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MODEL-BASED APPROACHES FOR RECOGNISING PEOPLE
BY THE WAY THEY WALK OR RUN

by Chew-Yean Yam

Using biological traits, such as fingerprints, iris patterns and voice print, in
identification and authentication has gained increasing attention due to the demand for
a more secure environment. The potential of human walking as a biometric has only
attracted interest in the computer vision community since the last decade.
Nevertheless, the potential of human running gait as a biometric remains largely
unexplored. Here, we propose an approach for an automated non-invasive/markerless
person identification system by not only the walking, but also the running gait to
explore the potential of these two biomechanically distinct gaits. Two motion models
both invariant to walking and running, have been developed based on the concept of
harmonic motion. The first is a bilateral symmetric model made up of an upper and a
lower pendulum, representing the thigh and the lower leg, joined at the knee. The
upper pendulum is simple harmonic motion whilst the lower pendulum uses an
empirical model requiring parameter selection for the different gait mode and lacks
analytical attributes. The second model has a forced coupled oscillator to describe the

knee rotation as legs are considered to be imperfect pendula with energy loss.

The rhythm and pattern of gaits are automatically extracted by a temporal evidence
gathering technique with the motion models as the underlying temporal templates. The
spatio-temporal characteristics of the gait patterns are described by a Fourier

representation, which are in turn used to create unique gait signatures for the purpose



of identification. Performance analysis demonstrates the potential of gait as a
biometric, with running being more potent. This technique not only performs well in
discriminating individuals, but also appears capable of distinguishing the gender and
gait mode. Moreover, analysis shows that the knee rotation contributes significantly to

discrimination capability.

Based on the hypothesis that human walking and running gaits are intimately related
by the musculo-skeletal structure and that the walking pattern is the phase-modulated
version of running (or vice versa), a unique mapping/transform between individuals’
walking and running gait is developed, making the signature invariant to gait mode.
Furthermore, this mapping can be used alone as a compressed signature or to buttress
the original signature to further improve the recognition capability. Then, a generic
relationship between walking and running has been investigated via a neural network.
Due to the current size of the experimental dataset, the structure of the two signature
spaces could not be drawn, at least not by this approach. However, results do suggest

its possible existence.

The effect of different camera views is an important application issue. The gait
pattern perceived by machine vision at different viewpoints has been investigated. The
frequency description of the gait pattern is linearly dependent on the camera sagittal
view angle. The changes of both the magnitude and the phase component are
symmetric about the fronto-parallel view. This linearity offers a convenient way to
map the angular motion obtained from various camera sagittal views to the true
motion, for the convenience of gait analysis. More importantly, this linearity can be

exploited to develop view invariant gait signatures.

The new and interesting findings of this work not only benefit biometrics research,
but may also draw attention from other communities such as biomechanics and

graphics applications.

il
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Chapter 1 : Prelude

An average human does not exi st!

V. T. Inman, Human \Wal ki ng, 1981.

Today’s crime, ever more hostile and involving more advanced technology, has
fanned the demand for a more secure environment. Attempts range from the simple,
like locking a door, to more sophisticated (or experimental) methods, such as
employing biometrics in identification and authentication. Scanning iris and
fingerprints, voice prints and entering a PIN (Personal Identity Number) to gain access
to controlled premises is no longer limited to the scenes in Hollywood movies. Rather,
they are daily practices in today’s society, as much technology has been infused into
sophisticated security measures. An emerging and fast-growing worldwide crime is
identity theft, increasing nearly 500% a year in the United Kingdom alone
[Penycate'01]. Identity fraud may become one of the most serious crimes and can result
in significant financial loss, or even terrorist acts. To counter-attack this intolerable

crime, biometrics have gained increasing attention and momentum.



1.1 What are Biometrics

Biometrics concern any human physiological and/or behavioural characteristics
[Jain'99] which are (i) universal, every person should have that characteristic; (ii)
unique, no two people should be the same in terms of that characteristic; (iii)
permanent, invariant with time; and (iv) collectable, can be measured quantitatively.
Since biometrics are concerned with using one's biological characteristics, it provides a
more reliable means in countering identity fraud. The concept of identifying people
based on physical characteristics is not new. Human and animals recognize one
another by their physical characteristics, voice and odour. Archaeological artifacts
show that our ancestors recognised the individuality of fingerprint impressions on their
picture drawings [Moenssens'71]. Biological characteristics that have been explored
for their potential as biometrics so far are face, fingerprints, hand geometry,
keystrokes, hand vein geometry, iris patterns, retinal scan, signature, voice print, facial
thermograms, body odour, DNA (DeoxyriboNucleic Acid), gait and ear. As many are

still in their infancy, not all have been deployed in the real world.

Aiming to address the huge losses due to credit card fraud, a trial scheme
asking shoppers for their thumbprint on the back of cheques or credit card receipts (in
addition to the traditional signature recognition [Fairhurst'94]) is already underway in
the UK. In order to improve security and speed in immigration, some airports now
employ biometrics. For example, Iceland's main airport will employ face-recognition
technology to help improve security, whereas Saudi Arabia will use iris patterns and
fingerprints to prevent terrorism in the month of the Hajj pilgrimage. The attractive
advantages of biometrics are the combination of high speed processing with a high
level of security. Hong Kong is preparing to introduce one of the world’s most
advanced identity cards in an attempt to curb illegal immigration. An embedded
computer chip on the card will hold personal details as well as the owner’s
thumbprints. This will help to speed up border checks. There are approximately
200,000 people travelling across the border between the former UK colony and the
mainland China a day. The idea of using biometric identity checks such as fingerprints,

iris pattern, hand geometry or voice print in a "smart" passport has also attracted the



interest of the UK Passport Office, aimed to prevent identity fraud. Many biological
traits, be it physical or behavioural, could be a novel and feasible idea to be used as a
biometric. However, the primary question is to design a system which can meet the

ever increasing application requirement with currently available technology, of which

most are in their infancy.

A typical biometric system operates in two modes, enrolment and
identification. The enrolment phase will capture biometric measurements from a given
subject. Relevant information from the raw measurement is then harvested by a feature
extractor, and feature information is stored in a database. Some form of label
associated to a subject may be generated. This is essentially a computer vision problem
(for visual-based biometrics). Here, identification is synonymous with classification.
The system senses the biometric measurements from a subject, extracts features from
the raw measurements, and searches for possible matches within the database using the

features thus extracted. This is essentially a pattern recognition problem.

Enrolment
Acquisition
| — Ty
: | Biometric | Representation FeatuIre Database |
Reader Extraction !
L [ :

Identification i
I v
! Acquisition Identification
Biometric | Representation Feature y| Clarification | 1 ytcome
! Reader Extraction

Figure 1.1: Architecture of a typical biometric system.




Figure 1.1 illustrates the architecture of a typical biometric system. This
system consists of four vital interdependent components: acquisition, representation,
and feature extraction (in both the enrolment and identification mode), and

classification (in identification mode only).

(i) Acquisition

Often, acquisition will affect the performance of the system. This concerns
the quality and suitability of the input data and also the segmentation
process. Here, the biometric reader is a digital video camera and the data
acquired is a sequence of digital images capturing a moving person. The
separation of the input data from irrelevant information is critical. Input
data in computer vision generally refers to an object of interest whilst
irrelevant information often refers to the background. In our approach, as
we shall see later, the desired object is the moving thigh and lower leg
described by edge information. However, the ‘ultimate’ input data is the
angular motion of the thigh and lower leg (desired information for creating
the signature vector), while irrelevant information is the complement of
that (such as the background and noise, or even any moving or articulating

objects that do not move like human lower limbs).

(ii) Representation

Given a complex digital representation, in this case, a sequence of digital
images, a system must be able to automatically extract desired features or
objects and describe them by some (hopefully meaningful) representation.
Furthermore, this representation should be common across the population,
and yet unique on an individual basis. As human locomotion is all about
dynamic characteristics, the angular motion of the lower limb is extracted
automatically and the angles will be a meaningful representation, rather
than intensity values of a series of digital imagery. An efficacious

acquisition technique should extract only the dynamics of the human lower



limb and not just any moving object, for example, a pair of articulating

chopsticks is not desired!

(iii) Feature extraction

Feature extraction is the essence of the entire system. Promising features
for recognition are representations that differ minimally for the same
identity (minimum intra-class variance), and differ maximally for those
belonging to different identities (maximum inter-class variance). At this
stage, important information from a series of images have been reduced
and represented by the motion angles. In our approach, Fourier magnitude
and phase are used to describe the spatio-temporal characteristics, the
essence of human unique walking and running dynamics. Thus, these

features are used to form the gait signature for identification purposes.

(iv) Classification

Classification is eventually a similarity function which quantifies the
difference between two instances of measurements to associate the test
data with a possible class within a database, or to reject the test data if the
similarity measurement is below a threshold. This is effectively an
identification process. Here, a basic and simple classifier has been
employed in attempt to reveal the genuine discriminatory capability of the

selected feature sets.

1.2 Gait as a Biometric

Before asking the question why gait is well suited as a biometric, let us define
what is gait. Gait is defined as a particular manner of locomotion. Recall that the
criteria of a biometric are universality, uniqueness, permanence and collectability. Gait
is universal as every normal person does move on foot. As yet, there have been few
studies providing quantitative measurements on the uniqueness of gait. Nevertheless,

encouraging experimental results from many gait recognition techniques (most using



walking gait) do suggest that gait is indeed unique. Furthermore, this is supported by
medical and psychology observations. However, the permanence of gait is not as
enduring as other biometrics such as fingerprints. Gait will change with age
[Samson'01], that is a child’s gait is different from an adult’s gait, whilst an adult gait
is yet different from an elderly person’s gait. Besides, gait may be affected by mood
[Bader'99], drunkenness, pregnancy [Foti'00], disease (e.g. Parkinson’s), footwear and
load [Zwick'98]. However, these factors do not hinder an attempt to unleash the
potential of human locomotion as a means of identification. In practice, gait may not
be as prominent as other established biometrics such as fingerprints, though, it can be
used together with other biometrics to achieve demanding performance or to act as an
identity filter in a large population. Since CCTVs are not unusual in today’s society
(there are approximately 200,000 CCTV in the UK and this number is increasing), gait
as a biometric will have no difficulty in gaining public acceptance. Furthermore,
recognition by the way one walks has least impact on privacy issues, unlike one’s

DNA.

Any biometric has its strengths and limitations, which often concern
application and social issues. Whether a particular biological characteristic is a valid
biometric is dependent upon the requirement of a given application. Fingerprint, iris
and retinal patterns may enjoy uniqueness across large populations, but can be difficult
to collect, as they require substantial co-operation from the subjects. On the other hand,
face, ear and signature can be easily acquired, but they may be easily obscured or
disguised. Gait may have the potential to overcome these limitations. One of the
unique advantages of using gait as a biometric is that it can be perceived from a
distance, making acquisition non-invasive and convenient. Biometrics such as the iris
and retinal patterns and face require high resolution images but surveillance cameras
are often of poor resolution. Gait will not suffer from this shortcoming because the
body has a proportionally larger area compared with the eyes or face. Furthermore, gait
cannot be easily disguised without impeding one's natural gait (which will only attract

attention). Thus, gait appears to be a potential biometric.



1.3 Allied Research

CASSIUS: 'Tis Cinna; I do know him by his gait;
He is a friend.
[Enter CINNA]

Julius Caesar - W. Shakespeare

There is considerable evidence in the literature that humans have the natural
ability in recognising friends by the way they walk; psychological studies confirmed
that we can discriminate the gender of a walker [Kozlowski'77]. We can also recognise
ourselves and acquaintances by a dynamic light display of the walking pattern
[Cutting'77] without familiarity cues. It is suggested that gait could be used as a
reliable means of discriminating individuals, especially when the face is obscured
[Stevenage'99] because individuals show unique characteristics in their walking
mechanics [Bianchi'98]. Thus, not only walking gait patterns display individual
uniqueness, but also gender and age differences. Studies of human locomotion found
that male walkers tend to swing their shoulders more while female walkers tend to
swing their hips more [Mather'94]. Recently, the walking styles of children and adult

have been categorised via computer vision techniques [Davis'01].
1.4 Current Approaches

Human motion analysis has gained increasing attention from computer vision
researchers motivated by a wide spectrum of applications such as surveillance,
medical, man-machine interface and animation. The major areas of research are motion
analysis [Akita'84, Chen'92], tracking [Cai'96, Polana'94], recognizing biological
motion [Boyd'97, Campbell'95], and as an emerging biometric. Investigation on gait as
a biometric only began less than a decade ago. Perhaps the earliest work derived a gait
signature from a spatio-temporal pattern of a walking person for recognition purposes
[Niyogi'94]. Murase et. al. projected images of human walking in eigenspace and used
the eigenvectors for gait recognition [Murase'96]. Then, dense optical flow [Little'98]

was exploited where an instantaneous motion description that varies with the type of



motion and the moving objects was developed. Huang combined canonical space
transformation based on Canonical Analysis with eigenspace transformation for feature
extraction to extract a gait signature [Huang'99]. The potential of image self-similarity
[Abdelkader'01], area-based metrics [Foster'01], static body parameters [Johnson'01],
velocity moments [Shutler'01] and symmetry [Hayfron-Acquah'01] have been used to
generate gait signatures. Recently, stride and cadence has been investigated as gait
parameters for recognition [Abdelkader'02], besides, continuous Hidden Markov
Models have been applied to explore the structural and transitional characteristics of
gait [Kale'02]. Gait recognition is not only limited to the computer vision community,
another medium, an in-air sonar-based method, has been deployed in recognising
walking people [Sabatini'98]. Gait can also be combined with other more established
biometrics such as face [Shakhnarovich'Ol1] or fingerprint to further improve
performance. Current approaches discussed so far are mainly based on statistical
measurements. A statistical approach assumes a statistical basis to describe whole body
motion for pattern classification. This approach may not have in-built knowledge of
the gait pattern or characteristics, and may require much training to achieve good

performance.

