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1. Introduction

1.1 This paper outlines a proposed strategy for a Census Coverage Survey (CCS) to follow the 2001
Census. A model based approach is adopted for the design and direct estimation. This allows full
advantage to be taken of the highly correlated auxiliary information available after the 2001 Census.
The aim is to estimate underenumeration at a County (or group of counties) level (by age and sex);
allocation of this underenumeration down to lower levels is considered in the small area
adjustments paper (ONS(ONC(SC))97/13).

A simulation study is being undertaken to assess the design and direct estimation procedures. A
description and initial results from this are included in this paper.

Coverage versus validation

1.2 Following the 1991 UK Census a Census Validation Survey (CVS) was carried out in England,
Scotland, and Wales. The survey aimed:

a) to estimate net underenumeration; and

b) to validate the quality of Census data.

1.3 The second aim required the re-enumeration of a sample using the entire Census form. This
requirement is costly, due to time, resulting in a small sample size. The small sample size
contributed to the fact that the survey failed in its first aim on two points: the survey failed to find,
at a national level, anywhere near the number of people that the demographic rolled forward
estimate suggested were missing and it was unable to estimate the geographic variation of
underenumeration. It is proposed that the survey in 2001 should address coverage exclusively.
Information on the quality of Census data would be obtained from Census Tests in 1997 and 1999.
This allows for a much shorter doorstep questionnaire. Savings in time can be translated into more
sample units.

2. A postcode based survey

2.1 The proposal is for a postcode-unit based survey. This requires the re-enumeration of a sample
of postcode units rather than households. This clustering of the sample permits a larger sample size.
While that does not necessarily improve the direct estimation due to clustering effects, it is
important for estimating adjustments at lower levels.

2.2 The sample of postcodes needs to be sufficiently large to estimate the total population by 24
age-sex groups, for each design level group1. At the design level, postcodes are stratified into groups
by a �Hard to Count� (HtC) index and size. In this paper, �hard to count� is defined in terms of
characteristics found to be important after the 1991 Census by ONS and the Estimating With
Confidence Project (Simpson et al., 1997). The problem is to estimate 24 age-sex totals such that
each has a Relative Standard Error (RSE) of less than a certain percent at the design level.

2.3 In general, postcode level information, beyond number of addresses, is not known. This leads to
a two-stage design, selecting enumeration districts as Primary Sampling Units (PSUs) and then

1 Each design level group is either a single county or group of smaller contiguous  counties.



sampling postcodes as Secondary Sampling Units (SSUs) within selected enumeration districts.
Clustering from the two-stage design has cost advantages for a fixed number of postcodes but
efficiency disadvantages when the characteristics of postcodes are positively correlated within
enumeration districts.

3. Direct estimation from the Census Coverage Survey

3.1 The quantities of interest are:

Zaidc = 1991 adjusted Census count for age-sex group a of postcode i, in hard to count group d of
county c.
Xaidc = 2001 unadjusted Census count.
Yaidc = True 2001 count (given by the CCS for those postcodes in sample).

where:

c = 1...C design level county groups in England & Wales.
d = 1...D hard to count categories of postcodes.
a = 1...24 age-sex groups (0-4, 5-9, ..., 40-44, 45-79, 80-84, 85+).
i = 1...Ndc postcodes in hard to count group d of county c of which ndc are in the sample S, the rest

are in the non-sample R.

3.2 For direct estimation from the CCS it is required that the total populations Tac be estimated to a
certain degree of accuracy. This is treated as 24 similar estimations within each design level group.
For this reason the design and estimation for one age-sex by design level group is described below.
The same model framework applies for all other age-sex groups and in the following the subscripts
a and c are dropped.

4. Stage One of the CCS design

4.1 A robust non-parametric model for stage one is a stratified super-population model of
enumeration districts with simple random sampling within each stratum. Within a design level
group the enumeration districts are stratified by hard to count. This is important as within the design
group, undercount will depend on the characteristics of the PSUs. It also ensures that the CCS
sample is spread across the full range of enumeration districts. Further stratification by size using
the 1991 adjusted Census counts improves efficiency by reducing within stratum variance. Ideally
one would like to use the 2001 counts but the CCS must be ready for the field directly after the
Census so this is not possible. It is expected that the final design will use 1991 based estimates of
the population in 2001.

4.2 Allowing for h = 1...Hd size strata within each hard to count group, and in this case using i for
enumeration districts rather than postcodes, the model for a given age-sex group within a design
level group can be written as:
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4.3 Assuming no second stage sample, estimation of the required total is straightforward under this
model using a stratum by stratum expansion estimator. From this it is possible to calculate the
sample of enumeration districts required if there was no second stage sample.

