The University of Southampton
University of Southampton Institutional Repository

Stochastically forced mode water variability

Stochastically forced mode water variability
Stochastically forced mode water variability
Substantial interannual to decadal variability is observed in the properties of subtropical mode water of the North Atlantic. In this study the response of mode water to stochastic atmospheric forcing is investigated in a numerical model.

In a series of experiments the response is studied to different components of stochastic atmospheric forcing, such as wind stress, freshwater flux, and heat flux. The numerical model consists of an isopycnal ocean model with explicit mixed layer physics. The stochastic forcing is superimposed on the climatological forcing. The stochastic forcing function has an idealized form, but the amplitude, the spatial, and the temporal variability are based on observations. When a stochastic heat flux is applied, an atmospheric anomaly model is coupled to the ocean model. The geometry of the model is idealized and mimics the subtropical gyre of the North Atlantic.

The stochastic wind stress forcing excites an internal mode in the mode water layer of the model. The response is characterized by the propagation of baroclinic waves. The spectrum of the response to stochastic freshwater flux is red.

In the coupled model the stochastic heat flux forcing generates variability characterized by a dipole pattern in the mode water. The spectrum of the response is red and dominates the response to the stochastic wind stress and freshwater flux. The response is damped by an atmospheric feedback that consists of anomalous heat fluxes, depending on the SST anomalies generated by the stochastic forcing itself.

Only stochastic heat flux forcing can generate mode water variability of the observed amplitude. A preferred timescale in mode water variability should be contained in the forcing itself or it may result from modes that could not be simulated by the present model.
0022-3670
1772-1786
Hazeleger, W.
0bd826a1-4713-43ab-aace-3ea59d2fc37e
Drijfhout, S.S.
a5c76079-179b-490c-93fe-fc0391aacf13
Hazeleger, W.
0bd826a1-4713-43ab-aace-3ea59d2fc37e
Drijfhout, S.S.
a5c76079-179b-490c-93fe-fc0391aacf13

Hazeleger, W. and Drijfhout, S.S. (1999) Stochastically forced mode water variability. Journal of Physical Oceanography, 29 (8), 1772-1786. (doi:10.1175/1520-0485(1999)029<1772:SFMWV>2.0.CO;2).

Record type: Article

Abstract

Substantial interannual to decadal variability is observed in the properties of subtropical mode water of the North Atlantic. In this study the response of mode water to stochastic atmospheric forcing is investigated in a numerical model.

In a series of experiments the response is studied to different components of stochastic atmospheric forcing, such as wind stress, freshwater flux, and heat flux. The numerical model consists of an isopycnal ocean model with explicit mixed layer physics. The stochastic forcing is superimposed on the climatological forcing. The stochastic forcing function has an idealized form, but the amplitude, the spatial, and the temporal variability are based on observations. When a stochastic heat flux is applied, an atmospheric anomaly model is coupled to the ocean model. The geometry of the model is idealized and mimics the subtropical gyre of the North Atlantic.

The stochastic wind stress forcing excites an internal mode in the mode water layer of the model. The response is characterized by the propagation of baroclinic waves. The spectrum of the response to stochastic freshwater flux is red.

In the coupled model the stochastic heat flux forcing generates variability characterized by a dipole pattern in the mode water. The spectrum of the response is red and dominates the response to the stochastic wind stress and freshwater flux. The response is damped by an atmospheric feedback that consists of anomalous heat fluxes, depending on the SST anomalies generated by the stochastic forcing itself.

Only stochastic heat flux forcing can generate mode water variability of the observed amplitude. A preferred timescale in mode water variability should be contained in the forcing itself or it may result from modes that could not be simulated by the present model.

This record has no associated files available for download.

More information

Published date: August 1999
Organisations: Ocean and Earth Science

Identifiers

Local EPrints ID: 349197
URI: http://eprints.soton.ac.uk/id/eprint/349197
ISSN: 0022-3670
PURE UUID: 3581fb8a-0634-4d93-bc9e-f2219d5030d6
ORCID for S.S. Drijfhout: ORCID iD orcid.org/0000-0001-5325-7350

Catalogue record

Date deposited: 26 Feb 2013 12:08
Last modified: 15 Mar 2024 03:44

Export record

Altmetrics

Contributors

Author: W. Hazeleger
Author: S.S. Drijfhout ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×