
Trust in Social Machines: The Challenges

Kieron O’Hara
1

Abstract. The World Wide Web has ushered in a new

generation of applications constructively linking people and

computers to create what have been called ‘social machines.’

The ‘components’ of these machines are people and

technologies. It has long been recognised that for people to

participate in social machines, they have to trust the processes.

However, the notions of trust often used tend to be imported

from agent-based computing, and may be too formal, objective

and selective to describe human trust accurately. This paper

applies a theory of human trust to social machines research, and

sets out some of the challenges to system designers.

1 INTRODUCTION

Computers have always been sociotechnical systems, embedded

in organisations, or serving the purposes of users for work or

leisure. However, thanks to the spread of interactive read/write

technologies (e.g. wikis, photo-sharing, blogging) and devices

and sensors embedded in both physical and digital worlds (e.g.

GPS-enabled hand-held devices), people and machines have

become increasingly integrated. Terms such as ‘augmented

reality’ and ‘mediated reality’ are in common use, and the

embedding of computation into society via personal devices has

led to discussion of social machines and social computation, an

abstract conception in which people and machines interact for

problem-solving. The ‘components’ of the machine may be

people or computers; the ‘routines’ or ‘procedures’ could be

carried out by humans, computers or both together.

Social machines are rapidly becoming a focus of computing

research [1]. ‘Programming the global computer’ is one of the

British Computing Society’s grand challenges for computing,

while peer-to-peer technologies have opened up the possibility

of flexibly linking people and computers, as explored in projects

such as OpenKnowledge (http://www.openk.org/) and the Social

Computer community (http://www.socialcomputer.eu/).

Trust has always been recognised as an important factor in the

function of such human/computer hybrids. However, the notions

of trust used have often been relatively formal, imported from

agent-based research. In this paper, I will examine the question

of whether, and how, social computing can take into account

wider and less well-ordered notions of psychologically realistic

trust. I also note here two important limitations of scope of this

paper. First, I focus here on issues of trust relevant to system

designers fostering trust in their systems by users; of course

there are many other stakeholders and many other trust relations

typically involved (to take an obvious example, system designers

have to trust users as well as being trusted by them). Secondly, I

focus here on the challenges; solutions are already being created

1
 Electronics and Computer Science, University of Southampton,

Highfield, Southampton SO17 1BJ, United Kingdom,
kmo@ecs.soton.ac.uk.

for these issues, but the point I want to emphasise in this paper is

that we have to be clear about exactly how social machines rely

on trust to function, and where a breakdown will lead to

dysfunction. Without a precise model, it will be harder to

diagnose problems.

2 SOCIAL MACHINES

In this section, I will flesh out the idea of a social machine or

social computer. After a preliminary discussion, I shall briefly

describe a couple of examples. A third subsection will examine

the notion of programming social machines, before the section is

completed with a brief sketch of the important role trust plays.

2.1 What is a social machine?

The idea of a social machine was implicit in early conceptions of

the World Wide Web. As Berners-Lee put it in 1999:

Real life is and must be full of all kinds of social constraint –

the very processes from which society arises. Computers can

help if we use them to create abstract social machines on the

Web: processes in which people do the creative work and the

machine does the administration. ([2], pp.172, Berners-Lee’s

emphasis)

We see plenty of social machines around today. Many are

embedded in social networks such as Facebook, in which human

interactions from organising a birthday party to interacting with

one’s Member of Parliament are underpinned by the engineered

environment. Another type of example is a multiplayer online

game, where a persistent online environment facilitates

interactions concerning virtual resources between real people. A

third type is an online poker game, where the resources being

played for are real-world, but where the players may be human

or bots, and where the environment in which the game takes

place is engineered around a relatively simple computational

model. In such systems, (some of) the social constraints that

Berners-Lee talks about, which are currently norm-driven, are

converted to (or in his terms administered by) the architecture of

the programmed environment.

