Co-simulation of Event-B and Continuous
Models in Rodin

Vitaly Savicks, Michael Butler, John Colley
University of Southampton

Jens Bendisposto
Heinrich-Heine-Universitat Diisseldorf

While Event-B formal method, reinforced with the rich and extensible
Rodin platform and a great community around it, provides a powerful and
effective framework for the formal modelling and verification of safety-critical
systems, its discrete nature does not always map well to the heterogeneous
complex systems with components from the different domains, including the
intrinsically continuous environment. To improve the capability of Rodin
and enable it to verify components from the wide range of domains along
with formally specified Event-B models we are introducing an extension to
Rodin, which is based on the ProB tool and the industry-designed Functional
Mock-up Interface (FMI) standard, and allows to co-simulate formal models
with any imported models that support FMI standard. The ongoing work
consists of the design of a diagrammatic co-simulation surface and generic
simulation master algorithm.

The FMI standard will allow us to integrate artefacts called Functional
Mockup Units (FMU) into Event-B simulations. These FMUs can be gener-
ated by any tool that supports this standard. Many simulation tools! such
as MATLAB/Simulink or even Microsoft Excel support the FMI standard,
as it ensures flexibility and cross-platform execution.

FMUs are coordinated by an FMI master. An individual FMU is a zip
archive that contains at least a shared library, which implements the Func-
tional Mock-up Interface, and an XML document describing the communi-
cation ports of the model and the capabilities of the simulator.

LA list is available at https://www.fmi-standard.org/tools.

1



Our approach is to use a generic implementation that loads a given FMU
and provides an API that is more idiomatic for the usage inside the Java-
based Rodin application. As FMI does not impose many restrictions on
the master algorithm, the master has to be rewritten from scratch for each
system. Using the Groovy scripting language this can be done already in the
current implementation. We want to provide the user with a more pleasant
experience by supporting a generic master that can be configured from the
UI and customised using the scripting language. Such a master needs to
know about all the units involved in co-simulation and connections between
them. In the FMI parlance this information is called component connection
graph and is used to validate assembled units, derive a suitable co-simulation
algorithm depending on the topology and other properties of the graph and
coordinate co-simulation process.

We are planning to develop a component diagram editor and co-simulation
driver as part of our Rodin tool that would enable users to import and in-
stantiate existing FMUs and Event-B machines as components and visually
construct a graph model that can be used by the master. Each component
on the diagram will have a configurable number of input and output ports,
compatible with FMI standard types, which can be connected to the corre-
sponding ports of other components via connectors. The diagram will provide
controls for running the master and display the simulation state with time,
including exchanged signal values between ports and internal state variables
of components.

The metamodel of connection graph and the editor will be based on the
existing open-source frameworks provided by Eclipse and Rodin and will
make use of the Event-B metamodel.

The component diagram tool will support both FMI components, bun-
dled as .fmu archives, and Event-B components. An Event-B component
may represent a single Event-B machine or a hierarchy of machines with a
composed machine as a root element and multiple nested machines that con-
stitute the composition. Each nested machine can be a composed machine
itself. We are aiming at supporting such complex compositional structures
at the diagram level, so the users will be able to import composed machines
and their constituent elements and link them with other components. The
interaction between the elements of composed machines may also be part of
the visual notation and displayed during the simulation.



