
Trust in Social Machines: The Challenges

Kieron O’Hara
1 

Abstract. The World Wide Web has ushered in a new 

generation of applications constructively linking people and 

computers to create what have been called ‘social machines.’ 

The ‘components’ of these machines are people and 

technologies. It has long been recognised that for people to 

participate in social machines, they have to trust the processes. 

However, the notions of trust often used tend to be imported 

from agent-based computing, and may be too formal, objective 

and selective to describe human trust accurately. This paper 

applies a theory of human trust to social machines research, and 

sets out some of the challenges to system designers. 

1 INTRODUCTION 

Computers have always been sociotechnical systems, embedded 

in organisations, or serving the purposes of users for work or 

leisure. However, thanks to the spread of interactive read/write 

technologies (e.g. wikis, photo-sharing, blogging) and devices 

and sensors embedded in both physical and digital worlds (e.g. 

GPS-enabled hand-held devices), people and machines have 

become increasingly integrated. Terms such as ‘augmented 

reality’ and ‘mediated reality’ are in common use, and the 

embedding of computation into society via personal devices has 

led to discussion of social machines and social computation, an 

abstract conception in which people and machines interact for 

problem-solving. The ‘components’ of the machine may be 

people or computers; the ‘routines’ or ‘procedures’ could be 

carried out by humans, computers or both together. 

Social machines are rapidly becoming a focus of computing 

research [1]. ‘Programming the global computer’ is one of the 

British Computing Society’s grand challenges for computing, 

while peer-to-peer technologies have opened up the possibility 

of flexibly linking people and computers, as explored in projects 

such as OpenKnowledge (http://www.openk.org/) and the Social 

Computer community (http://www.socialcomputer.eu/). 

Trust has always been recognised as an important factor in the 

function of such human/computer hybrids. However, the notions 

of trust used have often been relatively formal, imported from 

agent-based research. In this paper, I will examine the question 

of whether, and how, social computing can take into account 

wider and less well-ordered notions of psychologically realistic 

trust. I also note here two important limitations of scope of this 

paper. First, I focus here on issues of trust relevant to system 

designers fostering trust in their systems by users; of course 

there are many other stakeholders and many other trust relations 

typically involved (to take an obvious example, system designers 

have to trust users as well as being trusted by them). Secondly, I 

focus here on the challenges; solutions are already being created 
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for these issues, but the point I want to emphasise in this paper is 

that we have to be clear about exactly how social machines rely 

on trust to function, and where a breakdown will lead to 

dysfunction. Without a precise model, it will be harder to 

diagnose problems. 

2 SOCIAL MACHINES 

In this section, I will flesh out the idea of a social machine or 

social computer. After a preliminary discussion, I shall briefly 

describe a couple of examples. A third subsection will examine 

the notion of programming social machines, before the section is 

completed with a brief sketch of the important role trust plays. 

2.1 What is a social machine? 

The idea of a social machine was implicit in early conceptions of 

the World Wide Web. As Berners-Lee put it in 1999: 

Real life is and must be full of all kinds of social constraint – 

the very processes from which society arises. Computers can 

help if we use them to create abstract social machines on the 

Web: processes in which people do the creative work and the 

machine does the administration. ([2], pp.172, Berners-Lee’s 

emphasis) 

We see plenty of social machines around today. Many are 

embedded in social networks such as Facebook, in which human 

interactions from organising a birthday party to interacting with 

one’s Member of Parliament are underpinned by the engineered 

environment. Another type of example is a multiplayer online 

game, where a persistent online environment facilitates 

interactions concerning virtual resources between real people. A 

third type is an online poker game, where the resources being 

played for are real-world, but where the players may be human 

or bots, and where the environment in which the game takes 

place is engineered around a relatively simple computational 

model. In such systems, (some of) the social constraints that 

Berners-Lee talks about, which are currently norm-driven, are 

converted to (or in his terms administered by) the architecture of 

the programmed environment. 

