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Abstract

One of the implications of the creation of Basel Committee on Banking Supervision was
the implementation of Value-at-Risk (VaR) as the standard tool for measuring market risk
and of out-of-sample backtesting for banking risk monitoring. We stress in this article that
the results derived from this exercise can be spurious if one does not carry out a previous
in-sample specification test to determine the adequacy of the VaR model. We study in this
paper specification tests that, unlike the existing ones, are able to control the type-I error
probability. More concretely, we show that not taking into account the effect of estimating the
parameters of the VaR model in the in-sample specification tests can lead to invalid inferences,
which in turn may imply wrong conclusions about the out-of-sample backtesting procedures.
The first aim of this article is to quantify the effect of estimating the parameters of the model
and to stress its impact in specification tests, and the second is then to propose a corrected
method taking into account such risk, and thereby to provide a valid econometric framework
for measuring and evaluating market risk. The results are given for general dynamic parametric
models and illustrated with a Monte-Carlo simulation for location-scale models and with an
empirical application for S&P500 Index.

Keywords and Phrases: Backtesting; Basel Accord; Model Risk; Risk management;
Specification tests; Value at Risk.
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1 Introduction

One of the implications of the creation of Basel Committee on Banking Supervision was the
implementation of Value-at-Risk (VaR) as the standard tool for measuring market risk and of
out-of-sample backtesting for banking risk monitoring. As a result of this agreement financial
institutions have to report their VaR, defined as a conditional quantile with coverage probability
α of the distribution of returns on their trading portfolio. To test the performance of this and
alternative VaR measures the Basel Accord (1996) set a statistical device denoted backtesting
that consisted of out-of-sample comparisons between the actual trading results with internally
model-generated risk measures. The magnitude and sign of the difference between the model-
generated measure and actual returns indicate whether the VaR model reported by an institution
is correct for forecasting the underlying market risk and if this is not so, whether the departures
are due to over- or under-risk exposure of the institution. The implications of over- or under- risk
exposure being diametrically different: either extra penalties on the level of capital requirements
or bad management of the outstanding equity by the institution. These backtesting techniques
are usually interpreted as statistical parametric tests for the coverage probability α defining the
conditional quantile VaR measure.

This out-of-sample problem has been thoroughly studied by many authors; see Kupiec (1995),
Christoffersen (1998), Berkowitz and O’Brien (2002), Engle and Manganelli (2004) and Escanciano
and Olmo (2008), to name but a few. These references have assumed the correct specification of
the VaR model in forecast evaluations. Therefore, prior to the forecasting stage, the risk manager
has to decide, using the available information, i.e. all the sample, which econometric model is
most adequate for the conditional VaR process. This preliminary stage involves model selection
and validation, hence the importance of quantile specification tests associated to VaR. This step,
and in particular the study of estimation risk for these specification tests has been overlooked in
the risk management literature.

We stress in this article that in-sample standard specification procedures for VaR quantile pro-
cesses can lead to invalid inferences, which in turn may imply wrong conclusions about the correct
specification of the conditional VaR model, and about the subsequent out-of-sample backtesting
procedures. We shall show that the introduction of uncertainty about the true parameter coming
from the data, adds an additional term (estimation risk) in the standard specification procedures
that must be taken into account to construct valid inferences on VaR in-sample diagnostics. Oth-
erwise these techniques used for model checking can be completely misleading due to the choice of
wrong critical values. Therefore, the first aim of this article is to quantify the effect of estimating
the parameters of the model and to stress its impact in specification tests. The second aim of
the paper is then to propose a corrected method taking into account such risk, and thereby to
provide a valid statistical framework for measuring and evaluating market risk. The results are
given for general dynamic parametric models (Section 2) although to illustrate the new statistical
methodology we derive the analytic expressions of the estimation error for location-scale models
and perform some experiments via Monte-Carlo simulation (Section 3). Section 4 presents an
empirical application and Section 5 concludes.

2 Specification testing techniques for Quantile Models

Denote the real-valued time series of portfolio returns or Profit and Losses (P&L) account by
Yt, and assume that at time t − 1 the agent’s information set is given by Wt−1, which may
contain past values of Yt and other relevant economic and financial variables, i.e., Wt−1 =
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(Yt−1, Z
′
t−1, Yt−2, Z

′
t−2...)