These social machines are straightforward (qua interaction

models), but as the technology is theorised more deeply it is

inevitable that more complex systems will be developed. A

generalised definition of a social computation is provided by

Robertson and Giunchiglia:

A computation for which an executable specification exists

but the successful implementation of this specification depends

upon computer mediated social interaction between the human

actors in its implementation. [3]

In such an environment, self-organisation (partial or full)

becomes viable and scalable, while physical objects, agents,

contracts, agreements, incentives and other objects can be

referred to using Web resources (Uniform Resource Identifiers –

http://www.openk.org/
http://www.socialcomputer.eu/

URIs). ‘Programming’ the social computer (rather than simply

supporting and directing interactions on an engineered

environment) and integrating larger numbers of people and

machines will become increasingly feasible.

2.2 Examples

As a small example of a social machine, consider reCAPTCHA

[4]. A CAPTCHA (Completely Automated Public Turing test to

tell Computers and Humans Apart), invented by Louis Von Ahn,

is the distorted sequence of letters that someone has to type in a

box to identify him- or herself as a human (e.g. to buy a ticket

online, or to comment on a blog). This is a task that computers

cannot do, and so the system stops bots buying thousands of

tickets for a concert or sporting event for later resale, or for a

spambot to leave spam messages as comments to blogs.

Von Ahn extended the idea of the CAPTCHA to create the

reCAPTCHA, which uses the same principle to solve another

problem. Google (which acquired reCAPTCHA in 2009) wishes

to scan and publish out-of-copyright books. However, Optical

Character Recognition is too fallible to automate the process (in

books over 100 years old, OCR fails for about 30% of words).

The quantity of books to be scanned rules out human labour as a

general solution to the problem.

Von Ahn noticed that his original CAPTCHA device was

being used over 200m times a day, about half a million person-

hours of effort. reCAPTCHA was designed to put these person-

hours to more productive use. It presents the user who wishes to

identify him- or herself as a human with two words, not one. The

first is a normal CAPTCHA, and the second is a word from an

old book that OCR had failed to identify. If the person succeeds

with the first CAPTCHA, then he or she is known to be a human.

As humans are reliable at word recognition, Google can

therefore take the response to the second word as a plausible

suggestion of what it is. Presenting the same word to multiple

users allows a consensus to emerge.

The person is not necessarily aware that he or she is helping

Google in its scanning task. The incentive for his or her

involvement is the need for identification (to buy tickets, or

comment on a blog, etc). The time taken for a reCAPTCHA is

not significantly longer than a CAPTCHA. The ‘machine’

thereby created, of millions of people interacting via the

reCAPTCHA facility, is currently identifying about 100m words

per day (about 2m books equivalent per year). reCAPTCHA is

offered as a free Web service to hundreds of thousands of

websites (including Facebook, Twitter and Ticketmaster) which

need spam protection; the service can be offered without a fee

because of the translation service it also provides to Google [4].

As another example, Robertson and Giunchiglia [3] use the

DARPA balloon challenge of 2009, in which all human

‘components’ of the machine are fully aware of their own role.

In the DARPA challenge, the aim was to find ten weather

balloons placed randomly around the US (in nine different states

from California to Delaware). The rules of the challenge were

intended to support the growth of a network of people taking part

in the search, enabling a crowdsourced solution. The means of

doing this in the winning solution (from Sandy Pentland at the

Massachusetts Institute of Technology) was to set out financial

incentives – everyone who discovered a balloon got a certain

quantity of money, while for everyone who received a reward,

the person who introduced them to the network received half that

reward. Hence people were incentivised both to look for the

balloons and to add more people to the network. Pentland’s team

began with 4 people, and using social media had recruited over

5,000 at the point of completion, which took under ten hours.

reCAPTCHA and the DARPA challenge were intended to

solve a particular exogenous problem, but social machines can

be designed to solve the problems of the people who constitute

them. In such cases, the incentive of the participants is that the

machine’s smooth functioning is in their own interests. One

could imagine, for instance, a set of computer-mediated

interactions enabling a community to provide a social response

to problems of crime (such as BlueServo, which crowdsources

the policing of the Texas-Mexico border), or enabling those

suffering from a particular health care problem to pool resources

and to offer support and advice to fellow sufferers (such as

curetogether.com). It will be obvious from these examples that

such efforts will not always be uncontroversial.

