Trust in Social Machines: The Challenges

Kieron O’Hara'

Abstract. The World Wide Web has ushered in a new
generation of applications constructively linking people and
computers to create what have been called ‘social machines.’
The ‘components’ of these machines are people and
technologies. It has long been recognised that for people to
participate in social machines, they have to trust the processes.
However, the notions of trust often used tend to be imported
from agent-based computing, and may be too formal, objective
and selective to describe human trust accurately. This paper
applies a theory of human trust to social machines research, and
sets out some of the challenges to system designers.

1 INTRODUCTION

Computers have always been sociotechnical systems, embedded
in organisations, or serving the purposes of users for work or
leisure. However, thanks to the spread of interactive read/write
technologies (e.g. wikis, photo-sharing, blogging) and devices
and sensors embedded in both physical and digital worlds (e.g.
GPS-enabled hand-held devices), people and machines have
become increasingly integrated. Terms such as ‘augmented
reality’ and ‘mediated reality’ are in common use, and the
embedding of computation into society via personal devices has
led to discussion of social machines and social computation, an
abstract conception in which people and machines interact for
problem-solving. The ‘components’ of the machine may be
people or computers; the ‘routines’ or ‘procedures’ could be
carried out by humans, computers or both together.

Social machines are rapidly becoming a focus of computing
research [1]. ‘Programming the global computer’ is one of the
British Computing Society’s grand challenges for computing,
while peer-to-peer technologies have opened up the possibility
of flexibly linking people and computers, as explored in projects
such as OpenKnowledge (http://www.openk.org/) and the Social
Computer community (http://www.socialcomputer.eu/).

Trust has always been recognised as an important factor in the
function of such human/computer hybrids. However, the notions
of trust used have often been relatively formal, imported from
agent-based research. In this paper, | will examine the question
of whether, and how, social computing can take into account
wider and less well-ordered notions of psychologically realistic
trust. | also note here two important limitations of scope of this
paper. First, | focus here on issues of trust relevant to system
designers fostering trust in their systems by users; of course
there are many other stakeholders and many other trust relations
typically involved (to take an obvious example, system designers
have to trust users as well as being trusted by them). Secondly, |
focus here on the challenges; solutions are already being created

1 Electronics and Computer Science, University of Southampton,
Highfield, Southampton SO17 1BJ, United Kingdom,
kmo@ecs.soton.ac.uk.

for these issues, but the point | want to emphasise in this paper is
that we have to be clear about exactly how social machines rely
on trust to function, and where a breakdown will lead to
dysfunction. Without a precise model, it will be harder to
diagnose problems.

2 SOCIAL MACHINES

In this section, | will flesh out the idea of a social machine or
social computer. After a preliminary discussion, | shall briefly
describe a couple of examples. A third subsection will examine
the notion of programming social machines, before the section is
completed with a brief sketch of the important role trust plays.

2.1 What is a social machine?

The idea of a social machine was implicit in early conceptions of
the World Wide Web. As Berners-Lee put it in 1999:

Real life is and must be full of all kinds of social constraint —
the very processes from which society arises. Computers can
help if we use them to create abstract social machines on the
Web: processes in which people do the creative work and the
machine does the administration. ([2], pp.172, Berners-Lee’s
emphasis)

We see plenty of social machines around today. Many are
embedded in social networks such as Facebook, in which human
interactions from organising a birthday party to interacting with
one’s Member of Parliament are underpinned by the engineered
environment. Another type of example is a multiplayer online
game, where a persistent online environment facilitates
interactions concerning virtual resources between real people. A
third type is an online poker game, where the resources being
played for are real-world, but where the players may be human
or bots, and where the environment in which the game takes
place is engineered around a relatively simple computational
model. In such systems, (some of) the social constraints that
Berners-Lee talks about, which are currently norm-driven, are
converted to (or in his terms administered by) the architecture of
the programmed environment.