5. Stage Two of the CCS design

5.1 It is possible to write-down a model for the second stage. This is more complicated due to the
varying numbers of postcodes within enumeration districts, expected but unknown correlation of
postcodes within enumeration districts, and the absence of readily available postcode level
information on which to design. Therefore, the proposal is to have a constant second stage sample
size and take a simple random sample of postcodes within chosen enumeration districts. This has
the appeal of simplicity in the absence of detailed postcode information. Any loss of efficiency due
to the second stage sample is examined more fully through the simulation study presented in Section
9.

The CCS super-population model for estimation

5.2 It is sensible to assume that the 2001 Census count and the CCS count within each postcode will
be related. If this is not true then one really should be suspicious of one of the counts. Further,
within sub-groups of postcodes a linear relationship may well be appropriate. This corresponds to a
constant ratio (or adjustment factor) between the two counts with the possibility of a non-zero
constant. The constant is needed in some postcodes where the Census misses all people from a
certain age-sex group. It is the possible occurrence of this situation which leads to choosing the
Regression Estimator in preference to the Ratio Estimator which forces the constant to be zero.
Given that it is know from the 1991 Census that age and sex are crucial to undercount, as well as
local characteristics, it is sensible to consider a model within age-sex groups for each hard to count
by design level group where the hard to count index allows for different local characteristics. The
simple regression model stratified by the hard to count index for an age-sex group is:
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5.3 Substituting in the Ordinary Least Squares (OLS) estimators for αd and βd it is straightforward
to show (Royall, 1970) that under this model the Best Linear Unbiased Predictor (BLUP) for the
total T is:

( ){ }� � �T T Xd Sd Rd d d idξ α β= + +� �     (1)

where  �Rd is the summation over all non-sample postcodes in hard to count index d and  �d is the
summation over all the hard to count groups. Strictly speaking the model is known to be wrong (the
postcodes are correlated within enumeration districts), but the simple two stage model proposed by
Scott and Holt (1982), which assumes independence between PSUs, is still reasonable. Under this
model they state that the OLS approach remains unbiased and the loss of efficiency is negligible as
the residual correlation within clusters, that is the correlation left unexplained, tends to zero. (In
practice the residual correlation is much less than the correlation in the data before fitting the model
and it is very close to zero.)



5.4 There is a model-based formula for estimating the variance of �T Tξ − , the estimation error,
under the model. Unlike the estimator of the total, this is sensitive to mis-specification of the
variance structure even when the design is approximately balanced with respect to the auxiliary
variable (Royall and Cumberland, 1978). In this strategy it is proposed that the conservative
ultimate cluster variance estimator, a variant of the random groups approach, be used as the
postcodes are clustered within enumeration districts. Once the variances are estimated an estimated
RSE can be calculated for each age-sex group total. In general, when the regression model is
appropriate, the estimator in (1) is more efficient than a simple stratum by stratum expansion
estimator for a given sample size.

6. Case Study: Applying Stage One of the CCS Design to Hampshire

6.1 Hampshire was chosen purely for convenience to examine the feasibility of Stage One of the
design. It was considered to be an �average� county with just over 3,000 enumeration districts and
includes two middle-sized cities. Some counties are considerably smaller hence the need in some
cases to group contiguous counties at the design level.

National hard to count index

6.2 The first stage was to calculate a national hard to count index for SASPAC2 enumeration
districts based on the 1991 Census. Only enumeration districts with non zero populations in 1991
were used. The variables used were percent of permanent households which are private rented,
percent of residents imputed and percent of young residents who were in-migrants in the last year
(from SASPAC) with percent of households in multi-occupied buildings and percent of residents
with language difficulty provided by the Office for National Statistics (ONS). Increasing values for
any of these variables are expected to increase undercount. To form an index the normalised ranks
of each variable were added and the sum split into quintiles, 1 being the easiest to count and 5 being
the hardest to count enumeration districts. Using the normalised ranks avoids outliers, for any one
component variable having undue weight in an enumeration district�s score on the index.

6.3 Within Hampshire there are 3,305 enumeration districts on SASPAC of which 3,229 had a non
zero population in the 1991 Census and therefore an index value. The distribution of the districts by
the index is given in Table 1 below.

2 SASPAC is the package used by Census users to access small area statistics. A few enumeration
districts are excluded from SASPAC by ONS due to there small size although enumeration districts
with zero counts are included.