These social machines are straightforward (qua interaction 

models), but as the technology is theorised more deeply it is 

inevitable that more complex systems will be developed. A 

generalised definition of a social computation is provided by 

Robertson and Giunchiglia: 

A computation for which an executable specification exists 

but the successful implementation of this specification depends 

upon computer mediated social interaction between the human 

actors in its implementation. [3] 

In such an environment, self-organisation (partial or full) 

becomes viable and scalable, while physical objects, agents, 

contracts, agreements, incentives and other objects can be 

referred to using Web resources (Uniform Resource Identifiers – 

http://www.openk.org/
http://www.socialcomputer.eu/


URIs). ‘Programming’ the social computer (rather than simply 

supporting and directing interactions on an engineered 

environment) and integrating larger numbers of people and 

machines will become increasingly feasible. 

2.2 Examples 

As a small example of a social machine, consider reCAPTCHA 

[4]. A CAPTCHA (Completely Automated Public Turing test to 

tell Computers and Humans Apart), invented by Louis Von Ahn, 

is the distorted sequence of letters that someone has to type in a 

box to identify him- or herself as a human (e.g. to buy a ticket 

online, or to comment on a blog). This is a task that computers 

cannot do, and so the system stops bots buying thousands of 

tickets for a concert or sporting event for later resale, or for a 

spambot to leave spam messages as comments to blogs. 

Von Ahn extended the idea of the CAPTCHA to create the 

reCAPTCHA, which uses the same principle to solve another 

problem. Google (which acquired reCAPTCHA in 2009) wishes 

to scan and publish out-of-copyright books. However, Optical 

Character Recognition is too fallible to automate the process (in 

books over 100 years old, OCR fails for about 30% of words). 

The quantity of books to be scanned rules out human labour as a 

general solution to the problem. 

Von Ahn noticed that his original CAPTCHA device was 

being used over 200m times a day, about half a million person-

hours of effort. reCAPTCHA was designed to put these person-

hours to more productive use. It presents the user who wishes to 

identify him- or herself as a human with two words, not one. The 

first is a normal CAPTCHA, and the second is a word from an 

old book that OCR had failed to identify. If the person succeeds 

with the first CAPTCHA, then he or she is known to be a human. 

As humans are reliable at word recognition, Google can 

therefore take the response to the second word as a plausible 

suggestion of what it is. Presenting the same word to multiple 

users allows a consensus to emerge. 

The person is not necessarily aware that he or she is helping 

Google in its scanning task. The incentive for his or her 

involvement is the need for identification (to buy tickets, or 

comment on a blog, etc). The time taken for a reCAPTCHA is 

not significantly longer than a CAPTCHA. The ‘machine’ 

thereby created, of millions of people interacting via the 

reCAPTCHA facility, is currently identifying about 100m words 

per day (about 2m books equivalent per year). reCAPTCHA is 

offered as a free Web service to hundreds of thousands of 

websites (including Facebook, Twitter and Ticketmaster) which 

need spam protection; the service can be offered without a fee 

because of the translation service it also provides to Google [4]. 

As another example, Robertson and Giunchiglia [3] use the 

DARPA balloon challenge of 2009, in which all human 

‘components’ of the machine are fully aware of their own role. 

In the DARPA challenge, the aim was to find ten weather 

balloons placed randomly around the US (in nine different states 

from California to Delaware). The rules of the challenge were 

intended to support the growth of a network of people taking part 

in the search, enabling a crowdsourced solution. The means of 

doing this in the winning solution (from Sandy Pentland at the 

Massachusetts Institute of Technology) was to set out financial 

incentives – everyone who discovered a balloon got a certain 

quantity of money, while for everyone who received a reward, 

the person who introduced them to the network received half that 

reward. Hence people were incentivised both to look for the 

balloons and to add more people to the network. Pentland’s team 

began with 4 people, and using social media had recruited over 

5,000 at the point of completion, which took under ten hours. 

