General model with experimental validation of electrical resonant frequency tuning of electromagnetic vibration energy harvesters
General model with experimental validation of electrical resonant frequency tuning of electromagnetic vibration energy harvesters
This paper presents a general model and its experimental validation for electrically tunable electromagnetic energy harvesters. Electrical tuning relies on the adjustment of the electrical load so that the maximum output power of the energy harvester occurs at a frequency which is different from the mechanical resonant frequency of the energy harvester. Theoretical analysis shows that for this approach to be feasible the electromagnetic vibration energy harvester’s coupling factor must be maximized so that its resonant frequency can be tuned with the minimum decrease of output power. Two different-sized electromagnetic energy harvesters were built and tested to validate the model. Experimentally, the micro-scale energy harvester has a coupling factor of 0.0035 and an untuned resonant frequency of 70.05 Hz. When excited at 30 mg, it was tuned by 0.23 Hz by changing its capacitive load from 0 to 4000 nF; its effective tuning range is 0.15 Hz for a capacitive load variation from 0 to 1500 nF. The macro-scale energy harvester has a coupling factor of 552.25 and an untuned resonant frequency of 95.1 Hz and 95.5 Hz when excited at 10 mg and 25 mg, respectively. When excited at 10 mg, it was tuned by 3.8 Hz by changing its capacitive load from 0 to 1400 nF; it has an effective tuning range of 3.5 Hz for a capacitive load variation from 0 to 1200 nF. When excited at 25 mg, its resonant frequency was tuned by 4.2 Hz by changing its capacitive load from 0 to 1400 nF; it has an effective tuning range of about 5 Hz. Experimental results were found to agree with the theoretical analysis to within 10%.
105039
Zhu, Dibin
ec52eae1-39fa-427c-968b-e76089a464a6
Roberts, Stephen
fef5d01c-92bd-44cf-93f0-923ec24f8875
Mouille, Thomas
0b4b7e08-0fe9-4a75-b402-99e5a6cb17e4
Tudor, John
46eea408-2246-4aa0-8b44-86169ed601ff
Beeby, Steve
ba565001-2812-4300-89f1-fe5a437ecb0d
7 September 2012
Zhu, Dibin
ec52eae1-39fa-427c-968b-e76089a464a6
Roberts, Stephen
fef5d01c-92bd-44cf-93f0-923ec24f8875
Mouille, Thomas
0b4b7e08-0fe9-4a75-b402-99e5a6cb17e4
Tudor, John
46eea408-2246-4aa0-8b44-86169ed601ff
Beeby, Steve
ba565001-2812-4300-89f1-fe5a437ecb0d
Zhu, Dibin, Roberts, Stephen, Mouille, Thomas, Tudor, John and Beeby, Steve
(2012)
General model with experimental validation of electrical resonant frequency tuning of electromagnetic vibration energy harvesters.
Smart Materials and Structures, 21 (10), .
(doi:10.1088/0964-1726/21/10/105039).
Abstract
This paper presents a general model and its experimental validation for electrically tunable electromagnetic energy harvesters. Electrical tuning relies on the adjustment of the electrical load so that the maximum output power of the energy harvester occurs at a frequency which is different from the mechanical resonant frequency of the energy harvester. Theoretical analysis shows that for this approach to be feasible the electromagnetic vibration energy harvester’s coupling factor must be maximized so that its resonant frequency can be tuned with the minimum decrease of output power. Two different-sized electromagnetic energy harvesters were built and tested to validate the model. Experimentally, the micro-scale energy harvester has a coupling factor of 0.0035 and an untuned resonant frequency of 70.05 Hz. When excited at 30 mg, it was tuned by 0.23 Hz by changing its capacitive load from 0 to 4000 nF; its effective tuning range is 0.15 Hz for a capacitive load variation from 0 to 1500 nF. The macro-scale energy harvester has a coupling factor of 552.25 and an untuned resonant frequency of 95.1 Hz and 95.5 Hz when excited at 10 mg and 25 mg, respectively. When excited at 10 mg, it was tuned by 3.8 Hz by changing its capacitive load from 0 to 1400 nF; it has an effective tuning range of 3.5 Hz for a capacitive load variation from 0 to 1200 nF. When excited at 25 mg, its resonant frequency was tuned by 4.2 Hz by changing its capacitive load from 0 to 1400 nF; it has an effective tuning range of about 5 Hz. Experimental results were found to agree with the theoretical analysis to within 10%.
Text
published.pdf
- Version of Record
More information
Published date: 7 September 2012
Organisations:
EEE
Identifiers
Local EPrints ID: 342822
URI: http://eprints.soton.ac.uk/id/eprint/342822
PURE UUID: ba3b4b79-0097-4dde-a764-7815689198c5
Catalogue record
Date deposited: 17 Sep 2012 10:05
Last modified: 15 Mar 2024 02:46
Export record
Altmetrics
Contributors
Author:
Dibin Zhu
Author:
Stephen Roberts
Author:
Thomas Mouille
Author:
John Tudor
Author:
Steve Beeby
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics