 

and stride and cadence [Abdelkader'02]. Here, we are concentrating on dynamic 

characteristics, owing to the fact that gait operates in space and time. We favour the 

thigh and lower leg angular motion to recognise people only by the way they walk or 

run, rather than by their physiological traits or any static aspects of gait.  That is, it is 

all about motion!  Although, computer vision can only perceive appearance which are 

usually kinematic and physiological features, they can be further manipulated or 

transformed into a suitable representation to benefit the recognition process.  

2.5 Conclusions 

 The study of gait is not new, it attracts not only scientists, but also artists. 

However, only recently have we had the tools and facilities to study gait quantitatively. 

Although human walking and running are two distinct gaits, as defined by 

biomechanics, there exist topological similarities in the co-ordination patterns. This 

encourages the development of a motion model that is invariant to both gaits (Chapter 

4). Human walking and running patterns are periodic, satisfying spatial and temporal 

symmetry. Therefore we favour dynamic characteristics including the thigh and the 

knee rotation in developing the recognition strategy. Dynamic characteristics of gait 

facilitate analysis in the frequency domain which benefits the investigation of the 

correlation between these two gaits (Chapter 6) and also the development of unique 

gait signatures (Chapter 5). The following chapter will illustrate the development of 

the subject dataset and the feature extraction process. 
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Chapter 3 : Data Acquisition and Feature Extraction 

 The first stage of a biometric system is the data acquisition followed by the 

feature extraction. During data acquisition, video clips are taken when the subjects are 

walking or running on a motorised treadmill. In the first stage, feature extraction is to 

pre-process the images to simplify the data representation for computational efficiency. 

Then, an evidence gathering technique which consists of two phases will capture the 

dynamics of the leg motion within a gait cycle. Figure 3.1 illustrates the acquisition 

and feature extraction process. 

Data 
Acquisition 

Low-Level Feature 
Extraction 

High-level Feature 
Extraction 

Video Clips Simplified Data 
Representation 

Evidence 
Gathering 

Angular 
Motion 

 

Figure 3.1: Schematic diagram for data acquisition and feature extraction. 
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3.1 Data Acquisition 

 There is a wide range of methodologies and equipments available for gait 

analysis, mainly designed for clinical and laboratory environments. The most common 

systems are based on electrogoniometry, electromagnetics and imaging.  

An electrogoniometer is an electronic device which is fixed to a joint to measure 

the rotation. Although data can be obtained immediately, the major drawbacks are 

alignment problems of the device and the joints, and the repeatability of device 

placement. Some examples of imaging systems are optoelectronics, cinematography 

and videography. Optoelectronics automate much of the process: they use active 

markers, such as LEDs which are placed on a subject and are triggered by a computer. 

However, this system is encumbered by interference from the reflections off the floor 

and requires complex cabling. The electromagnetic system detects the motion of 

sensors placed on each segment in an electromagnetic field and can provide real time 

6-degree of freedom data. The limitations are complex cabling, large number of 

sensors and high cost. On the other hand cinematography is more versatile and less 

sensitive to the environment. The major advantage is that it provides better image 

quality. The problem that always haunts clinicians is that currently there are few 

automated systems for quantifying the data. Videography is the most frequently 

employed approach to automated motion analysis. In clinical environments, this 

system usually automatically tracks reflective markers. However, the disadvantages are 

poor image resolution and obstruction and/or movement of markers. 

Here, we employed a non-invasive digital videography system which is 

markerless, eliminating the problem of marker occlusion. Subjects are filmed walking 

and running on a motorised treadmill in their own choice of clothing, at their preferred 

speed, by a digital video camera. Then, video clips are split into individual image files 

for pre-processing.  
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3.1.1 Experimental Dataset 

The experimental dataset consists of the fronto-parallel views of 20 subjects, 

with 6 samples or sequences of each subject. Each monocular image sequence is a full 

gait cycle, i.e. 2 steps. The dataset is summarised in Table 3.1. Various application 

issues are also incorporated in the dataset for performance analyses. Images are 

contaminated with 25% salt and pepper grey scale noise to simulate poor quality video, 

and at half the original resolution (65 × 95) for performance analyses. This dataset has 

more subjects than some previous studies in gait recognition [Cunado'99a, Huang'99] 

and is the first to contain the same subjects walking and running. Subject’s enrolment  

is chosen randomly.  

Attribute Range Mean Standard Deviation 

Age (years) 22 – 45 27.4 5.58 

Weight (kg) 45 – 100 67.0 13.78 

Height (cm) 156 – 192 171.1 8.48 

Walking Speed (km/h) 2.8 - 5.5 4.35 0.67 

Running Speed (km/h) 6.5 - 13.9 9.13 1.84 

Gender 5 females, 15 males - - 

Table 3.1: Summary of the subjects information of the experimental dataset. 

3.1.2 Treadmill or Track 

Treadmills offer many advantages in human locomotion analysis. Space 

requirements are constrained, environmental factors can be controlled, steady-state 

locomotion speeds are selectable, and successive repetitive strides can be documented. 

The issue of whether treadmills will alter the pattern of walking and running remains a 

constant topic of discussion among the biomechanics, psychology and rehabilitation 

communities. One study suggests that walking on an 'ideal' treadmill, when the 

supporting belt moves with a constant speed, does not differ mechanically from 
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walking over ground, except for wind resistance, which is negligibly small during 

walking [Zatsiorky'94]. The only difference between the two conditions is perceptual: 

the environment is stationary when a treadmill is used [Schenau'80]. However real 

treadmills are not ideal! Murray found that during treadmill walking, subjects tend to 

use a faster cadence and shorter stride length than during floor walking. However, in 

general, treadmill walking was not found to differ markedly from floor walking in 

kinematics measurements [Murray'85]. Whether a treadmill will affect one's gait will 

also depend on the habituation of the subjects to treadmill walking [Wall'80]. For this 

reason, all the subjects were familiarised to the treadmill for at least 15 minutes before 

measurements were taken. The differences of walking over ground in comparison to 

walking on a treadmill may be of great importance to the biomechanics community. 

For our purposes we assume all subjects to be affected equally as they were all filmed 

under the same conditions. Thus, the features may change, but with respect to one 

another, these changes are assumed to be subtle. We assume that the general trend and 

principles apply to all subjects. As subjects tend to look down while walking and 

running at the treadmill, a mirror was placed in front of the subject, so that they keep 

their head up and maintain their natural posture but more importantly this aids to 

maintain stability.  

3.2 Feature Extraction 

Feature extraction here involves two different levels, one is low-level and the 

other is high-level. Low-level feature extraction will require no prior knowledge about 

the shape or structure of the image to extract basic features such as edge information 

and operates on the basis of a single pixel’s (or a small) neighbourhood. High-level 

feature extraction here concerns finding articulated moving shapes by evidence 

gathering based on a motion template (which will be described in Chapter 4). Thus, 

the two levels of extraction (edge detection and an evidence gathering technique) are 

used  to extract the dynamic features of interest: the angular motions of the thigh and 

the lower leg. 
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3.2.1 Low Level Feature Extraction 

Video clips are split into individual colour image files (Figure 3.2(a)), and then 

cropped to reduce computational cost. To reduce the complexity of the colour image, 

the Sobel edge operator is used to obtain the edge information. The Sobel edge 

detector consists of two masks, Mx (which detects vertical edges) and My (which 

detects horizontal edges) where the coefficients are derived from Pascal’s triangle 

giving the effect of Gaussian smoothing within the template itself [Nixon'02]. A 

condition, which effectively thresholds the Mx-component’s magnitude of the Sobel 

edge operator (Figure 3.2(b)) is applied to obtain the leading edge. If the convolution 

of the Mx template with the image is bigger than zero, then the edge magnitude is the 

length of the vector of Mx- and My-components. Assuming that subjects are in front of 

a bright background, this process is applied to the three layers of colour (red, green, 

blue), see Figure 3.2(c). The edge magnitude of the three layers are then summed and 

thresholded at 255 (for 8-bit images), to produce prominent edges (Figure 3.2(d)).  

The leading edge is most suited to automated feature extraction because clothing tends 

to adhere to the front of the moving leg (Appendix A). These single-edge images are 

then passed into the high-level feature extractor. 
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Figure 3.2: Process of transforming a colour image into a single-edge data via the Sobel 
edge detection with a threshold condition on the Mx- component of the operator. 
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3.2.2 High Level Feature Extraction by Evidence Gathering  

 The evidence gathering technique used here comprises two phases: i) temporal 

template matching and, ii) local template matching. The aim of temporal template 

matching is to search for the best motion model that can describe the leg motion from 

global information, i.e. over a gait cycle. That is, this will gather evidence for the best 

gross motion of a complete gait cycle. Essentially, this process is to match a line which 

moves according to the structural and motion model (temporal template) described in 

Chapter 4, to the edge maps of a whole sequence of images to find the desired 

articulating edges of the thigh and the lower leg. This process is described by  

( ) ( )( )∑∑∑
∈ ∈ ∈

∩=
rt xi yj

jiji tTtPMatchTemplateTemporal ,,__  (3.1)

where P is an x by y image, T is the temporal/motion template,  r is the total number of 

frames and t is the time index. The union operation describes the intersection of the 

edge points with the template; it is described as evidence gathering since the number of 
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intersecting points is counted to give the match over the sequence of r frames. A 

temporal template can be thought of as a sub-image that varies in time in a manner 

described by a model. That is, a representation of moving objects in a sequence of 

images embedding the nature of a motion. The idea of using a temporal template in 

extracting an arbitrary moving arbitrary object [Grant'02] has demonstrated successful 

results, even in extracting a moving person. The evidence gathering process will 

accumulate evidence which is essentially the intensity level of the edge maps that fall 

within the moving template, enabling the calculation of the best set of parameters for 

the underlying motion model. As an example, Figure 3.3(a) shows a slightly distorted 

simple harmonic motion (SHM), superimposed with the best-fit motion model found 

using this method. As shown, it attempts to search for the best motion model that 

resembles the distorted SHM. Having found the best set of parameters for the motion 

model, the angles for each frame are then generated. The search is refined by 

employing a local template matching technique. This is achieved by searching within a 

range based on this angle to ensure that the best-fit angle is found in each frame, an 

example result is shown in Figure 3.3(b). Therefore, any deviation from the norm can 

be filtered or extracted at this stage. This process is described by 

( )∑∑
∈ ∈

∩=
xi yj

jiji TPMatchTemplate ,,_  (3.2)

where evidence is gathered over a single frame, not a sequence.  