reCAPTCHA and the DARPA challenge were intended to 

solve a particular exogenous problem, but social machines can 

be designed to solve the problems of the people who constitute 

them. In such cases, the incentive of the participants is that the 

machine’s smooth functioning is in their own interests. One 

could imagine, for instance, a set of computer-mediated 

interactions enabling a community to provide a social response 

to problems of crime (such as BlueServo, which crowdsources 

the policing of the Texas-Mexico border), or enabling those 

suffering from a particular health care problem to pool resources 

and to offer support and advice to fellow sufferers (such as 

curetogether.com). It will be obvious from these examples that 

such efforts will not always be uncontroversial. 

Note finally that in many cases the ability to compute and to 

gather and process information at large scale is vital. This adds 

an extra layer of complication to the social machine vision. 

2.3 Programming the social machine 

Giunchiglia and Robertson define a social machine or computer 

as follows [3]: 

A computer system that allows people to initiate social 

computations (via executable specifications) and adopt 

appropriate roles in social computations initiated by others, 

ensuring while doing so that social properties of viable 

computations are preserved. A general purpose social computer 

provides a domain-independent infrastructure for this purpose.  

This implies three processes that need to take place in order 

for the social machine to run. First, specifications must be 

initiated, so that where necessary groups of people are able and 

willing to carry out parts of the computation. It may be that part 

of the ‘programming’ of the social machine will involve 

observation of and induction from existing social processes, to 

be adapted and reused in the new context of the social machine. 

Second, people and groups must adopt appropriate roles in 

the machine, having been incentivised to join social 

computations. The discovery of these roles is an important issue. 

Third, the groups relevant to the computation must be 

reinforced; as Robertson and Giunchiglia put it, “this relies on 

the computation being executed in a way that spreads the 

computation and knits together the social group via further social 

properties of the computation.” In other words, the social 

computation must preserve the social structures necessary for its 

operation. In the example of the DARPA challenge, the clause 

that rewards anyone who has introduced a reward-winner gives 

incentives to people to add friends to an ever-growing network. 

Robertson and Giunchiglia also define a social property, 

analogous to an invariant in conventional programming with 

real-world physical consequences: “a requirement associated 

with the specification of social computation that must be 

maintained, and perhaps communicated, during the execution of 

the specification in order for the computation to establish the 

social group needed to run it.” 

So if we return to the example of reCAPTCHA, its initiation 

involves publicising the Web service to sites needing spam 

protection, people adopt the appropriate role when they decide to 

solve a reCAPTCHA to get access to a service, and relevant 



groups are reinforced by the success of the service in 

suppressing spam on sites to which people want access. The key 

social property to be preserved is that spam is suppressed; if 

spammers found an effective way around the reCAPTCHA, then 

fewer sites would support the Web service, and therefore fewer 

people would be playing the role of word recognisers. 

2.4 The relevance of trust 

Trust is essential to the smooth running of a social machine. Two 

precondition for social machines to motivate people to adopt 

appropriate roles is that they trust that promised incentives will 

appear, and that they trust that the machine will not do anything 

(in the world) that conflicts with their values. In the case of 

reCAPTCHA, people must trust that they will obtain access to 

their desired sites. In the case of the DARPA challenge, the 

participants must have trusted that the money would be paid out. 

Trust is also central to the reinforcement of groups, as 

cooperation towards a goal demands trust in others’ 

contributions; would Wikipedia authors bother to contribute if 

their work was routinely trashed without argued rationales? If an 

effect of a computation was to fragment the coalitions developed 

to carry it out by undermining trust between members, then it 

could not ultimately succeed. It is fair to say that for many social 

computations, trust (both between individuals in different roles, 

and of the machine by its component individuals) is likely to be 

a social property essential to the social machine’s function. 

