The University of Southampton
University of Southampton Institutional Repository

A critical-layer framework for turbulent pipe flow

A critical-layer framework for turbulent pipe flow
A critical-layer framework for turbulent pipe flow
A model-based description of the scaling and radial location of turbulent fluctuations in turbulent pipe flow is presented and used to illuminate the scaling behaviour of the very large scale motions. The model is derived by treating the nonlinearity in the perturbation equation (involving the Reynolds stress) as an unknown forcing, yielding a linear relationship between the velocity field response and this nonlinearity. We do not assume small perturbations. We examine propagating helical velocity response modes that are harmonic in the wall-parallel directions and in time, permitting comparison of our results to experimental data. The steady component of the velocity field that varies only in the wall-normal direction is identified as the turbulent mean profile. A singular value decomposition of the resolvent identifies the forcing shape that will lead to the largest velocity response at a given wavenumber–frequency combination. The hypothesis that these forcing shapes lead to response modes that will be dominant in turbulent pipe flow is tested by using physical arguments to constrain the range of wavenumbers and frequencies to those actually observed in experiments. An investigation of the most amplified velocity response at a given wavenumber–frequency combination reveals critical-layer-like behaviour reminiscent of the neutrally stable solutions of the Orr–Sommerfeld equation in linearly unstable flow. Two distinct regions in the flow where the influence of viscosity becomes important can be identified, namely wall layers that scale with R+1/2 and critical layers where the propagation velocity is equal to the local mean velocity, one of which scales with R+2/3 in pipe flow. This framework appears to be consistent with several scaling results in wall turbulence and reveals a mechanism by which the effects of viscosity can extend well beyond the immediate vicinity of the wall. The model reproduces inner scaling of the small scales near the wall and an approach to outer scaling in the flow interior. We use our analysis to make a first prediction that the appropriate scaling velocity for the very large scale motions is the centreline velocity, and show that this is in agreement with experimental results. Lastly, we interpret the wall modes as the motion required to meet the wall boundary condition, identifying the interaction between the critical and wall modes as a potential origin for an interaction between the large and small scales that has been observed in recent literature as an amplitude modulation of the near-wall turbulence by the very large scales.
boundary layer receptivity, boundary layer structure, critical layers, pipe flow boundary layer, turbulence theory, turbulent boundary layers
0022-1120
336-382
McKeon, B.J.
2e685015-292a-42a7-8c9e-7cc27cf2da67
Sharma, A.S.
cdd9deae-6f3a-40d9-864c-76baf85d8718
McKeon, B.J.
2e685015-292a-42a7-8c9e-7cc27cf2da67
Sharma, A.S.
cdd9deae-6f3a-40d9-864c-76baf85d8718

McKeon, B.J. and Sharma, A.S. (2010) A critical-layer framework for turbulent pipe flow. Journal of Fluid Mechanics, 658, 336-382. (doi:10.1017/S002211201000176X).

Record type: Article

Abstract

A model-based description of the scaling and radial location of turbulent fluctuations in turbulent pipe flow is presented and used to illuminate the scaling behaviour of the very large scale motions. The model is derived by treating the nonlinearity in the perturbation equation (involving the Reynolds stress) as an unknown forcing, yielding a linear relationship between the velocity field response and this nonlinearity. We do not assume small perturbations. We examine propagating helical velocity response modes that are harmonic in the wall-parallel directions and in time, permitting comparison of our results to experimental data. The steady component of the velocity field that varies only in the wall-normal direction is identified as the turbulent mean profile. A singular value decomposition of the resolvent identifies the forcing shape that will lead to the largest velocity response at a given wavenumber–frequency combination. The hypothesis that these forcing shapes lead to response modes that will be dominant in turbulent pipe flow is tested by using physical arguments to constrain the range of wavenumbers and frequencies to those actually observed in experiments. An investigation of the most amplified velocity response at a given wavenumber–frequency combination reveals critical-layer-like behaviour reminiscent of the neutrally stable solutions of the Orr–Sommerfeld equation in linearly unstable flow. Two distinct regions in the flow where the influence of viscosity becomes important can be identified, namely wall layers that scale with R+1/2 and critical layers where the propagation velocity is equal to the local mean velocity, one of which scales with R+2/3 in pipe flow. This framework appears to be consistent with several scaling results in wall turbulence and reveals a mechanism by which the effects of viscosity can extend well beyond the immediate vicinity of the wall. The model reproduces inner scaling of the small scales near the wall and an approach to outer scaling in the flow interior. We use our analysis to make a first prediction that the appropriate scaling velocity for the very large scale motions is the centreline velocity, and show that this is in agreement with experimental results. Lastly, we interpret the wall modes as the motion required to meet the wall boundary condition, identifying the interaction between the critical and wall modes as a potential origin for an interaction between the large and small scales that has been observed in recent literature as an amplitude modulation of the near-wall turbulence by the very large scales.

Text
McKeon10-0.pdf - Version of Record
Restricted to Repository staff only
Request a copy

More information

e-pub ahead of print date: 1 July 2010
Published date: September 2010
Keywords: boundary layer receptivity, boundary layer structure, critical layers, pipe flow boundary layer, turbulence theory, turbulent boundary layers
Organisations: Aerodynamics & Flight Mechanics Group

Identifiers

Local EPrints ID: 350128
URI: http://eprints.soton.ac.uk/id/eprint/350128
ISSN: 0022-1120
PURE UUID: c783436f-1da6-44e8-93e6-b6f33d5d1a5f
ORCID for A.S. Sharma: ORCID iD orcid.org/0000-0002-7170-1627

Catalogue record

Date deposited: 25 Mar 2013 09:48
Last modified: 15 Mar 2024 03:46

Export record

Altmetrics

Contributors

Author: B.J. McKeon
Author: A.S. Sharma ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×