A similar process is applied to extract the lower limb’s angular motion for each 

subject. Figure 3.4 illustrates the process of extracting the angular motion of the thigh 

and lower leg. Each individual will have his/her own norm of motion (extracted by 

temporal evidence gathering) and unique deviation from the norm (determined by local 

evidence gathering). Temporal template matching will search for the best hip and thigh 

motion followed by the lower leg motion for each subjects. Once the parameters 

describing the best gross motion are found, angles of rotation are generated. Then, 

local template matching will search within a range to determine the deviations from 

each individual’s norm. Hence precise measurements can be obtained, which is then 

used to create gait signature for recognition purposes. 
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Figure 3.3: Results of (a) temporal template matching and (b) local template matching to 
search for the gross motion and the deviation from each individual norm, respectively. 

The shaded area is the search-area. 

 

 

Figure 3.4: Extraction of the lower limb motion. 
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3.3 Conclusions 

 A dataset consists of the clean, noisy and low-resolution images of 20 subjects, 

each with 6 samples of walking and running on a treadmill has been developed. A 

treadmill was used because it offers various advantages in data acquisition and 

processing. There are two levels of feature extraction. Low-level feature extraction 

simplifies the raw data to single-edge data by using the Sobel edge detector. Then,  

high-level feature extraction (comprises two processes) is designed to extract the most 

accurate possible angular motion of the leg from a complete sequence of gait cycle. 

This high-level feature extractor is to be used with an underlying motion model 

detailed in the next chapter.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 35



 
 

Chapter 4 : Describing Motion 

The motion model which serves as the underlying temporal template of an 

evidence gathering technique in feature extraction, is one of the most vital elements in 

a model-based approach for person recognition by gait. We have developed two new 

motion models invariant to walking and running: the bilateral symmetric (BS) model 

and the forced coupled oscillators (FCO) model, each with their unique strengths and 

limitations. A structural model for the lower limb is also described. Results of feature 

extraction using these two models are illustrated. The appropriateness of using 

oscillators as the underlying model for human locomotion is now discussed. 
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4.1 Motion Models 

 There are many ways of modelling human leg motion. The most accurate way 

may be using Fourier series (as this can describe any periodic waveform) but at the 

expense of complexity and computational cost. Here, we suggest an alternative way to 

model human locomotion aiming to achieve automated angular motion extraction with 

reasonable accuracy for the purpose of biometrics via computer vision.  

4.1.1 Bilateral Symmetric Model 

   

Figure 4.1: Structural model of a lower limb: upper and lower pendulum represents the 
thigh and the lower leg, respectively, connected at the knee joint. 

a 

lK

lT
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h

θT

θK

h = hip 
k = knee 
a = ankle 
θ = angular displacement 
l = length of the limb 
The subscripts T and K denote
thigh and knee. 

The bilateral symmetric (BS) model is developed based on the observations of 

the apparent movement of the human leg. The leg is modelled by two pendula joined in 

series, as illustrated in Figure 4.1. By the biomechanics convention, the knee rotation 

of this model is relative to the thigh rotation, as opposed to that of the forced coupled 

oscillator model which will be described in the next section. As subjects are filmed 

walking and running on a motorised treadmill at constant velocities and the resolution 

of the images used is relatively low, the horizontal motion of the hip is subtle 

compared with the other motions, such as the hip's vertical oscillation and the motion 

of the thigh and the lower leg. The vertical motion of the hip is essential as it differs 

from walking to running. As depicted in Figure 4.2, during running the amplitude of 

the displacement is greater and has a relative phase shift with respect to that of 

walking. The motion model for the hip's vertical displacement, Sy, is  

 37



)2sin()( yyy tAtS φ+ω= (4.1) 

where Ay is the amplitude of the vertical oscillation, ω is the fundamental frequency, φy 

is the phase shift and t is the time index for a normalised gait cycle. Since a gait cycle 

consists of two steps, the frequency is twice that of the thigh motion which will be 

described later. That is, every time we make a step, the body lowers and lifts, which 

gives the variations shown in Figure 4.2. For visualisation purposes, all the plots are 

normalised to a complete gait cycle. The superimposed graphs reflect the veracity of 

this simple model, by comparing the model generated vertical motion of the hip with 

that of manually labelled data. The structure is clearly identical and agrees with 

biomechanical studies acquired by other marker-based systems [Murray'67, 

Ounpuu'94].  
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Figure 4.2: Relative vertical displacement of hip during walking and running. 

  The thigh rotation, θT(t), is a simple harmonic motion described by Eq. 4.1, 

where AT is the amplitude of the thigh rotation and CT is the offset. 

 (4.2)

CT is important for implementation (but not in describing the dynamics) because when 

walking or running, the human leg does not move about equilibrium as a normal 

pendulum does. Eq. 4.2 can be applied for both running and walking. Figure 4.3(a-b) 



show the model-generated thigh rotation superimposed on the manually labelled angles 

for a particular walker and runner, respectively. Results show that the model describes 

the motion well. Based on observations, the knee rotation, θK(t), can be described as  





<≤+φ+ω
<≤+ω

=θ
1,)(sin

0,)(sin
)(

2
2

2

1
2

1

tpCtA
ptCtA

t
KKK

KK
K  (4.3) 

where AK1 and AK2 are the amplitudes of the knee rotation, CK1 and CK2 are the offsets,  

φK is the phase shift and p is the time when the swing phase starts. For walking, p 

appears to be 0.4 whereas p is approximately 0.3 when running. This is because the 

swing phase starts earlier when running. This also marks the start of the second double 

support and the double float for the cases of walking and running, respectively. The 

sin2 term models well the basic motion as depicted in Figure 4.3(c-d). However, the 

knee rotation model requires parameter selection as it is an empirical model. The 13 

parameters of interest extracted from the motion models are Ay, φy, AT, φT, AK1, AK2, φK, 

p, CT, CK1 and CK2, (where the last three offsets are only important in implementation), 

and the initial coordinate of the hip’s position, hx(0) and hy(0) which will be explained 

in Chapter 4.2 . This model is able to describe the motion of the thigh and the knee of 

both walking and running gaits. If necessary, it can also be extended to couple the left 

and right leg by a phase-lock of a half a period shift. As such, a model achieving fewer 

parameters as compared with the earlier model [Cunado'99a] which demands 18 

parameters only to describe the thigh motion. Again, the results agree well with 

biomechanical observations [Murray'67, Ounpuu'94]. 
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(d) 

Figure 4.3: Model generated thigh and knee rotation (relative measurement) for walking and 
running superimposed with the manually labelled angles of a particular subject. 

4.1.2 Forced Coupled Oscillator Model 

Although the bilateral symmetric model illustrated earlier describes the motion 

well, there are a few drawbacks. First of all, the model lacks analytical attributes, and 

secondly the need to select the mode of gait (i.e. the value for the parameter p). In this 

extended analytical model, the human lower limb is again represented by two pendula 

joined in series, where θK(t) is measured with respect to the vertical (absolute angle) as 
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opposed to the one in the bilateral symmetric model which is relative to θT(t), see 

Figure 4.4. We exploit the concept of a forced coupled oscillator to create a model 

invariant to walking and running gaits, as legs are considered to be an imperfect 

pendulum with substantial energy loss [Zatsiorky'94]. Biomechanics studies show that 

a driven harmonic oscillator provides a good representation for human walking 

[Holt'90]. However, this is only a simple pendulum representing mainly the thigh 

motion. McGeer had also proposed a 2-legged machine (that only walks downhill) 

using only down slope as a source of energy [McGeer'90a] and claimed that its motion 

is comparable to that of human walking. This machine consists of two rigid legs with 

mass and inertia, joined at the hip with a mass at the hip, and semicircular feet. Later, 

he proposed another passive dynamic walking structure with knees [McGeer'90b]. This 

also gave impressive results.   

This new forced coupled oscillator model, which requires no parameter 

selection for different gait mode, solves the differential equations obtained from the 

dynamic motion of these two pendula. The upper pendulum swings with a simple 

harmonic motion while the lower pendulum is influenced by the force introduced by 

the upper pendulum. To avoid notational overload, note that the notations for the 

corresponding labels remain the same as the previous model. The hip motion remains 

as described by Eq. 4.1.  

   

Figure 4.4: Structural model of the thigh and lower leg: upper and lower pendulum 
models the thigh and the lower leg, respectively, connected at the knee joint. Motions are 

measured by absolute angles. 
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Referring to Figure 4.4, the upper pendulum representing the thigh can be 

modelled by simple harmonic motion as 

02 =θω+θ TTT (4.4) 

where θT is the angular displacement from the vertical, is the angular acceleration, 

and ω

Tθ

T is the fundamental frequency. The solution is the motion model for thigh 

rotation given by  

( ) ( ) BAtBtA TTT >ω+ω=θ ,sincos  (4.5) 

where A and B are constants, and t is a time index which varies from 0 to 1, 

representing the start and end of the gait cycle, respectively. As the thigh rotation is of 

cosine nature, thus, the coefficient of the cosine term is more significant and is 

accounted for the amplitude of this rotation. 

In reality, human walking and running is a highly sophisticated system 

involving multiple factors interacting simultaneously. As we seek a model providing a 

foundation for a person recognition system, realistic modelling of an individual's 

locomotion is unnecessary. We shall assume that the lower leg can be modelled as a 

driven oscillator where the force applied to it is related to the motion of the upper 

pendulum. Following an analogy of Newton's laws, by differentiating Eq. 4.5 twice, 

we have  

( ) ( ) 







ω+ωω−=θ tBtA TTTT sincos2  (4.6) 

which contributes to the driving force to the lower pendulum. This force is given by  

( ) ( ) 







ω+ωω−= tBtAmt TTTT sincos)( 2F  (4.7) 

Similar to Eq. 4.4, the motion equation for the lower pendulum is 
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 (4.8) )(2 tKKK F−=θω+θ

Substituting Eq. 4.7 into Eq. 4.8, yields  

( ) ( )[ ]tBtAm TTTTKKK ω+ωω=θω+θ sincos22 (4.9) 

The solution for θK will comprise the general solution, θKg, and the particular solution, 

θKp. The general solution is obtained by setting F(t) = 0 in Eq. 4.8 to give 

 (( ) ( )tDtC KKKg ω+ω=θ sincos 4.10) 

where C and D are constants. A Wronksian method [Kreyszig'93] is used to find the 

particular solution, and the result is 

)sincos(
)( 22

2

tBtA
m

TT
KT

TT
Kp ω+ω

ω−ω

ω
−=θ 

(4.11)

Recalling that θK = θKg + θKp, by substituting Eq. 4.10 and Eq. 4.11, the complete 

solution for θK yields the basic motion model for the lower leg rotation, which is 

TKTT
KT

TT
KKK tBtAmtDtC ω>ωω+ω

ω−ω
ω

−ω+ω=θ ),sincos(
)(

sincos 22

2

 (4.12)

where, ωT and ωK are constrained not to be equal, otherwise Eq. 4.12 will introduce a 

singularity. Also, ωT shall be greater than ωK to ensure that the shape of a double-bump 

is achieved. And, ωT should not be similar to ωK, otherwise this equation will be 

effectively similar to that of the thigh rotation (Eq. 4.5). A few offsets (MT, E and MK) 

are required to be added to Eq. 4.5 and Eq. 4.12 for implementation purposes, yield 

( ) ( ) TTTT MtBtA +ω+ω=θ sincos  (4.13)

KTT
KT

TT
KKK MtBtAmtDtCE +








ω+ω

ω−ω
ω

−ω+ω=θ )sincos(
)(

sincos 22

2

 (4.14)
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The motion models derived may not guarantee a precise approximation in 

implementation. This is because humans do not walk or run like a pendulum. If we did, 

we would not move at all! One obvious reason is that our legs do not swing about 

equilibrium points. Here, we had only borrowed the concept of pendular movement to 

aid the automatic motion extraction process. As this new model is invariant to walking 

and running gaits, no parameter selection is needed for this model to differentiate 

between walking and running subjects. 

(a) 
 

(b) 

 
(c) (d) 

Figure 4.5: Sample output of the thigh and lower leg motion model (absolute 
measurement) superimposed with the manually labelled angles of a particular subject. 
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Example waveforms that can be produced by the thigh and lower leg motion 

models described by Eq. 4.13 and Eq. 4.14, with appropriate value of parameters, are 

shown in Figure 4.5. The structure of the response of the model appears very close to 

that of the manually labelled data. As expected the simple model does not match the 

rotation precisely, but it can describe the gross motion of the lower leg, over a single 

gait cycle. This model is periodic over a larger time interval but not within the gait 

cycle. It is designed to describe motion within a single gait cycle as for recognition 

purposes, we only need features from within a single gait cycle. Naturally, the position 

of the leg at the end of one cycle could be used to initialise search for its position in the 

following cycle. However, only the labelled single cycle data is used for recognition 

here.  As we shall see, it serves as a model to automatically extract gait motion for one 

cycle via computer vision techniques. It is more likely that a better model of gait itself, 

employing Fourier descriptors could incur better characterisation capability but at the 

expense of complexity. However the results here suggest such an approach is 

unnecessary. 

4.2 Structural Model 

Referring to Figure 4.4, the structure of a thigh can be described by a point h 

that represents the hip and the line passing through h at an angle θT. The knee is then 

)()()( tltt TT uhk += (4.15) 

where uT(t) is the unit vector of the line direction, h is the position of the hip and lT is 

the thigh length, as uT(t) = [-sinθT(t), cosθT(t)] and h(t) = [hx(0), hy(0) + Sy(t)], where 

hx(0) and hy(0) are the initial hip coordinates. Decomposing Eq. 4.15 into constituent 

parts yields the coordinates of the knee point as, 

)(sin)0()( tlhtk TTxx θ−=

)(cos)()0()( tltShtk TTyyy θ++=

 (4.16) 

 (4.17) 
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Similarly, the structure of the lower leg is given by a line which starts at the knee, that 

passes through k at an angle θk. The ankle a is    

)()()( tltt KKuka += (4.18) 

where uK (t) is the unit vector of the line direction, k(t) is the position of the knee and 

lK is the lower leg length, as uK(t) = [-sin(θK(t)), cos(θK(t) )] and k(t) = [kx, ky], where kx 

and ky is the point of the knee. Decomposing Eq. 4.18 into constituent parts yields the 

coordinates of the ankle as, 

))(sin()()( tltkta KKxx θ−=

))(cos()()( tltkta KKyy θ+=

 (4.19)

 (4.20)

Together with the motion models described earlier, these form the basis of the 

temporal template to be used within feature extraction to find the moving lines that 

correspond to a subject's leg. 

4.3 Implementing an Evidence Gathering to Extract a Gait Model 

The best-fit motion model is obtained by an evidence gathering technique as 

described in Chapter 3. Each edge point that falls within a predefined region at the 

centre of each image of a sequence, is a set of possible initial coordinates indicating the 

hip position. The first stage of this evidence gathering technique will search within that 

predefined area according to Eq. 4.1 and Eq. 4.13 to determine the best-fit models for 

the hip and the thigh rotation simultaneously. The parameters of interest are the axes of 

the accumulator space. The cells in the accumulator space that corresponds to each 

parameter combination for a given edge point are incremented. 

Once the best values for the parameters of interest are obtained, then, the values 

of parameters that are inherited from Eq. 4.13 (i.e. A and B) are used when searching 

for the best-fit model for the lower leg rotation. Similarly, evidence is accumulated in 

the accumulator space defined by the parameters from Eq. 4.14 when the given edge 
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point falls into the corresponding parameter combination. Here, mT in Eq.4.14 is set to 

unity as it can be absorbed into other scaling parameters. The parameters of interest 

extracted from all the three motion models describing the hip, the thigh and the lower 

leg rotations are Ay, φy, A, B, MT, C, D, E, ωK and Mk. And, hx(0) and hy(0) which are 

the initial coordinate for the hip’s position. All these describe the first stage of this 

evidence gathering technique.  

As illustrated by Figure 3.4, once the best-fit models are achieved, angles are 

then generated in the second stage of this evidence gathering technique. Based on these 

angles, a local template matching is employed to search within a predefined range 

derived from medical reports [Murray'67] for the best angles in each frame. Thus, the 

best possible angles describing the angular motion of the leg are obtained. 

4.4 Example Results 

The high-level feature extractor is initialised with parameters obtained from the 

averaged manually labelled angular motion of 20 subjects (each with one sample), 

representing the norm of human walking and running pattern in this experimental 

dataset. Figure 4.6 shows the result of the automated angular motion extraction using 

the bilateral symmetric model as the underlying temporal template for the evidence 

gathering technique, superimposed on the manually labelled data. Extraction for the 

thigh when walking and running appears reasonably accurate, see Figure 4.6(a-b). 

However, the results for the knee rotation may have room for further improvement. 

There are some discrepancies on the knee rotation between the manually labelled data 

and the extraction throughout the whole gait cycle in the examples shown in Figure 

4.6(c-d). Nonetheless, the broad structure is clearly there. That the results for the lower 

leg extraction are not as promising may be due to the relative angular measurement. 

That is, if there are errors in the thigh extraction, then the lower leg angular 

measurements are bound to be affected.   
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Walking Running 

 
(a) 

  
(b) 

 
(c) 

 
(d) 

Figure 4.6: Automatic extraction with the bilateral symmetric model measuring the relative 
angular motion superimposed on the manually labelled angles. 

Bear in mind these comparisons are made between the automatically extracted 

angles to that of manually labelled. Manually labelled data are not the ground truth, but 

rather, serve as a reference for comparison purposes. Nevertheless, manually labelled 

data are used to show close-to-ground truth measurement. Figure 4.7 shows manually 

labelled data superimposed on the result of this evidence gathering technique with the 

forced coupled oscillator model as the underlying template. In general, the 

superimposed graphs demonstrate a considerable amount of veracity of the model and 

the manual labelled data. As depicted in Figure 4.7(a), the thigh rotation of walking 
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extracted is very accurate (compared to those in the previous figure) and similarly for 

those of the lower leg rotation. For the case of running, results do show some 

discrepancies, however, the structure for both the thigh and the lower leg motion both 

follow closely the results of manual labelling. 

Walking Running 

 
(a) 

  
(b) 

 
(c) 

 
(d) 

Figure 4.7: Automatic extraction with the forced coupled oscillator measuring the 
absolute angular motion superimposed on the manually labelled angles. 
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When comparing the results obtained from using the bilateral symmetric model 

and the forced coupled oscillator, immediate differences can be perceived except for 

the motion of the thigh. As illustrated in Figure 4.6 (a-b) and Figure 4.7(a-b), the 

results are comparable. The two motion models for the thigh are conceptually identical. 

As for the extraction of lower leg motion, the forced coupled oscillator model 

outperforms the bilaterally symmetry model, compare Figure 4.6 (c-d) and Figure 

4.7(c-d). When comparing different gaits, results suggest that extraction for running 

may be more challenging. Angular motions extracted via these two models for the case 

of walking appear more accurate than that of running, at least in this dataset. 

As manually labelled data are merely a reference, visual comparison of the 

automatically extracted angular motion superimposed on the image itself would be 

more reliable. Figure 4.8 - 4.11 shows encouraging results when the forced coupled 

oscillator model is used within the feature extraction technique. Despite differences 

between gait modes, this highly automated technique can extract the angular motion 

for both the thigh and the lower leg well, even when one leg is occluding the other or 

when arm is occluding the hip. Furthermore, extraction is not confused when the leg is 

near and/or parallel with the bar of the treadmill as depicted in Figure 4.11. In Figure 

4.8, the motion of walking leg is well extracted, except for frame 18-23 where the 

angle extraction for the lower leg during the swing phase is less accurate. Nonetheless, 

the thigh motion is extracted accurately throughout the whole gait cycle. Similarly, in 

Figure 4.11, this technique extracts the thigh motion (when running) accurately but not 

the lower leg motion as shown in frame 11-14. Interestingly, this happened to both 

female subjects despite the gait mode. Further work is necessary to determine if this is 

merely a coincidence. As revealed by the psychology studies (that males and females 

have their own unique gait pattern), in the future a more accurate model describing the 

gait of different gender shall be investigated. As depicted in Figure 4.9 and 4.11, this 

technique can extract the thigh and lower leg motion accurately for these two male 

subjects when walking and running. Even though running is a fast motion, Figure 4.10 

shows impressive results as the angle extraction for both the thigh and the lower leg 

are distinctly accurate.  
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Figure 4.8: Examplar result of a female walker’s leg motion extracted by automatic 
evidence gathering, showing discrepancy in some images especially frame 18-23. 
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Figure 4.9: Examplar result of a male walker’s leg motion extracted by automatic 
evidence gathering. 
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Figure 4.10: Examplar result of a male runner’s leg motion, showing accurate extraction. 
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Figure 4.11: Examplar result of a female runner’s leg motion, showing inaccuracy in 
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frame 11-14. 

4.5 Discussion  

We realise there are limitations on the BS and the FCO models, but we shall 

later show how they can indeed meet the desired (recognition) aims. They are 

alternative methods and the FCO is potentially a more accurate model. A better 

approach is to use Fourier series, but this requires greater computational cost. There 

are other potential models to describe the leg motion other than the two approaches 

described. A damped pendulum driven by a periodic force introduced by its suspension 

point that has periodic rotation may be a suitable model for the knee rotation, as 

described in Eq. 4.21. The response shown in Figure 4.12 depicts its adherence to the 

lower leg motion, when it reaches a steady state.  

 (4.21) ( )( ) ( )ftafta KKK π=θπ+ω+θγ+θ 2sin2cos2

where γ and a are constant coefficients. 
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Figure 4.12: Response of a damped and driven pendulum. 