Note finally that in many cases the ability to compute and to

gather and process information at large scale is vital. This adds

an extra layer of complication to the social machine vision.

2.3 Programming the social machine

Giunchiglia and Robertson define a social machine or computer

as follows [3]:

A computer system that allows people to initiate social

computations (via executable specifications) and adopt

appropriate roles in social computations initiated by others,

ensuring while doing so that social properties of viable

computations are preserved. A general purpose social computer

provides a domain-independent infrastructure for this purpose.

This implies three processes that need to take place in order

for the social machine to run. First, specifications must be

initiated, so that where necessary groups of people are able and

willing to carry out parts of the computation. It may be that part

of the ‘programming’ of the social machine will involve

observation of and induction from existing social processes, to

be adapted and reused in the new context of the social machine.

Second, people and groups must adopt appropriate roles in

the machine, having been incentivised to join social

computations. The discovery of these roles is an important issue.

Third, the groups relevant to the computation must be

reinforced; as Robertson and Giunchiglia put it, “this relies on

the computation being executed in a way that spreads the

computation and knits together the social group via further social

properties of the computation.” In other words, the social

computation must preserve the social structures necessary for its

operation. In the example of the DARPA challenge, the clause

that rewards anyone who has introduced a reward-winner gives

incentives to people to add friends to an ever-growing network.

Robertson and Giunchiglia also define a social property,

analogous to an invariant in conventional programming with

real-world physical consequences: “a requirement associated

with the specification of social computation that must be

maintained, and perhaps communicated, during the execution of

the specification in order for the computation to establish the

social group needed to run it.”

So if we return to the example of reCAPTCHA, its initiation

involves publicising the Web service to sites needing spam

protection, people adopt the appropriate role when they decide to

solve a reCAPTCHA to get access to a service, and relevant

groups are reinforced by the success of the service in

suppressing spam on sites to which people want access. The key

social property to be preserved is that spam is suppressed; if

spammers found an effective way around the reCAPTCHA, then

fewer sites would support the Web service, and therefore fewer

people would be playing the role of word recognisers.

2.4 The relevance of trust

Trust is essential to the smooth running of a social machine. Two

precondition for social machines to motivate people to adopt

appropriate roles is that they trust that promised incentives will

appear, and that they trust that the machine will not do anything

(in the world) that conflicts with their values. In the case of

reCAPTCHA, people must trust that they will obtain access to

their desired sites. In the case of the DARPA challenge, the

participants must have trusted that the money would be paid out.

Trust is also central to the reinforcement of groups, as

cooperation towards a goal demands trust in others’

contributions; would Wikipedia authors bother to contribute if

their work was routinely trashed without argued rationales? If an

effect of a computation was to fragment the coalitions developed

to carry it out by undermining trust between members, then it

could not ultimately succeed. It is fair to say that for many social

computations, trust (both between individuals in different roles,

and of the machine by its component individuals) is likely to be

a social property essential to the social machine’s function.

Trust is of course most important when people take risks or

place themselves in a vulnerable position with respect to a social

machine. With reCAPTCHA this is barely an issue, but in a

machine that, for example, enabled people to manage health care

problems, users might need to pool information which could

include sensitive health- or lifestyle-related data. That brings in

complex rights-based issues such as privacy, and legal issues

such as data protection.

In the next section, I shall briefly set out some of the most

important properties of trust, as background to a discussion of

issues that arise with respect to trust in social machines.

3. TRUST

The discussion of trust will be in four parts, beginning with an

analysis of trustworthiness, upon which will be built an analysis

of trust. Finally I shall discuss issues surrounding the connection

of the two. These analyses are developed in more detail in a

working paper [5].

3.1 Trustworthiness

Trustworthiness is prior to trust, which is an attitude toward the

trustworthiness of others. Indeed, as Hardin has argued ([6], [7]),

many commentators supposedly discussing trust are actually

discussing trustworthiness. What, then, is this prior concept?

A trustworthy person is someone who does what she says she

will do, all things being equal. This characterisation conceals

quite a lot of structure. First of all, trustworthiness is a property

of an agent. A claim must be made about her future actions.