These social machines are straightforward (qua interaction
models), but as the technology is theorised more deeply it is
inevitable that more complex systems will be developed. A
generalised definition of a social computation is provided by
Robertson and Giunchiglia:

A computation for which an executable specification exists
but the successful implementation of this specification depends
upon computer mediated social interaction between the human
actors in its implementation. [3]

In such an environment, self-organisation (partial or full)
becomes viable and scalable, while physical objects, agents,
contracts, agreements, incentives and other objects can be
referred to using Web resources (Uniform Resource Identifiers —


http://www.openk.org/
http://www.socialcomputer.eu/

URIS). ‘Programming’ the social computer (rather than simply
supporting and directing interactions on an engineered
environment) and integrating larger numbers of people and
machines will become increasingly feasible.

2.2 Examples

As a small example of a social machine, consider reCAPTCHA
[4]. A CAPTCHA (Completely Automated Public Turing test to
tell Computers and Humans Apart), invented by Louis Von Ahn,
is the distorted sequence of letters that someone has to type in a
box to identify him- or herself as a human (e.g. to buy a ticket
online, or to comment on a blog). This is a task that computers
cannot do, and so the system stops bots buying thousands of
tickets for a concert or sporting event for later resale, or for a
spambot to leave spam messages as comments to blogs.

Von Ahn extended the idea of the CAPTCHA to create the
reCAPTCHA, which uses the same principle to solve another
problem. Google (which acquired reCAPTCHA in 2009) wishes
to scan and publish out-of-copyright books. However, Optical
Character Recognition is too fallible to automate the process (in
books over 100 years old, OCR fails for about 30% of words).
The quantity of books to be scanned rules out human labour as a
general solution to the problem.

Von Ahn noticed that his original CAPTCHA device was
being used over 200m times a day, about half a million person-
hours of effort. reCAPTCHA was designed to put these person-
hours to more productive use. It presents the user who wishes to
identify him- or herself as a human with two words, not one. The
first is a normal CAPTCHA, and the second is a word from an
old book that OCR had failed to identify. If the person succeeds
with the first CAPTCHA, then he or she is known to be a human.
As humans are reliable at word recognition, Google can
therefore take the response to the second word as a plausible
suggestion of what it is. Presenting the same word to multiple
users allows a consensus to emerge.

The person is not necessarily aware that he or she is helping
Google in its scanning task. The incentive for his or her
involvement is the need for identification (to buy tickets, or
comment on a blog, etc). The time taken for a reCAPTCHA is
not significantly longer than a CAPTCHA. The ‘machine’
thereby created, of millions of people interacting via the
reCAPTCHA facility, is currently identifying about 100m words
per day (about 2m books equivalent per year). reCAPTCHA is
offered as a free Web service to hundreds of thousands of
websites (including Facebook, Twitter and Ticketmaster) which
need spam protection; the service can be offered without a fee
because of the translation service it also provides to Google [4].

As another example, Robertson and Giunchiglia [3] use the
DARPA balloon challenge of 2009, in which all human
‘components’ of the machine are fully aware of their own role.
In the DARPA challenge, the aim was to find ten weather
balloons placed randomly around the US (in nine different states
from California to Delaware). The rules of the challenge were
intended to support the growth of a network of people taking part
in the search, enabling a crowdsourced solution. The means of
doing this in the winning solution (from Sandy Pentland at the
Massachusetts Institute of Technology) was to set out financial
incentives — everyone who discovered a balloon got a certain
quantity of money, while for everyone who received a reward,
the person who introduced them to the network received half that

reward. Hence people were incentivised both to look for the
balloons and to add more people to the network. Pentland’s team
began with 4 people, and using social media had recruited over
5,000 at the point of completion, which took under ten hours.

reCAPTCHA and the DARPA challenge were intended to
solve a particular exogenous problem, but social machines can
be designed to solve the problems of the people who constitute
them. In such cases, the incentive of the participants is that the
machine’s smooth functioning is in their own interests. One
could imagine, for instance, a set of computer-mediated
interactions enabling a community to provide a social response
to problems of crime (such as BlueServo, which crowdsources
the policing of the Texas-Mexico border), or enabling those
suffering from a particular health care problem to pool resources
and to offer support and advice to fellow sufferers (such as
curetogether.com). It will be obvious from these examples that
such efforts will not always be uncontroversial.

Note finally that in many cases the ability to compute and to
gather and process information at large scale is vital. This adds
an extra layer of complication to the social machine vision.

2.3 Programming the social machine

Giunchiglia and Robertson define a social machine or computer
as follows [3]:

A computer system that allows people to initiate social
computations (via executable specifications) and adopt
appropriate roles in social computations initiated by others,
ensuring while doing so that social properties of viable
computations are preserved. A general purpose social computer
provides a domain-independent infrastructure for this purpose.

This implies three processes that need to take place in order
for the social machine to run. First, specifications must be
initiated, so that where necessary groups of people are able and
willing to carry out parts of the computation. It may be that part
of the ‘programming’ of the social machine will involve
observation of and induction from existing social processes, to
be adapted and reused in the new context of the social machine.

Second, people and groups must adopt appropriate roles in
the machine, having been incentivised to join social
computations. The discovery of these roles is an important issue.

Third, the groups relevant to the computation must be
reinforced; as Robertson and Giunchiglia put it, “this relies on
the computation being executed in a way that spreads the
computation and knits together the social group via further social
properties of the computation.” In other words, the social
computation must preserve the social structures necessary for its
operation. In the example of the DARPA challenge, the clause
that rewards anyone who has introduced a reward-winner gives
incentives to people to add friends to an ever-growing network.

Robertson and Giunchiglia also define a social property,
analogous to an invariant in conventional programming with
real-world physical consequences: “a requirement associated
with the specification of social computation that must be
maintained, and perhaps communicated, during the execution of
the specification in order for the computation to establish the
social group needed to run it.”

So if we return to the example of reCAPTCHA, its initiation
involves publicising the Web service to sites needing spam
protection, people adopt the appropriate role when they decide to
solve a reCAPTCHA to get access to a service, and relevant



groups are reinforced by the success of the service in
suppressing spam on sites to which people want access. The key
social property to be preserved is that spam is suppressed; if
spammers found an effective way around the reCAPTCHA, then
fewer sites would support the Web service, and therefore fewer
people would be playing the role of word recognisers.

2.4 The relevance of trust

Trust is essential to the smooth running of a social machine. Two
precondition for social machines to motivate people to adopt
appropriate roles is that they trust that promised incentives will
appear, and that they trust that the machine will not do anything
(in the world) that conflicts with their values. In the case of
reCAPTCHA, people must trust that they will obtain access to
their desired sites. In the case of the DARPA challenge, the
participants must have trusted that the money would be paid out.

Trust is also central to the reinforcement of groups, as
cooperation towards a goal demands trust in others’
contributions; would Wikipedia authors bother to contribute if
their work was routinely trashed without argued rationales? If an
effect of a computation was to fragment the coalitions developed
to carry it out by undermining trust between members, then it
could not ultimately succeed. It is fair to say that for many social
computations, trust (both between individuals in different roles,
and of the machine by its component individuals) is likely to be
a social property essential to the social machine’s function.

Trust is of course most important when people take risks or
place themselves in a vulnerable position with respect to a social
machine. With reCAPTCHA this is barely an issue, but in a
machine that, for example, enabled people to manage health care
problems, users might need to pool information which could
include sensitive health- or lifestyle-related data. That brings in
complex rights-based issues such as privacy, and legal issues
such as data protection.

In the next section, | shall briefly set out some of the most
important properties of trust, as background to a discussion of
issues that arise with respect to trust in social machines.

3. TRUST

The discussion of trust will be in four parts, beginning with an
analysis of trustworthiness, upon which will be built an analysis
of trust. Finally I shall discuss issues surrounding the connection
of the two. These analyses are developed in more detail in a
working paper [5].

3.1 Trustworthiness

Trustworthiness is prior to trust, which is an attitude toward the
trustworthiness of others. Indeed, as Hardin has argued ([6], [7]),
many commentators supposedly discussing trust are actually
discussing trustworthiness. What, then, is this prior concept?