′. Henceforth, A′ denotes the transpose matrix of A. Assuming that
the conditional distribution of Yt given Wt−1 is continuous, we define the α-th conditional VaR
(i.e. quantile) of Yt given Wt−1 as the measurable function qα(Wt−1) satisfying the equation

P (Yt ≤ qα(Wt−1) | Wt−1) = α, almost surely (a.s.), α ∈ (0, 1), ∀t ∈ Z. (1)

In parametric VaR inference one assumes the existence of a parametric family of functions M =
{mα(·, θ) : θ ∈ Θ ⊂ Rp} and proceeds to make VaR forecasts using the model M. From (1), the
parametric VaR model mα(Wt−1, θ0) is well specified if and only if

H0 : E[It,α(θ0) | Wt−1] = α a.s. for some θ0 ∈ Θ, (2)

where It,α(θ0) := 1(Yt ≤ mα(Wt−1, θ0)). In particular, under (2), the sequence {It,α(θ0)} are iid,
and moreover, the following unconditional hypothesis holds

H0u : E[It,α(θ0)] = α. (3)

Kupiec (1995), first proposed tests for H0u based on the absolute value of the standardized sample
mean 1√

n

∑n
t=1(It,α(θ0)−α), which converges to zero-mean normal variable with variance α(1−α)

under (2). This test is optimal if θ0 is known; see Chirstoffersen (1998). More modern tests in
a related risk measurement testing framework are, for example, Giacomini and White (2006)
for out-of-sample predictive ability, and Cotter and Dowd (2007) for exponential spectral risk
measures.

An important limitation of the aforementioned techniques for model specification is the as-
sumption of the parameter θ0 being known. In practice however, the parameter θ0 is unknown
and must be estimated from a sample {Yt,W

′
t−1}n

t=1 by a
√

n−consistent estimator, say θn. We
show in the next section that the estimation of parameters in the VaR model has a nonnegligible
effect in the asymptotic distribution of the specification test and leads to a different source of risk,
called estimation risk. For the save of space and a better comparison with the existing literature
we focus on tests for (2) in the direction of H0u, but our theory can be applied to more general
situations.

3 Specification tests free of estimation risk

Following Kupiec (1995), we consider tests based on

Sn =
1√
n

n∑

t=1

(It,α(θn)− α),

with θn a
√

n−consistent estimator replacing the parameter θ0, that satisfies the following as-
sumptions.

Assumption A1: {Yt, Z
′
t}t∈Z is strictly stationary and ergodic.

Assumption A2: The family of distributions functions FWt−1(y) := P (Yt ≤ y | Wt−1 = x), has
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Lebesgue densities fWt−1(y) that are uniformly bounded supx∈R∞,y∈R |fx(y)| ≤ C, and equicon-
tinuous: for every ε > 0 there exists a δ > 0 such that supx∈R∞,|y−z|≤δ |fx(y)− fx(z)| ≤ ε.

Assumption A3: The model mα(Wt−1, θ) is continuously differentiable in θ (a.s.) with derivative
gα (Wt−1, θ) such that E

[
supθ∈Θ0

|gα(Wt−1, θ)|2
]

< C, for a neighborhood Θ0 of θ0.

Assumption A4: The parameter space Θ is compact in Rp. The true parameter θ0 belongs to
the interior of Θ. The estimator θn satisfies the asymptotic Bahadur expansion

√
n(θn − θ0) =

1√
n

n∑

t=1

l(Yt,Wt−1, θ0) + oP (1),

where l(·) is such that E[l(Yt, Wt−1, θ0) | Wt−1] = 0 a.s. and V = E[l(Yt,Wt−1, θ0)l′(Yt,Wt−1, θ0)]
exists and is positive definite. Moreover, l(Yt,Wt−1, θ) is continuous (a.s.) in θ in Θ0 and
E

[
supθ∈Θ0

|l(Yt,Wt−1, θ)|2
]
≤ C, where Θ0 is a small neighborhood around θ0.

Under these regularity conditions we are in position to establish the first important result of
the paper.

