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ABSTRACT
We present a novel framework for decentralised coalition for-
mation in social networks, where agents can form coalitions
through bilateral negotiations with their neighbours. Specif-
ically, we present a practical negotiation protocol and deci-
sion functions that enable agents to form coalitions with
agents beyond their peers. Building on this, we establish
baseline negotiation strategies which we empirically show
to be efficient (agreements are reached in few negotiation
rounds) and effective (agreements have high utility com-
pared to a centralised approach) on a variety of network
topologies. Moreover, we show that the average degree of
social networks can significantly affect the performance of
these strategies.

1. INTRODUCTION
Coalition formation (CF) is one of the fundamental approaches
in multi-agent systems for establishing collaboration between
groups or networks of self-interested agents. Traditionally,
CF has been studied in terms of its algorithmics and eco-
nomics [13]. For example, while [13] introduced algorithms
to form the best coalitions from a set of agents, [3] study
how to divide payoffs obtained as a result of coalitional ac-
tions. However, existing solutions tend to be centralised
and (or) not scalable (dealing with < 30 agents), and typi-
cally assume that agents are cooperative and (or) have com-
plete access to the information about other agents’ pref-
erences. Hence, such solutions are not readily applicable
to problems involving large numbers of self-interested (i.e.,
individual utility maximising) agents that are ignorant of
their neighbours’ preferences. In turn, in the economics lit-
erature, studies of CF with self-interested agents are typi-
cally focused on determining equilibrium outcomes (based
on some allocation rules imposed on the population or net-
work of agents) of the game rather than on the reasoning
that each individual agent has to perform (in the absence

of information about other agents’ payoffs) to come to such
equilibrium outcomes [6]. In short, most existing approaches
ignore the practical process by which large numbers of self-
interested autonomous agents can form coalitions in a fully
decentralised manner and decide on the divisions of pay-
off without complete information. Crucially, there exists no
framework to regiment the communication and negotiation
interactions that agents need to engage in to form coalitions
in such situations.

To address this shortcoming, in this paper we develop the
first decentralised coalition formation (DCF) framework that
allows agents to form coalitions through negotiation in a
completely decentralised manner, and without knowing other
agents’ preferences. In so doing, we further assume that
agents are connected through a social network, where inter-
actions can only occur between neighbours in the network.
This is common in markets, for example, where an agent
may only form groups with those agents it knows or trusts
[6].

In more detail, this paper advances the state of the art
as follows. First, we propose a novel bargaining protocol
whereby agents can reach agreements on which coalitions to
form, which coalitional actions to execute, and how to di-
vide the resulting surplus. While agents can only negotiate
with their neighbours, this protocol ensures that coalitions
can be formed across the network and negotiations do not
result in deadlocks. Second, we devise novel negotiation
decision functions that effectively exploit the network struc-
ture and build on heuristic negotiation techniques that have
been designed for two-agent negotiations [7, 12]. We use
these techniques because they have been shown to be effec-
tive in practical conflict settings where there is limited or no
access to statistical models of agents’ preferences. Third, we
empirically evaluate the system (involving a hundred agents)
and establish negotiation efficiency benchmarks for DCF on
three types of social networks. In so doing, we show how
the new negotiation strategy we propose can improve social
welfare by up to 10% (compared to a baseline) and how the
average degree of the network can significantly constrain or
enlarge the negotiation space, hence impacting the sizes of
coalitions formed and the payoffs of the agents. Taken al-
together, our results provide new insights on practical DCF
within large scale systems and open up several new areas of
research in the area of DCF.

The rest of this paper is structured as follows. Section 2



discusses relevant literature building upon which Section 3
defines the model involving the social network, the negoti-
ation protocols, and the offers exchanged. Then, Section 4
defines the negotiation decision functions that include the
negotiation strategy of an agent. Section 5 empirically eval-
uates the performance of the DCF process and Section 6
concludes.

2. RELATED WORK
Our approach to coalition formation is inspired from the
seminal work of Myerson (summarised in [9]), who argued
agents will form coalitions through some negotiation process
where they are assumed to be able to compute the exact pay-
off they should get in their respective coalitions. Following
on from this, a number of works have addressed the pay-
off distribution problem among self-interested agents [9, 2,
14, 11]. While these approaches present interesting stabil-
ity concepts (i.e., payments to agents and assignments to
coalitions) they do not consider the negotiation process that
happens for the agents to reach such outcomes when the
agents have no information about other agents’ preferences
or cannot communicate with every other agent in the sys-
tem.