Trust is of course most important when people take risks or 

place themselves in a vulnerable position with respect to a social 

machine. With reCAPTCHA this is barely an issue, but in a 

machine that, for example, enabled people to manage health care 

problems, users might need to pool information which could 

include sensitive health- or lifestyle-related data. That brings in 

complex rights-based issues such as privacy, and legal issues 

such as data protection. 

In the next section, I shall briefly set out some of the most 

important properties of trust, as background to a discussion of 

issues that arise with respect to trust in social machines. 

3. TRUST 

The discussion of trust will be in four parts, beginning with an 

analysis of trustworthiness, upon which will be built an analysis 

of trust. Finally I shall discuss issues surrounding the connection 

of the two. These analyses are developed in more detail in a 

working paper [5]. 

3.1 Trustworthiness 

Trustworthiness is prior to trust, which is an attitude toward the 

trustworthiness of others. Indeed, as Hardin has argued ([6], [7]), 

many commentators supposedly discussing trust are actually 

discussing trustworthiness. What, then, is this prior concept? 

A trustworthy person is someone who does what she says she 

will do, all things being equal. This characterisation conceals 

quite a lot of structure. First of all, trustworthiness is a property 

of an agent. A claim must be made about her future actions. 

After all, it is absurd to accuse Barack Obama of being an 

untrustworthy brain surgeon, because he has never claimed to 

have brain surgery skills. The claim will also narrow the scope 

of trustworthiness; put another way, trustworthiness is context-

dependent. The ‘all things being equal’ clause means that a 

trustworthy person need not succeed in carrying out the claimed 

behaviour, but if she does not, there must be an explanation for 

her failure which will absolve her of responsibility. 

We can therefore define trustworthiness as a four-place 

relation, as follows: 

 (1) Y is trustworthy =df Tw<Y,Z,R,C> 

 where Y and Z are agents, R is a representation of the 

claim and C is a (task) context in which it applies. 

In (1), Y is the agent who, if (1) is true, is trustworthy. R is 

the content of the claim made about her intentions, capacities 

and motivations for future behaviour. When (1) is true, Y’s 

behaviour will be constrained by R. R may be explicitly written 

down, or may be implicit and understood; it may be open-ended 

and deliberately left unspecific to degrade gracefully. C is the set 

of contexts in which R is intended to apply (for instance, Y may 

claim to be a trustworthy car mechanic, but only within office 

hours, and only on certain makes of car). 

This leaves Z, who is the agent responsible for generating and 

disseminating the claim R. In many, perhaps most, 

circumstances, Y = Z. However, this need not be the case. A 

trustworthy customer service employee (Y) respects a role 

description generated by her company (Z). A trustworthy piece 

of software (Y) performs according to a specification written by 

a designer (Z). It is essential that Z is authorised to make the 

claim about Y. Without authority, Z’s claim has no bearing on 

Y’s trustworthiness. 

3.2 Trust 

Trust is an attitude toward the trustworthiness of another. X 

trusts Y iff he believes that she is trustworthy (or, better, holds of 

the proposition ‘Y is trustworthy’ that it is true). 

This characterisation of trust has a straightforward surface 

appearance. It is still a complex idea, however. Not only does 

trustworthiness import context-dependency, but trust forces us to 

confront a subjective element. There are six parameters of 

consequence in the trust relation, as follows: 

 (2) X trusts Y =df Tr<X,Y,Z,I(R,c),Deg,Warr> 

 with Y, Z and R as before, and X an agent. 

In (2), the first three parameters are the relevant agents. X is 

the trustor and Y the trustee. Z, as before, is the agent who 

makes the claim R about Y’s intentions, capacities and 

motivations. And again, as before, it could be that Z = Y (or, for 

that matter, X = Y, X = Z or X = Y = Z, although the possibility 

of these identities will not be defended here [5]). 