However, the significant information in (or the characteristics of) a gait pattern
is not merely the presence, or even the numerical values of a set of features. Rather, it
is the interaction and inter-relationship of the structural description. In a model-based
approach, one must be able to quantify and extract structural information, and access
the structural similarity of the gait. It is a formulation of a hierarchical description of a
more complex system that is built up from primitive attributes. For example, a human
lower limb resembles a pair of articulated sticks joined at a point. Biological modelling
is exceptionally intricate, partly because nature has infinite variations and there are
numerous (uncontrollable) factors, both internal (the human body itself) and external
(e.g. the environment) to be considered. Although there exist methods for modelling
human walking, these have not been deployed for identification purposes. Perhaps, the
only model-based approach in human gait recognition was pioneered by Cunado and

Nash who explored the potential of the Velocity Hough Transform (VHT) [Nash'97]



and simple pendular motion described by a Fourier series [Cunado'99a]. This approach
models human walking as a pendulum representing the thigh, with the fulcrum at the
hip joint. It combines the VHT with a Fourier series to extract the motion of the hip
and thigh within a gait cycle. The gait signature is then derived from the Fourier series.
Visually, leg movements during walking and running resemble a compound pendulum,
that is the leg periodically swings at a fulcrum. Thus, adapting pendular motion to
model human locomotion is natural. This idea has also been elaborated by the
biomechanicists into two directions [Zatsiorky'94]: 1) leg movement as free oscillation,
and ii) leg movement as forced oscillation. As discussed, both the statistical- and
model-based approaches demonstrate encouraging results and undoubtedly, more

techniques are emerging.
1.5 Next Questions

Until now, a considerable amount of research has focused on human walking,
with encouraging results confirming the potential of using walking gait as a biometric.
This leads to a question on whether human running gait can offer equivalent, if not
better, quality for identifying people. Although walking and running are distinct gaits
as defined by biomechanics, interestingly, it has been demonstrated that there occur
topological similarities in the co-ordination patterns between the thigh and the lower
leg in walking and running, which co-existed with functional differences throughout a
gait cycle [Li'99]. The next question is: can these two distinct gaits be described by the
same structural motion model incorporating their inter-dependency? Since walking and
running are intimately related by the skeleto-muscular structure, there must exist some
correlation between them. The next irresistible question is: can we, (or how can we)

describe this intimate relationship?
1.6 Objectives

Our objective here is to develop a new approach for an automated non-invasive
model-based human identification system by walking and running. We will need to

extract a series of measurements of leg motion by computer vision techniques, taking



into account spatial and temporal properties. In order to do so a model invariant to gait
mode, as such able to describe both walking and running, is essential. Meaningful
labelling associating the unique pattern of walking and running is significant in order
to achieve a convincing recognition rate. As walking and running are intimately
related, we aim to seek the relationship between these two distinct but systematically
related gaits and attempt to create signatures that are invariant to these gaits.
Furthermore, generalisation capabilities such as immunity to noise, resolution, and

camera view angle shall be incorporated into the approach.

1.7 Contributions

The major contributions to this area of biometrics research are as follows:

1. A novel approach to an automated non-invasive person recognition system
has been developed using computer vision techniques. We have explored the
potential of using walking and running gaits as biometrics, with running gait

being more potent [Yam'02b].

2. Two new motion models invariant to walking and running have been developed
based on the concept of pendular motion and the biomechanics of human
locomotion: firstly a bilateral symmetric model [Yam'01l] and secondly a
forced coupled oscillator model [Yam'02a]. These models can be extended, if
necessary, to describe both legs simultaneously by introducing a phase-lock of

a half a period.

a. The bilateral symmetric model which requires only 13 parameters (in
implementation) is capable of describing both the thigh and the lower
leg motion of walking and running. This model requires fewer
parameters as compared with the earlier model [Cunado'99b] which
demands 18 parameters to describe only the thigh motion for walking.
The thigh motion is described by a simple harmonic motion whilst the

lower leg rotation is empirical and therefore, selection of one parameter
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is necessary for different gait modes. This model can extract the motion
of both gaits well when used as the underlying temporal template within

a feature extractor.

b. The forced coupled oscillator model consists of two pendula: an upper
pendulum with a simple harmonic motion representing the thigh, and a
lower pendulum (which is influenced by the force introduced by the
upper pendulum) representing the lower leg. Despite the gait mode, this
model is capable of capturing the motion of the thigh and lower leg
distinctly well as compared to that of the bilateral symmetric model
when used within the feature extractor. Furthermore, this model does

not require any parameter selection.

3. The gait signature is formed by multiplying the corresponding phase and
magnitude components of the Fourier description, yielding a phase-weighted
magnitude spectrum. It proved to be a useful representation achieving higher
discriminatory capability as compared to using magnitude components alone.
As human locomotion is defined by kinematics (range of joints’ motion) and
kinetics (forces that cause the motion), and the fact that it satisfies spatial- and
temporal-symmetry, magnitude and phase, together play a significant role in

describing the dynamics.

4. Statistical measurements and performance analysis show that the knee rotation
contributes significantly to discrimination capability as compared with the thigh
rotation. This could be due to the fact that knee rotation has more variations
across the population and also the range of motion is of a relatively greater
magnitude. Furthermore, it is also demonstrated that the class separation within
the signature space of running gait is higher then that of walking, and this effect
is reflected in the performance analyses. Therefore, running gait is a more
potent cue for recognition. This is also supported by biomechanics observations
that there are several styles of running. Performance analyses show that this

biometric approach which uses the forced coupled oscillator as the underlying
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temporal template outperforms the one that uses the bilateral symmetric model
by an average increase of 15.2% and 10.6% recognition rate (on a dataset of 20
subjects and 6 samples for each subject) for the cases of running and walking,
respectively. Also, this approach can tolerate various application issues
including noise and resolution. Moreover, it can classify not only individual,

but also gender and gait mode.

A novel method employing the concept of phase-modulation has been found
useful in describing the unique relationship of an individual walking and
running patterns [Yam'02c]. This unique mapping also provides a convenient
means of transforming one gait mode to the other. Gait signatures are made
invariant to gait mode by exploiting this transform. The mapping, which can
capture the motion features of both gaits, is highly unique across the
population, achieving perfect classification rates (in this dataset). This can be

used as a condensed form of signature, or to buttress the original gait signature.

A neural network has been employed to investigate the existence of a generic
relationship between the walking and running patterns across a population.
Observations do suggest that this generic mapping may exist. However, due
to the size of this dataset, conclusions are that the structure of such a

relationship could not be drawn.

The automated evidence gathering extraction technique successfully extracted
the angular motion of both the thigh and the lower leg within the range of —50°
to 50° camera sagittal view angle. More importantly, the Fourier description
of the lower limb’s dynamics are found to be linearly related to the camera
sagittal view angle. Interestingly, both the magnitude and the phase change is
symmetric about the fronto-parellel view. Thus, gait signatures can be made
invariant within a limited range of sagittal view angle by exploiting this linear

transformation.
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8. The new feature extraction technique together with the human locomotion
model has been found beneficial in aiding automated non-invasive and

markerless leg motion extraction for clinical application [Yam'02d].

1.8 At a Glance

Chapter 2 reviews the biomechanics of walking and running gaits while
Chapter 3 illustrates the data acquisition phase and feature extraction. Chapter 4
reveals the development of the bilateral symmetry and forced coupled oscillator model
describing the angular motion of human walking and running gaits and the comparison
of both models. Also, the relevancy of using pendular motion in describing human
motion is drawn. Chapter 5 illustrates the creation of the gait signature, the
classification process, performance analyses under various conditions, and the
significance of lower leg rotation in discriminating between individuals. Chapter 6
explores the relationship of individuals’ walking and running gaits, and also the
generic relationship of a population’s walking and running patterns, whilst Chapter 7
investigates how the camera sagittal view angle is related to the gait signature and how
the signature is made view angle invariant. Last but not least, Chapter 8 draws the
conclusions and discusses future work beside suggesting possible deployment of these

new findings in other areas.
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Chapter 2 : Human Gait

Gait is a manner or a particular way of locomotion. Humans and humanoids
have been walking and running for thousands of years, and it is critical for survival and
evolution. Yet, only recently have we had the tools to study human locomotion
scientifically. This chapter will introduce some early studies of human locomotion and
the biomechanical similarities and differences between walking and running, which
form the essential foundation of this work. Besides the pattern of human gait, some

possible gait parameters for deployment in biometrics are also discussed.
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2.1 Early Studies of Human Locomotion

@ (b)

Figure 2.1: Ancient Greek illustration depicting the difference of (a) running and (b)

sprinting gait with individual uniqueness.

Even 2500 years ago, the study of human locomotion (sprinting, running and
walking) was reflected in ancient Greek art, see Figure 2.1. There is a rich treasury of
illustrations which depict the differences between sprinting, running and walking as
well as the variations among different individuals. Aristotle (384-322 B.C.) was the
first person to study the gaits of animals, including that of humans. He observed that
when one walks, the gait is symmetric and the body moves in an undulating manner.

His observations read

... for just as tall nen walk with their
spines bellied (undul ated) forward, and when their
right shoulder is leading in a forward direction
their left hip, rather inclined backwards, ..

Part 7, On the Git of Animals — Aristotle

“If a man were to walk parallel to a wall in
sunshine, the line described by the shadow of his
head would be not straight but zigzag, becom ng
| oner as he bends, and higher when he stands and
lifts hinmself up.”

Part 7, On the Gait of Aninmals — Aristotle
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Artists have also shown interest in human locomotion. Leonardo da Vinci
(1452-1519) was aware of the complexity of human movement and the difficulties in
studying gait without appropriate tools such as photographic equipment. He observed
and illustrated the principles of human motion in order to accurately represent human
locomotion activities in his paintings. He also observed that the anatomy of the human
body is symmetric and that the need to maintain balance while moving is essential, as

depicted in Figure 2.2.
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Figure 2.2: (a) lllustration of human body symmetry and (b) a fragment of a variety of
human locomotion. From Leonardo da Vinci’s Elements of the Science of Man (pp
175) by K.D. Keele, 1983, New York: Academic Press.

Then, the study of human locomotion was revisited by Borelli (1608-1679)
[Cavanagh'90] who was interested in the mechanical principles of locomotion,
representing the starting point for the study of biomechanics of locomotion. Later, the
Weber Brothers (1836) investigated human gait, both walking and running with simple
instrumentation, and suggested that the lower limbs act like a pendulum. However,
these awaited scientific justification. More advanced mathematical techniques and
reliable instrumentation were necessary to probe into the study of locomotion.
Muybridge (1830-1894) was the first to employ photographic techniques extensively to
record locomotion, see Figure 2.3. These quality sequential images allowed
researchers to scrutinise the motions and counter-balance the inadequacy of the human

eye. This offers new insights for scientists in studying human locomotion.
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Figure 2.3: A plate from Muybridge’s image sequences showing a man running at a
distance pace. From The Human Figure in Motion (plate 18) by E. Muybridge, 1955,

New York: Dover.

Nevertheless, gait has only been quantified very recently. Murray was the first
to characterise walking gait for pathologically normal men and women [Murray'67,
Murray'64, Murray'70]. Simultaneous displacements of walking patterns are obtained
by interrupted-light photography where the subjects are attached with reflective
markers at specific anatomical landmarks. This marked the beginning of systematic
scientific studies of human locomotion employing more sophisticated tools and

techniques.
2.2 Biomechanics of Walking and Running

Gait is known as one of the most universal and yet one of the most complex
forms of all human activities. This rhythmic motion involves a high level of interaction
between the central nervous system and various muscles. Functional and independent
locomotion entails the ability to (i) support the upright body; (ii) maintain balance in
the upright position; and (iii) execute the stepping movement. The Encyclopaedia of

Science and Technology, volume 2 (pp 699-702), defines biomechanics as the field that
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combines the disciplines of biology and engineering mechanics and using the tools of
physics, mathematics and engineering to quantitatively describe the properties of
biological materials. The biomechanics of locomotion can be studied in two different
lights. Kinematics is the description of motion of joints but does not consider the forces
that cause the actions. Kinetics is a study of the internal forces (e.g. muscle forces) and
external forces (e.g. ground reaction forces) that cause those movements. Here, we are
more interested in kinematics rather than kinetics in describing gait as we are only
concerned with the output of this biomechanical system. That is, computer vision sees

nothing more than the appearance!

Running is a natural extension of walking, with significant biomechanical
differences [Ounpuu'94, Thordarson'97]. The running cycle, however, is not solely
discriminated from walking by velocity; you cannot just walk fast to claim that you are
running! By biomechanics definitions, walking and running are distinguished firstly by
the stride duration, stride length, velocities and the range of motion made by the limbs.
That is, the kinematics of running differs from that of walking where the joints' motion
increases significantly as the velocity increases. A second difference concerns the
existence of periods of double support or double float. This is determined by the
duration of the stance phase. A gait cycle is divided into the stance phase and the
swing phase, which usually comprises approximately 60% and 40% respectively of a
normal walking cycle, see Figure 2.4(a). A normal walking gait cycle may also be
described in terms of double support and single support. On the other hand, there are
two periods of double float in running, see Figure 2.4(b). Double float is when neither
foot is in contact with the ground, which can also be seen clearly on Figure 2.3.
Therefore, for running, the stance phase must be less than 50% of the gait cycle and
correspondingly, the swing phase must be more than 50% of the gait cycle (i.e. the
remainder). The duration of the stance phase and the swing phase depends on the
running velocity. The stance phase duration is inversely proportional to the velocity
while the duration of the swing phase is proportional to the velocity. Unlike walking,
there are several manners in which the foot contacts the ground. During walking, the

heel contacts the ground followed by a foot-flat stance. For running, the majority
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(approximately 80%) of runners (rear foot or heel strikers) make initial ground contact
along the posterolateral border of the foot while the minority (midfoot striker) initially
contact the ground with the midlateral border of the foot. This will give a range of
variation in running patterns. One interesting point to note is that the range of motion
of the hip increases as the progression speed increases in the case of walking, but it

decreases in the case of running [Hreljac'95].

Interestingly, there exist some similarities between these two distinct gaits
under certain conditions. Li et. al. compared the co-ordination patterns of walking and
running at similar speed and stride frequency [Li1'99]. They observed that under similar
speed and stride frequency, there occurs topological similarities in the co-ordination
patterns between the thigh and the lower leg in walking and running. These co-exist
with functional differences throughout the gait cycle, especially in the transition from
the stance to swing phase. The thigh and the lower leg co-ordination pattern for
running and walking is quite similar except between 20% - 40% of the gait cycle. They
also observed that during walking, the thigh swings forward at toe-off, but it swings

backward during running.
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(a) Gait cycle and terminology used for walking.
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(b) Gait cycle and terminology used for running.

Figure 2.4: Comparison of the gait cycle for walking and running. [Ounpuu'94,
Thordarson'97]
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2.3 Gait as a Pattern of Movement

Gait has a composite set of consistent characteristics or style for an individual,
and is rhythmic and periodic. Therefore, gait is a pattern of movement. This section
illustrates the variability for multiple simultaneous patterns of the angular motion of
human lower limbs while walking and running. Figure 2.5 shows manually labelled
sample data obtained from a particular subject for a gait cycle. When a person walks
or runs, there are vertical and forward hip motions. In our case, the overall forward
motion is not our concern due to the data acquisition process and also the technique
used for the feature extraction which will be described in Chapter 3. Figure 2.5(a)
shows the hip’s vertical oscillation relative to the average vertical motion. The body
(or trunk) oscillates through two vertical peaks and two valleys in each cycle as one
gait cycle consists of two steps. The peaks and the valleys are dependent on the lower
limb's positions. When walking, the valleys occur during the double support phase and
the peaks occur during the single support, that is, when the body and the lower limbs
are upright. Interestingly, the shape of the graph for walking is a phase shifted version
of that for running. During running, the valleys occur during heel strike while the
peaks occur during double-float. Figure 2.5(b-c) shows the absolute angles of the
thigh and the lower leg rotation, respectively, for a gait cycle of a particular subject. As
depicted, the range of the joint’s motion increases when running, as discussed in the

previous section.
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(c) Absolute angles of the lower leg rotation.

Figure 2.5: Angular motion of the lower limbs of a subject walking and running.
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Human locomotion is naturally rhythmic producing a co-ordinated oscillatory
behaviour [Stewart'99] which is believed to be controlled by a Central Pattern
Generator. Gait not only satisfies geometrical symmetry (step length is similar for both
heel strikes) but also dynamical symmetry (the frequency content of both lower limb’s
motion is similar). As the consequence, these motions which operate in space and time,
satisfy the rules of spatial symmetry (sequence of oscillation, i.e. swapping legs and

arms) and temporal symmetry (generally a phase-lock of half a period).

One of the unique characteristics of walking and running is bilateral symmetry,
which gives the name of our first motion model. It means symmetry of left and right,
or, if there exists some reflection that is invariant. That is, when one walks or runs the
left arm and right leg interchange direction of swing with the right arm and left leg,
and vice versa, with half a period phase shift. To further illustrate the bilateral
symmetry of walking and running, Figure 2.6 shows a support graph (where the dots
represent which foot is in contact with the ground) of these gait patterns.
Unsurprisingly, the second half of the gait cycle is a reflection (about the midpoint of
the cycle) of the first half for both the cases of walking and running.

r
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Figure 2.6: Support graphs illustrating bilateral symmetry in walking and running gait

patterns.

Figure 2.7 shows the manually labelled absolute angles of rotation for the
thighs and lower legs. This shows that the motions of the left and right leg are coupled
by half a period phase shift. However, this is only a generalisation for normal gait. Gait
symmetry or asymmetry is still in debate [Sadeghi'00] and could be of significant
importance for clinicians. As our purpose is to develop a model to guide a biometric
system in extracting leg motion, gait symmetry can be assumed. Hence, if necessary
the same model can be extended to describe both legs simultaneously as both perform
the same motion but with a phase-lock of a half a period. If one’s gait is lack of
symmetry, or when symmetry is of great importance, then both legs can be modelled
by two distinct but systematically coupled oscillators (with fixed relative phase

difference).
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Figure 2.7: Thigh and lower leg rotation of the left and right leg.

These together form the foundation for the development of the new human

locomotion models (described in Chapter 4), which serve as the basis for the novel

automated non-invasive person recognition approach.

2.4 Gait Parameters for Recognition

Although there are extensive studies on the biomechanics of human

locomotion, they have been mainly interested in understanding motions for sports

injury and efficiency, and not for recognition purposes. For a gait biometric system to

be efficacious, gait parameter selection is critical as they have direct impact on the

performance. Many characteristics can be derived from human locomotion patterns.

They can be characterised into four categories:

(@)

(i)

Kinematics

Any characteristic that is caused by kinetic factors such as hip, knee and ankle

angular rotation patterns, body/trunk ambulation, step length, step width, speed

etc.

Kinetics

Any characteristics such as forces, moments or torques acting on a body.
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(111)  Dynamics
Any characteristic (usually derived from kinematics and Kkinetics

characteristics) that entail continuous changes such as symmetry of the limbs’

angular motion, ambulatory velocity etc.

(iv)  Physiological

Any quantifiable biological characteristics such as body height, leg length etc.

Recently, various gait parameters have been used for identification purposes.
Some examples are cycle time, stance/swing ratio and double support time [Davis'02];
and stride and cadence [Abdelkader'02]. Here, we are concentrating on dynamic
characteristics, owing to the fact that gait operates in space and time. We favour the
thigh and lower leg angular motion to recognise people only by the way they walk or
run, rather than by their physiological traits or any static aspects of gait. That is, it is
all about motion! Although, computer vision can only perceive appearance which are
usually kinematic and physiological features, they can be further manipulated or

transformed into a suitable representation to benefit the recognition process.

2.5 Conclusions

The study of gait is not new, it attracts not only scientists, but also artists.
However, only recently have we had the tools and facilities to study gait quantitatively.
Although human walking and running are two distinct gaits, as defined by
biomechanics, there exist topological similarities in the co-ordination patterns. This
encourages the development of a motion model that is invariant to both gaits (Chapter
4). Human walking and running patterns are periodic, satisfying spatial and temporal
symmetry. Therefore we favour dynamic characteristics including the thigh and the
knee rotation in developing the recognition strategy. Dynamic characteristics of gait
facilitate analysis in the frequency domain which benefits the investigation of the
correlation between these two gaits (Chapter 6) and also the development of unique
gait signatures (Chapter 5). The following chapter will illustrate the development of

the subject dataset and the feature extraction process.
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Chapter 3 : Data Acquisition and Feature Extraction

The first stage of a biometric system is the data acquisition followed by the
feature extraction. During data acquisition, video clips are taken when the subjects are
walking or running on a motorised treadmill. In the first stage, feature extraction is to
pre-process the images to simplify the data representation for computational efficiency.
Then, an evidence gathering technique which consists of two phases will capture the
dynamics of the leg motion within a gait cycle. Figure 3.1 illustrates the acquisition

and feature extraction process.

Data Low-Level Feature  High-level Feature
Acquisition Extraction Extraction

—» | Video Clips |—»| Simplified Data | Evidence | _, Angular
Representation Gathering Motion

Figure 3.1: Schematic diagram for data acquisition and feature extraction.
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3.1 Data Acquisition

There is a wide range of methodologies and equipments available for gait
analysis, mainly designed for clinical and laboratory environments. The most common

systems are based on electrogoniometry, electromagnetics and imaging.

An electrogoniometer is an electronic device which is fixed to a joint to measure
the rotation. Although data can be obtained immediately, the major drawbacks are
alignment problems of the device and the joints, and the repeatability of device
placement. Some examples of imaging systems are optoelectronics, cinematography
and videography. Optoelectronics automate much of the process: they use active
markers, such as LEDs which are placed on a subject and are triggered by a computer.
However, this system is encumbered by interference from the reflections off the floor
and requires complex cabling. The electromagnetic system detects the motion of
sensors placed on each segment in an electromagnetic field and can provide real time
6-degree of freedom data. The limitations are complex cabling, large number of
sensors and high cost. On the other hand cinematography is more versatile and less
sensitive to the environment. The major advantage is that it provides better image
quality. The problem that always haunts clinicians is that currently there are few
automated systems for quantifying the data. Videography is the most frequently
employed approach to automated motion analysis. In clinical environments, this
system usually automatically tracks reflective markers. However, the disadvantages are

poor image resolution and obstruction and/or movement of markers.

Here, we employed a non-invasive digital videography system which is
markerless, eliminating the problem of marker occlusion. Subjects are filmed walking
and running on a motorised treadmill in their own choice of clothing, at their preferred
speed, by a digital video camera. Then, video clips are split into individual image files

for pre-processing.
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3.1.1 Experimental Dataset

The experimental dataset consists of the fronto-parallel views of 20 subjects,
with 6 samples or sequences of each subject. Each monocular image sequence is a full
gait cycle, i.e. 2 steps. The dataset is summarised in Table 3.1. Various application
issues are also incorporated in the dataset for performance analyses. Images are
contaminated with 25% salt and pepper grey scale noise to simulate poor quality video,
and at half the original resolution (65 x 95) for performance analyses. This dataset has
more subjects than some previous studies in gait recognition [Cunado'99a, Huang'99]
and is the first to contain the same subjects walking and running. Subject’s enrolment

is chosen randomly.

Attribute Range Mean Standard Deviation
Age (years) 22-45 274 5.58
Weight (kg) 45-100 67.0 13.78
Height (cm) 156 — 192 1711 8.48
Walking Speed (km/h) 2.8-5.5 4.35 0.67
Running Speed (km/h) 6.5-13.9 9.13 1.84
Gender 5 females, 15 males - -

Table 3.1: Summary of the subjects information of the experimental dataset.

3.1.2 Treadmill or Track

Treadmills offer many advantages in human locomotion analysis. Space
requirements are constrained, environmental factors can be controlled, steady-state
locomotion speeds are selectable, and successive repetitive strides can be documented.
The issue of whether treadmills will alter the pattern of walking and running remains a
constant topic of discussion among the biomechanics, psychology and rehabilitation
communities. One study suggests that walking on an 'ideal' treadmill, when the

supporting belt moves with a constant speed, does not differ mechanically from
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walking over ground, except for wind resistance, which is negligibly small during
walking [Zatsiorky'94]. The only difference between the two conditions is perceptual:
the environment is stationary when a treadmill is used [Schenau'80]. However real
treadmills are not ideal! Murray found that during treadmill walking, subjects tend to
use a faster cadence and shorter stride length than during floor walking. However, in
general, treadmill walking was not found to differ markedly from floor walking in
kinematics measurements [Murray'85]. Whether a treadmill will affect one's gait will
also depend on the habituation of the subjects to treadmill walking [Wall'80]. For this
reason, all the subjects were familiarised to the treadmill for at least 15 minutes before
measurements were taken. The differences of walking over ground in comparison to
walking on a treadmill may be of great importance to the biomechanics community.
For our purposes we assume all subjects to be affected equally as they were all filmed
under the same conditions. Thus, the features may change, but with respect to one
another, these changes are assumed to be subtle. We assume that the general trend and
principles apply to all subjects. As subjects tend to look down while walking and
running at the treadmill, a mirror was placed in front of the subject, so that they keep
their head up and maintain their natural posture but more importantly this aids to

maintain stability.

3.2 Feature Extraction

Feature extraction here involves two different levels, one is low-level and the
other is high-level. Low-level feature extraction will require no prior knowledge about
the shape or structure of the image to extract basic features such as edge information
and operates on the basis of a single pixel’s (or a small) neighbourhood. High-level
feature extraction here concerns finding articulated moving shapes by evidence
gathering based on a motion template (which will be described in Chapter 4). Thus,
the two levels of extraction (edge detection and an evidence gathering technique) are
used to extract the dynamic features of interest: the angular motions of the thigh and

the lower leg.
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3.2.1 Low Level Feature Extraction

Video clips are split into individual colour image files (Figure 3.2(a)), and then
cropped to reduce computational cost. To reduce the complexity of the colour image,
the Sobel edge operator is used to obtain the edge information. The Sobel edge
detector consists of two masks, M, (which detects vertical edges) and M, (which
detects horizontal edges) where the coefficients are derived from Pascal’s triangle
giving the effect of Gaussian smoothing within the template itself [Nixon'02]. A
condition, which effectively thresholds the M,-component’s magnitude of the Sobel
edge operator (Figure 3.2(b)) is applied to obtain the leading edge. If the convolution
of the M, template with the image is bigger than zero, then the edge magnitude is the
length of the vector of M,- and M,-components. Assuming that subjects are in front of
a bright background, this process is applied to the three layers of colour (red, green,
blue), see Figure 3.2(c). The edge magnitude of the three layers are then summed and
thresholded at 255 (for 8-bit images), to produce prominent edges (Figure 3.2(d)).
The leading edge is most suited to automated feature extraction because clothing tends
to adhere to the front of the moving leg (Appendix A). These single-edge images are

then passed into the high-level feature extractor.
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Figure 3.2: Process of transforming a colour image into a single-edge data via the Sobel

edge detection with a threshold condition on the M.- component of the operator.

3.2.2 High Level Feature Extraction by Evidence Gathering

The evidence gathering technique used here comprises two phases: i) temporal
template matching and, ii) local template matching. The aim of temporal template
matching is to search for the best motion model that can describe the leg motion from
global information, i.e. over a gait cycle. That is, this will gather evidence for the best
gross motion of a complete gait cycle. Essentially, this process is to match a line which
moves according to the structural and motion model (temporal template) described in
Chapter 4, to the edge maps of a whole sequence of images to find the desired

articulating edges of the thigh and the lower leg. This process is described by

Temporal _Template Match = Z Z Z (P”(t) N ];](t)) G.1)

ter iex jey

where P is an x by y image, T is the temporal/motion template, 7 is the total number of
frames and ¢ is the time index. The union operation describes the intersection of the

edge points with the template; it is described as evidence gathering since the number of
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intersecting points is counted to give the match over the sequence of » frames. A
temporal template can be thought of as a sub-image that varies in time in a manner
described by a model. That is, a representation of moving objects in a sequence of
images embedding the nature of a motion. The idea of using a temporal template in
extracting an arbitrary moving arbitrary object [Grant'02] has demonstrated successful
results, even in extracting a moving person. The evidence gathering process will
accumulate evidence which is essentially the intensity level of the edge maps that fall
within the moving template, enabling the calculation of the best set of parameters for
the underlying motion model. As an example, Figure 3.3(a) shows a slightly distorted
simple harmonic motion (SHM), superimposed with the best-fit motion model found
using this method. As shown, it attempts to search for the best motion model that
resembles the distorted SHM. Having found the best set of parameters for the motion
model, the angles for each frame are then generated. The search is refined by
employing a local template matching technique. This is achieved by searching within a
range based on this angle to ensure that the best-fit angle is found in each frame, an
example result is shown in Figure 3.3(b). Therefore, any deviation from the norm can

be filtered or extracted at this stage. This process is described by

Template Match = 2 z (R, N T,,) (3.2)

iex jey

where evidence is gathered over a single frame, not a sequence.