The problem where coalitions are constrained by the net-
work which connect the agents (i.e., when agents interact in
a peer-to-peer fashion within a social network) has also been
studied within the network or group formation literature in
the field of economics [6, 16, 4]. These approaches consider
a number of bargaining protocols and allocation rules that
allow the formation of coalitions but only study the equilib-
rium properties of such protocols rather than provide the de-
cision functions needed by the agents to come to agreements
as to what coalitions to form. Hence, despite the numerous
possible applications of coalition formation (e.g., grid com-
puting, web services, or sensor networks [5]), existing work
on this topic has remained largely theoretical and applicable
to small systems (typically not larger than 30 agents), and
the process by which coalitions can be formed in practice
is not adequately addressed in the current literature. An
exception is the work by [8], which considers the dynamic
coalition formation problem where agents can create, negoti-
ate, and form new coalitions as and when needed. However,
[8] only introduces a high-level framework for studying such
interactions and this framework is not evaluated, nor does
it provide specific negotiation protocols or strategies that
agents could use to form coalitions.

Turning to the multi-agent bargaining literature, since the
seminal work of Faratin et al. [7], a number of negotiation
mechanisms have been developed to solve resource alloca-
tion problems in multi-agent systems [12, 15]. While these
constitute robust decentralised mechanisms for conflict reso-
lution, none of them have attempted to instantiate the type
of negotiation process needed to form coalitions where both
the actions and the sharing of payoffs among the coalition
members need to be agreed upon. Hence, our work aims to
bridge the gap between the bilateral negotiation and coali-
tion formation domains by specifically developing a set of
negotiation protocols and decision making functions for au-
tomated negotiation for coalition formation.

3. THE MODEL

In this section, we present our model of DCF. Let I =
{1, 2, . . . , |I |} denote the set of agents. Furthermore, let
S = {C1, . . . , Cn} denote a coalition structure (i.e., a par-
tition of I), where Ck ⊆ I , Ck �= ∅ denotes a coalition and
each agent i ∈ I is part of exactly one coalition C ∈ S. That
is, Ck ∩ Cl = ∅ for all Ck, Cl ∈ S whenever k �= l, and
∪C∈SC = I (e.g., if C is the grand coalition then |S| = 1).
Coalitions with only a single agent are called singletons.
Importantly, agents within the same coalition can perform
some joint tasks. Thus, each agent i can perform an atomic

action αi ∈ Di where Di = {α1
i , α

2
i , . . . , α

|Di|
i } is the set

of all possible actions for agent i. Then, the agents’ joint
actions in a coalition C is given by αC = ∪i∈Cαi (we omit
brackets around αi for clarity). Furthermore, each agent i
incurs a cost βi(αC) ∈ R

+ for performing a given action,
which depends on the actions taken by other agents in the
coalition and/or the size of the coalition. However, we as-
sume that, ceteris paribus, these costs are non-increasing
with the size of the coalition. Thus, we assume coalitions
typically enable synergies (e.g., agents sharing resources or
services to perform their individual actions). Specifically,
for an agent i:

βi(αC) ≥ βi(αC ∪ αj) for all j /∈ C, αj ∈ Dj (1)

Also, as is standard, the coalition as a whole receives a
payoff or value V (αC) for executing the joint actions. The
purpose of the negotiation process is to both generate coali-
tions and for each agent i to vie for a share vi ∈ R

+ of the
coalition payoff, where

∑
i∈C vi = V (αC). Given this, an

agent i has the following utility function, which it tries to
maximise through negotiation:

ui(αC , vi) = vi − βi(αC) (2)

We assume that agents’ cost functions are private informa-
tion (i.e., unknown to other agents), while the value func-
tion is common knowledge. Furthermore, as motivated in
Section 1, we assume that not all coalitions are possible due
to constraints that may prevent some agents from directly
negotiating with each other. To this end, in the next section
we discuss how these constraints are modelled.

3.1 The Social Network
Formally, we assume that agents are connected by a network
G = (I,E) where I is the set of vertices (agents) and E is a
set of undirected edges. For example, an edge ε = (1, 2) ∈ E
between agents 1 and 2 means that these agents can negoti-
ate and form a coalition together. Note that agents that are
not peers can be part of the same coalition, as long as there
is a path connecting the agents in the coalition. However,
those agents in the coalition that are not directly connected
cannot directly engage in negotiation, and so an agent with
more peers within the coalition would typically have more
negotiating power to request a larger payoff.
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Figure 1: Simple social networks.