Z makes a claim that Y’s behaviour, all things being equal, 

will conform to R in contexts C. X’s trust, if well-placed, should 

accept that claim. However, it need not, because X is only 

boundedly rational and communications between Z and X are 

not guaranteed to succeed. Furthermore, R might be implicit or 

unspecific. Hence X has to interpret R’s meaning in the contexts 

in which he is interested. I have written this as a function I(R,c), 

to be read as X’s interpretation of the force of R in the set of 

contexts that interest X, which I term c. 

This brings trust’s subjective aspect to the fore. For X’s trust, 

it is X’s interpretation that is the final arbiter, whether or not it is 

accurate. As trust is an attitude held by X about Y, it is X who 

supplies the underlying assumptions of the judgment. This has 

three specific consequences. First, for Y to maintain X’s trust, 



she must behave in accordance with I(R,c) even if that differs 

from her own interpretation of R in c. Second, for X to trust Y, it 

need not be the case that Z has authority to make claim R about 

Y. It is necessary only that X believes that Z has that authority. 

Third, I(R,c) only has any force with respect to Y if c ⊆ C, 

otherwise it will fall out of the scope of R. Yet for X’s trust, it is 

necessary only that X believes that c ⊆ C. If any of X’s beliefs is 

false – i.e. if the force of R in c is not I(R,c), or if Z does not 

have the authority to make claim R about Y, or if c ⊈ C – X’s 

trust or mistrust will be misplaced as based on a 

misunderstanding. 

In short, in definition (2) above, X believes that (i) Z can 

authoritatively make claim R about Y, (ii) I(R,c) is the 

interpretation of R within a set of contexts c, and (iii) c ⊆ C. 

This leaves two more parameters. Deg is a measure of X’s 

confidence in his attitude toward Y’s trustworthiness. The metric 

for Deg depends on the system under discussion. For 

psychological realism, it may be that Deg would be a fairly 

coarse-grained Likert-type psychometric scale of five or seven 

points. But it would be legitimate to produce more complex 

models that modelled Deg on, say, the real line between 0 and 1. 

Whatever metric chosen must facilitate the expression of two 

types of trust judgment. First of all, X may have to choose 

whether he trusts Y1 more than Y2 to decide with whom to place 

his trust. Secondly, the level of risk that X takes on with respect 

to an interaction with Y will depend on his degree of trust; if he 

trusts her a lot, he will, all things being equal, be prepared to risk 

a lot, and if he trusts her only a little, his appetite for risk will be 

diminished. 

Warr is the warrant for X’s trust in Y. This could take any 

form – it doesn’t have to be rational, and could even be that X 

has been dosed with oxytocin which increases the propensity to 

trust [8]. Unlike a warrant in Toulmin’s system [9], the warrant 

explains the judgment, but is not intended for the persuasion of 

others. Nevertheless, usually there is a sensible rationale behind 

a trust judgment which is important for assessing it, and also for 

assessing how robust it is likely to be. Typical relatively reliable 

trust warrants include the reputation of Y, the past history of X’s 

encounters with Y, the availability of sanctions for X, the 

possibility of a binding reciprocal agreement between X and Y, 

the credible commitments made by Y and the credentials that Y 

brings to the transaction. 

As Wierzbicki argues ([10], pp.26-27), trust that does not 

have a rational component will be hard to model. That does not 

mean that trust cannot be irrational, but it makes it harder to 

embed psychologically-realistic trusting mechanisms into 

software, or to design sociotechnical systems (or social 

machines) which incorporate potentially irrational human trust 

judgments without restriction. 

3.3 The problem of trust 

The problem of trust is not to increase trust, but rather to ensure 

that X trusts Y when and only when Y is trustworthy. This is 

difficult as the incentives are not optimally aligned. If X risks 

assets in an interaction with Y, then he benefits from her 

trustworthiness, but unfortunately he only controls his trust. 

