A selection model for longitudinal binary responses subject to non-ignorable attrition

Alfo', Marco and Maruotti, Antonello (2009) A selection model for longitudinal binary responses subject to non-ignorable attrition. Statistics in Medicine, 28, (19), 2435-2450. (doi:10.1002/sim.3604).


Full text not available from this repository.


Longitudinal studies collect information on a sample of individuals which is followed over time to analyze the effects of individual and time-dependent characteristics on the observed response. These studies often suffer from attrition: individuals drop out of the study before its completion time and thus present incomplete data records. When the missing mechanism, once conditioned on other (observed) variables, does not depend on current (eventually unobserved) values of the response variable, the dropout mechanism is known to be ignorable. We propose a selection model extending semiparametric variance component models for longitudinal binary responses to allow for dependence between the missing data mechanism and the primary response process. The model is applied to a data set from a methadone maintenance treatment programme held in Sidney, 1986.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1002/sim.3604
ISSNs: 0277-6715 (print)
1097-0258 (electronic)
Keywords: longitudinal binary responses, ar(1) variance components, non-ignorable dropouts, random effect-based dropout model, non-parametric maximum likelihood
Subjects: H Social Sciences > HA Statistics
R Medicine > RA Public aspects of medicine
Divisions: Faculty of Social and Human Sciences > Mathematical Sciences > Statistics
Faculty of Social and Human Sciences > Southampton Statistical Sciences Research Institute
ePrint ID: 345966
Date :
Date Event
30 August 2009Published
7 May 2009Made publicly available
Date Deposited: 10 Dec 2012 12:02
Last Modified: 31 Mar 2016 14:38
URI: http://eprints.soton.ac.uk/id/eprint/345966

Actions (login required)

View Item View Item