Consider the example social networks in Figure 1. In Figure
1(a), the possible coalitions are {1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}.
Thus, {2, 3} cannot exist because there is no direct link
between 2 and 3 but {1, 2, 3} can exist because there is a



common node {1}. Similarly, in Figure 1(b), {1, 3} and
{2, 4} cannot exist. Finally, in the fully connected graph,
Figure 1(c), all subsets are possible. Now, given the social
network, let N(i) be the set of neighbours of i. That is,
N(i) = {i′|(i′, i) ∈ E, i′ �= i}. Now, suppose an agent i in-
vites agent j ∈ N(i) to join a coalition C ⊆ N(i)∪{i} \ {j},
to perform action αj in (αC ∪ αj) for a share vj in V (αC).
From this information agent j can compute its utility (as
per equation (2)) and can then negotiate for a better share
of the payoff v′j > vj within the coalition. Note that we as-
sume here that agent i knows the domain of actions Dj of its
neighbour j ∈ N(i) (otherwise, the agents would not know
what to negotiate over). Next, we detail the negotiation
process.

3.2 The Negotiation Protocol
The agents negotiate to form coalitions, establish the joint
actions, and agree on a share of the surplus. This problem is
complex as, in practice, multiple agents can interact simul-
taneously and asynchronously. While related works have
suggested variants of Rubinstein’s bargaining protocol to
achieve similar goals [10, 6], they focus on equilibrium out-
comes and do not consider many practical issues that arise
in designing a system of negotiating agents for DCF (such
as the rules dictating the sequence of exchanges between
agents). To address these, here we identify key desiderata
that a DCF protocol needs to satisfy and define a novel ne-
gotiation protocol that does indeed meet our desiderata. We
start by defining the offers that agents can propose.

We denote a simple offer from agent i to agent j to join a
coalition C, j /∈ C as the pair oij = (αC ∪ αj , vj), which
specifies the actions of the agents in the coalition C, the
action that agent j should perform, and the share of the
payoff (in absolute terms) received by agent j. Since the
proposing agent does not know the utility function of the
other agent (because the costs of all its actions are private
information), we allow agents to send a compound offer, Oij

containing multiple simple offers. For example, agent i may
propose a different share for each action αj ∈ Dj . Note
that the share vi of i is not revealed in the offer to j but
i privately knows it as well as its cost. Hence, in the rest
of the paper, we note the utility of i in an offer to j as
ûi(oij) = ui(αC ∪ αj , v̂i) where oij = (αC ∪ αj , vj) and v̂i
is the privately known share of i in V (αC ∪ αj). Moreover,
to help in selecting the best agent to send compound offers
to, we overload ûi(·) to compute the maximum utility ob-
tainable from Oij as ûi(Oij) = maxo∈Oij ûi(o). Now, given
the offer, the receiving agent may decide to propose an of-
fer (i.e., invite an agent), counter-propose an existing offer,
accept, or reject. Thus, agents can take the following illocu-
tionary actions: Propose(Oij), Counter(oji), Accept(oji),
or Reject(). Alternatively, an agent can simply do nothing
or wait to receive a response (we elaborate on this in sec-
tion 4). Note that, when accepting or counter offering, the
agent must specify a (simple) offer (instead of a compound
one) from the set of received offers, oji = (αC , vi) ∈ Oji.
Moreover, the agent can also accept an enhanced offer (see
Section 4.1 for more details), o′ji = (α′

C′ , v′i) that merges
other coalitions with C in an attempt to improve i’s payoffs
(and as a consequence improves social welfare). To ensure
that the enhanced offer does not make agent j or any other
agent in coalition C\{i} worse off, it has to satisfy two con-

ditions. First, V (αC′) − v′i ≥ V (αC) − vi (i.e., the total
share received by agents in C\{i} cannot decrease). Sec-
ond, αC ⊂ α′

C′ (i.e., it can only add agents and the other
agents’ actions remain the same). Note that, due to the as-
sumption given by equation (1), such an offer guarantees to
be no worse in terms of utility for all agents in C.

Now, the negotiation protocol specifies a number of rules
which agents must follow (and which should be enforced by
the system) to ensure that the offers and agreements that
are made can be honoured, and that no inconsistencies arise
within the network (e.g., where two different coalitions share
some agents). To date, however, negotiation protocols have
mainly been designed in order to avoid deadlocks and ensure
termination [12]. But in the DCF domain, we expect the ne-
gotiation protocol to also satisfy the following desiderata: (i)
enable the formation of large coalitions (of size ≥ 2) to try
and improve social welfare by exploiting synergies among
agents, and (ii) minimise the information exchange needed
across the network to try and minimise communication over-
heads (to improve scalability) and the risk of agents losing
their negotiation power (to improve participation in the pro-
cess). For example, if each agent is expected to broadcast
the coalition it would like to form (assuming the network can
handle this) and the individual payoffs the members (includ-
ing itself) should get, it risks getting a smaller payoff (than
when contacting peers) since all other agents may strategi-
cally use this information to demand a larger payoff. Hence,
here we present the first DCF protocol specifically designed
to meet all these desiderata:
Rule 1: Offer Commitment. Once an agent i proposes
an offer Oij , and agent j accepts, then i is committed to any
oij = (αC , vj) ∈ Oij and any enhanced offer o′ij = (α′

C , v
′
j)

where αC ⊂ α′
C and V (αC′ )− v′i ≥ V (αC)− vi. If instead

the recipient j counter offers (αC , v
′
j) to i, then i is auto-

matically decommitted from its previous offer. Hence, only
the latest offer between the two agents counts. Moreover, if
agent j rejects i’s offer, i is no longer committed to its offer.