After all, it is absurd to accuse Barack Obama of being an

untrustworthy brain surgeon, because he has never claimed to

have brain surgery skills. The claim will also narrow the scope

of trustworthiness; put another way, trustworthiness is context-

dependent. The ‘all things being equal’ clause means that a

trustworthy person need not succeed in carrying out the claimed

behaviour, but if she does not, there must be an explanation for

her failure which will absolve her of responsibility.

We can therefore define trustworthiness as a four-place

relation, as follows:

 (1) Y is trustworthy =df Tw<Y,Z,R,C>

 where Y and Z are agents, R is a representation of the

claim and C is a (task) context in which it applies.

In (1), Y is the agent who, if (1) is true, is trustworthy. R is

the content of the claim made about her intentions, capacities

and motivations for future behaviour. When (1) is true, Y’s

behaviour will be constrained by R. R may be explicitly written

down, or may be implicit and understood; it may be open-ended

and deliberately left unspecific to degrade gracefully. C is the set

of contexts in which R is intended to apply (for instance, Y may

claim to be a trustworthy car mechanic, but only within office

hours, and only on certain makes of car).

This leaves Z, who is the agent responsible for generating and

disseminating the claim R. In many, perhaps most,

circumstances, Y = Z. However, this need not be the case. A

trustworthy customer service employee (Y) respects a role

description generated by her company (Z). A trustworthy piece

of software (Y) performs according to a specification written by

a designer (Z). It is essential that Z is authorised to make the

claim about Y. Without authority, Z’s claim has no bearing on

Y’s trustworthiness.

3.2 Trust

Trust is an attitude toward the trustworthiness of another. X

trusts Y iff he believes that she is trustworthy (or, better, holds of

the proposition ‘Y is trustworthy’ that it is true).

This characterisation of trust has a straightforward surface

appearance. It is still a complex idea, however. Not only does

trustworthiness import context-dependency, but trust forces us to

confront a subjective element. There are six parameters of

consequence in the trust relation, as follows:

 (2) X trusts Y =df Tr<X,Y,Z,I(R,c),Deg,Warr>

 with Y, Z and R as before, and X an agent.

In (2), the first three parameters are the relevant agents. X is

the trustor and Y the trustee. Z, as before, is the agent who

makes the claim R about Y’s intentions, capacities and

motivations. And again, as before, it could be that Z = Y (or, for

that matter, X = Y, X = Z or X = Y = Z, although the possibility

of these identities will not be defended here [5]).

Z makes a claim that Y’s behaviour, all things being equal,

will conform to R in contexts C. X’s trust, if well-placed, should

accept that claim. However, it need not, because X is only

boundedly rational and communications between Z and X are

not guaranteed to succeed. Furthermore, R might be implicit or

unspecific. Hence X has to interpret R’s meaning in the contexts

in which he is interested. I have written this as a function I(R,c),

to be read as X’s interpretation of the force of R in the set of

contexts that interest X, which I term c.

This brings trust’s subjective aspect to the fore. For X’s trust,

it is X’s interpretation that is the final arbiter, whether or not it is

accurate. As trust is an attitude held by X about Y, it is X who

supplies the underlying assumptions of the judgment. This has

three specific consequences. First, for Y to maintain X’s trust,

she must behave in accordance with I(R,c) even if that differs

from her own interpretation of R in c. Second, for X to trust Y, it

need not be the case that Z has authority to make claim R about

Y. It is necessary only that X believes that Z has that authority.

Third, I(R,c) only has any force with respect to Y if c ⊆ C,

otherwise it will fall out of the scope of R. Yet for X’s trust, it is

necessary only that X believes that c ⊆ C. If any of X’s beliefs is

false – i.e. if the force of R in c is not I(R,c), or if Z does not

have the authority to make claim R about Y, or if c ⊈ C – X’s

trust or mistrust will be misplaced as based on a

misunderstanding.

In short, in definition (2) above, X believes that (i) Z can

authoritatively make claim R about Y, (ii) I(R,c) is the

interpretation of R within a set of contexts c, and (iii) c ⊆ C.

This leaves two more parameters. Deg is a measure of X’s

confidence in his attitude toward Y’s trustworthiness. The metric

for Deg depends on the system under discussion. For

psychological realism, it may be that Deg would be a fairly

coarse-grained Likert-type psychometric scale of five or seven

points. But it would be legitimate to produce more complex

models that modelled Deg on, say, the real line between 0 and 1.

Whatever metric chosen must facilitate the expression of two

types of trust judgment. First of all, X may have to choose

whether he trusts Y1 more than Y2 to decide with whom to place

his trust. Secondly, the level of risk that X takes on with respect

to an interaction with Y will depend on his degree of trust; if he

trusts her a lot, he will, all things being equal, be prepared to risk

a lot, and if he trusts her only a little, his appetite for risk will be

diminished.

Warr is the warrant for X’s trust in Y. This could take any

form – it doesn’t have to be rational, and could even be that X

has been dosed with oxytocin which increases the propensity to

trust [8]. Unlike a warrant in Toulmin’s system [9], the warrant

explains the judgment, but is not intended for the persuasion of

others. Nevertheless, usually there is a sensible rationale behind

a trust judgment which is important for assessing it, and also for

assessing how robust it is likely to be. Typical relatively reliable

trust warrants include the reputation of Y, the past history of X’s

encounters with Y, the availability of sanctions for X, the

possibility of a binding reciprocal agreement between X and Y,

the credible commitments made by Y and the credentials that Y

brings to the transaction.

As Wierzbicki argues ([10], pp.26-27), trust that does not

have a rational component will be hard to model. That does not

mean that trust cannot be irrational, but it makes it harder to

embed psychologically-realistic trusting mechanisms into

software, or to design sociotechnical systems (or social

machines) which incorporate potentially irrational human trust

judgments without restriction.

3.3 The problem of trust

The problem of trust is not to increase trust, but rather to ensure

that X trusts Y when and only when Y is trustworthy. This is

difficult as the incentives are not optimally aligned. If X risks

assets in an interaction with Y, then he benefits from her

trustworthiness, but unfortunately he only controls his trust.

Conversely, Y benefits from X’s trust, but only controls her

trustworthiness. The result is a dilemma where the benefits of

cooperation could be high, but losses to a trusting (trustworthy)

party would accrue if their partner is untrustworthy (distrusting).

From this two things follow. First, trust cannot be an entirely

rational attitude; as Hollis has argued, trustworthiness does not

survive rigorous game-theoretic analysis (a fact available to

rational would-be trustors) [11]. Second, X should use the

analysis of (2) to determine where trust judgments can break

down. Many failures of trust are down to differences in

interpreting what Y is committed to.

A typical strategy for a trustworthy Y is to send signals of

trustworthiness to X, which ideally will accurately represent her

trustworthiness (would not be forthcoming if she were not

trustworthy) and which will be included in X’s warrant to trust Y

[12]. These signals can be conscious or unconscious, and more

or less strongly connected with the task that Y is offering to

carry out, preferably as an unavoidable by-product. The flip side

of any such signalling system, however, is that if it is made

explicit, it can potentially be counterfeited by an untrustworthy

person. Types of signal already mentioned include Y’s

reputation, history and credible commitments.

A second strategy involves structuring the encounter with

some kind of institution (in the broad sense of a mechanism for

producing order by structuring behaviour) which can reduce the

likelihood of a deception being in Y’s interest. Such an

institution might supply objective credentials for Y, or might

make plausible and effective sanctions available for X to apply if

Y defects. Or X and Y might set up their own ‘mini-institution’

by entering into a reciprocal agreement. In each case, an

institution promotes X’s trust in Y only if X trusts the institution

to deliver the structures it promises.

4 TRUST IN SOCIAL MACHINES: CURRENT

APPROACHES

As noted earlier, trust is a vital element for social machines to

function. However, this is a complex issue: in the open peer-to-

peer architectures that will be required to support social

machines, traditional knowledge engineering safeguards (such as

centralisation of key functions, shared culture and ontologies,

constraints and access control) are not practicable. In this

section, I will expand on the theme of trust, using the theoretical

apparatus assembled in Section 3.