Theorem 1: Under Assumptions A1 to A4,

Sn =
1√
n

n∑

t=1

[It,α(θn)− α] =
1√
n

n∑

t=1

[
It,α(θ0)− FWt−1(mα(Wt−1, θ0))

]
(4)

+
√

n(θn − θ0)′E
[
gα(Wt−1, θ0)fWt−1(mα(Wt−1, θ0))

]
︸ ︷︷ ︸

Estimation Risk

(5)

+
1√
n

n∑

t=1

[
FWt−1(mα(Wt−1, θ0))− α

]

︸ ︷︷ ︸
Model Risk

+ oP (1). (6)

The proof of this result in an out-of-sample context can be found in Escanciano and Olmo
(2008). Theorem 1 quantifies both estimation risk and model risk in the unconditional specifica-
tion test introduced before. A corollary from our Theorem 1 is that as long as E

[
FWt−1(mα(Wt−1, θ0))

] 6=
α, tests based on Sn will be consistent. In an out-of-sample framework Giacomini and White
(2006) also account for the presence of model risk and propose tests of conditional predictive
ability that are robust to possible misspecifications of the model, in our case misspecifications of
VaR, and that provide more reliable forecasts due to the choice of suitable estimation methods.
In what follows, however, we will assume no model risk. Next corollary provides the necessary
corrections to carry out valid asymptotic inference for the specification test free of estimation risk.

Corollary 1: Under Assumptions A1 to A4, and (2)

1√
n

n∑

t=1

[It,α(θn)− α] d−→ N(0, σ2
c ),
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where
σ2

c = α(1− α) + 2Aρ + AV A′

with ρ = E[(It,α(θ0)− α) l(Yt,Wt−1, θ0)], and A := E
[
gα(Wt−1, θ0)fWt−1(mα(Wt−1, θ0))

]
.

We further assume that the estimator θn is asymptotically normal (AN) with variance-covariance
matrix V . Hence, the estimation risk will be AN with covariance AV A′. The vector A can be

consistently estimated by Âτ = − 1
n

n∑
t=1

1
τ exp [(Yt −mα(Wt−1, θn)) /τ ] It,α(θn)gα(Wt−1, θn), with

τ → 0 as n → ∞; see Giacomini and Komunjer (2005). Hence, provided that τ → 0 the
asymptotic variance can be consistently estimated by σ̂2

c := α(1 − α) + 2Âτ ρ̂ + Âτ V̂ Â′τ with

ρ̂ = 1
n

n∑
t=1

(It,α(θn)− α) l(Yt,Wt−1, θn) and V̂ = 1
n

n∑
t=1

l(Yt,Wt−1, θn)l′(Yt,Wt−1, θn).

Corollary 2: Under Assumptions A1 to A4, and (2)

S̃n
d−→ N(0, 1),

with S̃n = 1
σ̂c
√

n

∑n
t=1[It,α(θn)− α].

3.1 Examples:

3.1.1 Historical Simulation

The historical simulation VaR is simply the unconditional quantile of Yt. Hence the postulated
model is mα(Wt−1, θ0) = θ0 ≡ F−1

Y (α), where F−1
Y (α) denotes the unconditional quantile function

of Yt evaluated at α. Let FY (x) be the cdf of Yt. The estimator of θ0 is usually θn = F−1
t,n (α),

where F−1
n,Y (α) is the empirical quantile function of {Yt}n

t=1. Under some mild assumptions,

√
n(θn − θ0) =

1√
n

n∑

t=1

( −1
fY (θ0)

)
(It,α(θ0)− α) + oP (1),

where fY is the density function of Yt. For this example, gα(Wt−1, θ0) ≡ 1, and the quantities in
Corollary 1 reduce to

A = E
[
fWt−1(θ0)

]
, ρ =

−α(1− α)
fY (θ0)

, V =
α(1− α)
f2

Y (θ0)
.