A similar process is applied to extract the lower limb’s angular motion for each
subject. Figure 3.4 illustrates the process of extracting the angular motion of the thigh
and lower leg. Each individual will have his/her own norm of motion (extracted by
temporal evidence gathering) and unique deviation from the norm (determined by local
evidence gathering). Temporal template matching will search for the best hip and thigh
motion followed by the lower leg motion for each subjects. Once the parameters
describing the best gross motion are found, angles of rotation are generated. Then,
local template matching will search within a range to determine the deviations from
each individual’s norm. Hence precise measurements can be obtained, which is then

used to create gait signature for recognition purposes.
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Figure 3.3: Results of (a) temporal template matching and (b) local template matching to
search for the gross motion and the deviation from each individual norm, respectively.

The shaded area is the search-area.
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Figure 3.4: Extraction of the lower limb motion.
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3.3 Conclusions

A dataset consists of the clean, noisy and low-resolution images of 20 subjects,
each with 6 samples of walking and running on a treadmill has been developed. A
treadmill was used because it offers various advantages in data acquisition and
processing. There are two levels of feature extraction. Low-level feature extraction
simplifies the raw data to single-edge data by using the Sobel edge detector. Then,
high-level feature extraction (comprises two processes) is designed to extract the most
accurate possible angular motion of the leg from a complete sequence of gait cycle.
This high-level feature extractor is to be used with an underlying motion model

detailed in the next chapter.
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Chapter 4 : Describing Motion

The motion model which serves as the underlying temporal template of an
evidence gathering technique in feature extraction, is one of the most vital elements in
a model-based approach for person recognition by gait. We have developed two new
motion models invariant to walking and running: the bilateral symmetric (BS) model
and the forced coupled oscillators (FCO) model, each with their unique strengths and
limitations. A structural model for the lower limb is also described. Results of feature
extraction using these two models are illustrated. The appropriateness of using

oscillators as the underlying model for human locomotion is now discussed.
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4.1 Motion Models

There are many ways of modelling human leg motion. The most accurate way
may be using Fourier series (as this can describe any periodic waveform) but at the
expense of complexity and computational cost. Here, we suggest an alternative way to
model human locomotion aiming to achieve automated angular motion extraction with

reasonable accuracy for the purpose of biometrics via computer vision.

4.1.1 Bilateral Symmetric Model

h = hip
k = knee
a = ankle

0 = angular displacement

[ = length of the limb

The subscripts T and K denote
thigh and knee.

Figure 4.1: Structural model of a lower limb: upper and lower pendulum represents the

thigh and the lower leg, respectively, connected at the knee joint.

The bilateral symmetric (BS) model is developed based on the observations of
the apparent movement of the human leg. The leg is modelled by two pendula joined in
series, as illustrated in Figure 4.1. By the biomechanics convention, the knee rotation
of this model is relative to the thigh rotation, as opposed to that of the forced coupled
oscillator model which will be described in the next section. As subjects are filmed
walking and running on a motorised treadmill at constant velocities and the resolution
of the images used is relatively low, the horizontal motion of the hip is subtle
compared with the other motions, such as the hip's vertical oscillation and the motion
of the thigh and the lower leg. The vertical motion of the hip is essential as it differs
from walking to running. As depicted in Figure 4.2, during running the amplitude of
the displacement is greater and has a relative phase shift with respect to that of

walking. The motion model for the hip's vertical displacement, S,, is
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S, (1) = 4, sinQot + ¢,) (4.1)

where A4, is the amplitude of the vertical oscillation, o is the fundamental frequency, ¢,
is the phase shift and ¢ is the time index for a normalised gait cycle. Since a gait cycle
consists of two steps, the frequency is twice that of the thigh motion which will be
described later. That is, every time we make a step, the body lowers and lifts, which
gives the variations shown in Figure 4.2. For visualisation purposes, all the plots are
normalised to a complete gait cycle. The superimposed graphs reflect the veracity of
this simple model, by comparing the model generated vertical motion of the hip with
that of manually labelled data. The structure is clearly identical and agrees with

biomechanical studies acquired by other marker-based systems [Murray'67,

Ounpuu'94].
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Figure 4.2: Relative vertical displacement of hip during walking and running.

The thigh rotation, 07(2), is a simple harmonic motion described by Eq. 4.1,
where A7 is the amplitude of the thigh rotation and Cr is the offset.
0,(t) = 4, cos(ot + ¢,) + C, (4.2)

Cr is important for implementation (but not in describing the dynamics) because when
walking or running, the human leg does not move about equilibrium as a normal

pendulum does. Eq. 4.2 can be applied for both running and walking. Figure 4.3(a-b)
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show the model-generated thigh rotation superimposed on the manually labelled angles
for a particular walker and runner, respectively. Results show that the model describes

the motion well. Based on observations, the knee rotation, Ox(z), can be described as

Ay, sin’ (o) + Cy, 0<t<p

4.3
Ag, sin*(ot + ¢, )+Cyy, ,p<t<l -3)

eK(t) = {

where Ax; and Ak, are the amplitudes of the knee rotation, Ck; and Ck; are the offsets,
¢ is the phase shift and p is the time when the swing phase starts. For walking, p
appears to be 0.4 whereas p is approximately 0.3 when running. This is because the
swing phase starts earlier when running. This also marks the start of the second double
support and the double float for the cases of walking and running, respectively. The
sin® term models well the basic motion as depicted in Figure 4.3(c-d). However, the
knee rotation model requires parameter selection as it is an empirical model. The 13
parameters of interest extracted from the motion models are 4,, ¢y, A7, ¢1, A1, A2, dx,
p, Cr, Ck; and Ck,, (where the last three offsets are only important in implementation),
and the initial coordinate of the hip’s position, /,(0) and £,(0) which will be explained
in Chapter 4.2 . This model is able to describe the motion of the thigh and the knee of
both walking and running gaits. If necessary, it can also be extended to couple the left
and right leg by a phase-lock of a half a period shift. As such, a model achieving fewer
parameters as compared with the earlier model [Cunado'99a] which demands 18
parameters only to describe the thigh motion. Again, the results agree well with

biomechanical observations [Murray'67, Ounpuu'94].
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Figure 4.3: Model generated thigh and knee rotation (relative measurement) for walking and

running superimposed with the manually labelled angles of a particular subject.

4.1.2 Forced Coupled Oscillator Model

Although the bilateral symmetric model illustrated earlier describes the motion
well, there are a few drawbacks. First of all, the model lacks analytical attributes, and
secondly the need to select the mode of gait (i.e. the value for the parameter p). In this
extended analytical model, the human lower limb is again represented by two pendula

joined in series, where Ok(?) is measured with respect to the vertical (absolute angle) as
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opposed to the one in the bilateral symmetric model which is relative to 04(¢), see
Figure 4.4. We exploit the concept of a forced coupled oscillator to create a model
invariant to walking and running gaits, as legs are considered to be an imperfect
pendulum with substantial energy loss [Zatsiorky'94]. Biomechanics studies show that
a driven harmonic oscillator provides a good representation for human walking
[Holt'90]. However, this is only a simple pendulum representing mainly the thigh
motion. McGeer had also proposed a 2-legged machine (that only walks downbhill)
using only down slope as a source of energy [McGeer'90a] and claimed that its motion
is comparable to that of human walking. This machine consists of two rigid legs with
mass and inertia, joined at the hip with a mass at the hip, and semicircular feet. Later,
he proposed another passive dynamic walking structure with knees [McGeer'90b]. This

also gave impressive results.

This new forced coupled oscillator model, which requires no parameter
selection for different gait mode, solves the differential equations obtained from the
dynamic motion of these two pendula. The upper pendulum swings with a simple
harmonic motion while the lower pendulum is influenced by the force introduced by
the upper pendulum. To avoid notational overload, note that the notations for the
corresponding labels remain the same as the previous model. The hip motion remains

as described by Eq. 4.1.

h = hip

k = knee
a = ankle
m = mass

0 = angular displacement

[ = length of the limb

The subscripts T and K denote
thigh and knee.

Figure 4.4: Structural model of the thigh and lower leg: upper and lower pendulum
models the thigh and the lower leg, respectively, connected at the knee joint. Motions are

measured by absolute angles.
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Referring to Figure 4.4, the upper pendulum representing the thigh can be

modelled by simple harmonic motion as

éT + wier =0 (4.4)

where 07 is the angular displacement from the vertical, 6, is the angular acceleration,

and or is the fundamental frequency. The solution is the motion model for thigh

rotation given by
0, = Acos(o,t) + Bsin(w,t), A > B (4.5)

where 4 and B are constants, and ¢ is a time index which varies from 0 to 1,
representing the start and end of the gait cycle, respectively. As the thigh rotation is of
cosine nature, thus, the coefficient of the cosine term is more significant and is

accounted for the amplitude of this rotation.

In reality, human walking and running is a highly sophisticated system
involving multiple factors interacting simultaneously. As we seek a model providing a
foundation for a person recognition system, realistic modelling of an individual's
locomotion is unnecessary. We shall assume that the lower leg can be modelled as a
driven oscillator where the force applied to it is related to the motion of the upper
pendulum. Following an analogy of Newton's laws, by differentiating Eq. 4.5 twice,

we have
0, = —oﬁ[A cos(®,¢) + Bsin(w,) } (4.6)
which contributes to the driving force to the lower pendulum. This force is given by
F(t) = —mei{A cos(oaTt) + B sin(coTt) } (4.7)

Similar to Eq. 4.4, the motion equation for the lower pendulum is
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0, + 20, = —F(t) (4.8)

Substituting Eq. 4.7 into Eq. 4.8, yields

0, + 030, = mo-[4cos(w, )+ Bsin(w,z)] (4.9)

The solution for O will comprise the general solution, O, and the particular solution,

Ok,. The general solution is obtained by setting F(?) = 0 in Eq. 4.8 to give

0, =C cos(w, ) + D sin(w ) (4.10)

where C and D are constants. A Wronksian method [Kreyszig'93] is used to find the

particular solution, and the result is

2
0, =- % (Acos ot + Bsin o,t) 4.11)
(0" —og7)

Recalling that Ox = Ok, + Ok,, by substituting Eq. 4.10 and Eq. 4.11, the complete

solution for Ox yields the basic motion model for the lower leg rotation, which is

2
MOy
2

O — O

0, = Ccosmyt + Dsino,t — —(Acoso;t + Bsinwt),0, > o, (4.12)

where, o7 and ok are constrained not to be equal, otherwise Eq. 4.12 will introduce a
singularity. Also, o7 shall be greater than w to ensure that the shape of a double-bump
is achieved. And, o7 should not be similar to wg, otherwise this equation will be
effectively similar to that of the thigh rotation (Eq. 4.5). A few offsets (M7, E and M)
are required to be added to Eq. 4.5 and Eq. 4.12 for implementation purposes, yield

0, = Acos(w,t) + Bsin(w,1) + M, (4.13)

2
MO
2

®r Wg

0, =E |Ccosoyt+ Dsinw,t — 2)(Acoso)Tt+BsincoTt) + M, (4.14)
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The motion models derived may not guarantee a precise approximation in
implementation. This is because humans do not walk or run like a pendulum. If we did,
we would not move at all! One obvious reason is that our legs do not swing about
equilibrium points. Here, we had only borrowed the concept of pendular movement to
aid the automatic motion extraction process. As this new model is invariant to walking
and running gaits, no parameter selection is needed for this model to differentiate

between walking and running subjects.
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Figure 4.5: Sample output of the thigh and lower leg motion model (absolute

measurement) superimposed with the manually labelled angles of a particular subject.
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Example waveforms that can be produced by the thigh and lower leg motion
models described by Eq. 4.13 and Eq. 4.14, with appropriate value of parameters, are
shown in Figure 4.5. The structure of the response of the model appears very close to
that of the manually labelled data. As expected the simple model does not match the
rotation precisely, but it can describe the gross motion of the lower leg, over a single
gait cycle. This model is periodic over a larger time interval but not within the gait
cycle. It is designed to describe motion within a single gait cycle as for recognition
purposes, we only need features from within a single gait cycle. Naturally, the position
of the leg at the end of one cycle could be used to initialise search for its position in the
following cycle. However, only the labelled single cycle data is used for recognition
here. As we shall see, it serves as a model to automatically extract gait motion for one
cycle via computer vision techniques. It is more likely that a better model of gait itself,
employing Fourier descriptors could incur better characterisation capability but at the
expense of complexity. However the results here suggest such an approach is

unnecessary.
4.2 Structural Model

Referring to Figure 4.4, the structure of a thigh can be described by a point h

that represents the hip and the line passing through h at an angle 67. The knee is then

k() = h(t) + Lu, (t) (4.15)

where ur(?) is the unit vector of the line direction, h is the position of the hip and /7 is
the thigh length, as un(?) = [-sinO7(?), cosO7(?)] and h(?) = [h.(0), h,(0) + S,(?)], where
h(0) and £,(0) are the initial hip coordinates. Decomposing Eq. 4.15 into constituent
parts yields the coordinates of the knee point as,

ko (t) = h,(0) - [, sin B, (7) (4.16)

k,(@)=h,(0)+S, () +1; cos0,(?) (4.17)
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Similarly, the structure of the lower leg is given by a line which starts at the knee, that

passes through k at an angle 6. The ankle a is

a(t) = k(t) + L (t) (4.18)

where uk (7) is the unit vector of the line direction, k() is the position of the knee and
Ik is the lower leg length, as ug(?) = [-sin(Ox(?)), cos(Ok(?) )] and k(?) = [k, k], where k.
and k, is the point of the knee. Decomposing Eq. 4.18 into constituent parts yields the

coordinates of the ankle as,

a,(t) = k(1) I sin(0 (1)) (4.19)
a, (t) = ky (t) + 1 cos(0, (1)) (4.20)

Together with the motion models described earlier, these form the basis of the
temporal template to be used within feature extraction to find the moving lines that

correspond to a subject's leg.
4.3 Implementing an Evidence Gathering to Extract a Gait Model

The best-fit motion model is obtained by an evidence gathering technique as
described in Chapter 3. Each edge point that falls within a predefined region at the
centre of each image of a sequence, is a set of possible initial coordinates indicating the
hip position. The first stage of this evidence gathering technique will search within that
predefined area according to Eq. 4.1 and Eq. 4.13 to determine the best-fit models for
the hip and the thigh rotation simultaneously. The parameters of interest are the axes of
the accumulator space. The cells in the accumulator space that corresponds to each

parameter combination for a given edge point are incremented.