(θ
K
) 

In order to obtain the motion model, we have to solve Eq. 4.21. Although this 

is a linear differential equation, the sum of two solutions is no longer a solution 
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because of the inhomogeneous term on the right hand side. Hence, it cannot be solved 

analytically in terms of standard functions. One of the coefficients is not a constant, but 

time dependent and periodic, in this case. Although by Floquet theorem [Wolfram], 

there exists a set of fundamental solutions which can be written in this form 

t
K etct λ=θ )()(  (4.22) 

where c(t) is periodic with period T and λ is the Floquet exponent. However, it is a 

truncated Fourier series and it is not known explicitly. If the solution contains a Fourier 

series, then, this solution does not fulfil our purpose here, as our aim here is to achieve 

simplicity in modelling with sufficient accuracy for the ease of implementation. 

As suggested by Weber as early as 1836 that leg movement resembles a free 

pendular movement [Weber'36]. Approximately fifteen decades later, Braune and 

Fisher [Braune'87] wrote, “the swinging of the leg results much more from the action 

of the muscles than from gravity”. This is intuitively true or else the muscles would be 

of no use and we could not advance at all if our legs swing at a fulcrum about 

equilibrium. This was confirmed experimentally [Bernstein'35]. Perhaps a better 

representation would be employing a driven oscillator, as suggested by Holt [Holt'90]. 

Therefore, although pendular motion has gained attention in gait modelling, this is not 

the only approach to human locomotion modelling. Nature knows best. As written by 

McGeer [McGeer'90b], “Thus might the engineer’s sleek machinery soon dispense 

with nature’s awkward contrivances. But a closer comparison reveals that nature is 

not so easily outdone. How many more examples of nature’s dynamical sensitivity lie 

waiting to beguile the engineer? ” 

4.6 Conclusions  

 There exist many ways to describe human locomotion. We have shown that 

oscillatory motion can be used as the underlying concept in modelling human leg. It 

may be a free oscillator, a coupled oscillator, a forced oscillator, or a combination of 

them. We have suggested a few alternative models: the first being an empirical model, 
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the second and third are analytical models. However, only the first two models, namely 

the bilateral symmetric and the forced coupled oscillator model have been tested. 

There are strengths and limitations for each model described. Automated extraction 

using the bilateral symmetric model as the underlying temporal template achieves good 

results. However, this model lacks analytical attributes and requires a parameter 

selection. Nonetheless, overall performance merit is gained by the forced coupled 

oscillator model as it does not require any parameter selection for different gait mode 

and more importantly it achieves higher accuracy in motion extraction.  And we shall 

later see how this model helps in achieving the aim of this thesis. Alternative models 

are possible and yet await investigation to determine if they can present a technique of 

better efficiency than those already developed.  
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Chapter 5 : Gait Signature and Recognition 

In order to identify an individual from a population, a unique label is associated 

to a particular subject. A Fourier description is employed in creating this unique label 

called a gait signature. Statistical analysis is used to aid the selection of prominent 

features and also analyses the discriminatory capability of the knee rotation. Then, a 

simple classification algorithm is used to examine the genuine discrimination 

capability. The potential of both walking and running gaits and the performance of the 

forced coupled oscillator and the bilateral symmetrical model are compared. This 

approach is also tested on generalisation capability such as noise and resolution. 

Figure 5.1 illustrates the process of person identification. 

Outcome 
Angular 
motion 

Classification 

k-nn Statistical 
Analysis 

Low Order 
PWM 

Fourier 
Transform 

Magnitude 
Phase 

Spectra 

Feature 
Selection 

Feature 
Representation 

 

Figure 5.1: Process of person identification. 
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5.1 Fourier Descriptions and Gait Signature 

Biological motion is always regarded as a complex activity with constant 

fluctuation from its own norm. An example to illustrate the fluctuation in behavioural 

traits is normal speech, having two persons speak with exactly the same intonation or 

manner is extremely rare. Just like every zebra has stripes, having two zebras with 

exactly the same pattern of stripes will be unusual, giving anecdotal evidence 

illustrating inconsistency in biological traits. In order to study the order behind the 

universal activity of human locomotion, yet with individual uniqueness, we first have 

to break the complex representation down to the underlying building blocks. This will 

facilitate investigation of individual characteristics of this universal activity. Here, 

Fourier analysis is employed because it can describe a complicated waveform as the 

summation of a set of simple waveforms.    

Gait is not only characterised by the range of motion, but also involves the 

Central Pattern Generator and musculature that together control the way the limbs 

move. That is, walking and running are not only distinguished by their kinematics, but 

also significantly related by their kinetics. These suggest that phase information will 

have a certain degree of significance in describing gait patterns. A subject is associated 

with a meaningful and unique form of identification called a gait signature. The gait 

signature of a particular subject consists of the phase and the magnitude spectra of the 

Fourier description of the thigh and lower leg rotation measured from a gait cycle. This 

ensures the dynamics for both the spatial and temporal characteristics are captured. A 

scale change in the time domain signal results a scaling in the Fourier transform (Eq. 

5.1), however, a delay in time alters the phase (Eq 5.2).  

( ){ } 





= −

a
sFa 1atfF  (5.1) 

 

( ){ } ( ) stjesF 0ω=0t-tfF  (5.2) 
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As relative timing is equivalent to the phase in the frequency domain, 

alignment of the time domain signal is critical. Hence, the time domain signals are 

aligned to start at the same point, which is the minimum of the thigh rotation and the 

corresponding instance of time of the lower leg rotation. This ensures the validity of 

the inclusion of the phase components when creating the gait signature for comparison. 

In the dataset collection procedure, subjects are encouraged to walk, if possible, at a 

constant pace. The motorised treadmill helps to achieve stability in pace, too. By using 

data between two successive minima, recognition becomes invariant to speed as data 

within a complete gait cycle is used. In recognition of the importance of phase-locking 

in perceiving gaits, Boyd introduced video phase-locked loops [Boyd'01] to benefit 

human gait analysis.  

As explained earlier, to capture the essence of gait pattern, the signature shall 

contain both the magnitude and the phase component of the Fourier description. 

Therefore, the magnitude components are multiplied by their respective phase 

components, to yield the phase-weighted magnitude (PWM),  

 ( ) ( ) ( )( )nn jj
n ee ωω Θ•Θ=ω argPWM  (5.3)

where ( )nje ωΘ  is nth the Discrete Fourier Transform component of the measured angle 

of rotation, and • denotes the multiplication of each element in the vector, thus 

increasing discriminatory capability. This will be described in the next section. The 

zero-order term is ignored to eliminate the effect of any offsets, so the gait signature 

contains only the features of the pure motion dynamics of a gait cycle. Letting the 

phase, ( )( )njωeΘarg , range from -π to π will introduce discontinuity at point ±π, that is, 

even though they are the same point, they appear to be “numerically” far apart in the 

feature or signature space. This will cast a negative effect on the classification process. 

To eliminate this, the phase is represented in  complex form to ensure continuity and 

also the one-to-one mapping which in turn ensures validity in implementation. 
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5.2 Feature Selection 

Statistical analysis is necessary to establish the basis for determining which 

features should be used to create a signature for filtering identity. This will in turn 

increase the correct classification rate (CCR). A statistical measure that describes the 

distribution of subjects, or class, clusters in the feature space is employed. The 

separation, S, between the class means, normalised with respect to class covariances, is 

used. The separation, Si,j, between subjects i and j is given by a form of the 

Bhattacharyya distance as,  

[ ] [ ]ji
jiT

jiji mmmmS −






 Σ+Σ
−=

−1

, 2
 (5.4) 

where mi is the mean and ∑i is the covariance class i. The mean signature mi for each 

class i is given by 
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M

M

l

i
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0
,, == ∑

−

=

xm  (5.5) 

where M is the number of experiments or samples for class i, N is the number of 

Fourier harmonics used and xi is an M x N data matrix of signatures for class i. The 

covariance matrix, ∑i, is  

( )( )
TM

l
i

i
li

i
li M ∑

−

=

−−=Σ
1

0

1 mxmx  (5.6) 

Discriminatory capability can be deduced from the cluster separation. if the 

value of Si,j. is large, either the clusters are well separated and/or have low variance. 

Conversely, poor discriminatory capability derives from clusters which are closely 

spaced and/or with high variance. The advantage of measuring the variance within a 

class and the distance between different classes simultaneously is that measurements 

are less sensitive to any outliers in the feature space. The values of the mean separation 

S  and the variance of the separation measurements σ2, are directly proportional to the 
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overall discriminatory capability of  a certain set of features. Table 5.1 summarises the 

value of S  and σ2 for all cases including using the magnitude component only, the 

lower order phase-weighted magnitude and those with higher order phase-weighted 

magnitude of the Fourier description. As depicted, the PWM has a greater value of 

mean and variance, meaning that the distance between each cluster is greater compared 

with the signatures formed from the magnitude alone. When higher orders of PWM are 

included as part of the signature, the value of S decreases and is the smallest here. 

Even though the mean of the magnitude is larger than that of the PWM with higher 

order, the variance of both measures is relatively small compared to that of PWM and 

this holds true for both walking and running. Thus, they are less discriminative. 

Accordingly, this suggests that the PWM should offer best discriminatory capability, 

with running appearing to be more potent. 

 Figure 5.2 illustrates the pair-wise values of S between classes in each case. 

The brighter the square, the higher the separation, and hence better discriminatory 

capability. The darker the square, the closer the feature clusters, so the diagonal is the 

darkest reflecting the zero distance between the same feature sets. 

Walking Running 
 

S  σ2 S  σ2 

Magnitude 0.0623 0.0086 0.0512 0.0064 

PWM 0.1506 0.0264 0.1710 0.0175 

PWM higher order 0.0151 0.0052 0.0140 0.0072 

Table 5.1: Values of S  and σ2 using different features: magnitude alone, PWM and PWM 

with higher orders. 
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Walking Running 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 
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Figure 5.2:  Pair-wise cluster separation of various feature vectors. 

As depicted by the pair-wise pseudo-greyscale plot in Figure 5.2(a-b) and 

Table 5.1, the magnitude component alone does show some discriminatory capability. 

However, gait is not only defined by the range of motion made by the limbs, but also  

by how the limbs are moving. This would suggest the significance of including phase 

in the signature. As shown in Figure 5.2(c-d), the inter-class separation increases (the 

squares are brighter) when the phase is multiplied by the magnitude (PWM). The lower 

order components (comprising of the 1st - 2nd harmonic of θT and 1st – 3rd harmonic of 

θK) are chosen to form the gait signature. This is because the PWM components of the 

thigh and lower leg rotation are dominated by the lower order due to their greater 

magnitude values as shown in Figure 5.3, where the error bars indicate the standard 

deviation computed from a population of 20 subjects, each with 6 samples. Figure 

5.2(e-f) and the value of S  show that the inter-class separation decreased 

tremendously when higher orders (1st – 10th) are included in the signature vector. 

Figure 5.4 is the phasor plot of PWM for 20 subjects (each subject has one sample) 

where the radius to each point is the magnitude component and the direction from the 

origin is the phase component. Here, only the phase and magnitude (of the first three 

harmonics) of the leg motion of running is shown. The magnitude of the higher order 

harmonics is relatively small and they are more likely to be dominated by noise. 

