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Abstract. Sequentialization translates concurrent programs into equivalent non-
deterministic sequential programs so that the different concurrent schedules no
longer need to be handled explicitly. It can thus be used as a concurrency pre-
processor for many sequential program verification techniques. CSeq implements
sequentialization for C and uses ESBMC as sequential verification backend [5].

1 Introduction

Sequentialization is a recent verification technique that translates a concurrent program
into a non-deterministic sequential program that (under certain assumptions) behaves
equivalently, so that the different concurrent schedules do not need to be explicitly han-
dled during verification. It can be implemented as a source-to-source program transfor-
mation and can be used as a concurrency pre-processor for sequential program verifi-
cation tools, which in principle makes it an attractive and general approach.

However, in practice, only a few tools exist, and most of them work on an idealized
language such as Boolean programs, or on an intermediate representation level, which
makes them unsuitable as concurrency pre-processors for third-party tools. With CSeq,
we aim to close this gap, and to develop a sequentialization tool for the full C language.

2 Verification Approach

Lal/Reps Sequentialization Schema. CSeq largely follows the schema proposed by
Lal and Reps [7], which replaces the control non-determinism inherent to concurrent
programs by data non-determinism. More specifically, it translates a concurrent pro-
gram (t; | | t3) into a sequential but non-deterministic program (¢} ; ¢, ; c¢), which
contains additional copies of the shared global memory; ¢ checks any assumptions on
these copies that have been made independently by the transformed threads ¢} and .

CSeq replaces each shared variable x by a k-indexed entry x[k] in an array of size
K where k is an auxiliary variable called the current round counter and K is the round
bound. The transformed program then calls the thread functions sequentially, in the
same order in which they are created. It simulates a context switch simply by non-
deterministically increasing k up to the round bound K; if k£ grows beyond K, an early
return is enforced (i.e., the thread is pre-empted). CSeq inserts this simulation code at
all sequence points of the original program.



In this schema, the first thread accesses a fresh copy of the memory for each round,
with non-deterministically chosen values, while the subsequent threads always continue
with the state left by their predecessor at each round. The initial guesses are stored in a
second copy z’[k]; at the end of the program ¢ then checks that each round has ended
with the guesses that are used in the next round, i.e., that z[j] = 2/[j + 1] holds;
simulations that do not satisfy this condition do not correspond to feasible runs, and are
discarded.

Since infeasible runs are only discarded at the end, assertion and reachability check-
ing need to be integrated with the sequentialization; in particular, in order to prevent
false results, errors can only be reported after the checker ¢ has run. CSeq thus replaces
all assertions by conditionals that set an error variable that is tested by c. The same ar-
gument also applies to implicit safety properties such as array bounds violations, or nil
pointer dereferences that are handled by the applied backend verification tool. In princi-
ple, these need to be translated into explicit checks, and their detection by the backend
needs to be explicitly suppressed. However, CSeq does currently not support this.

Related Approaches. Sequentialization was originally developed for two threads and
two context switches only by Qadeer and Wu [9], but was subsequently generalized
by Lal and Reps to a fixed number of threads and a parameterized number of round-
robin scheduling [7]. Later, LaTorre/Madhusadan/Parlato extended [7] to track only
reachable configurations [10]. Further extensions allowed modelling of unbounded, dy-
namic thread creation [6, 3, 11], and dynamically linked data structures allocated on the
heap [2]. Like CSeq, Rek [4] implements sequentialization for C via code-to-code trans-
formation, but it is targeted at real-time systems and hard-codes a specific scheduling
policy. Poirot [8] also verifies concurrent C programs via sequentialization, but it first
translates them into Boogie and then implements the sequentialization transformation
at the Boogie level.

3 Architecture, Implementation, and Availability

Architecture. CSeq is implemented as a source-to-source transformation tool in Python
(V2.7.1). Tt uses the pycparser (v2.08) [1] to parse a C program into an abstract
syntax tree (AST), and then traverses the AST to construct the sequentialized version,
as outlined above. The result can then be processed by any verification tool for C; a
small script (cseg—esbmc) bundles up translation and verification by ESBMC.

Availability and Installation. CSeq can be downloaded from http://users.ecs.
soton.ac.uk/gp4/cseq.zip. It must be installed as global Python script; it also
requires installation of the pycparser, and ESBMC (v1.20, which is available at
www . esbmc . org) must be on the path to use the cseg—esbmc script.

Call. For the competition, CSeq should be called in the installation directory as follows:
./cseqg-esbmc <file>.

Limitations. CSeq is in the initial development and there are still some limitations on
the structure of the programs that can be translated, and on the properties that can be
checked. Currently we assume that the ma i n function consists of an initialization stage,
in which the variables are initialized and a known number of threads is created, followed



by a shut-down stage that includes all (if any) pthread_join’s. We currently do
not support conditional waiting nor pthread_join and pthread_exit with return
variables. We implemented a deadlock check, but do not use it for the competition, as
it is not required by the benchmarks. Since heap-allocated memory is accessible to all
threads, it needs to be treated similarly to global variables; CSeq does not support this
yet. Lifting these restrictions, and in particular supporting dynamic memory, dynamic
thread creation, and conditional waiting will require significant efforts.

We further assume that the declarations for the global variables precede those for
all functions, that there are no static variables and no global multi-dimensional arrays,
and that local variables cannot shadow global variables. We do not support switch state-
ments, due to limitations in the pycparser. These limitations simplified our imple-
mentation and can be lifted relatively easily.

Sequentialization is in principle independent of the verification tool used as back-
end, but the current version of CSeq is (tightly) integrated with ESBMC. Despite this,
ESBMC'’s counterexamples are not yet translated back into the original concurrent pro-
gram, although this is a purely mechanic process.

4 Results

Since CSeq is a concurrency pre-processor, we only competed in the Concurrency
category. Here, CSeq did well, and correctly solved 11 of the 33 benchmarks, with no
false results, winning the Silver medal. In particular, it scored better than ESBMC v1.20
with its built-in concurrency handling. The existing implementation limitations showed
particularly prominently in the CIL-preprocessed benchmarks, which CSeq could not
handle.
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