Rule 2: Proposal Consistency. Agent i can propose an
offer oij = (αC ∪αj , vj) only if i has either received an offer
containing αC , or has received offers which, when merged
(to create an enhanced offer as desired), result in αC . This
prevents agents from involving other agents in a coalition
they do not agree to. Note that merging offers is consistent
with rule 1 since agents are committed to these offers.

If offers are allowed to be made by all agents at all times, the
system is not likely to converge to a solution. To guarantee
convergence (e.g., avoid deadlocks and infeasible solutions),
the following rules (graphically illustrated in Figure 2) im-
pose restrictions messages sent the system:1

Rule 3: Message Sending. All agents start in the Ready
state (see Figure 2). Ready agents can propose an offer
or counter offer, but to a single peer at a time (this limits
communication overheads as desired). Once it has sent the
message, it goes to the Wait state where it waits for a re-
ply (either an accept offer, a counter offer, or a reject) before
sending another message. Furthermore, a waiting agent can-

1Some of these rules are based on those that help achieve
convergence on graphical models [1]. Due to lack of space, a
proof of correctness and termination is not included in this
version of the paper.



not receive any messages except from the agent it proposed
the offer to (in practice, this can be achieved by making the
state of the agent public). This rule prevents deadlocks, by
preventing cycles of offers, and conflicting coalitions from
being formed (i.e., where one coalition is not a strict subset
of another) at the same time since an agent can only com-
mit to form one coalition at a time. Note that, instead of
proposing an offer, an agent can choose to remain Ready. As
shown in Figure 2, it remains Ready even if it has received
an offer. This is important as it allows an agent to receive
multiple offers and merge them to form a bigger coalition
(discussed in Section 4).
Rule 4: Negotiation Termination. Once an agent has
accepted an offer or received an accept, it moves to the Done
state. At this point, it has to send a message to all its peers
from which it has received an offer (and who are, there-
fore, in the Wait state) informing them of the outcome. If
the accepted offer subsumes offers received by neighbouring
agents, it sends an accept to these agents, thereby propa-
gating the accepted offer through the network. To all other
agents, it sends a reject message. By doing so, these agents
are taken out of their Wait state, allowing them to negotiate
with the remaining agents. In addition, to ensure termina-
tion, we assume a deadline after which the agents that have
not reached an agreement each form a singleton coalition.
Given the above rules, we next describe ways to generate

Receive Reject

Receive Counter Offer
Receive Accept Offer

Accept OfferReceive Offer

Reject

Wait Done

Accept Offer

Ready

(Counter) Propose Offer

Figure 2: The negotiation protocol.

meaningful offers. Note that, contrary to most work on CF,
we assume that an agent does not know other agents’ util-
ity functions, nor does it have time to form models of these
functions. Hence, it is difficult for an individual agent to
calculate equilibrium offers. Moreover, given that the com-
putation of stable solutions is usually NP-Hard, we turn to
bargaining heuristics that have typically been applied in bi-
lateral negotiation [7]. Hence, by extending such heuristics
to our DCF protocol, we provide a new framework to analyse
the properties of the DCF process in a practical setting.

4. NEGOTIATION DECISION FUNCTIONS
Given the rules from the previous section, an agent can make
a number of decisions. We separate the decision making
into two parts. The negotiation strategies (discussed later
in Section 4.2), determine the share, vi, for any new offers or
counter offers as well as the timing of such offers. Given the
share, the offer generation procedure then chooses whether
to accept an offer or produce a set of (counter) offers, and
which (enhanced) offers to produce or accept. We start with
the latter part, which is largely an optimisation problem that
considers all the choices that respect our protocol.

