Numerical investigation of the drag of twin prolate spheroid hulls in various longitudinal and transverse configurations


Rattanasiri, Pareecha, Wilson, P.A. and Phillips, A.B. (2012) Numerical investigation of the drag of twin prolate spheroid hulls in various longitudinal and transverse configurations. In, AUV2012, Kuala Lumpur, MY, 04 - 05 Dec 2012.

Download

[img] PDF - Pre print
Restricted to Registered users only

Download (1598Kb) | Request a copy

Description/Abstract

The purpose of this paper is to provide guidance for operators on suitable spacings for multiple vehicle missions. This paper then investigates the combined
drag of a pair of towed prolate spheroids for the length-
Reynolds Number of 3.2×106. The model has a length diameter
ratio of 6:1. A series of configuration of a pair
of spheroids is simulated by varying both longitudinal
and transverse spacing. Three-dimensional simulations
are performed using a commercial Reynolds Averaged
Navier Stokes (RANS) Computational Fluid Dynamics
code ANSYS CFX 12.1 with the SST turbulence closure
model. In each case, the fluid domain has a mesh size of
approximately nine million cells including inflated prism
layers to capture the boundary layer. Mesh convergence
is tested and then validated with wind tunnel test results.
The drag of each spheroid is compared against the
benchmark drag of a single hull. The results show that the transverse separations and longitudinal offsets determine the interaction drag between both hulls. Increasing of spacing results in lower the interference drag. Five zones have been suggested based on the characteristics of the combined drag and individual drags. These are Parallel Region, Echelon Region, Low Interaction Region, Push Region and Drafting
Region. Based on the results, operators can determine the
optimal configurations based on energy considerations.

Item Type: Conference or Workshop Item (Paper)
Subjects: V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering
Divisions: Faculty of Engineering and the Environment > Civil, Maritime and Environmental Engineering and Science > Fluid / Structure Interactions Research
ePrint ID: 343000
Date Deposited: 20 Sep 2012 10:52
Last Modified: 27 Mar 2014 20:25
URI: http://eprints.soton.ac.uk/id/eprint/343000

Actions (login required)

View Item View Item