A trustworthy person is someone who does what she says she
will do, all things being equal. This characterisation conceals
quite a lot of structure. First of all, trustworthiness is a property
of an agent. A claim must be made about her future actions.
After all, it is absurd to accuse Barack Obama of being an
untrustworthy brain surgeon, because he has never claimed to
have brain surgery skills. The claim will also narrow the scope

of trustworthiness; put another way, trustworthiness is context-
dependent. The ‘all things being equal’ clause means that a
trustworthy person need not succeed in carrying out the claimed
behaviour, but if she does not, there must be an explanation for
her failure which will absolve her of responsibility.

We can therefore define trustworthiness as a four-place
relation, as follows:

(1) Y is trustworthy =4 Tw<Y,Z,R,C>
where Y and Z are agents, R is a representation of the
claim and C is a (task) context in which it applies.

In (1), Y is the agent who, if (1) is true, is trustworthy. R is
the content of the claim made about her intentions, capacities
and motivations for future behaviour. When (1) is true, Y’s
behaviour will be constrained by R. R may be explicitly written
down, or may be implicit and understood; it may be open-ended
and deliberately left unspecific to degrade gracefully. C is the set
of contexts in which R is intended to apply (for instance, Y may
claim to be a trustworthy car mechanic, but only within office
hours, and only on certain makes of car).

This leaves Z, who is the agent responsible for generating and
disseminating the claim R. In many, perhaps most,
circumstances, Y = Z. However, this need not be the case. A
trustworthy customer service employee (Y) respects a role
description generated by her company (Z). A trustworthy piece
of software () performs according to a specification written by
a designer (2). It is essential that Z is authorised to make the
claim about Y. Without authority, Z’s claim has no bearing on
Y’s trustworthiness.

3.2 Trust

Trust is an attitude toward the trustworthiness of another. X
trusts Y iff he believes that she is trustworthy (or, better, holds of
the proposition ‘Y is trustworthy’ that it is true).

This characterisation of trust has a straightforward surface
appearance. It is still a complex idea, however. Not only does
trustworthiness import context-dependency, but trust forces us to
confront a subjective element. There are six parameters of
consequence in the trust relation, as follows:

(2) X trusts Y =g Tr<X,Y,Z,(R,c),Deg,Warr>
with Y, Z and R as before, and X an agent.

In (2), the first three parameters are the relevant agents. X is
the trustor and Y the trustee. Z, as before, is the agent who
makes the claim R about Y’s intentions, capacities and
motivations. And again, as before, it could be that Z =Y (or, for
that matter, X =Y, X =Z or X =Y = Z, although the possibility
of these identities will not be defended here [5]).

Z makes a claim that Y’s behaviour, all things being equal,
will conform to R in contexts C. X’s trust, if well-placed, should
accept that claim. However, it need not, because X is only
boundedly rational and communications between Z and X are
not guaranteed to succeed. Furthermore, R might be implicit or
unspecific. Hence X has to interpret R’s meaning in the contexts
in which he is interested. | have written this as a function I(R,c),
to be read as X’s interpretation of the force of R in the set of
contexts that interest X, which | term c.

This brings trust’s subjective aspect to the fore. For X’s trust,
it is X's interpretation that is the final arbiter, whether or not it is
accurate. As trust is an attitude held by X about Y, it is X who
supplies the underlying assumptions of the judgment. This has
three specific consequences. First, for Y to maintain X’s trust,



she must behave in accordance with I(R,c) even if that differs
from her own interpretation of R in ¢. Second, for X to trust Y, it
need not be the case that Z has authority to make claim R about
Y. It is necessary only that X believes that Z has that authority.
Third, I(R,c) only has any force with respect to Y if c € C,
otherwise it will fall out of the scope of R. Yet for X’s trust, it is
necessary only that X believes that ¢ € C. If any of X’s beliefs is
false — i.e. if the force of R in c is not I(R,c), or if Z does not
have the authority to make claim R about Y, or if c £ C — X’s
trust or mistrust will be misplaced as based on a
misunderstanding.

In short, in definition (2) above, X believes that (i) Z can
authoritatively make claim R about Y, (ii) I(R,c) is the
interpretation of R within a set of contexts c, and (iii) ¢ < C.

