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ABSTRACT. In dimension 3 and above, Bredon cohomology gives an acurate
purely algebraic description of the minimal dimension of the classifying space
for actions of a group with stabilisers in any given family of subgroups. For some
Coxeter groups and the family of virtually cyclic subgroups we show that the
Bredon cohomological dimension is 2 while the Bredon geometric dimension
is 3.

1. INTRODUCTION AND PRELIMINARIES

For a discrete group G, a family of subgroups F is a non-empty collection of
subgroups of G that is closed under conjugation and taking subgroups. If F is a
family of subgroups of G then a model for EFG, the classifying space for G-actions
with stabilisers in F, is a G-CW-complex X such that for H ≤ G, the fixed point
set XH is empty if H /∈ F and is contractible if H ∈ F. For any G and F there is
always a model for EFG and it is unique up to equivariant homotopy.

In the case when F consists of just the trivial group, EFG is the same thing as EG,
the universal cover of an Eilenberg–Mac Lane space for G. In the case when F is
the family Ffin(G) of all finite subgroups of G (respectively the family Fvc(G) of
all virtually cyclic subgroups of G) we write EG (respectively EG) for EFG. The
minimal dimension of any model for EFG is denoted by gdF G and is called the
Bredon geometric dimension of G.

Homological algebra over the group ring ZG can be used to study models for EG,
and Bredon cohomology is the natural generalisation for studying models for EFG.
In Bredon cohomology the orbit category OFG replaces the group G. The orbit
category OFG is the category with objects the G-sets G/H with H ∈ F and G maps
as morphisms. A (right) OFG-module is then a contravariant functor from the
orbit category OFG to the category of abelian groups. In the case when F consists
of just the trivial group, OFG is a category with one object and morphism set G
and OFG-modules are the same as ZG-modules.

The category of OFG-modules ia an abelian category with enough projectives.
The Bredon cohomological dimension cdF G is defined to be the projejctive dimen-
sion of the trivial OFG-module Z, which takes the value Z on any object of OFG and
which maps any morphism to the identity. The derived functors of the morphism
functor in the category of Bredon modules over OFG are denoted by Ext∗F(−,−).
The Bredon cohomology groups of G with coefficients the OFG-module M are the
abelian groups H∗

F(G;M) = Ext∗F(Z;M). For details on Bredon cohomology we
refer to [12] or [9].

If the family F consists of the trivial subgroup only, then gdF G is the minimal
dimension gdG an Eilenberg–Mac Lane space for G can have. If F is the fam-
ily Ffin(G) (respectively Fvc(G)) then we use the notation gdG (respectively gdG)
for gdF G.
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As in the classical case a model for EFG gives rise to a resolution of the trivial
OFG-module Z by projective OFG-modules. Therefore cdF G≤ gdF G in general. If
cdF G ≥ 3, then cdF G = gdF G. In the classical case, that is when F = {1} consists
only of the trivial subgroup, this is due to Eilenberg–Ganea [7]. For F = Ffin(G) this
was proved in [12] and this proof generalises to arbitrary families F, cf. Theorem 0.1
in [13, p. 294]. In the classical case it is well known that cdF G = 0 implies gdF G
and for general families this implication follows from Lemma 2.5 in [16, p. 265].

In the classical case, the statement that the cohomological and geometric dimen-
sion always agree is known as the Eilenberg–Ganea Conjecture. Since the work
of Stallings [14] and Swan [15] imples that cdG = 1 if and only if gdG = 1, this
conjecture can only be falsified by a group G with cdG = 2 but gdG = 3.

In [1] right-angled Coxeter groups W such that cdW = 2 but gdW = 3 were
exhibited. We show here that some, but not all, of these examples have a similar
property for actions with virtually cyclic stabilisers.

Main Theorem. Let (W,S) be a right-angled Coxeter system for which the nerve
L = L(W,S) is an acyclic 2-complex that cannot be embedded in any contractible
2-complex.

• If W is word hyperbolic, then

cdW = 2 and gdW = 3.

• If W is not word hyperbolic, then

cdW = gdW ≥ 3.

A right angled Coxeter group W is word hyperbolic if and only if its nerve L
satisfies the so called “flag no squares condition”, cf. [4, p. 233]. By Proposition 2.1
of [5] the “flag no squares conditions” puts no restriction on the homeomorphism
type of the 2-complex L (or see [1, p. 498] an explicit example for a suitably
triangulated L). Therefore it follows from our theorem, that the Bredon analogue of
the Eilenberg–Ganea Conjecture is false for the family of virtually cyclic subgroups.