Table 1. Distribution of 1991 Hampshire enumeration districts by hard to count index

Hardness To Count Number of Enumeration
Districts
(Current HtC Index)

Number of Enumeration
Districts
(Previous HtC Index)

Very Easy 249 892

Easy 626 717

Medium 874 678

Hard 925 601

Very Hard 555 341

6.4 The distribution in column 2 of Table 1 reflects the presence of Portsmouth and Southampton,
two cities on the south coast, in Hampshire with a predominance of the harder to count groups.
Table 1 also presents the distribution of enumeration districts based on the HtC index used in paper
ONS(ONC(SC))97/02. This earlier index concentrated on the social characteristics of areas whereas
the current index attempts to take some account of the practical barriers, such as multiple
occupancy, to obtaining a Census response.

Multivariate stratification and design

6.5 Within a hard to count by design level group, estimation is required for each age-sex group,
therefore there are 24 potential size variables, each of the Zai�s, to stratify on. The solution adopted
here is a multivariate approach that uses six key age-sex groups, male and female 0-4, males 20-34,
and females 85+. The choice of these is based on a coverage analysis of the 1991 Census. 28 large
enumeration districts, based on counts of males aged 20-34, were excluded from the rest of the
design process and treated as outliers. These were included in the final design with probability 1.
Principal Component Analysis, was used on the remaining 3201 districts. The first three component
scores, which accounted for over 96 percent of the original variability, were kept. Within index
group Ward Linkage Cluster Analysis on these components was then used to form minimum
variance strata. At this stage, additional enumeration districts were highlighted as outliers and
included in the sample with probability 1 and excluded from the sample size calculations.

6.6 To calculate the total sample size a design variable Zi  based on the chosen principal
components was constructed from the formula:
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where �j is over the principal components chosen, Pji is the jth component score for the ith

enumeration district, and V is the variance-covariance matrix of the six original size variables.
Using the determinant of this matrix as a measure of variability in the original data, and bearing in
mind that principal components are orthogonal, the variance of the design variable in (2) is scaled to
something which represents the original variability in all the variables. It should be noted that this
multivariate approach is a change from the one presented in paper ONS(ONC(SC))97/02. The
original intention was to include all 24 age-sex totals in the stratification. However, further work
revealed that the original design variable based on all 24 age-sex groups and only the first two
principal components did not sufficiently reflect the true variability for any age-sex groups. When
this was corrected for, the sample size obtained was 1/3 of the total population. The current



procedure is a compromise that concentrates the efficiency gains from stratification in the key age-
sex groups.

6.7 This design variable was then used to calculate the total sample required for an RSE of one
percent3 with respect to the design variable. (0.5 was not practical once the design was correctly
accounting for the variability in the age-sex counts as it led to a sampling fraction at Stage One of
20 percent.) Annex A  sets out the theory in detail giving the appropriate formula for the super-
population model specified in Section 5.2. Optimal allocation, also known as Neyman allocation,
was used to allocate the sample to the strata with the condition that the minimum sample was one
enumeration district. This constraint raises the final sample size to which the outliers were added.

Final sample design

6.8 Several different size stratifications were tried by varying the number of clusters required in the
clustering algorithm. In general, increasing the number brings down the total sample size however,
it also increases the number of outliers identified by the algorithm and all clusters have a sample of
at least one. This means there is a trade-off between the two and after a point increasing the number
of size strata does not improve the design. The final design and allocation is given in Table 2 below.

Table 2 - Sample allocation for the first stage sample in Hampshire

Index Group Population Size Number of
Size Strata

Sample Size Outliersb

Very Hard 246 15 27 3

Hard 623 35 59 1

Medium 863 35 80 2

Easy 918 35 86 3

Very Easy 551 30 56 2

Outliersa 28 - 28 -

TOTAL 3229 150 336 11

a. Enumeration districts classified as outliers based on their size.
b. Enumeration districts classified as outliers by the clustering algorithm.

6.9 From Table 2 it would appear that more size strata would further reduce the sample but the
gains are small and these are countered by more outliers of type b. This increasing of outliers as a
result of requiring more clusters may be reduced by trying other clustering algorithms. However,
this analysis has not yet been carried-out. Further work to identify the characteristics of outlying
enumeration districts will also be necessary when the final design is calculated for all county
groups.