This leaves two more parameters. Deg is a measure of X’s
confidence in his attitude toward Y’s trustworthiness. The metric
for Deg depends on the system under discussion. For
psychological realism, it may be that Deg would be a fairly
coarse-grained Likert-type psychometric scale of five or seven
points. But it would be legitimate to produce more complex
models that modelled Deg on, say, the real line between 0 and 1.

Whatever metric chosen must facilitate the expression of two
types of trust judgment. First of all, X may have to choose
whether he trusts Y; more than Y, to decide with whom to place
his trust. Secondly, the level of risk that X takes on with respect
to an interaction with Y will depend on his degree of trust; if he
trusts her a lot, he will, all things being equal, be prepared to risk
a lot, and if he trusts her only a little, his appetite for risk will be
diminished.

Warr is the warrant for X’s trust in Y. This could take any
form — it doesn’t have to be rational, and could even be that X
has been dosed with oxytocin which increases the propensity to
trust [8]. Unlike a warrant in Toulmin’s system [9], the warrant
explains the judgment, but is not intended for the persuasion of
others. Nevertheless, usually there is a sensible rationale behind
a trust judgment which is important for assessing it, and also for
assessing how robust it is likely to be. Typical relatively reliable
trust warrants include the reputation of Y, the past history of X’s
encounters with Y, the availability of sanctions for X, the
possibility of a binding reciprocal agreement between X and Y,
the credible commitments made by Y and the credentials that Y
brings to the transaction.

As Wierzbicki argues ([10], pp.26-27), trust that does not
have a rational component will be hard to model. That does not
mean that trust cannot be irrational, but it makes it harder to
embed psychologically-realistic trusting mechanisms into
software, or to design sociotechnical systems (or social
machines) which incorporate potentially irrational human trust
judgments without restriction.

3.3 The problem of trust

The problem of trust is not to increase trust, but rather to ensure
that X trusts Y when and only when Y is trustworthy. This is
difficult as the incentives are not optimally aligned. If X risks
assets in an interaction with Y, then he benefits from her
trustworthiness, but unfortunately he only controls his trust.
Conversely, Y benefits from X’s trust, but only controls her
trustworthiness. The result is a dilemma where the benefits of
cooperation could be high, but losses to a trusting (trustworthy)
party would accrue if their partner is untrustworthy (distrusting).

From this two things follow. First, trust cannot be an entirely
rational attitude; as Hollis has argued, trustworthiness does not
survive rigorous game-theoretic analysis (a fact available to
rational would-be trustors) [11]. Second, X should use the
analysis of (2) to determine where trust judgments can break
down. Many failures of trust are down to differences in
interpreting what Y is committed to.

A typical strategy for a trustworthy Y is to send signals of
trustworthiness to X, which ideally will accurately represent her
trustworthiness (would not be forthcoming if she were not
trustworthy) and which will be included in X’s warrant to trust Y
[12]. These signals can be conscious or unconscious, and more
or less strongly connected with the task that Y is offering to
carry out, preferably as an unavoidable by-product. The flip side
of any such signalling system, however, is that if it is made
explicit, it can potentially be counterfeited by an untrustworthy
person. Types of signal already mentioned include Y’s
reputation, history and credible commitments.

A second strategy involves structuring the encounter with
some kind of institution (in the broad sense of a mechanism for
producing order by structuring behaviour) which can reduce the
likelihood of a deception being in Y’s interest. Such an
institution might supply objective credentials for Y, or might
make plausible and effective sanctions available for X to apply if
Y defects. Or X and Y might set up their own ‘mini-institution’
by entering into a reciprocal agreement. In each case, an
institution promotes X’s trust in Y only if X trusts the institution
to deliver the structures it promises.

4 TRUST IN SOCIAL MACHINES: CURRENT
APPROACHES

As noted earlier, trust is a vital element for social machines to
function. However, this is a complex issue: in the open peer-to-
peer architectures that will be required to support social
machines, traditional knowledge engineering safeguards (such as
centralisation of key functions, shared culture and ontologies,
constraints and access control) are not practicable. In this
section, | will expand on the theme of trust, using the theoretical
apparatus assembled in Section 3.