Importing human interaction into the programming

environment envisaged by Robertson and Giunchiglia presents a

major challenge. Hendler and Berners-Lee see artificial

intelligence as the key to enable people and machines to

represent and reason over social attitudes including trust and

trustworthiness, as well as related issues such as reliance and

expectations; linked data and the Semantic Web will be

important tools in such a world, by providing designers with

access to a level of abstraction in which resources can be

referred to directly and independently of the documents in which

they are described [13]. Machines which require users to

contribute information (such as those mentioned earlier to

coordinate community responses to crime or healthcare issues)

will also need to reason about privacy and data protection.

The human world is messy and full of compromise;

computations in social machines must be able to cope with the

consequences of this, such as inconsistency. Furthermore, given

the sensitivity of personal data, social machines will also need to

be able to function in hostile environments where some actors

are malicious.

Although this is a lively area for research, there are few

robust and scalable structures in place to represent these

qualities. Hendler and Berners-Lee point out the importance of

being able to treat these social phenomena as first-class objects

capable of being reasoned over. The Semantic Web provides a

blueprint for this, allowing the use of URIs to name objects of

any kind [13].

In open environments, trust needs to be fostered from a

number of sources. The most common view is to describe the

relations between peers in a peer-to-peer architecture in terms of

permissions and obligations governed by policies [14]. Theorem

provers can determine whether peers have conformed to policies

[15] and systems have been developed to explore the question of

how to specify and verify strategies to determine whether and

when to interact, and with whom [16].

5 DISCUSSION: THE HUMAN ELEMENT

One issue is that these approaches tend to assume that human

trust behaviour is relatively well-behaved and if not rational at

least fairly tidy and explicable. Yet as argued in section 3, it

need not necessarily be so; as Kahneman has recently pointed

out, rational processing coexists with fast, intuitive and

emotional thinking [17]. Furthermore, the subjective element of

trust is deep-seated. Hence policies may work very well to

describe interactions in distributed systems unless elements are

likely to behave idiosyncratically. Reasoning is only one

approach to making a trust judgment, and may well involve a

complexity that is inappropriate. Human judgments about

trustworthiness of complex and distributed systems will not

always align with the methods, ontologies and terms in which

questions are framed by system designers. The key factors for

consideration, as argued in section 3.2, include X’s view of Z,

X’s interpretation of R, and the warrants that X accepts.

5.1 Displacing trust

Most approaches to trust in multi-agent systems assume that

information relevant to agents’ reputation, or data provenance, or

data security will suffice to align trust and trustworthiness.

Certainly transparency and availability of information about

these is a bonus, and can do no harm. But will they be sufficient?

Trust is not always grounded; X’s trust of Y may depend on

his trust of Z. In many scenarios, X is given information by the

system about the reputation of Y, or about the provenance of

some information – it is widely accepted that these are important

for trust. But even assuming that a typical X is willing to restrict

his warrant for his trust in Y to reputation, provenance,

recommendations and other mechanisms that have been

extensively theorised online, he still needs to trust the source of

the reputation/provenance/recommendation. If someone does not

trust, say, Amazon, they are unlikely to trust the *-rating system

that it hosts, even though it is intended to provide an objective

assessment of Amazon’s products. The provision of such

information does not solve the trust problem – it just displaces it

to another point of the system.

Recall also a point made earlier, that institutions can help

promote well-placed trust if they are themselves trusted. It is also

worth noting in this context that people contributing to a social

machine, by trusting the machine’s structuration of behaviour,

also have to trust that their fellow users will behave in good

faith. The trustworthiness of the machine will also depend on the

trustworthiness of the user community. This is somewhat beyond

the scope of this paper, which focuses on the challenges to

designers, but the wide range of other stakeholders (owners,

managers, shareholders, policymakers, users) should be an

important focus of future research, and a complete social

machine program should take all relevant roles into account.