Conversely, Y benefits from X’s trust, but only controls her 

trustworthiness. The result is a dilemma where the benefits of 

cooperation could be high, but losses to a trusting (trustworthy) 

party would accrue if their partner is untrustworthy (distrusting). 

From this two things follow. First, trust cannot be an entirely 

rational attitude; as Hollis has argued, trustworthiness does not 

survive rigorous game-theoretic analysis (a fact available to 

rational would-be trustors) [11]. Second, X should use the 

analysis of (2) to determine where trust judgments can break 

down. Many failures of trust are down to differences in 

interpreting what Y is committed to. 

A typical strategy for a trustworthy Y is to send signals of 

trustworthiness to X, which ideally will accurately represent her 

trustworthiness (would not be forthcoming if she were not 

trustworthy) and which will be included in X’s warrant to trust Y 

[12]. These signals can be conscious or unconscious, and more 

or less strongly connected with the task that Y is offering to 

carry out, preferably as an unavoidable by-product. The flip side 

of any such signalling system, however, is that if it is made 

explicit, it can potentially be counterfeited by an untrustworthy 

person. Types of signal already mentioned include Y’s 

reputation, history and credible commitments. 

A second strategy involves structuring the encounter with 

some kind of institution (in the broad sense of a mechanism for 

producing order by structuring behaviour) which can reduce the 

likelihood of a deception being in Y’s interest. Such an 

institution might supply objective credentials for Y, or might 

make plausible and effective sanctions available for X to apply if 

Y defects. Or X and Y might set up their own ‘mini-institution’ 

by entering into a reciprocal agreement. In each case, an 

institution promotes X’s trust in Y only if X trusts the institution 

to deliver the structures it promises. 

4 TRUST IN SOCIAL MACHINES: CURRENT 

APPROACHES 

As noted earlier, trust is a vital element for social machines to 

function. However, this is a complex issue: in the open peer-to-

peer architectures that will be required to support social 

machines, traditional knowledge engineering safeguards (such as 

centralisation of key functions, shared culture and ontologies, 

constraints and access control) are not practicable. In this 

section, I will expand on the theme of trust, using the theoretical 

apparatus assembled in Section 3. 

Importing human interaction into the programming 

environment envisaged by Robertson and Giunchiglia presents a 

major challenge. Hendler and Berners-Lee see artificial 

intelligence as the key to enable people and machines to 

represent and reason over social attitudes including trust and 

trustworthiness, as well as related issues such as reliance and 

expectations; linked data and the Semantic Web will be 

important tools in such a world, by providing designers with 

access to a level of abstraction in which resources can be 

referred to directly and independently of the documents in which 

they are described [13]. Machines which require users to 

contribute information (such as those mentioned earlier to 

coordinate community responses to crime or healthcare issues) 

will also need to reason about privacy and data protection. 

The human world is messy and full of compromise; 

computations in social machines must be able to cope with the 

consequences of this, such as inconsistency. Furthermore, given 

the sensitivity of personal data, social machines will also need to 

be able to function in hostile environments where some actors 

are malicious. 



Although this is a lively area for research, there are few 

robust and scalable structures in place to represent these 

qualities. Hendler and Berners-Lee point out the importance of 

being able to treat these social phenomena as first-class objects 

capable of being reasoned over. The Semantic Web provides a 

blueprint for this, allowing the use of URIs to name objects of 

any kind [13]. 

In open environments, trust needs to be fostered from a 

number of sources. The most common view is to describe the 

relations between peers in a peer-to-peer architecture in terms of 

permissions and obligations governed by policies [14]. Theorem 

provers can determine whether peers have conformed to policies 

[15] and systems have been developed to explore the question of 

how to specify and verify strategies to determine whether and 

when to interact, and with whom [16]. 