Once the best values for the parameters of interest are obtained, then, the values
of parameters that are inherited from Eq. 4.13 (i.e. 4 and B) are used when searching
for the best-fit model for the lower leg rotation. Similarly, evidence is accumulated in

the accumulator space defined by the parameters from Eq. 4.14 when the given edge
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point falls into the corresponding parameter combination. Here, mr in Eq.4.14 is set to
unity as it can be absorbed into other scaling parameters. The parameters of interest
extracted from all the three motion models describing the hip, the thigh and the lower
leg rotations are 4,, ¢y, A, B, Mr, C, D, E, ox and M;. And, 4,(0) and £,(0) which are
the initial coordinate for the hip’s position. All these describe the first stage of this

evidence gathering technique.

As illustrated by Figure 3.4, once the best-fit models are achieved, angles are
then generated in the second stage of this evidence gathering technique. Based on these
angles, a local template matching is employed to search within a predefined range
derived from medical reports [Murray'67] for the best angles in each frame. Thus, the

best possible angles describing the angular motion of the leg are obtained.
4.4 Example Results

The high-level feature extractor is initialised with parameters obtained from the
averaged manually labelled angular motion of 20 subjects (each with one sample),
representing the norm of human walking and running pattern in this experimental
dataset. Figure 4.6 shows the result of the automated angular motion extraction using
the bilateral symmetric model as the underlying temporal template for the evidence
gathering technique, superimposed on the manually labelled data. Extraction for the
thigh when walking and running appears reasonably accurate, see Figure 4.6(a-b).
However, the results for the knee rotation may have room for further improvement.
There are some discrepancies on the knee rotation between the manually labelled data
and the extraction throughout the whole gait cycle in the examples shown in Figure
4.6(c-d). Nonetheless, the broad structure is clearly there. That the results for the lower
leg extraction are not as promising may be due to the relative angular measurement.
That is, if there are errors in the thigh extraction, then the lower leg angular

measurements are bound to be affected.
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Figure 4.6: Automatic extraction with the bilateral symmetric model measuring the relative

angular motion superimposed on the manually labelled angles.

Bear in mind these comparisons are made between the automatically extracted
angles to that of manually labelled. Manually labelled data are not the ground truth, but
rather, serve as a reference for comparison purposes. Nevertheless, manually labelled
data are used to show close-to-ground truth measurement. Figure 4.7 shows manually
labelled data superimposed on the result of this evidence gathering technique with the
forced coupled oscillator model as the underlying template. In general, the
superimposed graphs demonstrate a considerable amount of veracity of the model and

the manual labelled data. As depicted in Figure 4.7(a), the thigh rotation of walking

48




extracted is very accurate (compared to those in the previous figure) and similarly for

those of the lower leg rotation. For the case of running, results do show some

discrepancies, however, the structure for both the thigh and the lower leg motion both

follow closely the results of manual labelling.
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Figure 4.7: Automatic extraction with the forced coupled oscillator measuring the

absolute angular motion superimposed on the manually labelled angles.
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When comparing the results obtained from using the bilateral symmetric model
and the forced coupled oscillator, immediate differences can be perceived except for
the motion of the thigh. As illustrated in Figure 4.6 (a-b) and Figure 4.7(a-b), the
results are comparable. The two motion models for the thigh are conceptually identical.
As for the extraction of lower leg motion, the forced coupled oscillator model
outperforms the bilaterally symmetry model, compare Figure 4.6 (c-d) and Figure
4.7(c-d). When comparing different gaits, results suggest that extraction for running
may be more challenging. Angular motions extracted via these two models for the case

of walking appear more accurate than that of running, at least in this dataset.

As manually labelled data are merely a reference, visual comparison of the
automatically extracted angular motion superimposed on the image itself would be
more reliable. Figure 4.8 - 4.11 shows encouraging results when the forced coupled
oscillator model is used within the feature extraction technique. Despite differences
between gait modes, this highly automated technique can extract the angular motion
for both the thigh and the lower leg well, even when one leg is occluding the other or
when arm is occluding the hip. Furthermore, extraction is not confused when the leg is
near and/or parallel with the bar of the treadmill as depicted in Figure 4.11. In Figure
4.8, the motion of walking leg is well extracted, except for frame 18-23 where the
angle extraction for the lower leg during the swing phase is less accurate. Nonetheless,
the thigh motion is extracted accurately throughout the whole gait cycle. Similarly, in
Figure 4.11, this technique extracts the thigh motion (when running) accurately but not
the lower leg motion as shown in frame 11-14. Interestingly, this happened to both
female subjects despite the gait mode. Further work is necessary to determine if this is
merely a coincidence. As revealed by the psychology studies (that males and females
have their own unique gait pattern), in the future a more accurate model describing the
gait of different gender shall be investigated. As depicted in Figure 4.9 and 4.11, this
technique can extract the thigh and lower leg motion accurately for these two male
subjects when walking and running. Even though running is a fast motion, Figure 4.10
shows impressive results as the angle extraction for both the thigh and the lower leg

are distinctly accurate.
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Figure 4.8: Examplar result of a female walker’s leg motion extracted by automatic

evidence gathering, showing discrepancy in some images especially frame 18-23.
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Figure 4.9: Examplar result of a male walker’s leg motion extracted by automatic

evidence gathering.

52



1 2

8 9

15 20 21

Figure 4.10: Examplar result of a male runner’s leg motion, showing accurate extraction.
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Figure 4.11: Examplar result of a female runner’s leg motion, showing inaccuracy in
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frame 11-14.

4.5 Discussion

We realise there are limitations on the BS and the FCO models, but we shall
later show how they can indeed meet the desired (recognition) aims. They are
alternative methods and the FCO is potentially a more accurate model. A better
approach is to use Fourier series, but this requires greater computational cost. There
are other potential models to describe the leg motion other than the two approaches
described. A damped pendulum driven by a periodic force introduced by its suspension
point that has periodic rotation may be a suitable model for the knee rotation, as
described in Eq. 4.21. The response shown in Figure 4.12 depicts its adherence to the

lower leg motion, when it reaches a steady state.
0, +7v0, + (0)2 +a cos(2nft))9K = asin(2nft) (4.21)

where y and a are constant coefficients.

Response (Ok)

l l l
0 5 10 15 20
Time (t)

Figure 4.12: Response of a damped and driven pendulum.

In order to obtain the motion model, we have to solve Eq. 4.21. Although this

is a linear differential equation, the sum of two solutions is no longer a solution

54



because of the inhomogeneous term on the right hand side. Hence, it cannot be solved
analytically in terms of standard functions. One of the coefficients is not a constant, but
time dependent and periodic, in this case. Although by Floquet theorem [Wolfram],

there exists a set of fundamental solutions which can be written in this form

0, (t) = c(t)e" (4.22)

where c(#) is periodic with period 7 and A is the Floquet exponent. However, it is a
truncated Fourier series and it is not known explicitly. If the solution contains a Fourier
series, then, this solution does not fulfil our purpose here, as our aim here is to achieve

simplicity in modelling with sufficient accuracy for the ease of implementation.

As suggested by Weber as early as 1836 that leg movement resembles a free
pendular movement [Weber'36]. Approximately fifteen decades later, Braune and
Fisher [Braune'87] wrote, “the swinging of the leg results much more from the action
of the muscles than from gravity”. This is intuitively true or else the muscles would be
of no use and we could not advance at all if our legs swing at a fulcrum about
equilibrium. This was confirmed experimentally [Bernstein'35]. Perhaps a better
representation would be employing a driven oscillator, as suggested by Holt [Holt'90].
Therefore, although pendular motion has gained attention in gait modelling, this is not
the only approach to human locomotion modelling. Nature knows best. As written by
McGeer [McGeer'90b], “Thus might the engineer’s sleek machinery soon dispense
with nature’s awkward contrivances. But a closer comparison reveals that nature is
not so easily outdone. How many more examples of nature’s dynamical sensitivity lie

waiting to beguile the engineer? ”
4.6 Conclusions

There exist many ways to describe human locomotion. We have shown that
oscillatory motion can be used as the underlying concept in modelling human leg. It
may be a free oscillator, a coupled oscillator, a forced oscillator, or a combination of

them. We have suggested a few alternative models: the first being an empirical model,
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the second and third are analytical models. However, only the first two models, namely
the bilateral symmetric and the forced coupled oscillator model have been tested.
There are strengths and limitations for each model described. Automated extraction
using the bilateral symmetric model as the underlying temporal template achieves good
results. However, this model lacks analytical attributes and requires a parameter
selection. Nonetheless, overall performance merit is gained by the forced coupled
oscillator model as it does not require any parameter selection for different gait mode
and more importantly it achieves higher accuracy in motion extraction. And we shall
later see how this model helps in achieving the aim of this thesis. Alternative models
are possible and yet await investigation to determine if they can present a technique of

better efficiency than those already developed.
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Chapter 5 : Gait Signature and Recognition

In order to identify an individual from a population, a unique label is associated
to a particular subject. A Fourier description is employed in creating this unique label
called a gait signature. Statistical analysis is used to aid the selection of prominent
features and also analyses the discriminatory capability of the knee rotation. Then, a
simple classification algorithm is used to examine the genuine discrimination
capability. The potential of both walking and running gaits and the performance of the
forced coupled oscillator and the bilateral symmetrical model are compared. This
approach is also tested on generalisation capability such as noise and resolution.

Figure 5.1 illustrates the process of person identification.

Feature Feature
Representation Selection Classification
Angular ' Fourier M%%r:géde | | Statistical Low Order !
motion‘"Transform—> " Analysis  PWM i k-nn - Outcome

Spectra !

Figure 5.1: Process of person identification.
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5.1 Fourier Descriptions and Gait Signature

Biological motion is always regarded as a complex activity with constant
fluctuation from its own norm. An example to illustrate the fluctuation in behavioural
traits is normal speech, having two persons speak with exactly the same intonation or
manner is extremely rare. Just like every zebra has stripes, having two zebras with
exactly the same pattern of stripes will be unusual, giving anecdotal evidence
illustrating inconsistency in biological traits. In order to study the order behind the
universal activity of human locomotion, yet with individual uniqueness, we first have
to break the complex representation down to the underlying building blocks. This will
facilitate investigation of individual characteristics of this universal activity. Here,
Fourier analysis is employed because it can describe a complicated waveform as the

summation of a set of simple waveforms.

Gait is not only characterised by the range of motion, but also involves the
Central Pattern Generator and musculature that together control the way the limbs
move. That is, walking and running are not only distinguished by their kinematics, but
also significantly related by their kinetics. These suggest that phase information will
have a certain degree of significance in describing gait patterns. A subject is associated
with a meaningful and unique form of identification called a gait signature. The gait
signature of a particular subject consists of the phase and the magnitude spectra of the
Fourier description of the thigh and lower leg rotation measured from a gait cycle. This
ensures the dynamics for both the spatial and temporal characteristics are captured. A
scale change in the time domain signal results a scaling in the Fourier transform (Eq.

5.1), however, a delay in time alters the phase (Eq 5.2).

FL(at)) - ww@ 5.1)
F{f(t-t,)} = F(s) e (5.2)
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As relative timing is equivalent to the phase in the frequency domain,
alignment of the time domain signal is critical. Hence, the time domain signals are
aligned to start at the same point, which is the minimum of the thigh rotation and the
corresponding instance of time of the lower leg rotation. This ensures the validity of
the inclusion of the phase components when creating the gait signature for comparison.
In the dataset collection procedure, subjects are encouraged to walk, if possible, at a
constant pace. The motorised treadmill helps to achieve stability in pace, too. By using
data between two successive minima, recognition becomes invariant to speed as data
within a complete gait cycle is used. In recognition of the importance of phase-locking
in perceiving gaits, Boyd introduced video phase-locked loops [Boyd'01] to benefit

human gait analysis.

As explained earlier, to capture the essence of gait pattern, the signature shall
contain both the magnitude and the phase component of the Fourier description.
Therefore, the magnitude components are multiplied by their respective phase
components, to yield the phase-weighted magnitude (PWM),

PWM(0,) = (@(e" ) |o arg(0(c™ ) (5.3)

where @(ej‘””) is n'™ the Discrete Fourier Transform component of the measured angle

of rotation, and e denotes the multiplication of each element in the vector, thus
increasing discriminatory capability. This will be described in the next section. The
zero-order term is ignored to eliminate the effect of any offsets, so the gait signature
contains only the features of the pure motion dynamics of a gait cycle. Letting the

phase, arg(@(ej"’” )), range from -n to © will introduce discontinuity at point £, that is,

even though they are the same point, they appear to be “numerically” far apart in the
feature or signature space. This will cast a negative effect on the classification process.
To eliminate this, the phase is represented in complex form to ensure continuity and

also the one-to-one mapping which in turn ensures validity in implementation.
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5.2 Feature Selection

Statistical analysis is necessary to establish the basis for determining which
features should be used to create a signature for filtering identity. This will in turn
increase the correct classification rate (CCR). A statistical measure that describes the
distribution of subjects, or class, clusters in the feature space is employed. The
separation, S, between the class means, normalised with respect to class covariances, is
used. The separation, S;;, between subjects i and j is given by a form of the

Bhattacharyya distance as,

s, =fm-m ][22 ] 5.4
i, =[m, —m, T m, —m; (5.4)
where m; is the mean and ), is the covariance class i. The mean signature m; for each

class i is given by

M-1

1
m, =— X, a s =12,..N (5.5)
M =0

where M is the number of experiments or samples for class i, N is the number of
Fourier harmonics used and x' is an M x N data matrix of signatures for class i. The

covariance matrix, » ;, is

M-l r

(x§ -m,)x; - ml.) (5.6)

1
l M =0

Discriminatory capability can be deduced from the cluster separation. if the
value of S;;. is large, either the clusters are well separated and/or have low variance.
Conversely, poor discriminatory capability derives from clusters which are closely
spaced and/or with high variance. The advantage of measuring the variance within a
class and the distance between different classes simultaneously is that measurements
are less sensitive to any outliers in the feature space. The values of the mean separation

S and the variance of the separation measurements ¢, are directly proportional to the
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overall discriminatory capability of a certain set of features. Table 5.1 summarises the
value of § and o” for all cases including using the magnitude component only, the
lower order phase-weighted magnitude and those with higher order phase-weighted
magnitude of the Fourier description. As depicted, the PWM has a greater value of
mean and variance, meaning that the distance between each cluster is greater compared
with the signatures formed from the magnitude alone. When higher orders of PWM are
included as part of the signature, the value of S decreases and is the smallest here.
Even though the mean of the magnitude is larger than that of the PWM with higher
order, the variance of both measures is relatively small compared to that of PWM and
this holds true for both walking and running. Thus, they are less discriminative.
Accordingly, this suggests that the PWM should offer best discriminatory capability,

with running appearing to be more potent.