5.2 The logic of trust

Z makes a claim about how Y will perform. Y in this case is the

social machine, and Z the administrator. X’s trust of the social

machine will depend on his trust of the administrator. For

instance, the motivation of the people from whom information is

crowdsourced in the DARPA network challenge depended on

financial incentives (a) to provide information to the

administrator, and (b) to introduce new people to the group. The

function of that social machine depended among many other

things on enough people trusting the administration of the

machine, and the likelihood of its dispersing the money.

Indeed, because we are dealing with trust with its subjective

element, all that was required was that the various Xs believed

that remuneration would be forthcoming. The money need not

actually have been in place at all. Hence if we are formalising

social machines using a process calculus (as advocated

persuasively by Robertson and Giunchiglia), we need to make a

distinction between those social properties which need to be true

in order for a social machine to achieve its purpose, those

properties which need to be believed to be true (but which need

not be true), and those properties which need to be both true and

believed.

This matters because a calculus should describe necessary

conditions for a machine’s function. In the case of the DARPA

challenge, the existence of a pot of money to be distributed to the

participants was neither sufficient nor necessary to the social

machine’s function. It was not sufficient, because if would-be

participants were unaware of or did not believe in the financial

remuneration they would not have taken part. It was not

necessary, because all that mattered was that the participants

were motivated, not that they were paid. Of course, this problem

is most dramatic in a one-shot system, but will always re-emerge

in some form even in contexts with repeat runs.

Indeed, spreading the truth about how a machine will function

could on occasion undermine that very functioning. The reader

may have noticed that someone helping Google by using a

reCAPTCHA need not be aware that he or she is doing that

(although Google makes no secret of it). This introduces an

exploitative element to reCAPTCHA; one wishes to identify

oneself as a human, but having done that, one is also required to

perform an extra task, which is not identified as such, to help

Google scan an old book.

reCAPTCHA demands very little effort, so the exploitation is

probably bearable, but even so someone might resent having to

help Google when they wanted to interact with Facebook. More

generally, if people came to understand that, say, a social

network was gathering information about them primarily in

order to sell to marketing companies, or that a healthcare social

machine was gleaning information primarily to sell to

pharmaceutical companies, the feeling of exploitation (even if it

was plausibly in the interests of the users) might have the effect

of discouraging the users from taking part. It is essential to make

a distinction between what is known about the system, what

users should believe (even if false) about the system, and what

users should be unaware of (even if true) about the system.

5.3 Differences of interpretation

Where the interests of Z and X do not align, it is important to

ensure that X’s interpretation of R coincides with that of Z. This

is not always the case with technology. Where Z is a designer

who has created an artificial agent Y, Y’s trustworthiness is

often measured by Z against a highly technical specification R.

However, the user X will typically see the technology

holistically as part of a system with which he is confronted. If we

take the example of an ID card, the system designer may be

pleased to have devised a secure system. But the owner of the

card will judge it in terms of the extent to which it empowers and

constrains him. As Charles Raab puts it, “it is no comfort to a

privacy-aware individual to be told that inaccurate, outdated,

excessive and irrelevant data about her are encrypted and stored

behind hacker-proof firewalls until put to use by (say) a credit-

granting organization in making decisions about her” [18].

There are many types of case where R, the claim that is made

about Y, can be very different from I(R,c), X’s interpretation of

that claim. If trust is to be maintained, R must be couched in a

way that is meaningful for X. A merely technical specification of

behaviour, however accurate, is unlikely to be enough. Yet a

technical specification of the system’s behaviour is required if

we are to be able to program social machines rigorously.

6 CONCLUSION

The problem of trust is that it is hard to align to an arbitrary

degree of certainty with trustworthiness. It is important, if

dispiriting, to note that the most trustworthy system is useless if

it is not trusted. Furthermore, it could happen that a trusted

system works perfectly well (to its designers’ satisfaction,

anyway) even if it is not trustworthy.

Much will depend on the incentives given to participants. In

the case of machines which provide a good user experience (for

example, healthcare networking sites from which people get best

practice or companionship or counselling from others with

similar problems), specifying that experience will be difficult.

All a designer can really specify are issues such as the privacy

and security with which health data are stored. These are

important factors for user trust, but the porousness of the system

will also depend on the propensity of the networking humans to

misuse or leak information they gain, for example from

chatrooms. The nature of the user community is at least as

important as the technical specification.