Importing human interaction into the programming
environment envisaged by Robertson and Giunchiglia presents a
major challenge. Hendler and Berners-Lee see artificial
intelligence as the key to enable people and machines to
represent and reason over social attitudes including trust and
trustworthiness, as well as related issues such as reliance and
expectations; linked data and the Semantic Web will be
important tools in such a world, by providing designers with
access to a level of abstraction in which resources can be
referred to directly and independently of the documents in which
they are described [13]. Machines which require users to
contribute information (such as those mentioned earlier to
coordinate community responses to crime or healthcare issues)
will also need to reason about privacy and data protection.

The human world is messy and full of compromise;
computations in social machines must be able to cope with the
consequences of this, such as inconsistency. Furthermore, given
the sensitivity of personal data, social machines will also need to
be able to function in hostile environments where some actors
are malicious.



Although this is a lively area for research, there are few
robust and scalable structures in place to represent these
qualities. Hendler and Berners-Lee point out the importance of
being able to treat these social phenomena as first-class objects
capable of being reasoned over. The Semantic Web provides a
blueprint for this, allowing the use of URIs to name objects of
any kind [13].

In open environments, trust needs to be fostered from a
number of sources. The most common view is to describe the
relations between peers in a peer-to-peer architecture in terms of
permissions and obligations governed by policies [14]. Theorem
provers can determine whether peers have conformed to policies
[15] and systems have been developed to explore the question of
how to specify and verify strategies to determine whether and
when to interact, and with whom [16].

5 DISCUSSION: THE HUMAN ELEMENT

One issue is that these approaches tend to assume that human
trust behaviour is relatively well-behaved and if not rational at
least fairly tidy and explicable. Yet as argued in section 3, it
need not necessarily be so; as Kahneman has recently pointed
out, rational processing coexists with fast, intuitive and
emotional thinking [17]. Furthermore, the subjective element of
trust is deep-seated. Hence policies may work very well to
describe interactions in distributed systems unless elements are
likely to behave idiosyncratically. Reasoning is only one
approach to making a trust judgment, and may well involve a
complexity that is inappropriate. Human judgments about
trustworthiness of complex and distributed systems will not
always align with the methods, ontologies and terms in which
questions are framed by system designers. The key factors for
consideration, as argued in section 3.2, include X’s view of Z,
X’s interpretation of R, and the warrants that X accepts.

5.1 Displacing trust

Most approaches to trust in multi-agent systems assume that
information relevant to agents’ reputation, or data provenance, or
data security will suffice to align trust and trustworthiness.
Certainly transparency and availability of information about
these is a bonus, and can do no harm. But will they be sufficient?

Trust is not always grounded; X’s trust of Y may depend on
his trust of Z. In many scenarios, X is given information by the
system about the reputation of Y, or about the provenance of
some information — it is widely accepted that these are important
for trust. But even assuming that a typical X is willing to restrict
his warrant for his trust in Y to reputation, provenance,
recommendations and other mechanisms that have been
extensively theorised online, he still needs to trust the source of
the reputation/provenance/recommendation. If someone does not
trust, say, Amazon, they are unlikely to trust the *-rating system
that it hosts, even though it is intended to provide an objective
assessment of Amazon’s products. The provision of such
information does not solve the trust problem — it just displaces it
to another point of the system.

Recall also a point made earlier, that institutions can help
promote well-placed trust if they are themselves trusted. It is also
worth noting in this context that people contributing to a social
machine, by trusting the machine’s structuration of behaviour,

also have to trust that their fellow users will behave in good
faith. The trustworthiness of the machine will also depend on the
trustworthiness of the user community. This is somewhat beyond
the scope of this paper, which focuses on the challenges to
designers, but the wide range of other stakeholders (owners,
managers, shareholders, policymakers, users) should be an
important focus of future research, and a complete social
machine program should take all relevant roles into account.