It is worth mentioning that the unconditional backtesting procedure based on historical simulation
VaR will be inconsistent. This is so because it is always true that E

[
FWt−1(θ0)

]
= α, since

α = FY (F−1
Y (α)) regardless if the model is correctly specified or not. In other words, under

the alternative hypothesis of model misspecification the summands in the model risk term of the
expansion in Theorem 1 are always centered and hence, its contribution to the power of the test
is always bounded (in probability) under certain weak dependence assumptions in the data. As
a by-product of this analysis we claim that the unconditional backtesting test is not appropriate
for testing the correct specification of the historical simulation VaR. We stress that the problem
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is not of the historical simulation, which may or may not be correctly specified, but of the use of
the unconditional test as a diagnostic test for the historical simulation model.

3.1.2 Location-scale models.

Now we confine ourselves to consider the VaR parametric model derived from the location-scale
model. This parametric approach has been the most popular in attempting to describe the
dynamics of the VaR measure. These models are defined as

Yt = µ(Wt−1, β0) + σ(Wt−1, β0)εt, (7)

where µ(·) and σ(·) are specifications for the conditional mean and standard deviation of Yt given
Wt−1, respectively, and εt are the standardized innovations which are usually assumed to be iid,
and independent of Wt−1. Under such assumptions the α-th conditional VaR is given by

mα(Wt−1, θ0) = µ(Wt−1, β0) + σ(Wt−1, β0)F−1
ε (α), (8)

where F−1
ε (α) denotes a univariate quantile function of εt and the nuisance parameter is θ0 =

(β0, F
−1
ε (α)). Among the most common models for µ(·) and σ(·) are the ARMA and GARCH

models, respectively, under different distributional assumptions on the error term. The vector
of parameters β0 is usually estimated by the Quasi-Maximum Likelihood Estimator (QMLE ).
The second component of θ0, F−1

ε (α), is assumed to be either known (e.g. Gaussian), unknown
up to a finite-dimensional unknown parameter (e.g. Student-t distributed with unknown degrees
of freedom), or unknown up to an infinite-dimensional unknown parameter. In any case,

√
n-

consistent estimation of F−1
ε (α) is usually achieved.

For these models our Theorem 1 allows us to quantify estimation risk. It takes this form

√
n(F−1

ε,n (α)− F−1
ε (α))fε(F−1

ε (α)) +
√

n(βn − β0)′b(α, β0), (9)

where
b(α, β0) := fε(F−1

ε (α))E [a1,t(β0)] + fε(F−1
ε (α))F−1

ε (α)E [a2,t(β0)] , (10)

a1,t(β) = µ̇t(β)/σ(It−1, β), a2,t(β) = σ̇t(β)/σ(It−1, β),

with µ̇t(β) = ∂µ(Wt−1, β)/∂β and σ̇t(β) = ∂σ(Wt−1, β)/∂β.

There are two sources of estimation risk in this model, one from estimating F−1
ε (α) and other

resultant from estimating β0. Thus, for example, for a homoscedastic model with zero conditional
mean process the only estimation effect affecting the process comes from estimating the quantile
of the error distribution, the other estimation effects vanish because a1,t(β) = 0 and a2,t(β) = 0.
On the other hand if the process is an ARMA-GARCH process with error distribution following
a Student-t with an unknown discrete number of degrees of freedom the estimation error of the
VaR model stems from the uncertainty of estimating the location-scale model since the estimators
of the degrees of freedom converge at a faster rate (n) to the parameter than the estimators of the
location-scale model (

√
n), see Hannan and Quinn, 1979, p. 191, for general results on estimation

of discrete-valued parameters. We will assume in the following simulation section models where
the error distribution is either known (Gaussian) or unknown up to a finite number of parameters
(Student-t). In both cases then the estimation error is given by expression (10).
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4 Simulation Exercise

This section examines the performance through some Monte Carlo experiments of the test devised
in Kupiec (1995) and the corrected test developed in this paper. We consider a realistic model
for financial data: an ARMA(1,1)-GARCH(1,1) process represented by

Yt = aYt−1+but−1+ut, ut = σ(Wt−1, β0)εt, σ2(Wt−1, β0) = η00+η10u
2
t−1+η20σ

2(Wt−2, β0),

with the true parameters given by β0 = (a, b, η00, η10, η20)′ = (0.1, 0.1, 0.05, 0.1, 0.85). We assume
two two different innovation processes {εt} defined by εt = (

√
(ν − 2)/ν)vt, with vt distributed

as a Student-t with ν = 30 and ν = 10 degrees of freedom. A t30 distribution is considered as
an approximation to the Gaussian distribution and a t10 to illustrate the impact of heavier than
normal tails in the different specification tests. The Value at Risk of these models is calculated
at α = 1% as recommended by Basel Committee.