6.10 The design in Table 2 gives a total first stage sample of 347 enumeration districts,
approximately a 10 percent sampling fraction. This is with respect to the design variable given by
(2). To assess how well the design works for each individual age-sex variable the expected RSEs
were calculated based on the design for the 3190 enumeration districts not classified as outliers and
taking a sample of 308. These ranged from 1.4 percent for the 0-4 males to 4.6 percent for the 85+

3 An RSE of percent for total T translates into an approximate 95 percent confidence interval on T
of ±2  percent.



males. The six age groups in the design variable all had expected RSEs of less than 1.7 percent. As
the RSE put on the design variable was one percent this shows that the design variable is not
perfect. There is also extra loss of efficiency from taking the second stage sample. This will be
balanced by the extra efficiency of the regression estimator. The extra efficiency of the regression
estimator comes from using the auxiliary information. This means that instead of looking at the
marginal variance of the CCS count within a hard to count group, the variance conditional on
knowing the Census count is only considered. The effect of this in practice is examined in later
sections of the paper using the simulation study.

7. Conclusions about the design

7.1 The design proposed here for the first stage is a standard approach. The auxiliary information is
used to stratify, a standard procedure in both the model-based and design-based frameworks for
making efficiency gains. The estimation model is chosen to make further efficiency gains using the
additional auxiliary information available from the 2001 Census. These gains are related to the
variability in Census coverage as this affects the conditional variance in the model. However, the
conditional variance will always be less than the marginal variance when a regression model is
sensible, leading to some efficiency gain. The case study for Hampshire deals with the practical
application of the design. It shows that the theoretical framework proposed can be applied to an
actual county with feasible results. However, Table 2 does not represent the final design for the
2001 CCS in Hampshire. In the final design it is likely that the Isle of Wight will be included in a
group with Hampshire.

8. Extension to National Sample Size

8.1 At this stage it is useful to get a feel for the kinds of sample sizes that may be required may be
required nationally (England and Wales) for a range of design RSEs. For Stage One the sampling
unit is the enumeration district. Counties are very variable in the number of units they contain while
heterogeneity amongst the units within counties is more similar. Unless county size is controlled for
this will lead to very high sampling fractions for smaller counties. This is the reason for suggesting
grouping contiguous counties to make pseudo counties, similar in size to Hampshire, of about 3000
enumeration districts or approximately 1.5 million people. An initial grouping has been made which
reduces the 55 England and Wales counties to 34 groups. This grouping also accounts for splitting
Inner London, Outer London, Greater Manchester, and West Midlands as these are much larger than
3000 enumeration districts.

8.2 The design has been implemented in Kent and West Yorkshire for a range of RSEs. These
counties were chosen as Kent is approximately 3,000 enumeration districts, the average size
required, and West Yorkshire is the largest single county which has not been split. The results are in
Table 3.



Table 3 - Sample allocation for the first stage sample in Kent and West Yorkshire

RSE Strata Sample Outliers Total Sample
KENT - 3158 EDs

1.0 190 268 43 311
1.5 122 162 36 198
2.0 105 123 31 154

WEST YORKSHIRE - 4098 EDs
1.0 125 314 36 350
1.5 100 171 33 204
2.0 100 122 33 155

8.3 These two counties cover 7,256 enumeration districts out of approximately 110,000. With
caution one can extrapolate to national sample sizes and get approximate figures of:

•  40,000 postcodes (approximately 600,000 households) for an RSE of 1.0 percent.
•  25,000 postcodes (approximately 375,000 households) for an RSE of 1.5 percent.
•  19,000 postcodes (approximately 245,000 households) for an RSE of 2.0 percent.

This extrapolation very much depends on Kent and West Yorkshire being a good representation of
all county groups. They should achieve this for the 50,000 enumeration districts allocated to single
county groups. However, one should question how well they represent the 60,000 enumeration
districts in multiple county groups. Initial work with the group Bedfordshire, Buckinghamshire, and
Northamptonshire suggests a slightly higher enumeration district sampling fraction for multiple
groups, up to 50,000 postcodes for a 1 percent RSE. This is not unexpected when county is being
imposed as an extra layer of stratification. These preliminary results suggest more work is needed to
find the �best� way to implement the first stage of the design within groups of small counties.

9. Simulation Study of the Design and Estimation Procedures

9.1 The detail in Section 4 only really examines the first stage of the design. The aim of this
simulation study is to examine the performance of the design when the Second Stage sample is
taken. It is also necessary to see how appropriate and efficient the regression estimator is. This is
particularly important as the expected RSEs in Annex C are larger than is required of such an
important survey and to reduce these using the model framework of the design would require even
larger samples. Extra efficiency is also needed since in 2001 the design will be based on 1991 data
and will therefore be out-of-date.

Data used in the simulation

9.2 Anonymised individual records from the 1991 Census for one complete district from a county in
England and Wales were used in the simulation. The Hard To Count Index was added to the data.
The district is treated as a county in the design.

9.3 The county used has 445,351 individuals within 171,265 households. It consists of 11,330
postcodes (141 with only one person and 46 with over 200 people) and 930 enumeration districts
(five have only one postcode, one has 40 postcodes, and the median is 14 postcodes). The
distribution of enumeration districts by Hard To Count Index is given in Table 4 below.



Table 4 - Distribution of  enumeration districts  by hard to count index

Hardness To Count Number of Enumeration Districts

Very Easy 144

Easy 210

Medium 186

Hard 193

Very Hard 197

9.4 The distribution in Table 4 is fairly even with respect to the index. This is a good test as it is
necessary to avoid extremes, especially a situation where the very easy group dominates as this
would tend to make the overall performance of the design too optimistic.

Simulation method used

9.5 Treating the data as the true, in reality unobservable, population the first stage of the simulation
was to create a Census. Each individual was given a fixed probability of being counted in a Census
based on their age, sex, and enumeration district hard to count index. This was done by simple
random sampling with replacement from the population of Estimating With Confidence
enumeration district adjustment factors. These are the �best guess� at small area coverage for the
1991 Census. To create a Census, a binomial trial was carried-out for each individual. This was
carried out independently and certain rules were then applied to ensure that counted households had
a sensible structure. Households were excluded if:
•  any children aged 5-15 were missed from a counted household
•  all household members aged 16 and over were missed
•  one partner from an elderly couple was missed.
This strategy for excluding households may not necessarily be a perfect representation of reality but
presents a simple model. Also, characteristics of the undercount are fixed by the model at the start
and therefore, as expected these are the characteristics found by the model as significant.

9.6 For the CCS, the design procedure used for Hampshire was followed but based on an RSE of
2.5 percent to reflect the smaller population of PSUs. The final design and allocation is given in
Table 5  below.



Table 5 - Sample allocation for the first stage sample

Index Group Population Size Number of
Size Strata

Sample Size Outliersb

Very Hard 144 10 12 0

Hard 210 16 17 0

Medium 185 14 14 3

Easy 192 15 18 3

Very Easy 197 15 16 0

Outliersa 2 - 2 -

TOTAL 930 70 79 6

a. Enumeration districts classified as outliers based on their size.
b. Enumeration districts classified as outliers by the clustering algorithm.

9.7 The design in Table 5 was fixed throughout the simulation and used to get a total sample of 85
enumeration districts. A fixed sample of four postcodes (or the number of postcodes in the
enumeration district if less than four) was taken at the Second Stage. For each sample the totals for
each age sex group were estimated, the variances calculated using the ultimate cluster variance
estimator and estimated RSEs calculated. Ideally, it would be desirable to simulate one CCS per
Census as this most accurately reflects real life. Computationally Censuses are time consuming to
simulate so a compromise of  10 CCSs for each of 100 Censuses was adopted.

Results

9.8 The mean total coverage across the 100 Censuses is 95 percent, the worst coverage by age sex
group is males aged 20-24 with an average coverage of 89 percent. This is, in general, conservative
for most counties compared to 1991. A few counties did do worse, particularly Inner and Outer
London and those containing the large metropolitans districts (Heady et al., 1994). The key measure
of performance of the procedure is the estimated RSEs. The average estimated RSEs are given in
Table 6 and based on 1000 CCSs.

9.10 Table 6 shows on average that the procedure does well and in all cases the average estimated
RSE is better than the RSE predicted by the model framework used in the design. This shows that
on average the regression estimator has enough extra efficiency over the design model to recover
loss of efficiency from the second stage sample as well as bring down the RSE in those age groups
not included in the multivariate part of the design. However, the standard errors do show that in
most cases a significant percentage of CCSs still do worse than the design predicts and it cannot be
guaranteed that the regression estimator will do better.