5.2 The logic of trust

Z makes a claim about how Y will perform. Y in this case is the
social machine, and Z the administrator. X’s trust of the social
machine will depend on his trust of the administrator. For
instance, the motivation of the people from whom information is
crowdsourced in the DARPA network challenge depended on
financial incentives (a)to provide information to the
administrator, and (b) to introduce new people to the group. The
function of that social machine depended among many other
things on enough people trusting the administration of the
machine, and the likelihood of its dispersing the money.

Indeed, because we are dealing with trust with its subjective
element, all that was required was that the various Xs believed
that remuneration would be forthcoming. The money need not
actually have been in place at all. Hence if we are formalising
social machines using a process calculus (as advocated
persuasively by Robertson and Giunchiglia), we need to make a
distinction between those social properties which need to be true
in order for a social machine to achieve its purpose, those
properties which need to be believed to be true (but which need
not be true), and those properties which need to be both true and
believed.

This matters because a calculus should describe necessary
conditions for a machine’s function. In the case of the DARPA
challenge, the existence of a pot of money to be distributed to the
participants was neither sufficient nor necessary to the social
machine’s function. It was not sufficient, because if would-be
participants were unaware of or did not believe in the financial
remuneration they would not have taken part. It was not
necessary, because all that mattered was that the participants
were motivated, not that they were paid. Of course, this problem
is most dramatic in a one-shot system, but will always re-emerge
in some form even in contexts with repeat runs.

Indeed, spreading the truth about how a machine will function
could on occasion undermine that very functioning. The reader
may have noticed that someone helping Google by using a
reCAPTCHA need not be aware that he or she is doing that
(although Google makes no secret of it). This introduces an
exploitative element to reCAPTCHA; one wishes to identify
oneself as a human, but having done that, one is also required to
perform an extra task, which is not identified as such, to help
Google scan an old book.

reCAPTCHA demands very little effort, so the exploitation is
probably bearable, but even so someone might resent having to
help Google when they wanted to interact with Facebook. More
generally, if people came to understand that, say, a social
network was gathering information about them primarily in
order to sell to marketing companies, or that a healthcare social
machine was gleaning information primarily to sell to
pharmaceutical companies, the feeling of exploitation (even if it
was plausibly in the interests of the users) might have the effect



of discouraging the users from taking part. It is essential to make
a distinction between what is known about the system, what
users should believe (even if false) about the system, and what
users should be unaware of (even if true) about the system.

5.3 Differences of interpretation

Where the interests of Z and X do not align, it is important to
ensure that X’s interpretation of R coincides with that of Z. This
is not always the case with technology. Where Z is a designer
who has created an artificial agent Y, Y’s trustworthiness is
often measured by Z against a highly technical specification R.
However, the user X will typically see the technology
holistically as part of a system with which he is confronted. If we
take the example of an ID card, the system designer may be
pleased to have devised a secure system. But the owner of the
card will judge it in terms of the extent to which it empowers and
constrains him. As Charles Raab puts it, “it is no comfort to a
privacy-aware individual to be told that inaccurate, outdated,
excessive and irrelevant data about her are encrypted and stored
behind hacker-proof firewalls until put to use by (say) a credit-
granting organization in making decisions about her” [18].

There are many types of case where R, the claim that is made
about Y, can be very different from I(R,c), X’s interpretation of
that claim. If trust is to be maintained, R must be couched in a
way that is meaningful for X. A merely technical specification of
behaviour, however accurate, is unlikely to be enough. Yet a
technical specification of the system’s behaviour is required if
we are to be able to program social machines rigorously.

6 CONCLUSION

The problem of trust is that it is hard to align to an arbitrary
degree of certainty with trustworthiness. It is important, if
dispiriting, to note that the most trustworthy system is useless if
it is not trusted. Furthermore, it could happen that a trusted
system works perfectly well (to its designers’ satisfaction,
anyway) even if it is not trustworthy.

Much will depend on the incentives given to participants. In
the case of machines which provide a good user experience (for
example, healthcare networking sites from which people get best
practice or companionship or counselling from others with
similar problems), specifying that experience will be difficult.
All a designer can really specify are issues such as the privacy
and security with which health data are stored. These are
important factors for user trust, but the porousness of the system
will also depend on the propensity of the networking humans to
misuse or leak information they gain, for example from
chatrooms. The nature of the user community is at least as
important as the technical specification.