Features shown confirm the general trend of the leg motion (the relative size of the 

harmonics) with some variation across the population, as expected. This is supported 

by medical studies which suggest that the maximum frequency content of human 

walking is 5Hz [Angeloni'94], that is only the first five harmonics are sufficient to 

describe human locomotion.  

 

 

 

 63



 

 

 

 

Walking Running 

 
(a) 

 
(b) 

(c) (d) 

Figure 5.3: Magnitude spectrum of the thigh and the lower leg rotation when walking and 
running, with standard deviation. 
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  (a)                                                                        (b) 

Figure 5.4: Phasor plot of the magnitude and corresponding phase components of the 
(a) thigh, and the (b) lower leg rotation in the case of running. 

1st harmonic 
2nd harmonic
3rd harmonic 

 Suggested here is a way of combining the phase and magnitude, but not the 

only method, for recognition purposes.  There may be other better ways of combining 

them to achieve better discriminatory capability and this shall be investigated in the 

future. 

5.3 Identifying an Individual 

 Classification is done via the k-nearest neighbour (k-nn) and cross-validated 

with the leave-one-out rule. No doubt a more sophisticated classifier would be prudent, 

but the interest here is to examine the genuine discriminatory ability of the features. 

This method uses the Euclidean distance between the position of a test feature vector 

and the position of the surrounding training feature vectors to find the kth nearest 

neighbour in the feature space. The feature vector under test is then classified as the 

class that has the greatest population in k. The Euclidean distance, D, is calculated by 

( )∑
=

−=
N

n
nnD

0

2yx  (5.7) 

where N is the number of harmonics used in the feature vector, x and y are the values 

of the nth harmonic for the test feature vector x and the training feature vector y, 
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respectively. By this means, a subject can be associated to the nearest or statistically 

correct class, otherwise to be rejected (if the similarity value is below a threshold). 

5.4 Performance Analysis 

The features are extracted via the evidence gathering technique (described in 

Chapter 3), with the motion models (described in Chapter 4) as the underlying  

temporal template. Performance analyses were carried out on both the bilateral 

symmetric and the forced coupled oscillator model and their results are discussed in 

the following subsections. This technique has been evaluated for individual, gender 

and gait mode (Chapter 6) discrimination, and the importance of the knee rotation. 

The practicality of this technique is also evaluated on noisy and low resolution images, 

see Figure 5.5. Images are contaminated with 25% grey scale random noise to 

simulate poor quality images in real life. Also, images are reduced to half of their 

original size, i.e. 65×95 to simulate poor resolution video. 

 
(a) Clean 

 
(b) 25% grey scale noise 

 

 
 
 

(c) ½ original resolution 

Figure 5.5: Images used for performance analysis. 

5.4.1 Performance of Bilateral Symmetric and Forced Coupled 
Oscillator Model 

 Figure 5.6 shows the signatures formed from the thigh and lower leg rotation 

using the forced coupled oscillator (FCO) model. For visualisation purposes, only 3 of 

the PWMs of 4 subjects are shown. Different symbols represent different subjects, 

each subject with 6 samples of walking and running. As depicted, there are well-
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defined intra-class boundaries for both gaits. Walking gait appears to be more stable 

than running as the clusters for walking have lower variance then those of running. On 

the other hand, running appears to have greater inter-class variability. This is depicted 

by increase in distance in the feature space which is also depicted by the value of S  in 

Table 5.1. This is also reflected by improvement in the recognition rate. Furthermore, 

this is supported by biomechanical observations: running involves increasing muscle 

activities and force [Ounpuu'94]; and there exist various manners in which the foot 

contacts the ground [Thordarson'97]. The features appear to have an individual 

mapping between the feature space of walking and running on an individual class 

basis. This may suggest that a mapping might exist that could make the signatures 

invariant and will be discussed later. 

 
(a)  

(b) 
Figure 5.6: Signature space of 4 walking and running subjects. x: 1st component of θT; y: 2nd 

component of θT ; z: 1st component of θK . 

 In the k-nn with the values of k=1, 3 and 5, results are depicted in Figure 5.7. 

The recognition rates over 20 subjects (with 6 samples each) of both walking and 

running with the underlying FCO model improved over the rates where angles are 

extracted using the bilateral symmetric (BS) model, for both gaits. The probability of 

correctly classifying each subject from a population of 20 subjects at random is 0.05. 

The correct classification rate has a 15.2% and 10.6% increased for the cases of 

running and walking, respectively. As expected, the recognition rate for running is 
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more encouraging as running has more variability across the population compared with 

walking. This variability does suggest that change in running with time could be a 

performance issue in application.  

(a) (b) 

Figure 5.7: Recognition rates for walking and running via the k-nn with Euclidean distance 
metric for the bilateral symmetric and the forced coupled oscillator motion model. 

BS 
FCO

BS 
FCO

 

(a) (b) 

Figure 5.8: Performance analysis of walking and running 

Performance analysis on 25% grey scale noise and low resolution (50% of the 

original resolution), has also been evaluated. The results by using the FCO model in 

Figure 5.7 are included in Figure 5.8 for comparison. As expected, the recognition 

rate decreased when images are contaminated with grey scale noise. The rate decreased 
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less when the technique was evaluated on images with lower resolution. That the rate 

does not decrease as much as when tested with noise could be due to measurement of 

the leg rotation angle being invariant to scaling. 

5.4.2 Importance of Knee Rotation 

Although both the magnitude spectrum of the thigh and the knee rotations are 

dominated by lower order components, this does not mean that both will offer similar 

potential in terms of discrimination. Table 5.2 shows the values of S  and σ2 for the 

thigh and the knee rotations. Statistical measures show an increased value of S  and σ2 

for the knee rotation for both the cases of walking and running. This suggests that the 

knee rotation may offer better discriminatory capability as it has more variation across 

the population. These measurements also suggest that the inclusion of knee rotation 

may greatly improve the discriminatory ability, especially for running as variance of 

the knee rotation increased by approximately 15 times when compared to that of the 

thigh rotation. A recent experiment also shows that in a statistical-based approach, not 

all parts of the silhouette are equally important for gait-based recognition, but only the 

lower 20% of the silhouette (approximately the portion from the knee downwards) is 

significantly accounted for recognition [Phillips'02]. Figure 5.9 shows how this is 

reflected on the classification rate. Recognition rate based on the knee rotation alone 

outperforms the one when using the thigh rotation. Nevertheless, when combining the 

PWM of both the thigh and the lower leg, the correct classification rate is further 

increased. In the future, the discriminatory ability of the foot motion shall be 

investigated.  
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Walking Running 
 

S  σ2 S  σ2 

PWM for θT 0.0856 0.0061 0.0268 0.0009 

PWM for θK 0.1601 0.0190 0.1272 0.0151 

Table 5.2: Values of S  and σ2  show that the knee variation offers better discriminatory 

capability compared to that of the thigh rotation for both gaits.  

 

(a) (b) 

Figure 5.9: Comparing the performance of using only the thigh, the knee and both rotations in 
creating gait signatures. 

5.4.2 Male and Female 

As men have greater shoulder swing and women have greater hip swing 

[Mather'94], gender may have effects on the walking and running patterns. This is also 

reflected in our dataset as depicted by the classification rate for gender discrimination. 

Limited by the number of female subjects in this dataset, only 5 female and 5 male 

subjects are used for classification. Figure 5.10 shows the result of gender 

discrimination of both gaits. High recognition rate suggest that locomotion patterns of 

male and female are indeed distinctive.  
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Figure 5.10: Gender discrimination for walking and running. 

Gender Discrimination 

5.5 Conclusions 

Frequency description is important in revealing the spatial-temporal 

characteristics of gaits. Statistical analysis describing class separation has been used to 

determine cluster separation. Measurements show that magnitude alone is not as 

promising as the phase-weighted magnitude in terms of discriminatory capability. 

However, phase and magnitude multiplication is not the only way of combining them. 

Also, higher order components may impede the discrimination potential. This may be 

due to the fact that higher order components are mainly dominated by noise. A simple 

classifier has been used to determine the genuine discrimination capability of the 

chosen features. Human locomotion patterns display unique characteristics for 

recognition purposes, with running being more potent. Performance analysis shows 

that the forced-coupled oscillator model outperforms the bilateral symmetric model. 

Also, this approach can tolerate noise and low resolution well. Besides being capable 

of distinguishing individuals, this technique can also discriminate the gender of a 

walker and runner. Interestingly, the knee rotation shows better discriminatory 

potential as compared with the thigh rotation. This may be because the knee rotation 

has more variations across the population. Also, the signature space depicts a unique 

mapping between walking and running signature of each subject, the next chapter will 

take a step further to investigate this relationship.  
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Chapter 6 : On the Relationship of Human Walking and 
Running  

The intimacy of human walking and running gaits motivates the investigation 

in determining the existence of their relationship. This mapping, which is unique to 

each individual, can be expressed as a magnitude ratio and a phase difference in the 

frequency domain. It is useful in making the signature invariant to gait mode and also 

offers a convenient means of transforming from one gait made to another. These highly 

unique mappings can also be used alone as a condensed form of signature, or to 

buttress the original signatures. A neural network has been deployed in the search for a 

generic relationship between these two gait modes across a population.  
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6.1 Motivation 

Human motion analysis has gained increasing attention from computer vision 

researchers. However, the relationship between human walking and running gaits (in 

computer vision) remains imperfectly understood. An understanding of the relationship 

between human walking and running is essential not only to further improve the 

existing automated person recognition approach using gaits, but also as a foundation 

for other studies e.g. biomechanics, robotics and computer graphics animation. Owing 

to the fact that these two gaits are derived from the same musculo-skeletal system, 

there must exist some correlation between them. Recall that, as stated in Chapter 2.2, 

Li suggests that the thigh and the leg co-ordination pattern for walking and running is 

similar under similar speed and stride frequency, although they are both functionally 

different [Li'99].  

6.2 Unique Mapping  

Examination of the signature space shows that there occur unique mappings 

between the walking and running signature for each subject, Figure 5.6. However, a 

generic mapping across the population cannot be determined (in this dataset) by visual 

inspection. Interestingly, the identical twins (in our dataset) who are “identical” by 

their visual appearance and physiological traits (Figure 6.1) appear unique in the way 

they walk and run. Figure 6.2 shows the twins' gait signatures for walking and running 

where different symbols represent the two different subjects. Referring to Figure 

5.2(c-d), statistical analysis shows that these two classes, i.e. class 1 and class 11, are 

indeed very different, both in the walking and the running signature space. Perhaps 

what makes it seem unfeasible is that human gait is not only a physiological trait, but 

also a complex behavioural characteristic. That is, we learn how to walk and run when 

growing up and individuals with similar physiological traits may have their own 

particular way of walking and running.  
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Figure 6.1: The identical twins with similar physical features. Images are the same 
scale. 