Taking this thought to a logical conclusion, it is likely that

public trust in such machines will be highest when the public has

had a say in their design and operation. The closer the

relationship between trustor, designers and administrators, the

better. This suggests that a focus of future research here might be

the development of tools and protocols to allow communities to

design social machines to their own specifications.

In machines such as reCAPTCHA and the DARPA challenge,

where the humans in the loop are performing tasks subordinate

to the wider goal of the system and gaining nothing intrinsic

from participation, the classic trade-off of trust (that trust matters

and trustworthiness is secondary, especially in one-shot games),

is harder to avoid. ‘Programming’ of such machines using

process calculi should, from the point of view of good design,

make the necessary and sufficient conditions clear. Whether this

promotes or restricts cynicism is an empirical question upon

whose answer the future of social machines will probably rest.

ACKNOWLEDGMENTS

The work reported in this paper was funded by the EnAKTing

project, EPSRC Grant EP/G008493/1. Thanks to Dave

Robertson, Luc Moreau and three referees for comments.

REFERENCES

[1] A. Bernstein, M. Klein and T.W. Malone, Programming the

Global Brain, Communications of the ACM, in press.
[2] T. Berners-Lee, Weaving the Web: the Original Design and

Ultimate Destiny of the World Wide Web, Harper Collins,

New York (1999).
[3] D. Robertson and F. Giunchiglia, Programming the Social

Computer, Philosophical Transactions of the Royal Society A,

in press.
[4] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham and M.

Blum, reCAPTCHA: Human-Based Character Recognition

via Web Security Measures, Science, 321:1465-1468 (12th
Sept, 2008).

[5] K. O’Hara, A General Definition of Trust, working paper,

http://eprints.ecs.soton.ac.uk/23193/, (2012).
[6] R. Hardin, Trustworthiness, Ethics 107:26-42, (1996).

[7] R. Hardin, Trust, Polity Press, Cambridge, (2006).

[8] M. Kosfeld, M. Heinrichs, P.J. Zak, U. Fischbacher and E.
Fehr, Oxytocin Increases Trust in Humans, Nature, 435:673-

676 (2nd June, 2005).

[9] S. Toulmin, The Uses of Argument, Cambridge University
Press, Cambridge, 1958.

[10] A. Wierzbicki, Trust and Fairness in Open, Distributed

Systems, Springer, Berlin, (2010).
[11] M. Hollis, Trust Within Reason, Cambridge University Press,

Cambridge, (1998).
[12] A. Pentland, Honest Signals: How They Shape Our World,

MIT Press, Cambridge MA, (2008).

[13] J. Hendler and T. Berners-Lee, From the Semantic Web to
Social Machines: a Research Challenge for AI on the World

Wide Web, Artificial Intelligence 174 156-161 (2010).

[14] M. Sloman, Policy Driven Management for Distributed
Systems, Journal of Network and Systems Management,

2:333-360, (1994).

[15] M. Alberti, D. Daolio, P. Torrini, M. Gavanelli, E. Lamma
and P. Mello, Specification and Verification of Agent

Interaction Protocols in a Logic-Based System, Proceedings

of the 2004 ACM Symposium on Applied Computing (SAC
’04), ACM Press, New York (2004), 72-78.

[16] N. Osman and D. Robertson, Dynamic Verification of Trust

in Distributed Open Systems, Proceedings of the 20th
International Joint Conference on Artificial Intelligence

(IJCAI), Hyderabad, India (2007),

http://www.ijcai.org/papers07/Papers/IJCAI07-232.pdf.
[17] D. Kahneman, Thinking, Fast and Slow, Allen Lane, London,

2011.

[18] C.D. Raab, The Future of Privacy Protection, in R. Mansell
and B.S. Collins (eds.), Trust and Crime in Information

Societies, Edward Elgar Publishing, Cheltenham, (2005),

282-318.

http://eprints.ecs.soton.ac.uk/23193/
http://www.ijcai.org/papers07/Papers/IJCAI07-232.pdf