4.1 Offer Generation Procedure
We let Oi denote the set of current standing offers received
by agent i, i.e., offers that have not been rejected or counter

offered. For convenience, we include the singleton coalitions
which we denote by Oii = {(〈αi〉, V (αi))|αi ∈ Di}. If agent
i has not received any offers from any of its neighbours,
then Oi = Oii. Otherwise, each offer Oji ⊆ Oi from an
agent j ∈ N(i) to agent i consists of a number of simple
offers. As we will see, agent j can offer a different share
and actions αC for each of agent i’s actions αi ∈ Di (it is
possible to include even more combinations but this makes
the offer impractically large). Therefore, |Oji| ≤ |Di|.
Now, we can use Rule 1 from section 3.2 to expand the set of
received offers by including all the enhanced offers that can
be obtained by merging two or more offers. When doing so,
agent i can claim any surplus resulting from the merge (while
keeping the share of the other agents the same, as required
by Rule 1). Consider an example where agent 1 receives
O21 = {(αC = 〈α1

1, α
3
2〉, v1 = 0.2), (αC = 〈α2

1, α
5
2〉, v1 =

0.3)} from agent 2, andO31 = {(αC = 〈α1
1, α

2
3〉, v1 = 0.15), (αC =

〈α2
1, α

4
3〉, v1 = 0.4)} from agent 3. Then, agents 2 and 3

are also committed to the merged offers O′
21 = {(αC =

〈α1
1, α

3
2, α

2
3〉, v′1), (αC = 〈α2

1, α
5
2, α

4
3〉, v′′1 )}, where v′1 and v′′1

are maximised subject to the commitments to other agents
in the coalition as set out in Rule 1:

v′1 = V (α1
1, α

3
2, α

2
3)− (V (α1

1, α
3
2) − 0.2)− (V (α1

1, α
2
3)− 0.15)

v′′1 = V (α2
1, α

5
2, α

4
3)− (V (α2

1, α
5
2)− 0.3) − (V (α2

1, α
4
3)− 0.4)

Note that any received offer may have been merged with
other offers by the sending agent, allowing the possibility
to create large coalitions. We let E denote the expansion
function, and E(Oi) the set of all standing offers including
all enhanced offers.

At this point, agent i has three options. It can either accept
the best (enhanced) offer so far, o∗ = argmaxo∈E(Oi)

ui(o),
and receive utility ui(o

∗), counter offer, or produce a new set
of offers to any of its peers j ∈ N(i). The decision depends
on which of these alternatives results in the highest utility.
We now discuss the latter two options in turn.

4.1.1 Generating a Counter Offer
A counter offer is defined here as a standing offer where only
the share claimed by the receiving agent is changed (thus the
coalition and their actions remain the same). An agent i can
choose to counter any of the offers Oji ⊆ Oi, j ∈ N(i) re-
ceived. Now, as mentioned earlier, the share is determined
by the negotiation tactic (discussed in more detail in sec-
tion 4.2). Let vi = Ti(Hi,αC , j, v

min
i , vmax

i ) denote the ne-
gotiation tactic which specifies the share requested by i as
a function of the history Hi of offers and counter offers re-
ceived by agent i (note that, while Oi only consists of the
standing offers, Hi retains any offer made over time), αC

is the proposed coalition (since this is a counter offer, this
is the same coalition as in the original offer), j is the re-
cipient of the offer, and vmin

i , vmax
i specify the negotiation

range. Specifically, vmin
i is calculated such that the utility

of the offers is at least equal to the utility it can achieve by
accepting the best standing offer, ui(o

∗). Formally:

vmin
i − β(αC) = ui(o

∗) ⇔ vmin
i = ui(o

∗) + β(αC) (3)

Furthermore, vmax
i = V (αC) is the best i can hope to get.

Note that, if vmax
i < vmin

i , αC will not be proposed as part
of the counter offer, since no suitable offer can be made.



4.1.2 Generating a New Offer
Another option for the agent is to generate a new offer (if
the agent received no offers, then this is the only option
available). To establish which new offer to generate, agent i
computes the best compound offer for each possible neigh-
bour j ∈ N(i), denoted by O∗

ij . This is done as follows.
First, it calculates the expanded set of offers, excluding any
offers received from agent j, E(Oi\Oji). Recall that this
set contains all possible joined offers, as well as the single-
ton coalition with just agent i. Then, each of these offers is
joined with an action αj ∈ Dj of agent j, and the share to
agent j, vj , is computed using the negotiation tactic from
Section 4.2. A compound offer then consists of the set of
best simple offers, o∗ij(αj), one for each action αj ∈ Dj ,
excluding any offers that result in a utility below ui(o

∗).

More formally, let o′ = J(αC , αj , vj) define the merged offer,
where o = (αC , vi), o

′ = (αC′ , vj), and crucially, αC′ =
αC ∪ αj . Furthermore, vj is the share for agent j which
is calculated based on i’s share as follows: let V (αC) − vi
denote the total of shares committed to other agents in the
C. Then, vmax

i = V (αC′) − (V (αC) − vi) is the maximum
share that agent i can hope to get from the new coalition
while v̂i = Ti(Hi,αC′ , j, vmin

i , vmax
i ) is i’s privately known

share as computed by the tactic. Given this, vj = vmax
i − v̂i,

is the share for agent j, and vmin
i is again calculated using

Equation (3). Then, the best new offer is computed as:

o∗ij(αj) = argmax
o′=J(αC ,αj ,vj),o∈E(Oi\Oji)

ûi(o
′)

Furthermore, O∗
ij is given by: O∗

ij = {o∗ij(αj)|αj ∈ Dj ∧
ui(o

∗
ij(αj)) > ui(o

∗)}.