This process is intended to describe actual dynamics followed by financial returns. Table 4.1
reports the simulated sizes corresponding to this ARMA(1,1)-GARCH(1,1) model with known
Student-t error term.

Sn n=500 n=1000 n=2000
α = 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

t30 0.07 0.012 0.004 0.041 0.016 0.002 0.035 0.018 0.001
t10 0.053 0.014 0.002 0.039 0.014 0.001 0.046 0.018 0.000

S̃n n=500 n=1000 n=2000
0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

t30 0.122 0.052 0.028 0.101 0.058 0.013 0.097 0.038 0.010
t10 0.11 0.075 0.041 0.135 0.073 0.045 0.123 0.061 0.023

Table 4.1. Size of specification tests Sn and S̃n for α = 0.01, and εt following a family of tν with

ν = 30, 10 with β0 = (a, b, η00, η10, η20)′ = (0.1, 0.1, 0.05, 0.1, 0.85). 1000 Monte-Carlo replications.

The conclusions from this small simulation experiment are illuminating. S̃n outperforms Sn

in terms of size, and the simulated size reported for S̃n is close to the actual nominal values. On
the other hand the test statistic Sn is very unreliable in both cases. Also, the size distortions in
Sn do not vanish as the sample size increases, confirming our findings in Theorem 1 claiming that
estimation risk appears even asymptotically ( i.e. with infinite sample sizes.) Other conclusions
from this table are that the distribution error seems to have an effect (the observed sizes for t10

double their counterparts for t30 in many cases).

5 Application to financial data

In a recent important paper Berkowitz and O’Brien (2002) compared the VaR forecasts obtained
from the location-scale family (ARMA-GARCH model) with the internal structural models used
by banks. Their conclusion is that the GARCH model generally provides for lower VaRs and is
better at predicting changes in volatility, thereby permitting comparable risk coverage with less
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regulatory capital. These findings, though interesting, may be spurious if the specification test
statistic employed to validate the model in-sample does not take into account estimation risk
effects. In fact, we have uncovered in this paper that these standard testing procedures produce
wrong critical values to assess in-sample VaR estimates from parametric models. In particular we
show in this application that Kupiec’s test statistic understates risk exposure when implemented
for estimated parameters. This effect is gauged in this application for daily log-returns on the
S&P500 market-valued equity Index over the period 02/2000 - 11/2006 (n = 1706 observations),
and obtained from Freelunch.com.

In order to detect if the VaR measure understates or overstates risk exposure we report the test
statistics Sn and S̃n derived from VaR measures correspond to daily data fitted to an ARMA(1,1)-
GARCH(1,1) model estimated by QMLE. VaR measures are calculated assuming first the error
term being Gaussian and then estimating the degrees of freedom of a Student-t distribution for
the residuals of the estimated ARMA(1,1)-GARCH(1,1) model. The experiment is designed as
follows.

We consider a five-day rolling window of 250 observations each covering the period of data
available (n=1706 observations). For each period of data in the window (250 observations) we
estimate an ARMA(1,1)-GARCH(1,1) model and compute the corresponding time series of VaR
estimates. The in-sample validation experiment consists on comparing the actual observations
from the window with the corresponding VaR estimates, if the number of exceedances is signif-
icantly far from its expected value under “normal ”circumstances the risk model specification is
rejected for the relevant sample. According to Basel Committee there are three different toler-
ance levels: green, yellow and red. These correspond to values of the specification test statistics
below the Gaussian 95% confidence level, to values between 95% and 99.99% and to values ex-
ceeding 99.99% confidence level respectively. In terms of capital requirements (CRt) required
by Basel Accord (1996) these regions imply different multiplication factors mft in the formula
CRt = mft×V aR0.01,t, being the lower bound mft = 3 for a VaR measure reporting a green zone
and the upper bound mft = 4 for a red zone VaR.