Figure 5.2 illustrates the pair-wise values of S between classes in each case.
The brighter the square, the higher the separation, and hence better discriminatory
capability. The darker the square, the closer the feature clusters, so the diagonal is the

darkest reflecting the zero distance between the same feature sets.

Walking Running
S o’ S o’
Magnitude 0.0623 0.0086 0.0512 0.0064
PWM 0.1506 0.0264 0.1710 0.0175
PWM higher order 0.0151 0.0052 0.0140 0.0072
Table 5.1: Values of S and o~ using different features: magnitude alone, PWM and PWM
with higher orders.
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Figure 5.2: Pair-wise cluster separation of various feature vectors.

As depicted by the pair-wise pseudo-greyscale plot in Figure 5.2(a-b) and
Table 5.1, the magnitude component alone does show some discriminatory capability.
However, gait is not only defined by the range of motion made by the limbs, but also
by how the limbs are moving. This would suggest the significance of including phase
in the signature. As shown in Figure 5.2(c-d), the inter-class separation increases (the
squares are brighter) when the phase is multiplied by the magnitude (PWM). The lower
order components (comprising of the 1*' - 2™ harmonic of 07 and 1% — 3™ harmonic of
Ox) are chosen to form the gait signature. This is because the PWM components of the
thigh and lower leg rotation are dominated by the lower order due to their greater
magnitude values as shown in Figure 5.3, where the error bars indicate the standard
deviation computed from a population of 20 subjects, each with 6 samples. Figure
5.2(e-f) and the value of S show that the inter-class separation decreased
tremendously when higher orders (1 — 10") are included in the signature vector.
Figure 5.4 is the phasor plot of PWM for 20 subjects (each subject has one sample)
where the radius to each point is the magnitude component and the direction from the
origin is the phase component. Here, only the phase and magnitude (of the first three
harmonics) of the leg motion of running is shown. The magnitude of the higher order
harmonics is relatively small and they are more likely to be dominated by noise.
Features shown confirm the general trend of the leg motion (the relative size of the
harmonics) with some variation across the population, as expected. This is supported
by medical studies which suggest that the maximum frequency content of human
walking is SHz [Angeloni'94], that is only the first five harmonics are sufficient to

describe human locomotion.
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Figure 5.3: Magnitude spectrum of the thigh and the lower leg rotation when walking and

running, with standard deviation.
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Figure 5.4: Phasor plot of the magnitude and corresponding phase components of the
(a) thigh, and the (b) lower leg rotation in the case of running.

Suggested here is a way of combining the phase and magnitude, but not the
only method, for recognition purposes. There may be other better ways of combining
them to achieve better discriminatory capability and this shall be investigated in the

future.

5.3 Identifying an Individual

Classification is done via the k-nearest neighbour (k-nn) and cross-validated
with the leave-one-out rule. No doubt a more sophisticated classifier would be prudent,
but the interest here is to examine the genuine discriminatory ability of the features.
This method uses the Euclidean distance between the position of a test feature vector
and the position of the surrounding training feature vectors to find the Ath nearest
neighbour in the feature space. The feature vector under test is then classified as the

class that has the greatest population in k. The Euclidean distance, D, is calculated by
> 2
D = z (Xn - y}’l) (5’7)

where N is the number of harmonics used in the feature vector, x and y are the values

of the nth harmonic for the test feature vector x and the training feature vector vy,
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respectively. By this means, a subject can be associated to the nearest or statistically

correct class, otherwise to be rejected (if the similarity value is below a threshold).

5.4 Performance Analysis

The features are extracted via the evidence gathering technique (described in
Chapter 3), with the motion models (described in Chapter 4) as the underlying
temporal template. Performance analyses were carried out on both the bilateral
symmetric and the forced coupled oscillator model and their results are discussed in
the following subsections. This technique has been evaluated for individual, gender
and gait mode (Chapter 6) discrimination, and the importance of the knee rotation.
The practicality of this technique is also evaluated on noisy and low resolution images,
see Figure 5.5. Images are contaminated with 25% grey scale random noise to
simulate poor quality images in real life. Also, images are reduced to half of their

original size, i.e. 65%95 to simulate poor resolution video.

(a) Clean (b) 25% grey scale noise (c) % original resolution

Figure 5.5: Images used for performance analysis.

5.4.1 Performance of Bilateral Symmetric and Forced Coupled
Oscillator Model

Figure 5.6 shows the signatures formed from the thigh and lower leg rotation
using the forced coupled oscillator (FCO) model. For visualisation purposes, only 3 of
the PWMs of 4 subjects are shown. Different symbols represent different subjects,

each subject with 6 samples of walking and running. As depicted, there are well-
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defined intra-class boundaries for both gaits. Walking gait appears to be more stable
than running as the clusters for walking have lower variance then those of running. On
the other hand, running appears to have greater inter-class variability. This is depicted
by increase in distance in the feature space which is also depicted by the value of § in
Table 5.1. This is also reflected by improvement in the recognition rate. Furthermore,
this is supported by biomechanical observations: running involves increasing muscle
activities and force [Ounpuu'94]; and there exist various manners in which the foot
contacts the ground [Thordarson'97]. The features appear to have an individual
mapping between the feature space of walking and running on an individual class
basis. This may suggest that a mapping might exist that could make the signatures

invariant and will be discussed later.

Signature : Walking Signa;gr_e : Running

(a) (b)

Figure 5.6: Signature space of 4 walking and running subjects. x: 1st component of 0r; y: 2nd

component of O7; z: 1st component of Ok .

In the k-nn with the values of &=1, 3 and 5, results are depicted in Figure 5.7.
The recognition rates over 20 subjects (with 6 samples each) of both walking and
running with the underlying FCO model improved over the rates where angles are
extracted using the bilateral symmetric (BS) model, for both gaits. The probability of
correctly classifying each subject from a population of 20 subjects at random is 0.05.
The correct classification rate has a 15.2% and 10.6% increased for the cases of

running and walking, respectively. As expected, the recognition rate for running is
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more encouraging as running has more variability across the population compared with
walking. This variability does suggest that change in running with time could be a

performance issue in application.
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Figure 5.7: Recognition rates for walking and running via the k-nn with Euclidean distance
metric for the bilateral symmetric and the forced coupled oscillator motion model.
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Figure 5.8: Performance analysis of walking and running

Performance analysis on 25% grey scale noise and low resolution (50% of the
original resolution), has also been evaluated. The results by using the FCO model in
Figure 5.7 are included in Figure 5.8 for comparison. As expected, the recognition

rate decreased when images are contaminated with grey scale noise. The rate decreased
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less when the technique was evaluated on images with lower resolution. That the rate
does not decrease as much as when tested with noise could be due to measurement of

the leg rotation angle being invariant to scaling.

5.4.2 Importance of Knee Rotation

Although both the magnitude spectrum of the thigh and the knee rotations are
dominated by lower order components, this does not mean that both will offer similar
potential in terms of discrimination. Table 5.2 shows the values of § and o for the
thigh and the knee rotations. Statistical measures show an increased value of § and ¢’
for the knee rotation for both the cases of walking and running. This suggests that the
knee rotation may offer better discriminatory capability as it has more variation across
the population. These measurements also suggest that the inclusion of knee rotation
may greatly improve the discriminatory ability, especially for running as variance of
the knee rotation increased by approximately 15 times when compared to that of the
thigh rotation. A recent experiment also shows that in a statistical-based approach, not
all parts of the silhouette are equally important for gait-based recognition, but only the
lower 20% of the silhouette (approximately the portion from the knee downwards) is
significantly accounted for recognition [Phillips'02]. Figure 5.9 shows how this is
reflected on the classification rate. Recognition rate based on the knee rotation alone
outperforms the one when using the thigh rotation. Nevertheless, when combining the
PWM of both the thigh and the lower leg, the correct classification rate is further
increased. In the future, the discriminatory ability of the foot motion shall be

investigated.
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Walking Running
S o’ S o’
PWM for 61 0.0856 0.0061 0.0268 0.0009
PWM for 0« 0.1601 0.0190 0.1272 0.0151

Table 5.2: Values of s and o2 show that the knee variation offers better discriminatory

capability compared to that of the thigh rotation for both gaits.
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Figure 5.9: Comparing the performance of using only the thigh, the knee and both rotations in

creating gait signatures.

5.4.2 Male and Female

As men have greater shoulder swing and women have greater hip swing

[Mather'94], gender may have effects on the walking and running patterns. This is also

reflected in our dataset as depicted by the classification rate for gender discrimination.

Limited by the number of female subjects in this dataset, only 5 female and 5 male

subjects are used for classification. Figure 5.10 shows the result of gender

discrimination of both gaits. High recognition rate suggest that locomotion patterns of

male and female are indeed distinctive.
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Figure 5.10: Gender discrimination for walking and running.

5.5 Conclusions

Frequency description is important in revealing the spatial-temporal
characteristics of gaits. Statistical analysis describing class separation has been used to
determine cluster separation. Measurements show that magnitude alone is not as
promising as the phase-weighted magnitude in terms of discriminatory capability.
However, phase and magnitude multiplication is not the only way of combining them.
Also, higher order components may impede the discrimination potential. This may be
due to the fact that higher order components are mainly dominated by noise. A simple
classifier has been used to determine the genuine discrimination capability of the
chosen features. Human locomotion patterns display unique characteristics for
recognition purposes, with running being more potent. Performance analysis shows
that the forced-coupled oscillator model outperforms the bilateral symmetric model.
Also, this approach can tolerate noise and low resolution well. Besides being capable
of distinguishing individuals, this technique can also discriminate the gender of a
walker and runner. Interestingly, the knee rotation shows better discriminatory
potential as compared with the thigh rotation. This may be because the knee rotation
has more variations across the population. Also, the signature space depicts a unique
mapping between walking and running signature of each subject, the next chapter will

take a step further to investigate this relationship.
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Chapter 6 : On the Relationship of Human Walking and
Running

The intimacy of human walking and running gaits motivates the investigation
in determining the existence of their relationship. This mapping, which is unique to
each individual, can be expressed as a magnitude ratio and a phase difference in the
frequency domain. It is useful in making the signature invariant to gait mode and also
offers a convenient means of transforming from one gait made to another. These highly
unique mappings can also be used alone as a condensed form of signature, or to
buttress the original signatures. A neural network has been deployed in the search for a

generic relationship between these two gait modes across a population.
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6.1 Motivation

Human motion analysis has gained increasing attention from computer vision
researchers. However, the relationship between human walking and running gaits (in
computer vision) remains imperfectly understood. An understanding of the relationship
between human walking and running is essential not only to further improve the
existing automated person recognition approach using gaits, but also as a foundation
for other studies e.g. biomechanics, robotics and computer graphics animation. Owing
to the fact that these two gaits are derived from the same musculo-skeletal system,
there must exist some correlation between them. Recall that, as stated in Chapter 2.2,
Li suggests that the thigh and the leg co-ordination pattern for walking and running is
similar under similar speed and stride frequency, although they are both functionally

different [Li'99].

6.2 Unique Mapping

Examination of the signature space shows that there occur unique mappings
between the walking and running signature for each subject, Figure 5.6. However, a
generic mapping across the population cannot be determined (in this dataset) by visual
inspection. Interestingly, the identical twins (in our dataset) who are “identical” by
their visual appearance and physiological traits (Figure 6.1) appear unique in the way
they walk and run. Figure 6.2 shows the twins' gait signatures for walking and running
where different symbols represent the two different subjects. Referring to Figure
5.2(c-d), statistical analysis shows that these two classes, i.e. class 1 and class 11, are
indeed very different, both in the walking and the running signature space. Perhaps
what makes it seem unfeasible is that human gait is not only a physiological trait, but
also a complex behavioural characteristic. That is, we learn how to walk and run when
growing up and individuals with similar physiological traits may have their own

particular way of walking and running.
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Figure 6.1: The identical twins with similar physical features. Images are the same
scale.

Signature for Running for the Twins

(b)

Figure 6.2: Signature for (a) running and (b) walking. x: 1st component of 67; y: 1st

component of Ok ; z: 24 component of Ok.
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In the time domain, running can be regarded as a phase modulated version of

walking (and vice versa), see Figure 6.3. Not only the range of movement made by the

lower limbs and the manner in which the limbs swing when walking and running is

different, the phase is also altered.
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Figure 6.3: Angular motion of a particular subject when walking and running.

If flot) is the signal for walking and the phase modulation signal is K&/*"”, then

the modulated signal (for running) is

g(ot) = Kf (ot + y(?))

(6.1)

and likewise when transforming from running to walking. In the frequency domain, the

spectra of the signals for walking and running can be easily related by the phase

difference and magnitude ratio of each harmonic and these lead to a mapping, T, for N

harmonics as

T=[1.7,,.T,]

(6.2)

Each element in T consists of the phase difference ¢; and the magnitude ratio M, as

Tn :[¢T,,’MT”]
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where ¢, is the phase difference between the spectral components for running, ¢y ,

and walking, ¢,

¢Tn = ¢Rn - ¢Wn (6.4)

and M, is the magnitude ratio of running, M, , to walking, M,

My, = (6.5)

This mapping process shows how these two different gaits can be associated by
the phase and the magnitude component in the frequency domain. Figure 6.4 shows
the phasor diagram of the mapping vector 7 (the first harmonic) for 67 and 6x of 6
subjects. As shown, the components lie within a sector where the magnitude ratio and
the phase difference show variability among different subjects as well as clustering for
individual subjects, meaning that walking and running are closely related by their own
unique mapping. That is, walking and running are not only distinguished by the range
of movement made by the joints, but also by the forces that cause the movement. This
also justifies the inclusion of the phase component in creating the gait signature and
validates the assumption of phase modulation. Interestingly, the magnitude of the
mapping for the thigh rotation of the first harmonic is not always bigger then unity.
This suggests that this joint motion when running is not always larger then when
walking. On the other hand, the magnitude of the mapping for the lower leg is
generally bigger than unity indicating that the knee joint motion is usually more
exaggerated during running. However, a note to make here is that the subjects in this

experimental dataset are not professional (athletic) runners.
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Mapping for Thigh: Harmonic 1
0 45

Mapping for Lower Leg: Harmonic 1
SRE:

Figure 6.4: Phasor plot for the Ty of the (a) thigh and the (b) lower leg; different symbols

represent different subjects.