5 DISCUSSION: THE HUMAN ELEMENT 

One issue is that these approaches tend to assume that human 

trust behaviour is relatively well-behaved and if not rational at 

least fairly tidy and explicable. Yet as argued in section 3, it 

need not necessarily be so; as Kahneman has recently pointed 

out, rational processing coexists with fast, intuitive and 

emotional thinking [17]. Furthermore, the subjective element of 

trust is deep-seated. Hence policies may work very well to 

describe interactions in distributed systems unless elements are 

likely to behave idiosyncratically. Reasoning is only one 

approach to making a trust judgment, and may well involve a 

complexity that is inappropriate. Human judgments about 

trustworthiness of complex and distributed systems will not 

always align with the methods, ontologies and terms in which 

questions are framed by system designers. The key factors for 

consideration, as argued in section 3.2, include X’s view of Z, 

X’s interpretation of R, and the warrants that X accepts. 

5.1 Displacing trust 

Most approaches to trust in multi-agent systems assume that 

information relevant to agents’ reputation, or data provenance, or 

data security will suffice to align trust and trustworthiness. 

Certainly transparency and availability of information about 

these is a bonus, and can do no harm. But will they be sufficient? 

Trust is not always grounded; X’s trust of Y may depend on 

his trust of Z. In many scenarios, X is given information by the 

system about the reputation of Y, or about the provenance of 

some information – it is widely accepted that these are important 

for trust. But even assuming that a typical X is willing to restrict 

his warrant for his trust in Y to reputation, provenance, 

recommendations and other mechanisms that have been 

extensively theorised online, he still needs to trust the source of 

the reputation/provenance/recommendation. If someone does not 

trust, say, Amazon, they are unlikely to trust the *-rating system 

that it hosts, even though it is intended to provide an objective 

assessment of Amazon’s products. The provision of such 

information does not solve the trust problem – it just displaces it 

to another point of the system. 

Recall also a point made earlier, that institutions can help 

promote well-placed trust if they are themselves trusted. It is also 

worth noting in this context that people contributing to a social 

machine, by trusting the machine’s structuration of behaviour, 

also have to trust that their fellow users will behave in good 

faith. The trustworthiness of the machine will also depend on the 

trustworthiness of the user community. This is somewhat beyond 

the scope of this paper, which focuses on the challenges to 

designers, but the wide range of other stakeholders (owners, 

managers, shareholders, policymakers, users) should be an 

important focus of future research, and a complete social 

machine program should take all relevant roles into account. 

5.2 The logic of trust 

Z makes a claim about how Y will perform. Y in this case is the 

social machine, and Z the administrator. X’s trust of the social 

machine will depend on his trust of the administrator. For 

instance, the motivation of the people from whom information is 

crowdsourced in the DARPA network challenge depended on 

financial incentives (a) to provide information to the 

administrator, and (b) to introduce new people to the group. The 

function of that social machine depended among many other 

things on enough people trusting the administration of the 

machine, and the likelihood of its dispersing the money. 

Indeed, because we are dealing with trust with its subjective 

element, all that was required was that the various Xs believed 

that remuneration would be forthcoming. The money need not 

actually have been in place at all. Hence if we are formalising 

social machines using a process calculus (as advocated 

persuasively by Robertson and Giunchiglia), we need to make a 

distinction between those social properties which need to be true 

in order for a social machine to achieve its purpose, those 

properties which need to be believed to be true (but which need 

not be true), and those properties which need to be both true and 

believed. 

This matters because a calculus should describe necessary 

conditions for a machine’s function. In the case of the DARPA 

challenge, the existence of a pot of money to be distributed to the 

participants was neither sufficient nor necessary to the social 

machine’s function. It was not sufficient, because if would-be 

participants were unaware of or did not believe in the financial 

remuneration they would not have taken part. It was not 

necessary, because all that mattered was that the participants 

were motivated, not that they were paid. Of course, this problem 

is most dramatic in a one-shot system, but will always re-emerge 

in some form even in contexts with repeat runs. 