The proof of the non-word hyperbolic case of our Main Theorem is the easy
part and is described in Section 3. The word hyperbolic case is Theorem 6 and 7
combined.

As mentioned before, in the classical case cdF G = 1 implies gdF G = 1 by the
work of Stallings and Swan. It follows from Dunwoody’s Accessibility Theorem [6],
that the same implication is true in the case that F = Ffin(G). In the light of this one
may ask, whether this implication also holds in the case that F = Fvc(G). The first
author obtained in his thesis a positive answer for countable, torsion-free, soluble
groups [9, p. 127]. In this class, the groups G with cdG = 1 are precisely the
subgroups of the rational numbers which are not finitely generated and for these
group gdG = 1 holds. However, a general answer to this question is still open.

Acknowledgments. The first author is grateful for the support of the CRC 701 of
the DFG.

2. COXETER GROUPS AND THE DAVIS COMPLEX

A Coxeter matrix is a symmetric matrix M = (mst) indexed by a finite set S and
with entries integers or ∞ subject to the conditions that for all s, t ∈ S

(1) mst = 1 if s = t, and
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(2) mst ≥ 2 otherwise.
Associated to a Coxeter matrix M one has the Coxeter group W given by the
presentation

W = 〈S | (st)mst = 1 for all s, t ∈ S with mst 6= ∞〉.
The Coxeter group W is right-angled if the finite off-diagonal entries of the Coxeter
matrix are all equal to 2. The elements of S are called the fundamental Coxeter
generators of the Coxeter group W and the pair (W,S) is called a Coxeter system. If
T ⊂ S, then WT denotes the subgroup of W generated by T and these subgroups are
called special.

The nerve L = L(W,S) of a Coxeter system (W,S) is the simplicial complex with
vertex set S and whose simplices are the non-empty subsets T ⊂ S for which the
special subgroup WT is finite.

Given a Coxeter system (W,S) the Davis Complex Σ = Σ(W,S) is a contractible
simplicial complex on which W acts with finite stabilisers; the action of the funda-
mental generators S is by reflections. This complex has been introduced in [3] and
it can interpreted as the barycentric subdivison of a cell complex where the cells
are in bijective correspondence with the cosets of finite special subgroups of W .
This cell complex admits in a natural way a piecewise Euclidean metric and this
metric can be shown to be CAT(0). The links of the 0-cells of this complex can be
identified with the nerve L. The subcomplex generated by the cells corresponding
to the maximal finite special subgroups is denoted by K. It is a fundamental domain
of the action of W and it can be realised as the cone of L, where L is identified with
the boundary ∂K in Σ. For details see [4].

If (W,S) is a right angled Coxeter system, then its nerve is a flag complex [4,
p. 125]. Conversely, if we are given a finite flag complex L, then we can construct a
Coxeter system (W,S) such that L is its nerve as follows: let S be the set of vertices
of L and for s 6= t set mst = 2 if s and t are adjacent in L and set mst = ∞ if no edge
connects s and t in L.

3. THE NON-HYPERBOLIC CASE

It suffices to show that cdW ≥ 3. For this it is enough to show that W contains a
subgroup H with cdH ≥ 3. Since W is not word hyperbolic it contains a subgroup
isomorphic to Z2 [4, p. 241].

We show that EZ2 = 3 using an explicit 3-dimensional model X for EZ2, which
was first described by Farrell. See [8] for a general construction containing this as a
special case, or see [11] for a description of X and a computation of H∗(X/Z2;Z)
from which it follows that H3(X/Z2;Z) is a countable direct product of copies of Z.
Theorem 4.2 in [9, p. 83] states that H3(X/Z2)∼= H3

Fvc(Z2)(Z
2;Z). Hence it follows

that cdZ2 = 3.

4. THE GEOMETRIC DIMENSION IN THE HYPERBOLIC CASE

Given a Coxeter system (W,S) and a W -space X we set

X# =
⋃
s∈S

X s

and

X sing = {x ∈ X |Wx 6= 1}.
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Clearly X# ⊂ X sing.

Lemma 1. Let K ⊂ Σ be the fundametal chamber of Σ and let s ∈ S. Then both K
and K∪ sK are convex subsets of Σ.

Proof. For each t ∈ S the fixedpoint set Σt seperates Σ into two connected half
spaces. Denote by H−

t the half space which does not intersect K and denote by H+
t

the complement of H−
t . Then H+

t is a convex subset of Σ containing K. Then K =⋂
t∈S H+

t is a convex subset of Σ. Finaly, K∩ sK is convex since K∪ sK = K0∩ sK0

where K0 is the convex set K0 =
⋂

t∈S\{s}H+
t . �

Lemma 2. Let X be a model for EW. Then X# is homotopy equivalent to L.

Proof. Since X is W -homotopy equivalent to Σ it follows that X# is homotopy
equivalent to Σ#. Thus it is enough that Σ# is homotopy equivalent to L.

Let K be the fundamental chamber of Σ. Then K is complete and compact and
due to Lemma 1 also convex. Therefore, since Σ is a CAT(0) space, there exists a
retraction of Σ onto K which sends every point x ∈ Σ\K to the unique point π(x)
of K which is nearest to x, cf. [2, p.176f.].

Let KS the union of all mirrors of K, that is

KS = {x ∈ K | x ∈ K∩ sK for some s ∈ S},
cf. [4, p. 63, p. 127]. The set KS is homotopy equivalent to L [4, p. 127].

Let s ∈ S and x ∈ XS \K. Let y = π(x). Then sy ∈ sK and since K∪ sK is convex
it follows that the midpoint m of the geodesic joining y and sy is contained in K∪sK.
Since y and sy have the same distance from K∩ sK it follows that m ∈ K∩ sK. In
particular m ∈ K. Since x ∈ X s it follows that d(x,y) = d(sx,sy) = d(x,sy). Since
the metric of Σ is CAT(0) it follows that d(x,m)≤ max(d(x,y),d(x,sy)) = d(x,y).
By the uniqueness of the point π(x) it follows that m = y. Hence y ∈ KS.

It follows that the homotopy equivalence Σ ' K restricts to a homotopy equiva-
lence Σ# ' KS. Thus X# ' L. �

Remark 3. The above lemma could be used to give a slightly different proof of the
main assertion of Proposition 4 of [1, p. 497].

Lemma 4. Let X be a model for EW . If W is word hyperbolic, then X# is homotopy
equivalent to

L ∨
∨
i∈I

S1

where the index set I consists of all maximal infinite virtually cyclic subgroups of W
which contain at least two non-commuting Coxeter generators.

Proof. Let Y be the model for EW which is obtained from Σ as described in [11].
This construction yields for every maximal infinite virtually cyclic subgroup H of
W a 1-dimensional model ZH for EH together with an H-equivariant embedding
fH : ZH → Σ. We identify ZH with its image in Σ under this embedding. Then Y is
obtained by coning of the sets ZH and extending the W -action suitably.

Since X is W -homotopy equivalent to Y it follows that X# is homotopy equivalent
to Y #. The set Y # is obtained from Σ# by coning of the intersection Σ#∩ZH for every
maximal infinite virtually cyclic subgroup H of W .

Let s, t ∈ S such that s, t ∈ H for some maximal infinite virtually cyclic sub-
group H ofW . Then x ∈ ZH can be a comon fixed point of s and t if and only if s
and t commute. In particular ZH ∩X# can consist of at most 2 points as a virtually
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cyclic subgroup of W cannot contain more than 2 pairwise non-commuting Coxeter
generators. Coning of a singelton set of path connected space does not change its
homotopy type. And coning of a subset of a path connected space which has two
points is homotopy equivalent to attaching a S1 to it. Hence the claim of the of the
lemma follows. �

Lemma 5. Let (X ,A) be CW-pair complexes and let B be a CW-complex which is
homotopy equivalent to A. Then there exists a CW-pair (Y,B) which is homptopy
equivalent to (X ,A) such that the cells of X \A are dimension wise in a 1-to-1
correspondence to the cells of Y \B.

Proof. This follows directly from Theorem 4.1.7 in [10, p. 104]. �

Theorem 6. Let (W,S) be a Coxeter system with W word hyperbolic and such
that the nerve L(W,S) of this Coxeter system is an acyclic complex, which is not
homotopy equivalent to a subcomplex of a contractible 2-complex. Then gdW = 3.