When evaluating the mappings, T, alone, the perfect classification rates (at least

in this dataset) signify that the mapping is highly unique across the population and

could be used as a compressed form of signature alone. The mapping is plotted in

Figure 6.5 for 13 subjects using spherical polar co-ordinates for 2 measures of phase

and one of magnitude, superimposed on a unit sphere to aid visualisation, where

different symbols represent different subjects. The dispersion of clusters confirms the

high inter-class variability and low intra-class variability. This can be illustrated as the

value of § in Figure 6.6. Almost all of the squares are bright, indicating high

separation between classes. Also the value of § for T is 0.1803 and is larger than other

values shown earlier in Table 5.1.
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Figure 6.5: Part of the mapping in 3-D displays its uniqueness.

Mapping T

Subjects

2 4 6 8 10 12 14 16 18 20
Subjects

Figure 6.6: Pair-wise S -value for mapping T.

6.3 Gait Mode Invariant Signature

Recall that the gait signatures are created from the PWM. Having known the
magnitude ratio and phase difference and hence the PWM for running, PWMY%, can be

deduced from the phase and magnitude of walking signal (¢ and My), as

PWM} = (MW ‘MT)' (¢W + (I)T) (6.6)
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Similarly, the PWM for walking, PWM'y, can be deduced from the phase and

magnitude of running (¢ and My), as

r MR ° _
PWMW—(M] (05 — ¢7) (6.7)

T

The mapping, T, contains information directly related to both gaits, as such the
features of the motion within both gaits are retained. One of the advantages is that it is
reversible. The ability to describe the relationship in terms of phase and magnitude
provides different information to enhance the signature. By means of the mapping, the
gait signature can be made invariant and can be transformed from one form to another
without losing discriminatory capability. Likewise, the mode of gait of a particular
subject can be transformed easily by altering the phase and the magnitude of each

harmonic according to its own mapping.

6.4 Evaluating the Unique Mapping

The unique mapping is evaluated over 20 subjects, with 6 samples of walking
and running for each subject. The signatures for walking are derived using each
individual's unique mapping, based on the signature of running obtained from the
feature extraction process. The derived signatures for walking are then tested on the
dataset of walking subjects and similarly for running. The results shown in Figure 6.7
are promising and the process involved implies that the mapping offers invariance to

signatures of different gait mode.
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Figure 6.7: Performance of the transformed signature for walking and running.
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Figure 6.8: Performance of the enhanced and the original walking and running signature.

Finally, the idea of deploying T in enhancing the original gait signature again
shows how the invariant mapping contains more descriptive information. Recall that
the original signal comprises the lower PWMs and T is added to the signature vector to
yield the enhanced signature. As depicted in Figure 6.8, the classification rate using
the enhanced signature improves over the original signature for both walking and
running. The clusters are more well defined in the enhanced signature space, as the
rates do not fall as rapidly as when using the original gait signature whilst k increases.

Hence, T can be used to enhance the original gait signatures.
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6.5 Generic Mapping

As illustrated earlier, we have demonstrated how the signature of an
individual’s walking and running gait can be related. Nonetheless, due to the lack of
understanding of the structure for the signature space, the earlier approach does not
allow deduction of the signature of an unseen walker given his/her running gait
signature, or vice versa. However, this may be possible if the structure for the generic
relationship of these two signature spaces is determined. When classifying walking
from running with similar approach (i.e. k-nn), it achieved over 90% correct
classification rate, see Figure 6.9. This reflects the high separation between these two
classes in the signature space. Now we shall aim to determine whether there is a
generic transform between the signature of walking and running gaits. Here, we

employed a neural network in investigating the existence of the generic relationship.

Gait Mode Classification
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20}
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Figure 6.9: Classifying between walking and running gait signature by k-nn.

6.5.1 Implementing Neural Network

A neural network has common applications in classification and regression
problems. In classification, the task is to assign new inputs to one of a number of
discrete classes or categories, i.e. approximate the probabilities of membership of the
different classes expressed as functions of the input variables; whereas in a regression
problem, the outputs represent the values of continuous variables, i.e. regression

function approximation. Here, we try to approximate a multi-dimensional regression
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function via a neural network in the hope that this might give us some insight in
finding the generic relationship and possibly the structure, if one exists. If there was a
generic transform, we would expect the predicted signature to offer similar recognition

performance as the original gait signature.

A multilayer feedforward network with the back propagation algorithm is the
most commonly used architecture [Demuth'00]. Feedforward networks often have one
or more hidden layers of sigmoid neurons followed by an output layer of linear
neurons. Multiple layers of neurons with non-linear transfer functions allow the
network to learn non-linear and linear relationships between input and output vectors.
The network used here is illustrated in an abbreviated diagram in Figure 6.10, a

comprehensive version can be found in Appendix B.

Input Hidden Layer Output Layer
f \ N\
p' a' a’=y
?’ IW, \ ﬁ» LW, —>p
S' xR % \
n' /( n’
@ sx1| @ S2x1 7L
/ fl / f2
] _> b, ] _> b,
R Stx 1 s' S x 1 s
\ N J J
Layer 1 Layer 2

Figure 6.10: Feedforward network with 1 hidden layer and 1 output layer.

p is the input vector with R elements, IW is the input weight matrix, LW is the layer
weight matrix, n is the transfer function input vector, a is the output vector, b is the
bias vector, y is the output vector and S is the number of neurons in the layer. The
transfer function in the hidden layer is log-sigmoid, and the output layer is a linear
function. The network is trained using resilient backpropagation, a simple batch mode
training algorithm with fast convergence and minimal storage requirements. This

network is described by
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a> = f*(LW,, f'(IW, p +b,)+b,) = y (6.8)

The task here is to approximate a regression function which describes the
relationship between these two groups of signatures. The network is trained with
walking signature vectors as the inputs and running signature vectors as the outputs to
approximate their relationship. The network training is taken to have converged if the
training error is below a threshold value of 10 for 50 subsequent epochs. Then the
trained network is simulated with a seen walking signature vector to predict a running
signature. Similarly in predicting a walking signature, another identical network is
trained with running signature vectors as the inputs and walking signature as the
outputs. And, this network is simulated by a seen running signature to predict a
signature for walking. Then classification is carried out between walking and running,
by comparing these simulated walking and running signature obtained from the neural
network against the original signature space. Again, classification is done via k-nn and
cross-validated by the leave-one-out rule. Figure 6.11(a) shows the result of using the
first five harmonics of PWMs in approximating the regression function whereas
Figure 6.11(b) is the result of using the first ten harmonics. As depicted, the correct
classification rate is similar. This could be due to the fact that the dominating
component may be from the lower order. Although the rate does not exceed 90%, this
preliminary research does suggest the possible existence of a generic mapping between

these two biomechanically distinct gaits.
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Figure 6.11: Performance of signature predicted via neural network for walking and

running.

&3




6.6 Discussion and Conclusions

Frequency representation of the motion not only provides useful features for
recognition, but also serves as the basis for the analysis of the relationship between
walking and running gaits. The new and interesting findings are: (i) a relationship
between walking and running gait of a particular subject can be regarded as a phase
modulation of each other. This mapping can be described by its unique magnitude ratio
and phase difference, capturing the motion features of both gaits; (ii) the mappings are
highly unique: not only can they be used for recognition alone and to enhance the
original gait signature, but also to make signatures invariant to gait mode and to
provide a means to transform from one gait mode to another; and (iii) the neural

network experiment shows that the generic mapping may exist.

Naturally, we shall in the future aim to determine more precisely the nature of
the mapping between running and walking, and whether it can be modelled. The
understanding of the relationship between walking and running gait not only
strengthens the automated person identification approach by gait (biometrics), but also
may play an important role in other areas such as biomechanics, robotics and computer
graphics animation. This novel idea particularly favours the computer animation of
human locomotion as it offers a convenient morph from one gait mode to another.
Furthermore, similar ideas could be deployed in motion analysis when walking on a

treadmill and on the floor, or across different terrains and etc.

Although this work confirms the existence of the individual mapping,
nevertheless, due to the inadequate richness of this dataset the structure of the generic
mapping (or the parametric formula to explicitly describe the structure) could not be
drawn at this initial stage. However, observations do suggest that this relationship does
exist. The next phase of work that could possibly be followed is to find the structure of
these relationships. Last but not least, the next challenge would be: does there exist an

individual mapping within the generic mapping?
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Chapter 7 : Trajectory Invariance

Most of the laboratory-based studies constrain the subjects to walk or run in a
plane normal to the camera’s sagittal view and have ignored the effects of different
view angles. Unfortunately, the effect of trajectory of a moving person on their gait
signature is one of the major application issues in a gait-based biometric. Hence, view
angle invariant gait signature is essential in terms of practicality. Till now, we have
only considered the fronto-parallel view of a moving person for the convenience of
evaluating various techniques and algorithms. Preliminary research shows how the
camera sagittal view will affect the gait signature, which is effectively the frequency
representation of gait patterns. Moreover, experiments show that this automated feature
extraction technique can extract the angular motion of both the thigh and the lower leg

precisely for the range of —50 ° to 50° without any adjustment.
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7.1 Looking from Different Camera Sagittal Views

To start, let us understand the setup of the camera and various planes. Figure
7.1 illustrates the camera setup and various planes, and defines the camera sagittal
view. For example, when a subject is walking towards and away from the camera, then
the trajectory angle/camera sagittal view is said to be normal to (90° and —90°,
respectively) the camera. So far, we have only considered subjects walking at an

trajectory angle of 0° where the trajectory plane is parallel to the principal plane.

o
|
Trajectory I
I |
plane I L 100
== 0°
Prncipal | | | == {_I
plane I
- |
Trajectory |
[—I\  Plane }
Camera 900
Carmera
Flat ground Plane
Principal plane
(a) Side view. (b) Top view.

Figure 7.1: Setup for the camera and various planes.

A moving thin rod resembling a pendulum swinging on a plane with simple
harmonic motion was created and projected at different camera sagittal view ranging
from -90° to 90° at increments of 10°. Then, the rotation angles of the pendulum
projected on the camera’s principal plane (depicted in Figure 7.2) are extracted and

Fourier analysis is performed.
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Figure 7.2: Angles of rotation at various camera sagittal views.
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Figure 7.3: Fourier description of the angular motions perceived from different view

angles.

As expected, changes in camera view angle only affect the magnitude spectrum
in the frequency domain (Figure 7.3(a)), but not the dynamics of the motion as the
phase spectrum remains unaltered. The phasor plot in Figure 7.3(b) shows the
consistency of the phase. Therefore, the angles of motion can be conveniently mapped
with a linear relation to the true motion angles (those when viewed from 0°) by a

scaling factor that reads

0(z,9) = 6(1).f (9) (7.1)

where
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<9<

f(8)= Acos(8) , - (7.2)

T T
2 2
and 9 is the camera sagittal view angle or effectively the trajectory angle. Carter
[Carter'99] showed that a model-based approach can be used to extract a gait signature
from a sequence of motion that is invariant to pose. It is assumed that the camera is
placed at the subject’s height, parallel to the ground plane and the subjects walk with
various trajectory angles, and the leg is swinging in a plane. Also, it is found that the
true thigh rotation angle can be expressed as a linear function of the trajectory and the
perceived thigh inclination angle. However, Spencer found that if the trajectory of a

walker and elevation angles of the camera are to be considered, the geometric

correction for the thigh motion is no longer of a linear relationship [Spencer'02].
7.2 Synthesised Human

The effects of the camera sagittal view angle on the magnitude and phase
spectrum when considering a very thin rod has been introduced. Now we shall see if
this relationship holds when a synthesized walking human is to be considered. This
dataset consists of a gait cycle of a synthesised human with 3-D motion obtained from
a real subject. Sequences of various trajectory angles are generated using Pinocchio, an
in-house software package. This software package allows a user to synthesise a
walking human with user-defined camera viewing positions. Figure 7.4 shows
examples of a synthesised human viewed at -90° to 90° at increments of 10°. It is
assumed that subjects walk on flat ground. Angular motion of the thigh and lower leg
is extracted using the evidence gathering technique illustrated in Chapter 3. Results
show that this technique is able to extract the motion well when the legs occlude each
other at various camera views. Figure 7.5 shows example results of extraction at 3 =
20° and 0° and they are accurately extracted. Also this technique is capable of
extracting the leg motion within the range of -50° < 8 < 50° without any parameter
adjustment, but starts to show errors when 3 approaches -60° or 60°. Figure 7.6 shows
the example results of this feature extraction technique. As depicted, leg motion is

accurately extracted even at 3 = + 50° but did not match the image data well at 3 =+
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80°. As the trajectory angle gets larger, the motion dynamics perceived by the machine

vision is no longer the same.

10° 20° 30° 40° 50°

60° 70° 80° 90°

Figure 7.4: Viewing from different sagittal angles.
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Figure 7.6: Samplar results for the feature extraction technique at various camera

sagittal view angles.
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7.3 Trajectory Angle and Signature Vector
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(a) Thigh rotation (b) Lower leg rotation

Figure 7.7: Angular motion projected on the principal plane with trajectory angles ranging

from -500° to 50° extracted by the evidence gathering technique.