Indeed, spreading the truth about how a machine will function 

could on occasion undermine that very functioning. The reader 

may have noticed that someone helping Google by using a 

reCAPTCHA need not be aware that he or she is doing that 

(although Google makes no secret of it). This introduces an 

exploitative element to reCAPTCHA; one wishes to identify 

oneself as a human, but having done that, one is also required to 

perform an extra task, which is not identified as such, to help 

Google scan an old book. 

reCAPTCHA demands very little effort, so the exploitation is 

probably bearable, but even so someone might resent having to 

help Google when they wanted to interact with Facebook. More 

generally, if people came to understand that, say, a social 

network was gathering information about them primarily in 

order to sell to marketing companies, or that a healthcare social 

machine was gleaning information primarily to sell to 

pharmaceutical companies, the feeling of exploitation (even if it 

was plausibly in the interests of the users) might have the effect 



of discouraging the users from taking part. It is essential to make 

a distinction between what is known about the system, what 

users should believe (even if false) about the system, and what 

users should be unaware of (even if true) about the system. 

5.3 Differences of interpretation 

Where the interests of Z and X do not align, it is important to 

ensure that X’s interpretation of R coincides with that of Z. This 

is not always the case with technology. Where Z is a designer 

who has created an artificial agent Y, Y’s trustworthiness is 

often measured by Z against a highly technical specification R. 

However, the user X will typically see the technology 

holistically as part of a system with which he is confronted. If we 

take the example of an ID card, the system designer may be 

pleased to have devised a secure system. But the owner of the 

card will judge it in terms of the extent to which it empowers and 

constrains him. As Charles Raab puts it, “it is no comfort to a 

privacy-aware individual to be told that inaccurate, outdated, 

excessive and irrelevant data about her are encrypted and stored 

behind hacker-proof firewalls until put to use by (say) a credit-

granting organization in making decisions about her” [18]. 

There are many types of case where R, the claim that is made 

about Y, can be very different from I(R,c), X’s interpretation of 

that claim. If trust is to be maintained, R must be couched in a 

way that is meaningful for X. A merely technical specification of 

behaviour, however accurate, is unlikely to be enough. Yet a 

technical specification of the system’s behaviour is required if 

we are to be able to program social machines rigorously. 

6 CONCLUSION 

The problem of trust is that it is hard to align to an arbitrary 

degree of certainty with trustworthiness. It is important, if 

dispiriting, to note that the most trustworthy system is useless if 

it is not trusted. Furthermore, it could happen that a trusted 

system works perfectly well (to its designers’ satisfaction, 

anyway) even if it is not trustworthy. 

Much will depend on the incentives given to participants. In 

the case of machines which provide a good user experience (for 

example, healthcare networking sites from which people get best 

practice or companionship or counselling from others with 

similar problems), specifying that experience will be difficult. 

All a designer can really specify are issues such as the privacy 

and security with which health data are stored. These are 

important factors for user trust, but the porousness of the system 

will also depend on the propensity of the networking humans to 

misuse or leak information they gain, for example from 

chatrooms. The nature of the user community is at least as 

important as the technical specification. 

Taking this thought to a logical conclusion, it is likely that 

public trust in such machines will be highest when the public has 

had a say in their design and operation. The closer the 

relationship between trustor, designers and administrators, the 

better. This suggests that a focus of future research here might be 

the development of tools and protocols to allow communities to 

design social machines to their own specifications. 

In machines such as reCAPTCHA and the DARPA challenge, 

where the humans in the loop are performing tasks subordinate 

to the wider goal of the system and gaining nothing intrinsic 

from participation, the classic trade-off of trust (that trust matters 

and trustworthiness is secondary, especially in one-shot games), 

is harder to avoid. ‘Programming’ of such machines using 

process calculi should, from the point of view of good design, 

make the necessary and sufficient conditions clear. Whether this 

promotes or restricts cynicism is an empirical question upon 

whose answer the future of social machines will probably rest. 
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