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Abstract. We propose a new scheme for efficient demand side
management for the Smart Grid. Specifically, we envisage and pro-
mote the formation of cooperatives of medium-large consumers and
equip them (via our proposed mechanisms) with the capability of reg-
ularly participating in the existing electricity markets by providing
electricity demand reduction services to the Grid. Based on mecha-
nism design principles, we develop a model for such cooperatives
by designing methods for estimating suitable reduction amounts,
placing bids in the market and redistributing the obtained revenue
amongst the member agents. Our mechanism is such that the mem-
ber agents have no incentive to show artificial reductions with the
aim of increasing their revenues.

1 Introduction
In recent years, with environmental and economic concerns re-
garding energy sustainability becoming increasingly important, re-
search in AI and multiagent systems has, with a growing pace, been
taking up the challenge of implementing the vision of the Smart
Grid [10, 13]—creating robust, intelligent electricity supply and dis-
tribution networks to achieve the highest energy efficiency possible.

Virtual Power Plants (VPPs), in particular, are expected to play
a crucial role interconnecting and automatically dispatching dis-
tributed energy generation, storage, or other demand-side resources,
via the use of intelligent software components [2, 7]. On one hand,
VPPs have been hailed as a means to achieve the incorporation of the
numerous distributed renewable energy generation resources (such
as small-to-medium scale wind or solar power generators), into re-
liable large-scale entities mirroring the operation of conventional
power plants [4, 5, 9]. On the other hand, the term VPP has also
been widely used, primarily in North America, to denote the amalga-
mation of consumers acting as “power plants” attempting to counter
the effects of peak-time consumption—via participation in “critical
peak pricing programs”, or the provision of demand-response con-
sumption reduction services [2]. That is, VPPs of (mainly household)
consumers might be rewarded with better consumption rates for re-
ducing their energy demand over some period; or, VPPs of (mainly
industrial) consumers, managed by a specialised intermediary com-
pany4 offering demand-response services, agree, for a cash reward,
to step in and contribute to the “trimming down” of the demand curve
in the event of an impending critical period [1].

In this paper, we, as well, advocate the use of VPPs of energy
consumers to contribute to energy demand reduction. However, we
go one step further — rather than dealing with the problem of of-
fering demand reduction services in the event of a critical peak, we
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focus on designing mechanisms for enabling the more ambitious de-
mand management services [12]. Unlike demand response, demand
management refers to consumers providing a regular reduction in de-
mand for some periods (e.g., when electricity generation costs are
high). Against this background, we propose the creation of cooper-
atives of consumers, or companies representing consumers, which
strive to provide demand management services via participation in
the electricity market. In other words, the cooperative acts as the ex-
act analog of a regular power plant selling electricity; however, rather
than offering energy, it offers demand reduction services instead, thus
extending the electricity markets to include “negawatts” [8].

In our work, the consumers’ cooperative implements a demand
side management scheme (DSMS). We term such a cooperative of
reducing consumers a Cooperative for Demand Side Management
(CDSM). The CDSM effectively recruits suitable electricity con-
sumers as members who agree to participate in the scheme by at-
tempting to reduce their energy consumption when requested. CDSM
members can range from large to medium-size consumers (such
as factories, commercial buildings, and university campuses), and
can be represented by automated agents interacting with a cen-
tral CDSM-operating agent. As the CDSM members are all self-
interested agents, there is a need for an effective DSMS within the
CDSM ensuring desirable behaviour from the agents. A central con-
tribution of our work lies in designing such a mechanism. In what
follows, we use the terms “members” and “agents” interchangeably.

1.1 Motivations for a CDSM Mechanism

The CDSM provides demand management services, in the sense that
it has a continuous presence in the electricity market, bidding to pro-
vide its reduction services, as it deems profitable, at the market’s reg-
ular trading intervals. At the same time, as will be detailed later, the
services of a CDSM agents are potentially used only at some subset
of those intervals (if any), on any day. Also, the agents’ services are
requested a day ahead, unlike demand response services which are
requested with only a few minutes notice. In this way, CDSM agents
have the potential to shift their consumption load while being able
to accommodate their business needs or maintain their comfort lev-
els (e.g., they could shift their manufacturing, pumping or cooling
activities to different time periods, if they so choose).