 

(a) (b) 

Figure 6.2: Signature for (a) running and (b) walking. x: 1st component of θT ; y: 1st  

component of θK ; z: 2nd component of θK. 
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In the time domain, running can be regarded as a phase modulated version of 

walking (and vice versa), see Figure 6.3. Not only the range of movement made by the 

lower limbs and the manner in which the limbs swing when walking and running is 

different, the phase is also altered. 

(a) (b) 

Figure 6.3: Angular motion of a particular subject when walking and running. 

Thigh Rotation Lower Leg Rotation 

If f(ωt) is the signal for walking and the phase modulation signal is Kejψ(t), then 

the modulated signal (for running) is 

( ))()( ttKftg ψ+ω=ω  (6.1) 

 

and likewise when transforming from running to walking. In the frequency domain, the 

spectra of the signals for walking and running can be easily related by the phase 

difference and magnitude ratio of each harmonic and these lead to a mapping, T, for N 

harmonics as 

[ ]NTTT ,..., 21=T  (6.2)

Each element in T consists of the phase difference 
nTφ  and the magnitude ratio M  as 

nT

],[
nn TTn MT φ= (6.3) 
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where is the phase difference between the spectral components for running, φ , 

and walking, φ  

nTφ nR

nW

nnn WRT φ−φ=φ  (6.4) 

 and  is the magnitude ratio of running, M , to walking,  
n n nTM R WM

n

n

n
W

R
T M

M
M =  (6.5) 

This mapping process shows how these two different gaits can be associated by 

the phase and the magnitude component in the frequency domain. Figure 6.4 shows 

the phasor diagram of the mapping vector T1 (the first harmonic) for θT and θK of 6 

subjects. As shown, the components lie within a sector where the magnitude ratio and 

the phase difference show variability among different subjects as well as clustering for 

individual subjects, meaning that walking and running are closely related by their own 

unique mapping. That is, walking and running are not only distinguished by the range 

of movement made by the joints, but also by the forces that cause the movement. This 

also justifies the inclusion of the phase component in creating the gait signature and 

validates the assumption of phase modulation. Interestingly, the magnitude of the 

mapping for the thigh rotation of the first harmonic is not always bigger then unity. 

This suggests that this joint motion when running is not always larger then when 

walking. On the other hand, the magnitude of the mapping for the lower leg is 

generally bigger than unity indicating that the knee joint motion is usually more 

exaggerated during running. However, a note to make here is that the subjects in this 

experimental dataset are not professional (athletic) runners.  
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(a) (b) 

Figure 6.4: Phasor plot for the T1 of the (a) thigh and the (b) lower leg; different symbols 
represent different subjects. 

When evaluating the mappings, T, alone, the perfect classification rates (at least 

in this dataset) signify that the mapping is highly unique across the population and 

could be used as a compressed form of signature alone. The mapping is plotted in 

Figure 6.5 for 13 subjects using spherical polar co-ordinates for 2 measures of phase 

and one of magnitude, superimposed on a unit sphere to aid visualisation, where 

different symbols represent different subjects. The dispersion of clusters confirms the 

high inter-class variability and low intra-class variability. This can be illustrated as the 

value of S  in Figure 6.6. Almost all of the squares are bright, indicating high 

separation between classes. Also the value of S  for T is 0.1803 and is larger than other 

values shown earlier in Table 5.1. 
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Figure 6.5: Part of the mapping in 3-D displays its uniqueness. 
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Figure 6.6: Pair-wise S -value for mapping T. 

6.3 Gait Mode Invariant Signature 

Recall that the gait signatures are created from the PWM. Having known the 

magnitude ratio and phase difference and hence the PWM for running, PWM'R, can be 

deduced from the phase and magnitude of walking signal (φW and MW), as 

( ) ( )TWTWR MM φ+φ••=′MPW  (6.6)
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Similarly, the PWM for walking, PWM'W, can be deduced from the phase and 

magnitude of running (φR and MR), as 

( )TR
T

R
W M

M
φ−φ•








=′MPW  (6.7) 

The mapping, T, contains information directly related to both gaits, as such the 

features of the motion within both gaits are retained. One of the advantages is that it is 

reversible. The ability to describe the relationship in terms of phase and magnitude 

provides different information to enhance the signature. By means of the mapping, the 

gait signature can be made invariant and can be transformed from one form to another 

without losing discriminatory capability. Likewise, the mode of gait of a particular 

subject can be transformed easily by altering the phase and the magnitude of each 

harmonic according to its own mapping.  

6.4 Evaluating the Unique Mapping 

The unique mapping is evaluated over 20 subjects, with 6 samples of walking 

and running for each subject. The signatures for walking are derived using each 

individual's unique mapping, based on the signature of running obtained from the 

feature extraction process. The derived signatures for walking are then tested on the 

dataset of walking subjects and similarly for running. The results shown in Figure 6.7 

are promising and the process involved implies that the mapping offers invariance to 

signatures of different gait mode.  
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Figure 6.7: Performance of the transformed signature for walking and running. 

(a) (b) 

Figure 6.8: Performance of the enhanced and the original walking and running signature. 

Transformed Signature 

Finally, the idea of deploying T in enhancing the original gait signature again 

shows how the invariant mapping contains more descriptive information. Recall that 

the original signal comprises the lower PWMs and T is added to the signature vector to 

yield the enhanced signature. As depicted in Figure 6.8, the classification rate using 

the enhanced signature improves over the original signature for both walking and 

running. The clusters are more well defined in the enhanced signature space, as the 

rates do not fall as rapidly as when using the original gait signature whilst k increases. 

Hence, T can be used to enhance the original gait signatures.   
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6.5 Generic Mapping  

As illustrated earlier, we have demonstrated how the signature of an 

individual’s walking and running gait can be related. Nonetheless, due to the lack of 

understanding of the structure for the signature space, the earlier approach does not 

allow deduction of the signature of an unseen walker given his/her running gait 

signature, or vice versa. However, this may be possible if the structure for the generic 

relationship of these two signature spaces is determined. When classifying walking 

from running with similar approach (i.e. k-nn), it achieved over 90% correct 

classification rate, see Figure 6.9. This reflects the high separation between these two 

classes in the signature space.  Now we shall aim to determine whether there is a 

generic transform between the signature of walking and running gaits. Here, we 

employed a neural network in investigating the existence of the generic relationship.  

 

Figure 6.9: Classifying between walking and running gait signature by k-nn. 

6.5.1 Implementing Neural Network  

A neural network has common applications in classification and regression 

problems. In classification, the task is to assign new inputs to one of a number of 

discrete classes or categories, i.e. approximate the probabilities of membership of the 

different classes expressed as functions of the input variables; whereas in a regression 

problem, the outputs represent the values of continuous variables, i.e. regression 

function approximation. Here, we try to approximate a multi-dimensional regression 
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function via a neural network in the hope that this might give us some insight in 

finding the generic relationship and possibly the structure, if one exists. If there was a 

generic transform, we would expect the predicted signature to offer similar recognition 

performance as the original gait signature.  

A multilayer feedforward network with the back propagation algorithm is the 

most commonly used architecture [Demuth'00]. Feedforward networks often have one 

or more hidden layers of sigmoid neurons followed by an output layer of linear 

neurons. Multiple layers of neurons with non-linear transfer functions allow the 

network to learn non-linear and linear relationships between input and output vectors. 

The network used here is illustrated in an abbreviated diagram in Figure 6.10, a 

comprehensive version can be found in Appendix B. 

 

Figure 6.10: Feedforward network with 1 hidden layer and 1 output layer. 

Input Hidden Layer Output Layer 

a2 = y p1 a1

IW1,1 LW2,1 
R × 1 S1 × 1 

S1 × R S2 × S1 
n1 n2

S1 × 1 S2 × 1 

f1 f2 

1 1b1 b1 

S1 S2 R S1 × 1 S2 × 1 

Layer 2 Layer 1 

p is the input vector with R elements, IW is the input weight matrix, LW is the layer 

weight matrix, n is the transfer function input vector, a is the output vector, b is the 

bias vector, y is the output vector and S is the number of neurons in the layer. The 

transfer function in the hidden layer is log-sigmoid, and the output layer is a linear 

function. The network is trained using resilient backpropagation, a simple batch mode 

training algorithm with fast convergence and minimal storage requirements. This 

network is described by 
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The task here is to approximate a regression function which describes the 

relationship between these two groups of signatures. The network is trained with 

walking signature vectors as the inputs and running signature vectors as the outputs to 

approximate their relationship. The network training is taken to have converged if the 

training error is below a threshold value of 10-3 for 50 subsequent epochs. Then the 

trained network is simulated with a seen walking signature vector to predict a running 

signature. Similarly in predicting a walking signature, another identical network is 

trained with running signature vectors as the inputs and walking signature as the 

outputs. And, this network is simulated by a seen running signature to predict a 

signature for walking. Then classification is carried out between walking and running, 

by comparing these simulated walking and running signature obtained from the neural 

network against the original signature space. Again, classification is done via k-nn and 

cross-validated by the leave-one-out rule.  Figure 6.11(a) shows the result of using the 

first five harmonics of PWMs in approximating the regression function whereas 

Figure 6.11(b) is the result of using the first ten harmonics. As depicted, the correct 

classification rate is similar. This could be due to the fact that the dominating 

component may be from the lower order.  Although the rate does not exceed 90%, this 

preliminary research does suggest the possible existence of a generic mapping between 

these two biomechanically distinct gaits. 

 
(a) 

 
(b) 

Figure 6.11: Performance of signature predicted via neural network for walking and 
running. 
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6.6 Discussion and Conclusions 

Frequency representation of the motion not only provides useful features for 

recognition, but also serves as the basis for the analysis of the relationship between 

walking and running gaits. The new and interesting findings are: (i) a relationship 

between walking and running gait of a particular subject can be regarded as a phase 

modulation of each other. This mapping can be described by its unique magnitude ratio 

and phase difference, capturing the motion features of both gaits; (ii) the mappings are 

highly unique: not only can they be used for recognition alone and to enhance the 

original gait signature, but also to make signatures invariant to gait mode and to 

provide a means to transform from one gait mode to another; and (iii) the neural 

network experiment shows that the generic mapping may exist. 

Naturally, we shall in the future aim to determine more precisely the nature of 

the mapping between running and walking, and whether it can be modelled. The 

understanding of the relationship between walking and running gait not only 

strengthens the automated person identification approach by gait (biometrics), but also 

may play an important role in other areas such as biomechanics, robotics and computer 

graphics animation. This novel idea particularly favours the computer animation of 

human locomotion as it offers a convenient morph from one gait mode to another. 

Furthermore, similar ideas could be deployed in motion analysis when walking on a 

treadmill and on the floor, or across different terrains and etc. 

