A constrained approach to multiscale stochastic simulation of chemically reacting systems
Cotter, Simon L., Zygalakis, Konstantinos C., Kevrekidis, Ioannis G. and Erban, Radek (2011) A constrained approach to multiscale stochastic simulation of chemically reacting systems. The Journal of Chemical Physics, 135, (9), 094102. (doi:10.1063/1.3624333).
Download
Full text not available from this repository.
Description/Abstract
Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if a chemical system contains reactions occurring on different time scales. In this paper, we introduce a multiscale methodology suitable to address this problem, assuming that the evolution of the slow species in the system is well approximated by a Langevin process. It is based on the conditional stochastic simulation algorithm (CSSA) which samples from the conditional distribution of the suitably defined fast variables, given values for the slow variables. In the constrained multiscale algorithm (CMA) a single realization of the CSSA is then used for each value of the slow variable to approximate the effective drift and diffusion terms, in a similar manner to the constrained meanforce computations in other applications such as molecular dynamics. We then show how using the ensuing FokkerPlanck equation approximation, we can in turn approximate average switching times in stochastic chemical systems
Item Type:  Article  

Digital Object Identifier (DOI):  doi:10.1063/1.3624333  
ISSNs:  00219606 (print) 

Keywords:  fokkerplanck equation, molecular dynamics method, reaction kinetics, stochastic processes  
Subjects:  H Social Sciences > HA Statistics Q Science > QA Mathematics 

Divisions:  Faculty of Social and Human Sciences > Mathematical Sciences > Applied Mathematics 

ePrint ID:  340573  
Date : 


Date Deposited:  25 Jun 2012 14:36  
Last Modified:  31 Mar 2016 14:30  
URI:  http://eprints.soton.ac.uk/id/eprint/340573 
Actions (login required)
View Item 