Taking this thought to a logical conclusion, it is likely that
public trust in such machines will be highest when the public has
had a say in their design and operation. The closer the
relationship between trustor, designers and administrators, the
better. This suggests that a focus of future research here might be
the development of tools and protocols to allow communities to
design social machines to their own specifications.

In machines such as reCAPTCHA and the DARPA challenge,
where the humans in the loop are performing tasks subordinate
to the wider goal of the system and gaining nothing intrinsic

from participation, the classic trade-off of trust (that trust matters
and trustworthiness is secondary, especially in one-shot games),
is harder to avoid. ‘Programming’ of such machines using
process calculi should, from the point of view of good design,
make the necessary and sufficient conditions clear. Whether this
promotes or restricts cynicism is an empirical question upon
whose answer the future of social machines will probably rest.

ACKNOWLEDGMENTS

The work reported in this paper was funded by the EnAKTing
project, EPSRC Grant EP/G008493/1. Thanks to Dave
Robertson, Luc Moreau and three referees for comments.

REFERENCES

[1] A. Bernstein, M. Klein and T.W. Malone, Programming the
Global Brain, Communications of the ACM, in press.

[2] T. Berners-Lee, Weaving the Web: the Original Design and
Ultimate Destiny of the World Wide Web, Harper Collins,
New York (1999).

[3] D. Robertson and F. Giunchiglia, Programming the Social
Computer, Philosophical Transactions of the Royal Society A,
in press.

[4] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham and M.
Blum, reCAPTCHA: Human-Based Character Recognition
via Web Security Measures, Science, 321:1465-1468 (12"
Sept, 2008).

[5] K. O’Hara, A General Definition of Trust, working paper,
http://eprints.ecs.soton.ac.uk/23193/, (2012).

[6] R.Hardin, Trustworthiness, Ethics 107:26-42, (1996).

[7]1 R. Hardin, Trust, Polity Press, Cambridge, (2006).

[8] M. Kosfeld, M. Heinrichs, P.J. Zak, U. Fischbacher and E.
Fehr, Oxytocin Increases Trust in Humans, Nature, 435:673-
676 (2" June, 2005).

[9] S. Toulmin, The Uses of Argument, Cambridge University
Press, Cambridge, 1958.

[10] A. Wierzbicki, Trust and Fairness in Open, Distributed
Systems, Springer, Berlin, (2010).

[11] M. Hollis, Trust Within Reason, Cambridge University Press,
Cambridge, (1998).

[12] A. Pentland, Honest Signals: How They Shape Our World,
MIT Press, Cambridge MA, (2008).

[13] J. Hendler and T. Berners-Lee, From the Semantic Web to
Social Machines: a Research Challenge for Al on the World
Wide Web, Artificial Intelligence 174 156-161 (2010).

[14] M. Sloman, Policy Driven Management for Distributed
Systems, Journal of Network and Systems Management,
2:333-360, (1994).

[15] M. Alberti, D. Daolio, P. Torrini, M. Gavanelli, E. Lamma
and P. Mello, Specification and Verification of Agent
Interaction Protocols in a Logic-Based System, Proceedings
of the 2004 ACM Symposium on Applied Computing (SAC
'04), ACM Press, New York (2004), 72-78.

[16] N. Osman and D. Robertson, Dynamic Verification of Trust
in Distributed Open Systems, Proceedings of the 20
International Joint Conference on Artificial Intelligence
(1JCAI), Hyderabad, India (2007),
http://www.ijcai.org/papers07/Papers/IJCAIQ7-232.pdf.

[17] D. Kahneman, Thinking, Fast and Slow, Allen Lane, London,
2011.

[18] C.D. Raab, The Future of Privacy Protection, in R. Mansell
and B.S. Collins (eds.), Trust and Crime in Information
Societies, Edward Elgar Publishing, Cheltenham, (2005),
282-318.



http://eprints.ecs.soton.ac.uk/23193/
http://www.ijcai.org/papers07/Papers/IJCAI07-232.pdf