Thus, the CDSM is not a demand response service aiming to bal-
ance generation and consumption in the event of an emergency;
rather, it is a proactive demand management scheme, contributing
to the flattening of the energy consumption curve for the day ahead.
While demand reduction companies have to wait for critical periods
to make a big profit, those offering demand management services
will aim to prevent those periods from occurring in the first place.

In this context it is also important to note that, from the point
of view of the market and the network operator (hereby termed the
Grid), the CDSM is the equivalent of a regular electricity provider. It



supplies the Grid with the equivalent energy of a requested amount
of electricity, but achieves this through reducing electricity consump-
tion rather than generating more electricity. Thus, to make a profit
and maintain its presence in the market, the CDSM has to be a reli-
able provider—if not, it will be suffering “penalties” (imposed on it
in the balancing market) for not meeting its agreed targets.

In more technical terms, we propose a novel mechanism for ef-
fective demand side management by allowing electricity consumer
cooperatives to participate in the electricity market by offering de-
mand reduction services. Our mechanism is incentive compatible, in
the sense that the CDSM members do not, in expectation, gain by
inflating their baseline consumption to show an artificial demand re-
duction. This is achieved via a randomized selection approach for
choosing the agents to offer reduction services at particular trading
intervals, and the employment of a payment function that encourages
agents to restrict their consumption appropriately. At the same time,
they have a real monetary incentive to participate in the scheme.

Our approach can also be seen as an energy conservation tool al-
ternative to dynamic energy pricing [3]. Though the dynamic pric-
ing of energy consumption has been advocated by economists as a
means to avoid market inefficiencies and the “moral hazard prob-
lems” generated by the existing demand reduction schemes (i.e., us-
ing reduced flat consumption tariffs, or payments upon reaching a re-
duced consumption target5) it has itself been highly controversial, as
it advocates the complete liberalization of household energy pricing.
It has thus failed to attract much practical support as a demand side
management mechanism. Our mechanism cannot be gamed by in-
dividuals, because of the structure of its business model—rewarding
consumers on a case-by-case basis for their exact reduction over spe-
cific short time intervals, rather than over long periods. Moreover, in
contrast to dynamic pricing, it is unlikely to be controversial, because
consumers choosing not to participate will not be negatively affected.

The approach we propose follows on a recent line of multiagent
systems work demonstrating that mechanisms with certain desirable
properties (such as efficiency and incentive compatibility) can be ef-
fectively used in the Smart Grid domain [6, 11]. However, it also de-
velops a novel business model which is implementable given the cur-
rent electricity markets structure — since there are only minor regu-
latory changes required to allow the operation of companies offering
demand management services, alongside the regular producers par-
ticipating in the electricity markets. Even if rules allowing CDSMs
to participate in the market directly were not to be implemented, the
creation of consumer cooperatives benefiting from Grid-originated
“rebate” offers or “energy credits” for reducing electricity consump-
tion at particular chosen periods (i.e., intervals when electricity price
is high), would still be an important leverage to help achieve energy
conservation. Either way, the creation of CDSMs offers a powerful
tool to combat the instantiation of the “Tragedy of the Commons”
threat in this domain, incentivizing consumers to save energy when
it is mostly needed, and consuming it when it is cheaper to do so.

In summary, this paper (i) provides an entirely novel model for de-
mand side management through the formation of consumer coopera-
tives to participate in the electricity markets; (ii) designs an incentive
compatible mechanism determining the behaviour of such coopera-
tive in the market and revenue distribution among their members.

2 Background and Notation
As explained in Section 1, the CDSM’s main goal is to profitably
operate in the electricity market. Thus, it attempts to maximize pay-
5 Note that such schemes can be easily gamed by individuals. For instance,

a home resident away on vacation might still benefit in cash terms from its
perceived “savings” in energy consumption over some period [3].

ments from selling its reduction services in the energy spot market,
and minimizing any losses from the balancing market. In this section,
we first briefly describe these two types of markets that are prevalent
in most countries with liberalised electricity markets.