Although this work confirms the existence of the individual mapping, 

nevertheless, due to the inadequate richness of this dataset the structure of the generic 

mapping (or the parametric formula to explicitly describe the structure) could not be 

drawn at this initial stage. However, observations do suggest that this relationship does 

exist. The next phase of work that could possibly be followed is to find the structure of 

these relationships. Last but not least, the next challenge would be: does there exist an 

individual mapping within the generic mapping? 
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Chapter 7 : Trajectory Invariance 

Most of the laboratory-based studies constrain the subjects to walk or run in a 

plane normal to the camera’s sagittal view and have ignored the effects of different 

view angles. Unfortunately, the effect of trajectory of a moving person on their gait 

signature is one of the major application issues in a gait-based biometric. Hence, view 

angle invariant gait signature is essential in terms of practicality. Till now, we have 

only considered the fronto-parallel view of a moving person for the convenience of 

evaluating various techniques and algorithms. Preliminary research shows how the 

camera sagittal view will affect the gait signature, which is effectively the frequency 

representation of gait patterns. Moreover, experiments show that this automated feature 

extraction technique can extract the angular motion of both the thigh and the lower leg 

precisely for the range of –50 o to 50o without any adjustment.  

 

 

 

 

 85



7.1 Looking from Different Camera Sagittal Views 

To start, let us understand the setup of the camera and various planes. Figure 

7.1 illustrates the camera setup and various planes, and defines the camera sagittal 

view. For example, when a subject is walking towards and away from the camera, then 

the trajectory angle/camera sagittal view is said to be normal to (90o and –90o, 

respectively) the camera. So far, we have only considered subjects walking at an 

trajectory angle of 0o where the trajectory plane is parallel to the principal plane.  

 
 
 

 
 

(a) Side view. 
 

(b) Top view. 

Figure 7.1: Setup for the camera and various planes. 

90o 

Trajectory 
plane 

0o 
10o 

Principal 
plane 

Trajectory 
Plane 

Camera -90o 

Camera Flat ground Plane 
Principal plane 

A moving thin rod resembling a pendulum swinging on a plane with simple 

harmonic motion was created and projected at different camera sagittal view ranging 

from -90o to 90o at increments of 10o. Then, the rotation angles of the pendulum 

projected on the camera’s principal plane (depicted in Figure 7.2) are extracted and 

Fourier analysis is performed. 
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Figure 7.2: Angles of rotation at various camera sagittal views. 

 

(a) 
 

(b) 

Figure 7.3: Fourier description of the angular motions perceived from different view 
angles. 

f ( ) ( )ϑ=ϑ cosA

As expected, changes in camera view angle only affect the magnitude spectrum 

in the frequency domain (Figure 7.3(a)), but not the dynamics of the motion as the 

phase spectrum remains unaltered. The phasor plot in Figure 7.3(b) shows the 

consistency of the phase. Therefore, the angles of motion can be conveniently mapped 

with a linear relation to the true motion angles (those when viewed from 0o) by a 

scaling factor that reads 

)()(),( ϑθ=ϑθ ftt  (7.1) 

where 
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and ϑ is the camera sagittal view angle or effectively the trajectory angle. Carter 

[Carter'99] showed that a model-based approach can be used to extract a gait signature 

from a sequence of motion that is invariant to pose. It is assumed that the camera is 

placed at the subject’s height, parallel to the ground plane and the subjects walk with 

various trajectory angles, and the leg is swinging in a plane. Also, it is found that the 

true thigh rotation angle can be expressed as a linear function of the trajectory and the 

perceived thigh inclination angle. However, Spencer found that if the trajectory of a 

walker and elevation angles of the camera are to be considered, the geometric 

correction for the thigh motion is no longer of a linear relationship [Spencer'02].  

7.2 Synthesised Human 

The effects of the camera sagittal view angle on the magnitude and phase 

spectrum when considering a very thin rod has been introduced. Now we shall see if 

this relationship holds when a synthesized walking human is to be considered. This 

dataset consists of a gait cycle of a synthesised human with 3-D motion obtained from 

a real subject. Sequences of various trajectory angles are generated using Pinocchio, an 

in-house software package. This software package allows a user to synthesise a 

walking human with user-defined camera viewing positions. Figure 7.4 shows 

examples of a synthesised human viewed at -90o to 90o at increments of 10o. It is 

assumed that subjects walk on flat ground. Angular motion of the thigh and lower leg 

is extracted using the evidence gathering technique illustrated in Chapter 3. Results 

show that this technique is able to extract the motion well when the legs occlude each 

other at various camera views. Figure 7.5  shows example results of extraction at ϑ = 

20o and 0o and they are accurately extracted. Also this technique is capable of 

extracting the leg motion within the range of -50o ≤ ϑ ≤ 50o without any parameter 

adjustment, but starts to show errors when ϑ approaches -60o or 60o. Figure 7.6 shows 

the example results of this feature extraction technique. As depicted, leg motion is 

accurately extracted even at ϑ = ± 50o but did not match the image data well at  ϑ = ± 
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80o. As the trajectory angle gets larger, the motion dynamics perceived by the machine 

vision is no longer the same. 

 

 
 

Figure 7.4: Viewing from different sagittal angles. 

    -90o               -80 o              -70 o              -60 o              -50 o   

      -40 o            -30 o              -20 o              -10 o               0 o 

     10 o               20 o                30 o              40 o               50 o 

       60 o              70 o               80 o             90 o
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(a) 20o 

 
(b) 0o 

Figure 7.5: Feature extraction results for sagittal view angle at 20o and 0o. 

 

 
(a) 50o 
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(b) - 50o 

 
(c) 80o 

 
(d) - 80o 

Figure 7.6: Samplar results for the feature extraction technique at various camera 
sagittal view angles. 
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7.3 Trajectory Angle and Signature Vector 

(a) Thigh rotation (b) Lower leg rotation 

Figure 7.7: Angular motion projected on the principal plane with trajectory angles ranging 
from -50o to 50o extracted by the evidence gathering technique. 

 Figure 7.7 illustrates the rotation angles of (a) thigh and (b) lower leg 

projected on the camera’s principal plane when viewed from -50o to 50o. These angles 

are extracted automatically by the evidence gathering. Motion angles are changing 

smoothly with the viewing angle. 

(a) (b) 

Figure 7.8: Changes of magnitude spectrum with camera view angles from -50 o to 50o. 
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Fourier description of the automatically extracted angles show the effects of 

different trajectory angles on the magnitude.  In Figure 7.8, the magnitude spectrum of 

the thigh and lower leg motion changes smoothly with the camera sagittal view angles 

and is symmetric at ϑ = 0o, similar to that of the thin rod depicted in Figure 7.3. When 

the magnitude decreases with the higher harmonics, the changing pattern no longer 

similar to that of the lower harmonics. This is mainly due to the fact that the higher 

harmonics are likely to be dominated by noise. Unlike the case of a thin rod shown, 

when a cylinder (which represents the limbs of a subject  in this case) is considered, 

the phase changes with the camera sagittal view angle. Interestingly, the changes are 

also symmetric at ϑ = 0o, as shown in Figure 7.9, the phasor diagram of the magnitude 

and phase spectrum. The phases of thigh and lower leg rotation change accordingly 

with similar symmetry. The arrow indicates the change from –50o to 50o at a step of 

10o and changes direction at ϑ = 0o for the first harmonic of both the thigh and the 

lower leg rotations. Therefore, these linear relationships can be potentially exploited to 

make a gait signature (made up of magnitude and phase) invariant to trajectory angle.  

 

 
(a) 

1st harmonic 
2nd harmonic 
3rd harmonic 
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(b) 

Figure 7.9: Phasor plot showing the changes of phase spectrum with camera view 
angle from -50 o to 50o. 

1st harmonic 
2nd harmonic 
3rd harmonic 

The variation in phase may be due to both the volumetric and dynamic factor. 

Instead of a thin line, we are now considering a volume of cylinder (in real life it is a 

tapered cylinder) which will cast an effect when viewed from a different angle. Also, 

the hip’s transversal rotation may be a dynamic factor that contributes to the alteration 

in phase. As the real life data is limited, a more precise model for the relationship of 

the phase change and the trajectory angle is difficult to draw, and this shall be further 

investigated in the future. 

7.4 Conclusions 

Experiments show that this automated feature extraction technique can well 

tolerate various camera sagittal views ranging from –50o to 50o without any human 

intervention or adjustment. This may benefit many applications not only in biometrics, 

but also clinical-based applications. Results show that the phase and the magnitude 
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change in a linear fashion with the camera sagittal view. Interestingly, both show a 

symmetric pattern. Time domain gait patterns can be conveniently mapped to that of ϑ 

= 0o (true angle) by exploiting this linearity for the convenience of analysis. More 

importantly, a gait signature can be made invariant to camera sagittal view under 

certain constraints. As this is only a preliminary research on the effect of trajectory on 

the gait signature, further work should investigate generalisation issues on camera 

various positions, such as elevation and rotation to develop a more realistic model to 

handle the real world scenario. 
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Chapter 8 : Finale 

We shall now recapitulate the essence of this work by drawing again the 

motivation, and summing up the conclusions and contributions. Last but not least, to 

discuss other possible areas for deployment of this novel biometric technique and to 

suggest possible future work.  
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8.1 Motivation Revisited 

Humans have the natural ability to recognise people by various biological traits, 

be they physical or behavioural. This actuates the idea of teaching machines about this 

natural ability of humans, to recognise an individual by their biological traits – 

biometrics. Although there are a number of commercially available biometric systems 

such as iris pattern and fingerprint recognition system, many others are still in their 

experimental stage. Gait is one of the emerging biometrics and only attracted attention 

a decade ago. Much research has been focused on investigating the potential of human 

walking gait, however, the potential of running gait is yet to be unleashed. Although 

there has been little quantitative study on the uniqueness of gait, many studies, 

including those of psychology and biomechanics, do suggest that gait is indeed unique. 

Furthermore, gait has the potential to overcome some of the limitations that restrict 

other biometrics. Among the advantages, the most important are, gait i) can be 

perceived from a distance making acquisition non-invasive and convenient, ii) does not 

require high resolution images, iii) is difficult to disguise without impeding one’s 

natural gait, and iv) has the least impact on privacy issues. This form of biometric is 

ideal for a scenario where other biometrics such as face and fingerprints are not 

available. An example will be in a crime scene where the only footage captured by 

CCTVs is the way the criminal walks in and runs away to escape. Not only do these 

advantages seem attractive, above all, they provide an alternative biometric approach 

aiming to achieve a more secure environment.  

8.2 Conclusions and Contributions 

We have introduced a new biometric approach and outlined the potential of 

both walking and running gaits as a biometric. There are two major methods in 

approaching the problem of using gait as a biometric, the most popular being 

statistical-based methods. However, important characteristics are described by the 

inter-relationship of the structural description. Therefore, a model-based approach may 

be of advantage here. Our main objective is to develop a new approach for an 

automated non-invasive model-based human recognition system by walking and 
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running via computer vision and pattern recognition techniques. Now we shall 

recapitulate the conclusions and more importantly, the contributions of this work to the 

world of biometrics.  