Note that an important difference between a counter offer to
j and a new offer, is that the latter removes any coalitional
actions contained in the offer Oji, and replaces this with
a single action by agent j. Therefore, the new offer is not
necessarily better in terms of utility than a counter offer.

4.1.3 Negotiation Decision
Having evaluated the received offers, computed counter of-
fers, and new offers, an agent has to choose among them and
send messages that respect our protocol. Algorithm 1 de-
scribes the steps to do so. Thus, in Step 1, the set of counter
offers is generated based on the received offers (using tactic
Ti) and in steps 2 and 3, the best new offer and counter of-
fer are generated respectively. These are evaluated against
the current best received offer o∗ in step 4 and if o∗ has
the highest utility it is accepted, in which case Accept and
Reject messages are sent to all agents involved (step 5) or
not (step 6) in the offer respectively. Otherwise, the agent
may send out a counter offer (step 8) or a new offer (step 10)
depending on which gives it the best utility (step 7). We
next provide the fundamental elements of the negotiation
tactics and overarching strategies that are used to generate
the share of an agent.

4.2 Negotiation Strategies
A negotiation strategy defines a tactic (i.e., Ti), that deter-
mines the share to be offered, and when an agent should

Algorithm 1 Accepting and Counter-offering.

Require: o∗, Oji, O
∗
ij∀j ∈ N(i)

1: Ocounter = {(αC , v
′
i) | o = (αC , vi) ∈ Oji, j ∈ N(i)}

where v′i = Ti(Hi,αC′ , j, vmin
i , vmax

i ).
2: O∗

new = argmaxO∈{O∗
ij|j∈N(i)}(ûi(O))

3: o∗counter = argmaxo∈Ocounter(ui(o)).
4: if ui(o

∗) ≥ max(ui(o
∗
counter), ûi(O

∗
new))//accept offer

then
5: send Accept(o∗) to all j ∈ C,N(i) where o∗ =

(αC , vi).
6: send Reject to all k ∈ N(i), where ∃oki ∈ Oji and

k /∈ C.
7: else if ui(o

∗
counter) > ûi(O

∗
new) then

8: send Counter(o∗counter) to agent j//counter offer.
9: else
10: send Propose(O∗

new) to agent j //new offer.
11: end if

make the offer.2 We discuss these in turn. Since our goal
is mainly to establish the baseline performance of our DCF
framework, our tactic is based on well-known tactics in the
automated negotiation literature, in particular [7]. In more
detail, we use a family of exponential functions fθ(r) =

e
θ· r

rmax −1
eθ−1

to determine the concession rate, where r ∈ {0, 1, . . . , rmax}
is the negotiation round, rmax is the maximum round (af-
ter which no more concession occurs), and θ determines the
slope of the curve. Note that rmax is not a deadline; nego-
tiation can continue, but the agent will no longer concede.
Also note that f(0) = 0 and f(rmax) = 1. Given this, the
share is determined by:

Ti(Hi,αC , j, vmin
i , vmax

i ) = vmin
i + (vmax

i − vmin
i )fθi (r) (4)

We consider agents to be conciliatory if θi < 0 (as this
induces quick initial concessions), aggressive if θi > 0 (as
this induces slow initial concessions), and passive θi � 0 (as
this induces concessions linear in the step size). The impor-
tant point to note here is that we expect θi to depend on
an agent’s properties. For example, if an agent is well con-
nected, it is in a good bargaining position and may choose
to set θi > 0.

Now, crucially, round r depends on the current offer made,
the recipient of the offer, and the history of offers, Hi. Specif-
ically, in our framework, whenever an agent i proposes the
same coalition to agent j as before with the same set of ac-
tions, and only the share changes, then that offer goes to
the next round. If, however, a new offer is made which is
not in Hi, then a new counter is created and the round is
set to zero. An agent can also first propose a new offer,
and then in the next interaction propose an offer that has
already been made before. In that case, the round for that
offer is retrieved from memory and negotiations continue as
before. Maintaining a counter for each unique offer is im-
portant because, this way, the offer generation procedure will
automatically try different types of coalitions. To see this,
note that, as a particular coalition is negotiated for several
rounds, the agent’s utility will decrease (since the agent con-
cedes on that particular coalition), and therefore other op-
tions start to become more attractive. When these options

2More elaborate strategies could be designed (and part of
future work) but we focus on two key features applicable to
the protocol.



are exhausted, the agent may decide to go back to a previous
offer until an agreement (or the deadline) is reached.