2.1 The Energy Markets
The energy spot market is a managed market for trading electricity,
while quickly handling the imbalances between supply and demand
schedules so that electricity distribution is not affected. It can be run
or monitored by a market operator, typically the independent system
operator (ISO)—which is usually, the national Grid, tasked with run-
ning the market and maintaining the whole system in balance [7]. The
market determines the price (the “spot”) at which deals are struck
through bilateral trading among participants. Several forms of bilat-
eral trading might be in use even within one single country’s spot
market, depending on the amount of time available and the energy
quantities to be traded. In most countries, a day is divided into 48
half-hour time slots denoting electricity trading intervals, and, for
each of these, prices are market-determined. In many cases, the ISO
requires the provision of certain ancillary services contributing to
power stabilization and system restoration by (perhaps a subset of)
market participants (e.g., certain power generators) [7]. This can lead
to the establishment of a secondary ancillary services market.

The spot market, as explained above, determines the price for elec-
tricity some time ahead of the actual time it is going to be generated
and consumed. However, given the uncertainties surrounding elec-
tricity consumption patterns and (increasingly, given the rising pen-
etration of intermittent renewable sources) generation capabilities,
the amounts of energy actually delivered can vary substantially from
those originally agreed in the spot market. In order to keep the sys-
tem in balance, certain providers end up (perhaps through ISO in-
tervention) generating excess of energy, while others fall short. The
perceived imbalances are settled a posteriori in the electricity bal-
ancing market, through side-payments arranged by the ISO among
the over- and under-producing suppliers. The balancing market en-
ergy price tends to be different than the spot market price. It depends,
to some extend, on the ancillary services and guarantees provided by
the participants. In many cases, the perceived “penalties” suffered by
under-performers in the balancing market can be quite substantial.
At the same time, the price paid to surplus producers in the balanc-
ing market may tend to be lower than what they would have received
from the spot market. Thus a supplier is best off by meeting its spot
market contracts via maintaining high levels of production reliability.

2.2 Basic Notation
Here we introduce the notation used in the rest of the paper. First,
we denote the set of CDSM member-agents by S, while Sk denotes
the subset of agents chosen to reduce their consumption in the time
slot (trading interval) k. Second, ps(k) is the system-wide CDSM
estimate of the energy price at the (day-ahead) spot market’s trad-
ing interval k, while pb−(k) is the CDSM’s estimate of the shortfall
energy price at the balancing market for that same slot. This is the
price of the penalty paid by any provider when it fails to satisfy its
actual bid amount with the realised amount. Similarly, pb+(k) is the
surplus energy price at the balancing market for the slot (the rate paid
to a supplier if it supplies in excess to its bid amount). Typically, pb−

tends to be higher than ps and pb+ tends to be lower than ps.
Next, ya

i (k) denotes the baseline consumption (historical data-
calculated average consumption) of agent i at time slot k. The
amount actually consumed by i at time slot k is denoted by yi(k).



Agents are also required to provide their reduction capacity ηi(k),
applicable to time slot k of any day; this is provided by i at the time
of joining the CDSM, and can be updated by it later if needed. Simi-
larly, an agent provides the CDSM with a minimum rate πi(k) sought
for its reduction services at k. This is based on the member’s busi-
ness needs. Note that, since the member’s primary business is not
selling reduction services, it should understand that πi(k) cannot be
higher than the retail price pci it itself pays for energy consumption,
since pci is, in most real-world circumstances, significantly higher
than the spot price [7]. We also assume pci is uniform across time pe-
riods (i.e., we assume there is no dynamic energy pricing used; this
is realistic, since, as explained earlier, our model attempts to avoid
the main shortcomings of dynamic pricing). Finally, αi denotes the
performance accuracy of i, representing how good it is in satisfying
its reduction commitments (based on past data). Formally,

αi = αT
i =

∑
t=0...T

γT−tαt
i/

∑
t=0...T

γT−t (1)

where αt
i = (ya

i (t)−yi(t))/ηi(t), and t represents the time slots that
i was asked to reduce, with T being the most recent one. Also, γ ≤ 1
is a discount factor, progressively “forgetting” agent i’s past perfor-
mance accuracy. It is possible that αi > 1, this would mean that,
historically, i has been observed to be reducing more than expected.
Moreover, though it is expected that αi ≥ 0, in the rare occasion that
αi becomes less than 0 (i.e., if it consistently overconsumes when
asked to reduce), it is reset to 0.

3 The CDSM Mechanism
In this section, we describe our proposed scheme (the DSMS), out-
lining the algorithms and payment functions of the CDSM. In brief,
the CDSM functioning is as follows:
1. Determine the time slots for participation in a given day.
2. For each selected slot k, choose the subset of agents (Sk ∈ S)

for reduction. Those not selected (Sk \ S) will be expected to not
increase their consumption during k.

3. Place bids in the market, carry out reduction and obtain revenue.
4. Distribute the revenue among the members, by paying the agents

selected to reduce in the relevant time period according to how
well they meet their reduction commitments, and penalizing the
rest for any increase in their baseline consumption.

In the rest of this section, we explain each step in detail.

3.1 Bid Determination Process
To participate in the spot market on a given day, the CDSM has to
place its bids some time in advance (presumably, one day ahead). To
do this, the CDSM first chooses a subset of the trading intervals of
the day (i.e., those most profitable in expectation) over which to par-
ticipate. This is done by determining whether a slot k belongs in the
top ξ slots with the highest expected ps(k) in that day. The number
of participatory slots ξ can be determined by the CDSM based on the
count and type of its members, and particularly, information regard-
ing its members’ reduction potential and impact of such a reduction
on their underlying business.

Now, for each of these slots, the CDSM has to choose a subset of
agents that would be requested to reduce consumption for that slot.
This is achieved through a randomised selection policy. This selec-
tion process, along with certain accompanying constraints, helps en-
sure that it is not profitable for agents to fake or alter their consump-
tion baseline in anticipation of better returns through the DSMS. Fol-

lowing the selection of participants, the CDSM determines its bid
Q̃(k) (quantity to reduce)6 for k.

As introduced earlier, Sk denotes the reducers set for time slot k—
the subset of agents (out of S) chosen to reduce their consumption in
that time slot. Hence, the agents not present in this subset (S \ Sk,)
though not expected to reduce their consumption in the time slot, are,
however, expected to not increase it.

Determining Sk: With probability ρ < 0.5, each member agent
i is sampled and included in the reducers set, conditioned on their
minimum rate for that time slot πi(k) being lower than the expected
spot market price ps(k) for that period. The process is given in Al-
gorithm. 1. Here, in line 3, xi denotes a random variable sampled

1 Sk ← ∅;
2 foreach i ∈ S do
3 if πi(k) ≤ ps(k) AND xi ≤ ρ then
4 add i to Sk;

end
end

Algorithm 1: Determining Sk

from the uniform distribution between 0 and 1, to determine whether
i should be chosen for participation in this time slot k. Condition
πi(k) ≤ ps(k) ensures that no agent that requests a rate higher than
the expected spot market price ps(k) is selected. In Section 3.3, we
prove that, given the above selection process and the restriction on
ρ to less than 0.5, a member’s best strategy is to reveal its genuine
consumption baseline, rather than artificially inflate it with the hope
of better revenues from the DSMS.

Bid Calculation: After choosing the reducers set Sk, the bid to be
placed in the market, for this time slot k, is calculated as:

Q̃(k) =
∑

∀i∈Sk

αi(k) ηi(k) (2)

Although the potential reduction amount that was declared by a
member is ηi(k) for time slot k, this value is tempered with the per-
formance factor αi (from Eq. 1), which is based on the member’s
historical performance. In this way, the reduction request presented
to the member is more realistic than its initially declared capacity.
If the bid is accepted in the market, the reduction amount requested
from a chosen agent i is, q̃i(k) = αi(k) ηi(k).