Table 6 Mean Relative Standard Errors for 1000 simulated CCSs on county

Males Females

Age
Group

Number
of CCSs

Design
RSE

Averageb

Estimated
RSE

Age
Group

Number
of CCSs

Design
RSE

Averageb

Estimated
RSE

0-4 1000 2.73 2.16 (0.686) 0-4 1000 2.66 2.12 (0.614)

5-9 1000 3.86 2.41 (0.625) 5-9 1000 3.92 2.48 (1.212)

10-14 1000 4.52 2.34 (0.706) 10-14 1000 4.45 2.19 (0.696)

15-19 1000 4.45 2.26 (0.884) 15-19 1000 4.19 1.65 (0.544)

20-24 1000 3.33 2.53 (0.697) 20-24 1000 3.22 1.62 (0.598)

25-25 1000 3.02 2.38 (0.513) 25-25 1000 2.99 1.58 (0.383)

30-34 1000 2.92 2.04 (0.451) 30-34 1000 3.12 1.68 (0.364)

35-39 1000 3.94 1.87 (0.455) 35-39 1000 4.04 1.45 (0.377)

40-44 1000 4.18 1.42 (0.359) 40-44 1000 4.53 1.24 (0.392)

45-79 1000 2.83 0.48 (0.159) 45-79 1000 2.77 0.34 (0.129)

80-84 917a 7.67 2.17 (0.903) 80-84 999a 6.24 1.61 (0.530)

85+ 659a 10.43 3.42 (1.749) 85+ 1000 3.33 2.63 (0.850)

a. Calculation of the variance is not always possible due to zero postcode counts in the CCS.
b .The estimated standard deviation for the distribution of the RSE is given in brackets.

9.11 The estimated RSE is a good measure to use after the survey to assess performance provided
that the estimator is unbiased and the variance estimator gives correct coverage. Both of these
properties are looked at in Table 7. The bias is averaged over the 1000 CCSs. To assess variance
coverage 95 percent confidence intervals are estimated using the estimated variance in each case.
Table 7 reports the proportion of estimated intervals which contain the truth.

9.12 Table 7 shows that the variance estimator is giving good coverage with the 95 percent
confidence interval containing the true value at least 95 percent of the time except in the two oldest
age groups. Even in those cases the results are still good considering that variance estimation gets
harder as the number of people in the age group decreases. One expects that the regression estimator
would be unbiased over 1000 simulations if the regression model is appropriate so it is surprising
that all age groups are showing a positive bias (over estimating the total). To check this further the
relationship between the simulated Census and CCS counts was examined for one run of the
simulation. Figure 1 is a scatter plot for a particular age sex group for enumeration districts from
one level of the hard to count index.



Table 7 - Bias and Variance Coverage for 1000 simulated CCSs on county

Males Females

Age
Group

Number
of CCSs

Biasb Confidence
Interval
Coverage

Age
Group

Number
of CCSs

Biasb Confidence
Interval
Coverage

0-4 1000 135.94 0.99 0-4 1000 108.27 0.99

5-9 1000 160.96 0.99 5-9 1000 118.35 0.99

10-14 1000 99.98 0.99 10-14 1000 129.64 0.98

15-19 1000 67.32 0.99 15-19 1000 58.76 0.97

20-24 1000 72.19 0.99 20-24 1000 53.13 0.99

25-25 1000 81.52 1.00 25-25 1000 69.16 0.99

30-34 1000 63.78 0.99 30-34 1000 131.49 0.99

35-39 1000 70.25 0.98 35-39 1000 48.45 0.97

40-44 1000 19.48 0.97 40-44 1000 8.98 0.95

45-79 1000 95.00 0.98 45-79 1000 37.83 0.97

80-84 917a 11.46 0.92 80-84 999a 1.83 0.91

85+ 659a 1.24 0.95 85+ 1000 18.45 0.90

a. Calculation of the variance is not always possible due to zero postcode counts in the CCS.
b. Calculation of the bias is averaged over all simulations including those for which the variance cannot be estimated.

Figure 1.
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9.13 Figure 1 suggests that the regression model is appropriate. However, the fitted line is forced
through the origin, not by the model as in the Ratio Model situation, but by the large number of
postcodes that have zero counts for both the Census and CCS. These points not only pull the line



down but they also tend to rotate it. This rotation increases the gradient which is more influential in
estimating the total than the constant and therefore causes the slight positive bias.

9.14 At this stage of the research the bias is noted as a potential problem which will require further
investigation. However, overall the estimation model has done well and in relative terms the bias is very
small as the total being estimated is of the order of 20,000.

10. Sensitivity analysis for Non-Perfect Dependent CCSs

10.1 The simulations so far have only considered a perfect independent CCS. Unfortunately, the real world
is neither perfect or independent. The simulation program was extended to allow for non-response in the
CCS and dependence between the Census and CCS. The dependence was achieved using a similar method to
the one in ONS(ONC(SC))97/12 which involves varying the odds ratio between the Census and CCS. For a
given odds ratio, a probability of being in the Census, and a probability of being in the CCS, the joint
probabilities for all possible outcomes after the Census and CCS of an individual can be solved to complete
the following 2x2 probability table:

In CCS Missed By CCS
In Census p11 p10 p1+

Missed By Census p01 p00 p0+

p+1 p+0 1

10.2 The values for overall Census coverage (p1+ ) vary for each individual but do not vary across
simulations. The values for the CCS response rate (p+1 ) are fixed for each individual but vary across
simulations from perfect (100%) to 95% and 80%. The odds ratio is varied from 0.1 (people not in Census
are ten times more likely to be in the CCS than those counted in the Census) to 1 (independence) to 10
(people in Census are ten times more likely to be in the CCS than those not counted in the Census). This
means that as the odds ratio decreases from one to zero the chance of finding different people in each
increases (p11 and p00 go down). Conversely as the odds ratio increases from 1, p11  increases to its maximum
value which is the smallest value of p1+ and p+1.

10.3 The regression estimator was then used as before. However, once non-response was introduced into the
CCS the Y count for a sample postcode in the model was taken to be the union of the Census and CCS count
for that postcode. The assumption here is that p00 is zero. When this is violated it will introduce a negative
bias into the estimate of the county totals.

Results of the sensitivity analysis

10.4 To compare the performance of the design for different levels of dependence the Relative Root Mean
Square Error (RRMSE) was used. This is a fair measure of comparison as it accounts for variance and bias.
The relative scale is used as the county totals being estimated are of the order of 20,000. The RRMSE is
defined as:

( )
21000

1j=
i truthobserved

1000
1 

truth
1= RRMSE � −××

and is calculated within each age sex group across all 1000 simulations for each scenario. The relative bias
is also considered and calculated as:

( )Relative Bias = 1
truth

1
1000

observed truthi
j=1

× × −�
1000

for the same groups. The results are presented in a series of graphs for varying odds ratios by sex. Figures 2
to 4 are for males and show the RRMSE.



Figure 2.
Performance of Adjusted County Totals

By CCS Response Rate
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Figure 3.
Performance of Adjusted County Totals

By CCS Response Rate

Sex = Males  Odds Ratio = 1
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Figure 4.
Performance of Adjusted County Totals

By CCS Response Rate

Sex = Males  Odds Ratio = 10
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10.5 Figures 2 and 3 show that for odds ratios of 0.1 and 1 even at an 80 percent response rate
the RRMSE is still less than 2.5 percent. The exception is the oldest age group where the bias
starts to dominate over the variance as the numbers being estimated decreases. However, as
the odds ratio increases above one the same people tend to be missed by both to a greater
extent. In this case, as the CCS response rate falls the RRMSE goes up, especially in those
groups where the Census coverage is lower as well, such as males aged 20-29. The message
here is that for a high CCS response rate the regression estimator will still do well regardless
of dependence. As the CCS response rate falls, high levels of dependence in the wrong
direction will lead to the regression estimator failing. In this case, �wrong direction� means
that is the odds ratio is greater than one and dependence between the Census and CCS results
in missing the same people in both. The graphs for females are shown in Annex B and they
display a similar pattern but to a lesser extent.

10.6 In this case the increasing RRMSE does not tell the whole story, it is necessary to see if
this is being driven by the bias or the variance. Figures 5 to 7 present the relative biases for
males for the changing odds ratios. For reference the relative bias for the unadjusted Census
counts is also presented (No CCS line). This shows the effect of bias if no CCS is carried out
after the Census.

10.7 Figures 5 to 7 show that as the RRMSE increases with the odds ratio the negative bias
from the regression estimator is getting more important. Relative to the unadjusted counts the
regression estimator still does very well for odds ratios of 0.1 and 1. However, for the odds
ratio of 10, once the CCS response rate has fallen to 80 percent, the RRMSE is being entirely
driven by the relative bias shown in Figure 7. It can be seen that by comparing the absolute
relative bias in Figure 7 to the RRMSE in Figure 4 that the RRMSE is nearly all due to bias
and not variance. This has serious consequences for calculation of confidence intervals from
estimated variances as the confidence interval will be calculated around the wrong point. It
should still be noted of course that even in this worst case you are still doing better than not
adjusting at all. Again the graphs for females are shown in Annex B but the results again have
the same but less extreme pattern.



Figure 5.
Relative Bias of Adjusted County Totals

By CCS Response Rate
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Figure 6.
Relative Bias of Adjusted County Totals

By CCS Response Rate

Sex = Males  Odds Ratio = 1

Agegroup

85+
80-84

45-79
40-44

35-39
30-34

25-29
20-24

15-19
10-14

5-90-4

R
el

at
iv

e 
Bi

as
 (%

)

2

0

-2

-4

-6

-8

-10

-12

CCS Response Rate

No CCS

80%

95%

Perfect

Figure 7.
Relative Bias of Adjusted County Totals

By CCS Response Rate

Sex = Males  Odds Ratio = 10
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10.8 From this initial sensitivity analysis it can be seen that determining the possible extent
and direction of dependency between the Census and CCS is important. More work is needed
to quantify how bad an odds ratio of 10 is, as it is only when the dependence is in this
direction that there is cause for concern. As the odds ratio decreases to zero the regression
estimator will not suffer, even if its response rate falls, as it will still find the different people
for the union count.

11. Initial conclusions and further work

11.1 The initial conclusions are that for a perfect CCS the regression estimator is working
well to recover any loss of efficiency due to the second stage design and multivariate
stratification. However, the spread of RSEs is still quite high. The coverage of confidence
intervals from the ultimate cluster variance estimator is excellent, even though there is a slight
positive bias in the estimator due to zero count postcodes. As non-response is introduced with
dependence the regression estimator still performs well. As the response rate for the CCS
decreases the direction and the extent of the dependence becomes important, especially for
those age-sex groups with the lowest Census response rates. This shows how important it is to
get a high CCS response since once this is achieved the dependence becomes a side issue.
High response is also important for variance estimation since for increasing odds ratios and
low response the bias dominates and the variance of the union count tends to zero as the CCS
finds fewer and fewer of the missed people.

11.2 There are two branches to the further research:
•  to extend the design to all counties in England and Wales as well as include Scotland. This

requires looking at the issue of outliers produced by the clustering and how to deal with the
groups of multiple counties to get the first stage sampling fraction down; and

•  to look further at the non perfect dependent CCSs. There is the particular issue of
measuring the performance of the estimator in the situations where the bias dominates. As
a parallel to the capture recapture work one also needs to introduce DSE into these county
level simulations to compare its performance with the regression estimator.
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ANNEX A  - CCS Sample Size Calculations

For the super-population model given in Section 4 the BLUP for the total of an age-sex group
is the stratum by stratum expansion estimator given by:

�T N yhd hd Shdξ = �      (a1)

where yShd is the sample mean for the CCS enumeration district count. For this estimator and
model the variance of the estimation error is given by:

( ) ( )( )var T T N n n Nhd hd
2

hd hd hd hd
2

ξ ξ σ= − = −�� 1 (a2)

For a given total sample size of n enumeration districts optimal allocation is used to get the
individual stratum population sizes such that:

n n N
Nhd
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�

σ
σ

(a3)

For a given population quantity such as the total T with estimator T, one can measure the
accuracy of the estimator using the relative standard error (RSE) defined as:
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RSE T
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1 2
100

(a4)

The aim is to design for an RSE of  α percent. The variance formula can be written as:

( ) ( )var T T N n Nhd hd
2

hd
2

hd hd hdξ ξ σ σ� − = −�
2 (a5)

Now only the first term depends on the sample sizes. Substituting for nhd in terms of n using
(b3) in the first term of (b5) gives:

( ) { } { }var T T N N nN N nhd hd
2

hd
2

g g g hd hd
2

hd hd hdξ ξ σ σ σ σ� − ≤ ⋅ =� � �
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Using equation (b6) as the variance in the RSE formula gives the approximate sample size
required for an RSE of  percent as:

{ }
n =

10 N
T

4
hd hd hd

2

σ
α

�
2

2 (a7)

For the actual calculations a design variable is used in place of the Yi�s as these are obviously
unknown and the required RSE is 1.0 percent.



ANNEX B - Sensitivity Analysis Plots for Females

Figure B1.
Performance of Adjusted County Totals

By CCS Response Rate

Sex = Females  Odds Ratio = 0.1
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Figure B2.
Performance of Adjusted County Totals

By CCS Response Rate

Sex = Female  Odds Ratio = 1
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Figure B3.
Performance of Adjusted County Totals

By CCS Response Rate

Sex = Females  Odds Ratio = 10
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Figure B4.
Relative Bias of Adjusted County Totals

By CCS Response Rate

Sex = Females  Odds Ratio = 0.1
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Figure B5.
Relative Bias of Adjusted County Totals

By CCS Response Rate

Sex = Females  Odds Ratio = 1
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Figure B6.
Relative Bias of Adjusted County Totals

By CCS Response Rate

Sex = Females  Odds Ratio = 10
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