Having provided baseline tactics, we now discuss when an
agent should make an offer and hence completely define our
novel negotiation strategies. From the negotiation decision
functions discussed so far, it is clear that an agent can bene-
fit by doing nothing and waiting to receive more offers, since
this gives an agent more options to merge coalitions and re-
ceive a higher payoff. However, if everyone waits, then no
offer is ever made. Therefore, we propose two functions to
decide the timing of offers, the second of which is specifically
designed for our coalition formation protocol:

• Time-based Strategy(TBS)— an agent makes offers as
soon as the DCF process starts. This is a typical bilateral
negotiation strategy and simulates baseline performance for
tactics that could be implemented in our framework.
• Amortised Strategy (AS)— similar to TBS, but the
agent delays its offers by τi time steps where τi is drawn
from U(1, N(i)). By amortising messages (i.e., staying in the
Ready state), rather than readily making offers (i.e., going
to Wait), agents (with more peers) can expect to receive
more offers from their peers such that more options become
available for merging coalitions to gain a larger share.

We next empirically evaluate TBS and AS on a variety of
networks and determine the key factors that impact on the
size and utility of coalitions that can be formed using our
protocol and decision functions, as well as the efficiency of
our strategies in creating such coalitions in a reasonable
time. By so doing, we provide the first benchmarks for prac-
tical DCF via automated negotiation.

5. EVALUATION
Our aim here is to validate our approach by showing that
such strategies allow agents to form coalitions efficiently and
effectively. Here, efficiency is measured by the time taken
to reach agreements while its effectiveness is quantified by
the social welfare (i.e., aggregate utility) of the system. In
what follows, we describe the experimental setup. Then we
postulate and (in) validate a number of hypotheses with
regards to the mechanism’s and the agents’ performance.

5.1 Experimental Setup
Each agent is randomly attributed between one and ten
actions (i.e., 1 ≤ |Di| ≤ 10) and the cost for each ac-
tion αi, βi(αC ∪ αi) is drawn from a uniform distribution
U(10,100)

|C|+1
(to simulate synergies in C). Coalition values are

chosen to mimic decreasing marginal returns from bigger
coalitions on average. The following function is used to
achieve this by choosing parameters p, q ∈ Z

+ and ran-
domly picking μα ∈ [1, 10] for each set of actions: V (αC) =

e
(p×(1− 1

|C| )
q ×∑

α∈αC
U(0, 1)× μα

i .

We evaluate the performance of our strategies on the follow-
ing networks (similar results were obtained when different
parameters were used): (i) Scale free network (SFN) with
100 agents to simulate typical human societies — where the
connectivity of agents follows a power law distribution (the
maximum degree of each agent is limited to 20 and the av-

erage degree is 10), (ii) Random tree (RTN) with 100 agents
with maximum degree 20 and the average degree is 2 to
simulate hierarchical organisations, and (iii) Fully-connected
network (FCN) with 20 agents and the average degree is 19
to simulate a single group. We limit the number of agents
in FCN as the high degree of agents in these graphs re-
sult an exponential growth in the memory requirements and
hence could not be run on a single machine. We experiment
with two homogeneous populations of TBS and AS agents
(as described in the previous section) with θi drawn from
U(−10, 10). Furthermore, we set rmax = 10.

The negotiation deadline is set to 100 time steps and at
each time step agents make offers and counter offers to each
other until agreements are reached or the deadline for the
process is met. To evaluate the performance of our nego-
tiation mechanism, we recorded the number of agreements
reached, the time taken to reach such agreements, and the
size of coalitions created. Our experiments are repeated
100 times and the results are averaged and the 95% con-
fidence intervals are provided to indicate the statistical sig-
nificance of the results where needed (equivalent to a t-test
with alpha = 0.05).

5.2 Coalition Formation Efficiency
Here we evaluate whether the mechanism allows agents to
rapidly converge to non-singleton coalitions under different
settings. We postulate the following hypotheses:

H 1. The higher the average degree of the network, the
bigger the coalitions formed.

H 2. For all networks, AS takes longer to reach agree-
ments than TBS.

The intuition behind our hypotheses is as follows. We note
that, in order to generate large coalitions, RTN and SFN
require agents to form a chain of agreements (see Section 4).
Instead, in FCN, all agents can directly contact all other
agents and exchange offers over larger coalitions than they
can in sparse networks. Moreover, since AS introduces arti-
ficial delays in the negotiation process, we expect AS to be
slower.