3.2 Revenue and Revenue Redistribution
The market operator (ISO/Grid) knows the member list of the CDSM
(as given by S). Hence, based on the CDSM bid accepted, the op-
erator looks at the consumption of all the CDSM members for the
particular time slot k to determine the performance of the CDSM.
The ISO is able to calculate this via the use of appropriate smart me-
tering equipment measuring the members’ consumption. It can com-
pare any i member’s realised consumption yi(k) in a trading interval
k versus its average consumption ya

i (k) for k. The sum total of all
the members’ differences from their average consumptions gives the
overall reduction achieved by the CDSM. Note that this CDSM-wide
reduction depends not just on the reduced consumption of the chosen
agents (Sk), but also on any increase/decrease in the consumption of
the agents not in the chosen set (S \ Sk). If any such agent has in-
creased its consumption over its baseline in the time slot, it results in

6 To be more precise, the CDSM’s bid for a trading interval k would have to
be of the form ⟨ Q̃(k), ps(k) ⟩, with ps(k) being an ask price set by the
CDSM itself—however, for our purposes here it suffices to simply equate
this to the anticipated spot market equilibrium price.



a lesser overall reduction of the CDSM. Similarly, any agent within
the chosen set Sk might also end up increasing its consumption in-
stead of reducing it as per expectation. Therefore, the actual revenue
obtained by the CDSM for a given time slot also depends on the im-
balance amounts, which in turn depend on the increase/reduction of
consumption of all agents within the CDSM. Given that, the goal of
the redistribution functions presented here are twofold:

• Agents that are selected to reduce in the particular time period
should be incentivised to meet their reported reduction targets.

• Agents that have not been selected to reduce in the particular time
period should be incentivised not to increase their consumption.

Now, let the total CDSM revenue obtained for time slot k be R(k).
This value includes the spot market payment, as well as penalties
paid (or received) from the balancing market. The payment received
in the spot market is just based on the promised reduction, that is, the
accepted bid of the CDSM. Hence, R(k) can be written as:

R(k) = ps(k) Q̃(k)

{
−pb−(k)

[
Q̃(k)−Q(k)

]
, if Q̃(k) > Q(k)

+pb+(k)
[
Q(k)− Q̃(k)

]
, otherwise

(3)
where Q̃(k) is the accepted bid amount (refer Eq. 2), while

Q(k) =
∑
∀i∈S

{ya
i (k)− yi(k)} (4)

denotes the actual delivered reduction of (all) CDSM members dur-
ing the trading interval.7 Thus, Q̃(k)−Q(k) represents the net differ-
ence between promised and actual reduction, for which the CDSM is
potentially penalized in the balancing market. Also if Q̃(k) < Q(k),
then the CDSM actually receives positive payments in the balancing
market, since it would have contributed more energy (via reduction)
than what it had actually promised.

The CDSM then has to distribute this revenue in a fair way
amongst its members, based on their performance during the specific
trading interval. It is important to realize though, that only members
that were actually chosen to reduce at a given time slot get rewarded
for reducing. That is, even if some non-chosen members actually re-
duced, they are still excluded from (immediate) rewards for that trad-
ing interval. In this way, we make sure that members are encouraged
to participate during the bid process rather than reducing consump-
tion as and when it suits them and then expecting payment. In con-
trast, any member that increases its consumption beyond its baseline
during the time slot k, in which the CDSM is participating in the
market, should be penalised for adversely affecting the revenues of
the CDSM. The chosen members themselves, are rewarded accord-
ing to their contribution towards reduction. For example, if a chosen
member had actually increased its consumption beyond its baseline
rather than reducing as required, it will be penalised for this increase
in addition to the penalty for not achieving the desired reduction.

Therefore, the revenue Ri(k) of agent i at time slot k is divided
into two components — a positive component R+

i (k) which is its
payment for participation in reduction, and a negative component
R−

i (k) denoting any penalties imposed on the agent. Thus,

Ri(k) = R+
i (k)−R−

i (k) (5)

The positive component of the revenue is given by:

R+
i (k) =

{
π̄i(k) q̃i(k), if i ∈ Sk

0, otherwise
(6)

7 If Q(k) < 0, the CDSM actually consumed more energy than normal,
resulting in even higher penalties in the balancing market.

where π̄i(k) is the payment rate awarded to the agents, such that
π̄i(k) ≤ ps(k) and π̄i(k) ≤ pci . The first condition ensures that the
member does not get a rate that is better than the spot market rate
ps(k). The latter condition is needed to ascertain incentive compati-
bility (see Section. 3.3). Note also that, in the real world, it is indeed
normally the case that ps ≤ pci . Thus it is perfectly valid to simply
award each member the actual spot market rate ps instead of some
other π̄i(k). Following this, the negative component is given by:

R−
i (k) =

{
pb−(k)

[
q̃i(k)− qi(k)

]
, if q̃i(k) > qi(k)

0, otherwise
(7)

where qi(k) = ya
i (k) − yi(k). Hence, if a member has consumed

more than its baseline (irrespective of whether it was chosen or not),
i.e., yi(k) > ya

i (k), the value of qi(k) would be negative, thus lead-
ing to a higher value of R−

i (k), as indeed should be the case.
Finally, given the Ri(k) amount received by each agent, the sum

of the revenues paid out by the CDSM is given by
∑

j∈S Rj(k). Note
that some of the Ri(k) can be negative, meaning that the amount will
be paid by the agent to the CDSM for that interval k. Now as the
revenue received by the CDSM from the market is R(k); there will
remain an amount after the payout: Re(k) = R(k) −

∑
j∈S Rj(k)

(note Re(k) ≥ 0 because while the CDSM penalises the badly per-
forming agents adequately, it does not additionally reward those who
reduce beyond expectation). This excess amount can be managed in
ways suiting the CDSM. For instance, it can be distributed among
the selected agents, those with positive R+

i (k). Otherwise, it can be
considered as the profit of the CDSM and used for its maintenance or
divided amongst the agents in some other fashion—e.g., as a regular
payment based on average reduction amount and performance factor.

3.3 Ensuring Incentive Compatibility
Given the DSMS, a member agent might attempt to “game” the
scheme to its advantage by trying to generate an artificial consump-
tion baseline with the prospect of making more money from the
scheme. That is, it could attempt to unnecessarily over-consume elec-
tricity (not actually required for its underlying business) during some
interval consistently in order to provide an “artificial” demand re-
duction later. In order to avoid this problem, we use a solution in-
spired from randomised mechanism design to show that, in expec-
tation, self-interested agents in our system do not have an incentive
to over-consume electricity, in order to exaggerate their baseline con-
sumption profile. Specifically, we prove that if: (i) agents are sampled
and picked with probability ρ ≤ 0.5 for the reducers set Sk at each
participating time slot, and (ii) the rate offered to agent i for reduc-
tion services for any slot is at most equal to the retail consumption
price pci it has to pay as part of its regular tariff; then the agent does
not have an incentive to artificially inflate its baseline for that slot.

Theorem 1 If, at any trading slot k, the CDSM samples and in-
cludes any agent i in the reducers set Sk for that slot with proba-
bility ρ ≤ 0.5; and, if the rate offered to the agent for its services
is π ≤ pci , then it is not profitable in expectation for i to provide an
increased baseline consumption at k through “burning” electricity.

Proof : Consider the case that an agent i intends to unnecessarily
increase its baseline consumption for a particular time slot with the
hope of gaining more revenue through the DSMS. Let this excess
consumption be denoted by δ. That is, the member consumes δ en-
ergy more than what it actually needs in order to fake its baseline
consumption. The cost of this excess consumption for an occurrence



of the time slot is pciδ. However, the baseline is measured by consid-
ering the consumption of the agent over a particular window of days.
Let the window length be N . Therefore, in order to maintain an in-
flated baseline consumption, the agent will have to consume excess
δ energy in that time slot for every day throughout the entire period,
except for the days when it is asked to reduce.

Let us assume that K is the number of occasions that the agent is
called upon to reduce its consumption in that time slot within this N -
days window. Hence, the cost to the agent for faking its consumption
through “burning” excess energy δ during N −K days is:

cost = (N −K) pci δ (8)

For the days when it is actually called for reduction (whose count is
given by K), we can assume that the agent is able to obtain extra rev-
enue for the excess δ that it manages to show in its reduction amount.
Assume, without loss of generality, that the rate π the CDSM awards
agent i for its reduction services persists throughout the K days un-
der consideration, and is such that π̄i(k) = π ≤ pci . Then, the ex-
pected overall revenue gain for i by with the fake baseline, over the
N -days window is:

gain = K π δ (9)

Now, as the probability of being called upon, ρ ≤ 0.5, we have K ≤
0.5N , and, therefore, K ≤ (N −K). In addition, it holds that π ≤
pci . Therefore, clearly, cost ≥ gain. Thus, the agent will not gain in
expectation by “burning” electricity to fake an inflated baseline.

