The University of Southampton
University of Southampton Institutional Repository

Turning carbon dioxide into fuel

Turning carbon dioxide into fuel
Turning carbon dioxide into fuel
Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity—and a burgeoning challenge—to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes.

Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953–996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion—and hence the utilization—of CO2. Here, we hope to illustrate that advances in the science and engineering of materials are critical for these new energy technologies, and specific examples are given for all three examples.

With sufficient advances, and institutional and political support, such scientific and technological innovations could help to regulate/stabilize the CO2 levels in the atmosphere and thereby extend the use of fossil-fuel-derived feedstocks.
energy materials, co2 conversion, sustainable methanol, tri-reforming, solar fuel, photocatalyst
1364-503X
3343-3364
Jiang, Z.
bcf19e78-f5c3-48e6-802b-fe77bd12deab
Xiao, T.
d018fe72-2cff-4ffd-9007-647aab67477c
Kuznetsov, V.L.
35a4d642-69a7-4b23-8d65-7c01b864149c
Edwards, P.P.
638346ed-063e-4da0-9fdb-70d3dcb16e1e
Jiang, Z.
bcf19e78-f5c3-48e6-802b-fe77bd12deab
Xiao, T.
d018fe72-2cff-4ffd-9007-647aab67477c
Kuznetsov, V.L.
35a4d642-69a7-4b23-8d65-7c01b864149c
Edwards, P.P.
638346ed-063e-4da0-9fdb-70d3dcb16e1e

Jiang, Z., Xiao, T., Kuznetsov, V.L. and Edwards, P.P. (2010) Turning carbon dioxide into fuel. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368 (1923), 3343-3364. (doi:10.1098/rsta.2010.0119).

Record type: Article

Abstract

Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity—and a burgeoning challenge—to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes.

Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953–996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion—and hence the utilization—of CO2. Here, we hope to illustrate that advances in the science and engineering of materials are critical for these new energy technologies, and specific examples are given for all three examples.

With sufficient advances, and institutional and political support, such scientific and technological innovations could help to regulate/stabilize the CO2 levels in the atmosphere and thereby extend the use of fossil-fuel-derived feedstocks.

Text
Turning carbon dioxide into fuel.pdf - Version of Record
Restricted to Repository staff only
Request a copy

More information

Published date: 21 June 2010
Keywords: energy materials, co2 conversion, sustainable methanol, tri-reforming, solar fuel, photocatalyst
Organisations: Faculty of Engineering and the Environment

Identifiers

Local EPrints ID: 352786
URI: http://eprints.soton.ac.uk/id/eprint/352786
ISSN: 1364-503X
PURE UUID: 54d6cfb2-2b5c-4fee-b926-07d39516ddda
ORCID for Z. Jiang: ORCID iD orcid.org/0000-0002-7972-6175

Catalogue record

Date deposited: 21 May 2013 10:38
Last modified: 15 Mar 2024 03:47

Export record

Altmetrics

Contributors

Author: Z. Jiang ORCID iD
Author: T. Xiao
Author: V.L. Kuznetsov
Author: P.P. Edwards

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×