An analysis of polymer type and chain length for use as a biological composite graft extender in impaction bone grafting: a mechanical and biocompatibility study


Tayton, Edward, Fahmy, Sherif, Purcell, Matthew, Aarvold, Alexander, Smith, James O., Kalra, Spandan, Briscoe, Adam, Lanham, Stuart, Howdle, Steven, Shakesheff, Kevin, Dunlop, Douglas G. and Oreffo, Richard O.C. (2012) An analysis of polymer type and chain length for use as a biological composite graft extender in impaction bone grafting: a mechanical and biocompatibility study. Journal of Biomedical Materials Research Part A, 100, (12), 3211-3219. (doi:10.1002/jbm.a.34264). (PMID:22707404).

Download

Full text not available from this repository.

Description/Abstract

Impaction bone grafting (IBG) with human allograft remains the preferred approach for replacement of lost bone stock during revision hip surgery. Associated problems include cost, disease transmission, and stem subsidence. Synthetic grafts are therefore appealing, and ideally display similar mechanical characteristics as allograft, but with enhanced ability to form de novo bone. High and low molecular weight forms of three different polymers [poly(DL-lactide) (P(DL) LA), poly(DL-lactide-co-glycolide) (P(DL) LGA), and poly(ε-caprolactone) (PCL)] were milled, impacted into discs, and then examined in a shear testing rig, in comparison to allograft. In addition, skeletal stem cells (SSCs) were combined with each of the milled polymers, followed by impaction and examination for cell viability and number, via fluorostaining and biochemical assays. The shear strengths of high/low mwt P(DL) LA, and high/low mwt P(DL) LGA were significantly higher than allograft (p < 0.01). High/low mwt PCL had significantly lower shear strengths (p < 0.01). WST-1 assay and fluorstaining indicated significantly increased cell viability on high mwt P(DL) LA and high mwt P(DL) LGA over allograft (p < 0.05). Mechanical and biochemical analysis indicated improved properties of high mwt P(DL) LA and high mwt P(DL) LGA over allograft. This study indicates the potential of these polymers for use as substitute human allograft, creating a living composition with SSC for application in IBG.

Item Type: Article
ISSNs: 1549-3296 (print)
1552-4965 (electronic)
Keywords: stem cells, polymer, scaffolds, impaction bone grafting, tissue engineering
Subjects: Q Science > QM Human anatomy
Q Science > QP Physiology
R Medicine > RC Internal medicine
R Medicine > RD Surgery
Divisions: Faculty of Medicine > Human Development and Health
ePrint ID: 345791
Date Deposited: 03 Dec 2012 16:16
Last Modified: 28 Mar 2014 15:27
Research Funder: EPSRC
Projects:
Device for Enrichment of Skeletal Stem Cells for Orthopaedic Applications
Funded by: EPSRC (TS/G001650/1)
Led by: Richard Oreffo
1 March 2009 to 28 February 2011
URI: http://eprints.soton.ac.uk/id/eprint/345791

Actions (login required)

View Item View Item