Our expectations are partially met by the results (see table
1a) as the average size of coalitions in FCN (5.63) is bigger
than in RTN (4.37) and SFN (3.62) when TBS is used (hence
H1 is partially validated). However, when AS is used, the
maximum coalition size is found in RTN (7.40) followed by
FCN (5.73) and SFN (3.98). We explain the larger coalitions
generated by AS in RTN by the fact that the low average
degree of RTN (2 < 10 < 19 for RTN, SFN, and FCN respec-
tively) suggests a large number of ‘leaf’ nodes which make
offers earlier than their parent nodes who, in turn, merge
received offers to form larger coalitions. The higher degrees
of SFN and FCN instead reduce the likelihood of this effect.

Turning to the time taken (see Table 1b) to reach agreements
(measured in number of rounds of offers), TBS is seen to take
less time (2.67,5.02) than AS (11.32,8.28) in FCN and SFN
respectively while, contrary to our expectations, AS takes



less time (5.09) than TBS (10.19) in RTN even though AS
resulted in the biggest coalitions. These results therefore
invalidate H2. On close inspection, this is because, in FCN,
agents can evaluate offers for all other agents in one go (since
each agent has everyone else as a neighbour), but AS intro-
duces some random delays. SFN presents a similar marked
difference between TBS and AS due to delays incurred by
AS and the fact that the agents cannot contact all other
agents in one go, leading to longer negotiation times than
FCN. In RTN, AS outperforms TBS as parent AS agents
can assemble large coalitions from leaf agents by delaying
their offers while TBS agents tend to propagate offers up
the tree and delay the process significantly.

Network TBS AS
SFN 3.62±0.05 3.98±0.06
RTN 4.37±0.37 7.40±0.69
FCN 5.63±0.19 5.73±0.28

(a) Mean size of coalition.

Network TBS AS

SFN 5.02±0.29 8.28±0.21
RTN 10.19±1.23 5.09±0.76
FCN 2.67±0.29 11.32±0.31

(b) Mean time to agreement.

Table 1: Efficiency of CF process.

5.3 Coalition Formation Effectiveness
To compare the average utility AS and TBS obtain in differ-
ent networks on an equal par, we computed an upper bound
on the total utility (i.e.,

∑
C∈S

∑
i∈C ui(C) where S is a par-

tition of I) of all coalitions in any network using the value
of the grand coalition minus the cost of the cheapest actions
of all agents (i.e., V (αI) − ∑

i∈I minαi∈Di(βi(αi))). This
is to avoid computing the actual optimal coalition structure
to form (and actions chosen) which is an NP-Hard prob-
lem and hence computationally infeasible for 100 agents in
our case. Moreover, we computed the probability of reach-
ing agreements as the ratio number of successful negotiation
outcomes to the total number of negotiations started. We
then postulate the following hypotheses.

H 3. The probability of reaching an agreement is higher
in networks with higher average degree.

H 4. AS always performs better (in utility generated and
probability of reaching agreements) than TBS.

The intuition behind these hypotheses is that in high degree
networks, more coalitions can be explored, hence resulting
in a larger negotiation space with, possibly, higher maxima.
Moreover, since AS agents do actually consider more offers
made to them, they also consider a larger negotiation space
than TBS when choosing to accept. The results shown in ta-
bles 2a and 2b validate these hypotheses as AS outperforms
TBS on all network topologies as the probability of reach-
ing agreements and the utility of these agreements are both
directly correlated with the average degree of the networks.

Network TBS AS

SFN 0.92±0.01 0.93±0.01
RTN 0.49±0.02 0.74±0.02
FCN 0.94±0.01 0.97±0.01

(a) Agreement probability.

Network TBS AS

SFN 0.48±0.01 0.52±0.01
RTN 0.33±0.02 0.43±0.01
FCN 0.56±0.01 0.60±0.02

(b) Scaled average total utility.

Table 2: Effectiveness of the CF process.

6. CONCLUSIONS
We have developed a novel framework based on heuristic
negotiation to support practical decentralised coalition for-
mation in social networks. By so doing, we establish a novel
paradigm that addresses the design of DCF protocols and
negotiation decision functions and, hence, departs from pre-
vious algorithmic and economic approaches. Moreover, we
instantiated novel strategies for this framework and empiri-
cally evaluated them over general social networks in order to
establish benchmarks. Thus, we showed how our amortised
strategy outperforms the baseline in terms of the social wel-
fare (by up to 10%) on all networks (trading off time to reach
agreements) and also showed that the average degree of the
network can significantly impact the performance of strate-
gies (lower degrees can improve delay strategies). Future
research will study the analytical properties of the protocol
and improve our negotiation strategies.
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