Proof. Assume towards a cotradiction that there exists a 2-dimensional model X
for EW . Then X# is homotopy equivalent to L∨

∨
S1 by Lemma 4. By Lemma 5

there exists a 2-dimensional CW-complex Y which is homotopy equivalent to X
and which contains L∨

∨
S1. In particular L is a subcomplex of Y contradicting the

assumption that L does not embedd into a contractible 2-complex. Thus gdW ≥ 3.
On the other hand, the Davis complex Σ is a model for EW and dimΣ = dimL+

1 = 3. Since W is word hyperbolic we can elevate Σ to a model for EW by attaching
orbits of cells in dimension 2 and less, cf. [11]. Thus gdW ≤ 3 and equality
holds. �

5. THE COHOMOLOGICAL DIMENSION

Theorem 7. Let (W,S) be a Coxeter system with W word hyperbolic and such
that the nerve L(W,S) of this Coxeter system is an acyclic complex which is not
homotopy equivalent to a subcomplex of a contractible 2-complex. Then cdW = 2.

Proof. Let F be the family of virtually cyclic subgroups of W . Let Z be the sub-
module of the trivial OFW -module given by Z(G/H) = Z for any finite subgroup
H of W and which is 0 otherwise. The complex Σsing is acyclic and 2-dimensional
by [1] and it follows that C∗(Σ

sing) gives a projective resolution of Z of length 2.
Thus pdZ ≤ 2.

On the other hand, if X is a model for EW , then a model Y for EW can be obtained
from X by attaching orbits of cells in dimension 2 and less [11, Proposition 9]. It
follows that C∗(Y,X) gives a free resolution of Q = Z/Z of length 2. Thus pdQ≤ 2.

Consider the short exact sequence

0 → Z → Z→ Q → 0

of OFW -modules. Since pdZ and pdQ are bounded by 2 it follows by the Horseshoe
Lemma that pdZ≤ 2, that is cdW ≤ 2.

On the other hand, it follows from [11, Corollary 16] that the quotient space
EW/W has non-trivial cohomology in dimension 2, and thus H2

F(W ;Z) must be
non-trivial too, cf. Theorem 4.2 in [9, p. 83]. As a consequence we get cdW ≥ 2
and therefore the claim follows. �
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manifolds, Algebraic topology Poznań 1989, Lecture Notes in Math., vol. 1474, Springer, Berlin,
1991, pp. 59–74. MR 1133892 (92k:57038)

[9] M. Fluch, On Bredon (Co-)Homological Dimensions of Groups, Ph.D. thesis, University of
Southampton (2010), available at arXiv:1009.4633v1.

[10] R. Geoghegan, Topological methods in group theory, Graduate Texts in Mathematics, vol. 243,
Springer, New York, 2008. MR 2365352

[11] D. Juan-Pineda and I. J. Leary, On classifying spaces for the family of virtually cyclic subgroups,
Recent developments in algebraic topology, 2006, pp. 135–145. MR 2248975 (2007d:19001)

[12] W. Lück, Transformation groups and algebraic K-theory, Lecture Notes in Mathematics,
vol. 1408, Springer-Verlag, Berlin, 1989. Mathematica Gottingensis. MR 1027600 (91g:57036)

[13] W. Lück and D. Meintrup, On the universal space for group actions with compact isotropy,
Geometry and topology: Aarhus (1998), 2000, pp. 293–305. MR 1778113 (2001e:55023)

[14] J. R. Stallings, Groups of dimension 1 are locally free, Bull. Amer. Math. Soc. 74 (1968), 361–
364. MR 0223439 (36 #6487)

[15] R. G. Swan, Groups of cohomological dimension one, J. Algebra 12 (1969), 585–610. MR
0240177 (39 #1531)

[16] P. Symonds, The Bredon cohomology of subgroup complexes, J. Pure Appl. Algebra 199 (2005),
no. 1–3, 261–298. MR 2134305 (2006e:20093)

DEPARTMENT OF MATHEMATICS, BIELEFELD UNIVERSITY, PO BOX 100131, 33501 BIELE-
FELD, GERMANY

E-mail address: mfluch@math.uni-bielefeld.de

SCHOOL OF MATHEMATICS, UNIVERSITY OF SOUTHAMPTON, SOUTHAMPTON, SO17 1BJ,
UNITED KINGDOM

E-mail address: I.J.Leary@soton.ac.uk