The following plot reports the values of Sn and S̃n corresponding to each rolling window. For
ease of exposition we re-estimate the parameters and test the validity of the model every five days
(and not daily) during the period of interest.

0 50 100 150 200 250 300
−1

0

1

2
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4

5

02/2000−11/2006 (weekly estimates)

S n an
d  S

ntilde

Goodness of fit test for VaR
0.01

 

Figure 5.1. Sn and S̃n test statistics for V aR0.01 estimates over 5-day rolling windows of 250 daily observations from an ARMA(1,1)-

GARCH(1,1) model with Gaussian error (N(0, 1)) that is re-estimated every five days. The data are returns on S&P500 Index over the period

02/2000-11/2006. The yellow (inferior) straight line defines the lower limit of the yellow zone. The red (superior) line denotes the lower limit of the

red zone. (+) is used to denote S̃n test statistic and (*) for Sn.
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The plot is really conclusive. While the standard procedure reports two periods where the
ARMA(1,1)-GARCH(1,1) model lies in the yellow zone the corrected test reports massive warnings
of model failure during the same time intervals. More importantly, the red zone (upper threshold
level) defined by Basel Accord as values exceeding 99.99% coverage probability, is exceeded two
times by S̃n. In terms of capital requirements this would imply a multiplication factor of 4 rather
than a value of 3 or 3.40 (in the worst case) as the rules of Basel Accord (1996) would be indicating.
These findings point towards either rejection of the dynamic parametric model or rejection of the
Gaussian distribution. To see if the latter is the reason to reject the risk model we plot in the
next figure the values of Sn and S̃n when the degrees of freedom of the Student-t distribution are
estimated.
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e
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Figure 5.2. Sn and S̃n test statistics for V aR0.01 estimates over 5-day rolling windows of 250 daily observations from an ARMA(1,1)-

GARCH(1,1) model with Student-tν distribution error. The parameters and degrees of freedom of the distribution are re-estimated every five days.

The data are returns on S&P500 Index over the period 02/2000-11/2006. The yellow (inferior) straight line defines the lower limit of the yellow zone.

The red (superior) line denotes the lower limit of the red zone. (+) is used to denote S̃n test statistic and (*) for Sn.

It is clear from figure 5.3 that the error distribution is not heavy-tailed, the estimates of the
degrees of freedom throughout the sample indicate that the Gaussian distribution is not a bad
approximation, hence the similarities between figures 5.1 and 5.2. Given that S̃n corrects for
the presence of estimation risk there are statistical grounds to conclude that the ARMA(1,1)-
GARCH(1,1) family of models is not appropriate for certain periods of the analysis. It is worth
noting that these findings are hindered by the presence of estimation risk when using standard
specification tests.
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Figure 5.3. Time series of the degrees of freedom (ν̂) of a Student-t distribution estimated on the residuals of an ARMA(1,1)-GARCH(1,1)

model with parameters estimated over 5-day rolling windows of 250 daily observations.
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6 Conclusion

Basel and Basel II Accords propose the use of specification tests and backtesting techniques to
assess the accuracy and reliability of banks internal risk management models, usually encapsulated
in Value at Risk measures, and set different failure areas for institutions failing to report valid
risk models. Thereby the correct specification of these procedures is of paramount importance for
the reliability of the whole internal and external monitoring process. However we have shown in
this paper that the standard testing procedures used by banks and regulators to assess dynamic
parametric VaR estimates can be misleading when used for in-sample model validation. This
implies that any conclusion regarding the validity of these risk models may be spurious. This is
because the cut-off point determining the validity of the risk management model is wrong. We
find the appropriate cut-off point by correcting the variance in the relevant test statistic.

In an application to financial returns on S&P500 Index we show that this correction is able
to uncover the wrong specification of location-scale models of ARMA(1,1)-GARCH(1,1) type
for some periods. These findings can lead to very heavy fines in the form of higher capital
requirements, due to risk missmeasurement. However if the standard specification tests based
on Kupiec and Christoffersen techniques are used this evidence vanishes due to the presence of
estimation risk effects. The phenomenon of estimation risk effects on quantile models for risk
management is of very practical importance and we believe it deserves further investigation. Its
effects on an out-of-sample backtesting environment are studied in Escanciano and Olmo (2008).
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