Figure 7.7 illustrates the rotation angles of (a) thigh and (b) lower leg
projected on the camera’s principal plane when viewed from -50° to 50°. These angles
are extracted automatically by the evidence gathering. Motion angles are changing

smoothly with the viewing angle.
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Figure 7.8: Changes of magnitude spectrum with camera view angles from -50° to 50°.
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Fourier description of the automatically extracted angles show the effects of
different trajectory angles on the magnitude. In Figure 7.8, the magnitude spectrum of
the thigh and lower leg motion changes smoothly with the camera sagittal view angles
and is symmetric at 3 = 0°, similar to that of the thin rod depicted in Figure 7.3. When
the magnitude decreases with the higher harmonics, the changing pattern no longer
similar to that of the lower harmonics. This is mainly due to the fact that the higher
harmonics are likely to be dominated by noise. Unlike the case of a thin rod shown,
when a cylinder (which represents the limbs of a subject in this case) is considered,
the phase changes with the camera sagittal view angle. Interestingly, the changes are
also symmetric at 3 = 0°, as shown in Figure 7.9, the phasor diagram of the magnitude
and phase spectrum. The phases of thigh and lower leg rotation change accordingly
with similar symmetry. The arrow indicates the change from —50° to 50° at a step of
10° and changes direction at 3 = 0° for the first harmonic of both the thigh and the
lower leg rotations. Therefore, these linear relationships can be potentially exploited to

make a gait signature (made up of magnitude and phase) invariant to trajectory angle.
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Figure 7.9: Phasor plot showing the changes of phase spectrum with camera view

angle from -50° to 50°.

The variation in phase may be due to both the volumetric and dynamic factor.
Instead of a thin line, we are now considering a volume of cylinder (in real life it is a
tapered cylinder) which will cast an effect when viewed from a different angle. Also,
the hip’s transversal rotation may be a dynamic factor that contributes to the alteration
in phase. As the real life data is limited, a more precise model for the relationship of
the phase change and the trajectory angle is difficult to draw, and this shall be further

investigated in the future.
7.4 Conclusions

Experiments show that this automated feature extraction technique can well
tolerate various camera sagittal views ranging from —50° to 50° without any human
intervention or adjustment. This may benefit many applications not only in biometrics,

but also clinical-based applications. Results show that the phase and the magnitude
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change in a linear fashion with the camera sagittal view. Interestingly, both show a
symmetric pattern. Time domain gait patterns can be conveniently mapped to that of 9
= 0° (true angle) by exploiting this linearity for the convenience of analysis. More
importantly, a gait signature can be made invariant to camera sagittal view under
certain constraints. As this is only a preliminary research on the effect of trajectory on
the gait signature, further work should investigate generalisation issues on camera
various positions, such as elevation and rotation to develop a more realistic model to

handle the real world scenario.
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Chapter 8 : Finale

We shall now recapitulate the essence of this work by drawing again the
motivation, and summing up the conclusions and contributions. Last but not least, to
discuss other possible areas for deployment of this novel biometric technique and to

suggest possible future work.
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8.1 Motivation Revisited

Humans have the natural ability to recognise people by various biological traits,
be they physical or behavioural. This actuates the idea of teaching machines about this
natural ability of humans, to recognise an individual by their biological traits —
biometrics. Although there are a number of commercially available biometric systems
such as iris pattern and fingerprint recognition system, many others are still in their
experimental stage. Gait is one of the emerging biometrics and only attracted attention
a decade ago. Much research has been focused on investigating the potential of human
walking gait, however, the potential of running gait is yet to be unleashed. Although
there has been little quantitative study on the uniqueness of gait, many studies,
including those of psychology and biomechanics, do suggest that gait is indeed unique.
Furthermore, gait has the potential to overcome some of the limitations that restrict
other biometrics. Among the advantages, the most important are, gait i) can be
perceived from a distance making acquisition non-invasive and convenient, i) does not
require high resolution images, iii) is difficult to disguise without impeding one’s
natural gait, and iv) has the least impact on privacy issues. This form of biometric is
ideal for a scenario where other biometrics such as face and fingerprints are not
available. An example will be in a crime scene where the only footage captured by
CCTVs is the way the criminal walks in and runs away to escape. Not only do these
advantages seem attractive, above all, they provide an alternative biometric approach

aiming to achieve a more secure environment.

8.2 Conclusions and Contributions

We have introduced a new biometric approach and outlined the potential of
both walking and running gaits as a biometric. There are two major methods in
approaching the problem of using gait as a biometric, the most popular being
statistical-based methods. However, important characteristics are described by the
inter-relationship of the structural description. Therefore, a model-based approach may
be of advantage here. Our main objective is to develop a new approach for an

automated non-invasive model-based human recognition system by walking and

97



running via computer vision and pattern recognition techniques. Now we shall

recapitulate the conclusions and more importantly, the contributions of this work to the

world of biometrics.

1.

Human walking and running are two different gaits distinguished mainly by the
existence of double support or double float in respective gait patterns. Despite the
functional differences of these two gaits, there occur topological similarities under
similar speed and stride frequency. Thus, two gait-mode invariant motion models
have been developed upon these phenomena and evaluated, and the (untested) third

model being potentially as capable.

The two motion models are: 1) a bilateral symmetric model which is developed
following the observation on gait patterns. Although the upper pendulum
representing the thigh is swinging with a simple harmonic motion, however, the
motion model of the lower leg is rather empirical; and ii) a forced coupled
oscillator model which is developed following the hypothesis of human
locomotion being considered as an imperfect pendulum, with substantial energy
loss. This new model solves the differential equations obtained from the dynamic
motions of the two pendula representing the thigh and the lower leg. The upper
pendulum swings with a simple harmonic motion, whilst the lower pendulum is
affected by the force introduced by the upper pendulum. The potentially third
(untested) motion model describes the lower leg as a damped pendulum driven by a
periodic force introduced by its suspension point. It shows adherence to the knee

rotation when it reaches a steady state.

These two models each have their unique strengths and limitations. The bilateral
symmetric model enjoys its simplicity requiring fewer parameters to describe both
the thigh and the knee rotation, as compared with the earlier model. This model,
when used as the underlying temporal template for the evidence gathering
technique, can extract the thigh and the lower leg motion reasonably well. Though,
this model requires selection of a parameter for different gait mode. On the other

hand, the forced coupled oscillator model requires no parameter selection.
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Moreover, when used within the feature extractor, it achieves remarkable results by
promising higher accuracy and higher correct classification rate compared to that of
the bilateral symmetric model. Owing to the fact that human gaits (walking and
running) are bilaterally symmetric and locked by a half a period phase-lock, this
enables the models to be extended to describe both legs simultaneously.
Nevertheless, a more precise model could be achieved by Fourier series, but at the
expense of complexity. However, performance analyses show that this may be

unnecessary for our purpose here.

This is the first experimental dataset to contain the fonto-parallel images of 20
subjects walking and running on a motorised treadmill at their preferred speeds,
with 6 samples or sequences of complete gait cycle for each subject. Various
conditions such as 25% random greyscale noise and low resolution (65 x 95) are
incorporated in the dataset. Some may argue that treadmill may incur changes to
the normal gait, though this remains a constant debate among biomechanics and
psychology communities. Although features may change, with respect to one
another, the change is assumed to be insignificant. Moreover, treadmill offers many
advantages for laboratory-based experiment including controlling environmental

factors, space requirement, selectability of locomotion speeds, and repeatability.

Gait is naturally rhythmic and periodic. It is no surprise that the patterns of walking
and running satisfy spatial and temporal symmetry. Therefore, dynamic
characteristics which are the angular motions of the thigh and the lower leg, are

exploited for recognition purposes.

Feature extraction by temporal and local evidence gathering has successfully
captured the motion dynamics of the thigh and the lower leg within a gait cycle.
Furthermore, this automated angular motion extraction technique proved to be
possible even within the range of —50° to 50° of camera sagittal view angle without

any human intervention or parameter adjustment.

The gait signature is created from the Fourier description by multiplying the

magnitude and the phase spectrum to yield phase-weighted magnitude (PWM).

99



This gives encouraging correct recognition rates. Statistical analysis demonstrated
that the inter-class distance measure is higher when the PWM is used, compared
with the magnitude component only. Also, only lower order PWM is necessary for
creating a reasonably unique signature as higher orders are mainly dominated by
noise. This conforms to biomechanics studies which show that the frequency
content of the human body when walking is 5 Hz [ Angeloni'94]. Furthermore, it is
demonstrated that the knee rotation significantly accounted for discrimination.
Nonetheless, discrimination capability increases when it is combined with the thigh

rotation.

Performance analyses have been performed on clean images, images
contaminated with 25% random greyscale noise and low resolution images (half of
the original) by using the two motion models within this novel biometric approach.
Results show that when the forced coupled oscillator model is used as the
underlying temporal template for the evidence gathering process, it promises an
increase of an average of 15.2% and 10.6% recognition rates for the cases of
running and walking, respectively, compared to that of the bilateral symmetry
model. Also, this technique can tolerate noise reasonably well and is less sensitive
to resolution. This may be due to the fact that angles are invariant to scaling. More
importantly, analyses demonstrate the potential of walking and running gait as
biometrics, with running gait being more potent. This may be due to the many
variations of running styles. Moreover, not only this technique can be used to

identify individuals, it can also distinguish different gaits and genders.

There exists a highly unique individual mapping between one’s walking and
running pattern. In the time domain, a walking signal may be considered as a phase
modulated version of a running signal, and vice versa. This relationship can be
expressed as the phase difference and magnitude ratio of each other. A gait
signature can therefore made invariant to gait mode by exploiting this linear
relationship besides offering means for transforming from one gait mode to
another. Furthermore, this highly unique (achieving 100% correct classification

rate in this dataset) mapping capturing the dynamics of both gaits can be used as a
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condensed form of gait signature or to buttress the original signature. A neural
network has been employed in search for the generic mapping between walking
and running across a population. Observations suggest its possible existence,
however, the structure of this generic mapping could not be drawn at this early

stage.

10. To cope with one of the many application issues, the effects of different camera
sagittal view angles have been studied. When a subject is walking at different
angles from the camera, this casts an effect on the gait pattern perceived by the
machine vision. The frequency domain representation changes as both of the
magnitude and phase components are affected, though in a linear fashion.
Interestingly, both changes are symmetrical at 3 = 0°, i.e. the fonto-parallel view.
The phase change may possibly be due to the hip’s transversal rotation, an
important dynamic factor for 3-D motion capture. However, the effect is
undetermined due to insufficient data and required further investigation. The linear
relationship between the camera view angle and the frequency descriptions offers
several advantages. The most important in our case here is that the gait signature
can be made invariant to camera sagittal view by exploiting this linearity.
Furthermore, this may provide a way to map the angular motion obtained from
various camera views to that of fonto-parallel view for convenience of gait

analysis, be it biometrics or biomechanics.

The above are the main conclusions and contributions drawn from this work.

Now, we shall see how this technique may benefit other areas of research.

8.2 Possible Deployment in Other Areas

Interesting and new findings from this research will not only benefit the
biometrics arena, they may be helpful in other areas of research such as avatar and

medical domain. The following are some suggestions.
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Avatar

The two new human locomotion models may offer an alternative method for
animating human locomotion based on some biomechanics properties. The beauty
of these two models is the invariance to gait mode and requirement of relatively
few parameters. Above all, the unique mapping (which can capture the
characteristics of both gaits) is expressed by a simple function which particularly
favours character animation. This novel idea offers a convenient way for morphing

from one gait mode to another with individual characteristics.

Medical

This automated marker-less and non-invasive manner of extracting human leg
motion offers a new means for clinical application e.g. biomechanical studies,
rehabilitation and psychological studies to study human locomotion in a natural
way. This may have an positive impact on clinical gait analysis as many of the
current approaches are either not extensively automated, or employ invasive

methodologies.

8.3 Future Work

As illustrated, this work offers many contributions to several research domains,
particularly biometrics. Nonetheless, research may be brought further either to further
enhance the existing technique or approach, or may trigger other interesting areas of

research.

First of all the human locomotion model can be improvised by including the
highly fluctuating angular motion of the ankle. Besides, a more flexible forcing
function may be developed to further improve the precision of the motion model. This
modelling method can be extended to include the 3-D motion of human locomotion.
Motions from all the three planes, namely, transverse, sagittal and frontal plane can be
modelled at the expense of complexity. The major advantage of having a 3-D model is

that it may offer more features for discrimination, as with incorporating the ankle
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rotation into the motion models. A 3-D model will also have a positive impact on
camera view invariance issue. Recall that one of the important factors that may affect
the gait patterns viewed at different angles is the hip’s transversal rotation. Further
research shall be focused on the development of a more precise transfer function to

provide camera view invariance.

Last but not least, this work has confirmed the unique mapping for individuals’
walking and running pattern. Observations do suggest the possible existence of a
generic mapping across a population, nonetheless, the structure of this generic
relationship is undetermined, at least not by this approach. The next phase of work that
could possibly be followed up is to find the structure of this relationship. If the
structure of this generic relationship is found, perhaps there is an individual mapping

within the generic mapping?
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Appendix A: Comparison of Manual Labelling and Vision
Extraction

Computer
Vision Label

S N

Medical Label

Figure A.1: Medical labelling and computer vision labelling.

The front part of the leg is chosen because clothing adheres most to the front of a
moving leg. Unfortunately the location of the bone is unknown by this computer vision
approach (and it is not the medial position). Although it is impossible to label the bone
(by manual labelling) for analysis, we can assume that the front line and the bone form
a rigid body. The relative position of these two lines is always fixed (Fig. A.1),
therefore the perceived dynamics of the motion are not affected. Assuming that the two
lines representing the bone and the front part of the leg form a rigid body, i.e. the
relative position is fixed , then they can be related by a linear function (Eq. A.1). Such

an offset hardly affects the recognition process.

=0+ (A1)
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Figure A.2: Difference of medical and computer vision labelling on the thigh and the

lower leg rotation

Here, markers are fixed to a subject’s leg and measurement is taken from the
markers and also the front part of the leg for comparison, see Figure. A.2. Having
found the offset 9, the angle of rotation extracted by computer vision can be related or
corrected to one that match clinical observations if necessary. This will provide an
alternative approach to extract leg motion automatically without human intervention.
Note that the offset for the thigh rotation is larger then that of the lower leg rotation as

this is because less muscle tissue is located at the front of the tibia.
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Appendix B: Comprehensive Version of Neural Network
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Figure B.1: Neural network with two layers of neurons.

The symbols are:

p = input to the neural network S =number of neurons in a layer

n = input to the transfer function R = number of elements in an input vector
a = output Iw = layer weight

b = bias iw = input weight
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