The University of Southampton
University of Southampton Institutional Repository

Material parameter extraction in terahertz time domain spectroscopy

Material parameter extraction in terahertz time domain spectroscopy
Material parameter extraction in terahertz time domain spectroscopy
In terahertz time domain spectroscopy (THz-TDS) material parameter extraction is necessary for determining the complex refractive index of materials in the THz region. The process of material parameter extraction requires the fitting of a theoretical model for the propagation the THz pulse through the material to experimentally acquired THz time domain data, where by the complex refractive index of the theoretical model is varied until it fits the experimental data. It requires close agreement between a model of the THz electric field propagation and experimental THz data for accurate extraction of the complex refractive index.

In this thesis I report on the methods of material parameter extraction with the goal of accurately determining the complex refractive index of materials within the THz region. I also investigate a series of optimisation techniques from understanding the behaviour of the extracted complex refractive index for different model assumptions and initial parameters. The inclusion of the material parameter extraction optimisation techniques allows for material parameter extraction methods which are similar to the state of the art in the field.

Material placed at the THz focus are commonly investigated using the plane wave assumption for material parameter extraction. I demonstrate an extraction method which models a converging beam, this improves the accuracy of the extracted complex refractive indices for materials placed in focused THz-time domain spectrometers. Furthermore, I have developed an elegant method to determine the angular beam profile of the focussed THz beam by using the converging beam extraction method.

Finally I report on the THz-TDS performance of photoconductive THz generation and detection from a high peak power vertical external cavity surface emitting laser (VECSEL). VECSELs are optically pumped semiconductor disk lasers (SDL) which are inherently compact, have multi-GHz repetition rates and could lead to a cost effective THz spectrometer system.
Chung, A.L.
7112496f-1459-4e30-938a-f36ea2b135b6
Chung, A.L.
7112496f-1459-4e30-938a-f36ea2b135b6
Apostolopoulos, V.
8a898740-4c71-4040-a577-9b9d70530b4d
Tropper, A.C.
f3505426-e0d5-4e91-aed3-aecdb44b393c

Chung, A.L. (2012) Material parameter extraction in terahertz time domain spectroscopy. University of Southampton, Faculty of Physical Sciences and Engineering, Doctoral Thesis, 194pp.

Record type: Thesis (Doctoral)

Abstract

In terahertz time domain spectroscopy (THz-TDS) material parameter extraction is necessary for determining the complex refractive index of materials in the THz region. The process of material parameter extraction requires the fitting of a theoretical model for the propagation the THz pulse through the material to experimentally acquired THz time domain data, where by the complex refractive index of the theoretical model is varied until it fits the experimental data. It requires close agreement between a model of the THz electric field propagation and experimental THz data for accurate extraction of the complex refractive index.

In this thesis I report on the methods of material parameter extraction with the goal of accurately determining the complex refractive index of materials within the THz region. I also investigate a series of optimisation techniques from understanding the behaviour of the extracted complex refractive index for different model assumptions and initial parameters. The inclusion of the material parameter extraction optimisation techniques allows for material parameter extraction methods which are similar to the state of the art in the field.

Material placed at the THz focus are commonly investigated using the plane wave assumption for material parameter extraction. I demonstrate an extraction method which models a converging beam, this improves the accuracy of the extracted complex refractive indices for materials placed in focused THz-time domain spectrometers. Furthermore, I have developed an elegant method to determine the angular beam profile of the focussed THz beam by using the converging beam extraction method.

Finally I report on the THz-TDS performance of photoconductive THz generation and detection from a high peak power vertical external cavity surface emitting laser (VECSEL). VECSELs are optically pumped semiconductor disk lasers (SDL) which are inherently compact, have multi-GHz repetition rates and could lead to a cost effective THz spectrometer system.

Text
ThesisAaronChung_final.pdf - Other
Download (60MB)

More information

Published date: September 2012
Organisations: University of Southampton, Quantum, Light & Matter Group

Identifiers

Local EPrints ID: 352056
URI: http://eprints.soton.ac.uk/id/eprint/352056
PURE UUID: 621283a9-4926-42c6-8001-9d7b809d3a35
ORCID for V. Apostolopoulos: ORCID iD orcid.org/0000-0003-3733-2191

Catalogue record

Date deposited: 02 May 2013 11:18
Last modified: 15 Mar 2024 03:29

Export record

Contributors

Author: A.L. Chung
Thesis advisor: V. Apostolopoulos ORCID iD
Thesis advisor: A.C. Tropper

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×