4 Experimental Evaluation
In this section, we describe the simulations conducted and the results
obtained for validating our model. For this we used a large data set
of 36 small and medium-scale industrial energy consumers (of dif-
ferent types) based in India. These 36 consumers are used to model a
CDSM with a corresponding 36 member set. For each of these 36 in-
dustries, the data-set included the energy consumption for each of the
48 half-hourly trading intervals of every day over a 6 month period.
Based on this data, we estimated their maximum demand elasticity
by looking at the ranges of their consumptions, in addition to dis-
cussions with domain experts. Specifically, the maximum reduction
capacities ηi(k) for each agent i (for the 48 time slots) were esti-
mated based on the variance of the demand in the actual data. This is
a reasonable model because the variance in their consumption gives
an indication of the possible elasticity of their demand. Such indi-
rect modelling was necessitated by the inaccessibility of any data of
consumers providing demand management services.

In more detail, if agent i is selected to reduce in time slot k, then
its actual reduction is modelled by multiplying ηi(k) with a sample
from a beta distribution B(α, β). Beta distribution was chosen be-
cause it is somewhat similar to a normal, but has finite support and
is non symmetric, giving more weight to the cases where a mem-
ber reduces less that expected, than to those where reduction is more
than required. If the member is not in the reducers set, then its ability
to maintain its baseline consumption is computed as being sampled
from a normal distribution N(µ = 0, σi), where σi = 0 means that
there is no variance from the baseline (i.e., the member manages to
consume exactly as its baseline). Following that, the price parame-
ters were set as follows: the spot price ps = £0.05, balancing prices
being pb+ = £0.03 in case of a surplus, and pb− = £0.08 in case
of a shortfall. These values roughly match the long-term averages
from the UK electricity market 8. The retail consumption price for
all agents was set at pci = £0.10, similar to the prevalent retail tariffs

8 Indian data was unavailable because the electricity market is not liberalised

in the UK. In our simulation, on each day the CDSM only partici-
pates in the market for the periods between 8 a.m. and 8 p.m as this
is usually the high demand period. For each trading interval during
this period, as per the DSMS, each CDSM member has a probabil-
ity ρ = 0.49 of being selected. Given the low member size of the
CDSM, we set the probability of selection as high as possible (but
less than 0.5). Through the experiments, we sought to study the 3
main aspects governing the economic viability of our mechanism:
1. The expected revenue to a member from joining a CDSM, as a

percentage of its general electricity consumption costs.
2. The monetary incentive to join a CDSM, assuming that even sin-

gle consumers are allowed to participate in the market in a similar
way to a CDSM.

3. The efficiency of the learning mechanism for the performance fac-
tor αi of each member.

We discuss the results (shown in Fig. 1) in the following sub-sections.
Please note that the error bars are too small to be visible.

4.1 Revenue from participation in a CDSM
In the first set of experiments, we compare the average revenue of an
agent from our proposed scheme to the total cost of its electricity bill
(for the same period the CDSM is active in the electricity market).
Note that the price paid by the member per kWh for its own consump-
tion is the retail price pci , which is twice as high as the spot market
price ps. Moreover, we denote by ηi, the average reduction capacity
of agent i (averaged over all the time slots k) and similarly, by yi,
its average consumption per time slot. Using this, we can define an
elasticity index Ei = ηi/yi, that shows how flexible the member is
in terms of its reduction services (i.e., denoting reduction capacity as
a ratio of its average demand).

The results from these experiments are shown in Fig 1(a). The
agents are ordered by their elasticity Ei (denoted on the x-axis),
while the y-axis shows the percentage of the cost of their average
monthly electricity consumption bills covered by the total revenue
made from CDSM participation for a 30-day period. We observe that
the revenue gained by participating in CDSM versus the cost of their
consumption ranges from 5% to about 25%. In fact a quarter of the
members (9 out of 36) achieve revenues of more than 15% of their
bill. There is also a nearly linear relationship between the elasticity
of the members and their revenues from the DSMS. This confirms
the intuition that members that are most flexible with their demand
stand to gain the most from CDSM participation. This is because they
reduce more in a given period relative to others, and get paid more.

4.2 Revenue from being in a CDSM vs. Singleton
The second set of experiments were to observe specifically how par-
ticipation in a CDSM generates more revenue to the agents than act-
ing alone in the market (if it were allowed). To this end, we simu-
lated the scenarios in which the 36 industrial consumers participate
in the market individually, using the same mechanism as a CDSM, re-
ceiving the payments and penalties like a CDSM would. In this con-
text, it is important to note, however, that from a Grid perspective,
it is always preferable to interact with CDSMs, because of the no-
increase in consumption commitments imposed on all the members
of the CDSM even when only some of them are actually reducing
consumption. If there were no CDSM, and the agents were partici-
pating directly in the market, it wouldn’t be very useful to obtain a
commitment of reduction from some agents, if the other agents (not
bound by a CDSM-wide commitment) were free to increase their
consumption over their baseline in the same time slot (thus resulting
in no overall reduction in demand).
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Figure 1. (a) The average revenue from participating in a CDSM, as a percentage of the total electricity bill of the member. (b) Revenue of a member in a
CDSM vs. participating directly as singleton in the market, for different uncertainty scenarios; and (c) Effect of learning the performance factor αi.

In Fig 1(b), we present the average daily revenue for all 36 agents
in the 2 settings (as a member of a CDSM and acting as a single-
ton) for different “uncertainty scenarios”. An uncertainty scenario in
this context describes the ease with which the agents stick to their re-
duction and non-increase targets (if the uncertainty in their business
is higher, it will be more difficult for them to respect their commit-
ments). Specifically, an increase in the uncertainty from 1 to 10 de-
notes a corresponding increase in two parameters: increase (via 0.1
increments) in the α factor of the B(α, β) distributions from 2 to 3
(with β = 1) for agents who are expected to reduce; and increase in
the σ (standard deviations) of N(0, σ) from 0.1 to 1.1 for agents who
are expected to maintain their baseline. Expectedly, results show that
the higher the uncertainty, the less profits the agents make, as they
are unable to respect their commitments. However, interestingly, be-
ing in a CDSM is always more beneficial than acting as a singleton
for all the scenarios. This is because the failure to respect one’s com-
mitments can be averaged out more easily between the members of
a CDSM. For the same reason, when uncertainty is very high, sin-
gleton agents no longer have an incentive to participate in the market
(as their revenue becomes negative), unlike those in the CDSM.

4.3 Learning the Performance Factor αi

The last set of experiments studied the ability of the CDSM to accu-
rately learn the performance factor of its members (see Eq. 1). For
this, we start with a setting in which there is an “incorrect” model
of the members learnt over a period of 250 time slots (roughly 5
days), in which the αi parameters of all members was set to zero.
Then, we ran simulations over another period of 300 days, in which
the CDSM updates αi of the members in the correct fashion using
Eq. 1. Fig. 1(c) shows the average revenue of a member over this
period for three different values of the discount factor γ. The results
clearly show that, if there is some forgetting (i.e., when γ < 1; here,
γ = 0.90 and γ = 0.98), then the model quickly learns the “true”
value of αi and the daily revenue converges to the maximum level.
However, for the case when there is no such forgetting, (i.e., γ = 1),
the model still converges, but at a much slower rate, as the initial
incorrect information persists for longer even in the face of new data.

5 Conclusions
We proposed a novel model for effective demand side manage-
ment for the emerging Smart Grid. Using principles of multi-
agent mechanism design, we presented a demand side management

scheme towards the formation of cooperatives of electricity con-
sumers (CDSM). These cooperatives participate in the existing elec-
tricity markets just like the typical energy producers, but by pro-
viding demand reduction services. We designed the mechanism of
the CDSM including methods for utilising its member agents’ ser-
vices, placing bids in the electricity markets and revenue redistribu-
tion amongst the agents. We also evaluated our approach empirically.
Simulation results show that participating in such a scheme can help
consumers cover up to 25% of their electricity consumption costs.
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