1. Human walking and running are two different gaits distinguished mainly by the 

existence of double support or double float in respective gait patterns. Despite the 

functional differences of these two gaits, there occur topological similarities under 

similar speed and stride frequency. Thus, two gait-mode invariant motion models 

have been developed upon these phenomena and evaluated, and the (untested) third 

model being potentially as capable. 

2. The two motion models are: i) a bilateral symmetric model which is developed 

following the observation on gait patterns. Although the upper pendulum 

representing the thigh is swinging with a simple harmonic motion, however, the 

motion model of the lower leg is rather empirical; and ii) a forced coupled 

oscillator model which is developed following the hypothesis of human 

locomotion being considered as an imperfect pendulum, with substantial energy 

loss. This new model solves the differential equations obtained from the dynamic 

motions of the two pendula representing the thigh and the lower leg. The upper 

pendulum swings with a simple harmonic motion, whilst the lower pendulum is 

affected by the force introduced by the upper pendulum. The potentially third 

(untested) motion model describes the lower leg as a damped pendulum driven by a 

periodic force introduced by its suspension point. It shows adherence to the knee 

rotation when it reaches a steady state.  

3. These two models each have their unique strengths and limitations. The bilateral 

symmetric model enjoys its simplicity requiring fewer parameters to describe both 

the thigh and the knee rotation, as compared with the earlier model. This model, 

when used as the underlying temporal template for the evidence gathering 

technique, can extract the thigh and the lower leg motion reasonably well. Though, 

this model requires selection of a parameter for different gait mode. On the other 

hand, the forced coupled oscillator model requires no parameter selection. 
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Moreover, when used within the feature extractor, it achieves remarkable results by 

promising higher accuracy and higher correct classification rate compared to that of 

the bilateral symmetric model. Owing to the fact that human gaits (walking and 

running) are bilaterally symmetric and locked by a half a period phase-lock, this 

enables the models to be extended to describe both legs simultaneously. 

Nevertheless, a more precise model could be achieved by Fourier series, but at the 

expense of complexity. However, performance analyses show that this may be 

unnecessary for our purpose here.  

4. This is the first experimental dataset to contain the fonto-parallel images of 20 

subjects walking and running on a motorised treadmill at their preferred speeds, 

with 6 samples or sequences of complete gait cycle for each subject. Various 

conditions such as 25% random greyscale noise and low resolution (65 × 95) are 

incorporated in the dataset. Some may argue that treadmill may incur changes to 

the normal gait, though this remains a constant debate among biomechanics and 

psychology communities. Although features may change, with respect to one 

another, the change is assumed to be insignificant. Moreover, treadmill offers many 

advantages for laboratory-based experiment including controlling environmental 

factors, space requirement, selectability of locomotion speeds, and repeatability.  

5. Gait is naturally rhythmic and periodic. It is no surprise that the patterns of walking 

and running satisfy spatial and temporal symmetry. Therefore, dynamic 

characteristics which are the angular motions of the thigh and the lower leg, are 

exploited for recognition purposes. 

6. Feature extraction by temporal and local evidence gathering has successfully 

captured the motion dynamics of the thigh and the lower leg within a gait cycle. 

Furthermore, this automated angular motion extraction technique proved to be 

possible even within the range of –50o to 50o of camera sagittal view angle without 

any human intervention or parameter adjustment. 

7. The gait signature is created from the Fourier description by multiplying the 

magnitude and the phase spectrum to yield phase-weighted magnitude (PWM). 
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This gives encouraging correct recognition rates. Statistical analysis demonstrated 

that the inter-class distance measure is higher when the PWM is used, compared 

with the magnitude component only. Also, only lower order PWM is necessary for 

creating a reasonably unique signature as higher orders are mainly dominated by 

noise. This conforms to biomechanics studies which show that the frequency 

content of the human body when walking is 5 Hz [Angeloni'94]. Furthermore, it is 

demonstrated that the knee rotation significantly accounted for discrimination. 

Nonetheless, discrimination capability increases when it is combined with the thigh 

rotation. 

8. Performance analyses have been performed on clean images, images 

contaminated with 25% random greyscale noise and low resolution images (half of 

the original) by using the two motion models within this novel biometric approach. 

Results show that when the forced coupled oscillator model is used as the 

underlying temporal template for the evidence gathering process, it promises an 

increase of an average of 15.2% and 10.6% recognition rates for the cases of 

running and walking, respectively, compared to that of the bilateral symmetry 

model. Also, this technique can tolerate noise reasonably well and is less sensitive 

to resolution. This may be due to the fact that angles are invariant to scaling. More 

importantly, analyses demonstrate the potential of walking and running gait as 

biometrics, with running gait being more potent. This may be due to the many 

variations of running styles. Moreover, not only this technique can be used to 

identify individuals, it can also distinguish different gaits and genders.  

9. There exists a highly unique individual mapping between one’s walking and 

running pattern. In the time domain, a walking signal may be considered as a phase 

modulated version of a running signal, and vice versa. This relationship can be 

expressed as the phase difference and magnitude ratio of each other. A gait 

signature can therefore made invariant to gait mode by exploiting this linear 

relationship besides offering means for transforming from one gait mode to 

another. Furthermore, this highly unique (achieving 100% correct classification 

rate in this dataset) mapping capturing the dynamics of both gaits can be used as a 
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condensed form of gait signature or to buttress the original signature. A neural 

network has been employed in search for the generic mapping between walking 

and running across a population. Observations suggest its possible existence, 

however, the structure of this generic mapping could not be drawn at this early 

stage.  

10. To cope with one of the many application issues, the effects of different camera 

sagittal view angles have been studied. When a subject is walking at different 

angles from the camera, this casts an effect on the gait pattern perceived by the 

machine vision. The frequency domain representation changes as both of the 

magnitude and phase components are affected, though in a linear fashion. 

Interestingly, both changes are symmetrical at ϑ = 0o, i.e. the fonto-parallel view. 

The phase change may possibly be due to the hip’s transversal rotation, an 

important dynamic factor for 3-D motion capture. However, the effect is 

undetermined due to insufficient data and required further investigation. The linear 

relationship between the camera view angle and the frequency descriptions offers 

several advantages. The most important in our case here is that the gait signature 

can be made invariant to camera sagittal view by exploiting this linearity. 

Furthermore, this may provide a way to map the angular motion obtained from 

various camera views to that of fonto-parallel view for convenience of gait 

analysis, be it biometrics or biomechanics.  

 The above are the main conclusions and contributions drawn from this work. 

Now, we shall see how this technique may benefit other areas of research. 

8.2 Possible Deployment in Other Areas 

Interesting and new findings from this research will not only benefit the 

biometrics arena, they may be helpful in other areas of research such as avatar and 

medical domain. The following are some suggestions. 
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Avatar 

The two new human locomotion models may offer an alternative method for 

animating human locomotion based on some biomechanics properties. The beauty 

of these two models is the invariance to gait mode and requirement of relatively 

few parameters. Above all, the unique mapping (which can capture the 

characteristics of both gaits) is expressed by a simple function which particularly 

favours character animation. This novel idea offers a convenient way for morphing 

from one gait mode to another with individual characteristics. 

Medical  

This automated marker-less and non-invasive manner of extracting human leg 

motion offers a new means for clinical application e.g. biomechanical studies, 

rehabilitation and psychological studies to study human locomotion in a natural 

way. This may have an positive impact on clinical gait analysis as many of the 

current approaches are either not extensively automated, or employ invasive 

methodologies.  

8.3 Future Work 

 As illustrated, this work offers many contributions to several research domains, 

particularly biometrics. Nonetheless, research may be brought further either to further 

enhance the existing technique or approach, or may trigger other interesting areas of 

research. 

First of all the human locomotion model can be improvised by including the 

highly fluctuating angular motion of the ankle. Besides, a more flexible forcing 

function may be developed to further improve the precision of the motion model. This 

modelling method can be extended to include the 3-D motion of human locomotion. 

Motions from all the three planes, namely, transverse, sagittal and frontal plane can be 

modelled at the expense of complexity. The major advantage of having a 3-D model is 

that it may offer more features for discrimination, as with incorporating the ankle 
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rotation into the motion models. A 3-D model will also have a positive impact on 

camera view invariance issue. Recall that one of the important factors that may affect 

the gait patterns viewed at different angles is the hip’s transversal rotation. Further 

research shall be focused on the development of a more precise transfer function to 

provide camera view invariance.  

  Last but not least, this work has confirmed the unique mapping for individuals’ 

walking and running pattern. Observations do suggest the possible existence of a 

generic mapping across a population, nonetheless, the structure of this generic 

relationship is undetermined, at least not by this approach. The next phase of work that 

could possibly be followed up is to find the structure of this relationship. If the 

structure of this generic relationship is found, perhaps there is an individual mapping 

within the generic mapping? 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 103



Appendix A: Comparison of Manual Labelling and Vision 
Extraction 

 

Figure A.1: Medical labelling and computer vision labelling.  

δ 

θ θ’ 

Computer 
Vision Label 

Medical Label 

The front part of the leg is chosen because clothing adheres most to the front of a 

moving leg. Unfortunately the location of the bone is unknown by this computer vision 

approach (and it is not the medial position). Although it is impossible to label the bone 

(by manual labelling) for analysis, we can assume that the front line and the bone form 

a rigid body. The relative position of these two lines is always fixed (Fig. A.1), 

therefore the perceived dynamics of the motion are not affected. Assuming that the two 

lines representing the bone and the front part of the leg form a rigid body, i.e. the 

relative position is fixed , then they can be related by a linear function (Eq. A.1). Such 

an offset hardly affects the recognition process. 

δ+θ=θ′  (A.1) 
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(a) 

 
 
 
 
 
 
 
 

(b) 

Figure A.2: Difference of medical and computer vision labelling on the thigh and  the 
lower leg rotation 

Here, markers are fixed to a subject’s leg and measurement is taken from the 

markers and also the front part of the leg for comparison, see Figure. A.2. Having 

found the offset δ, the angle of rotation extracted by computer vision can be related or 

corrected to one that match clinical observations if necessary. This will provide an 

alternative approach to extract leg motion automatically without human intervention. 

Note that the offset for the thigh rotation is larger then that of the lower leg rotation as 

this is because less muscle tissue is located at the front of the tibia.  
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Appendix B: Comprehensive Version of Neural Network  

 a1 = f1(IW1,1p+b1)       a2 = f2(IW2,1p+b2) 

a2 = f2(LW2,1f1(LW1,1 p+b1)+b2) 

Figure B.1: Neural network with two layers of neurons. 
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The symbols are: 
 

p = input to the neural network S = number of neurons in a layer 

n = input to the transfer function R = number of elements in an input vector 

a = output lw = layer weight 

b = bias iw = input weight 
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