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Abstract. We implement a new sequentialization algorithm for multi-threaded C
programs with dynamic thread creation as a new CSeq module. The novel basic
idea of this algorithm is to fix (by a nondeterministic guess) the sequence of write
operations in the shared memory and then simulate the behavior of the program
according to any scheduling that respects this choice. Simulation is done thread-
by-thread and the thread creation mechanism is replaced by function calls.

1 Introduction

Sequentialization translates a concurrent program into a corresponding sequential one
while preserving a given verification property (e.g., reachability). The idea is to reuse
in the domain of concurrent programs the technology developed for the analysis of se-
quential programs. This simplifies and speeds up the development of robust tools for
concurrent programs. It also allows the designers to focus only on the concurrency
aspects and provides them with a framework in which they can quickly check the effec-
tiveness of their solutions. A sequentialization tool can be designed as a front-end for a
number of analysis tools that share the same input language, and thus many alternatives
are immediately available.

We design a new sequentialization algorithm for multi-threaded C programs with
dynamic thread creation. Its main novelty is the idea of memory unwinding (MU). We
fix (by a nondeterministic guess) the sequence of write operations in the shared mem-
ory and then simulate the behavior of the program according to any scheduling that
respects this choice. We can then use of the number of writes in the shared memory as
a parameter of the bounded analysis, which is orthogonal to considering the number of
context switches underlying previous research on sequentializations based on the notion
of bounded context-switching (e.g., [10, 6, 7, 2, 1, 8, 9]). Moreover, MU-CSeq naturally
accommodates the simulation of dynamic thread creation by function calls.
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We implement MU-CSeq as a new module of the tool CSeq [3, 4]. Other modules of
CSeq implement the Lal/Reps algorithm [6] and a lazy-sequentialization scheme aimed
to exploit bounded model checking [5].

2 Verification Approach

Overview. MU-CSeq translates a multi-threaded C program P , into a standard C pro-
gram P ′. The source-to-source translation is parameterized over the number of writes
Nw in the shared memory and the maximum number of threadsNt. The overall scheme
consists of guessing a sequence σ of Nw writes and then simulating any execution of P
that matches σ. The simulation is done thread-by-thread, starting from the original main
function; when a new thread is created the simulation of the current thread is suspended
until the simulation of the new thread has ended. When the number of threads passes
the bound Nt, each new thread creation operation is just ignored.
Modules of P’. The main function of P ′ is in charge of guessing a consistent sequence
of writes σ and starting the simulation of P . P ′ has a function for each function (includ-
ing the main) and each thread of P . The translation of P modules into the corresponding
modules of P ′ consists of: 1) adding a few lines of control code to handle creation and
execution of threads, and 2) replacing the reads and writes in the shared memory with
calls to read and write functions, respectively.
Guessing the sequence of writes. We use a global two-dimensional array mem that
corresponds to the temporal unwinding of the shared memory according to the memory
updates. Here, each column corresponds to an updating event (i.e., a write) in σ and
each row corresponds to a variable. The entry mem[i,j] contains the value of the i-th
shared variable after the j-th write in σ. We use a second global array sigma to store
for each write the involved variable and the thread that has executed the write. To guess
the writes, we assign non-deterministic values to these arrays. The main function of P ′

then uses assume statements to check the consistency of the values stored in the guessed
arrays before starting the simulation of P .
Accessing global memory. On executing each thread t, we store in a variable thr pos
the index of the last executed write in σ. This variable is updated by read and write.
On calling write for the assignment x=e, thr pos is updated to the corresponding index
and then mem[x,thr pos]=e is checked. By calling read for reading variable x, first
thr pos is nondeterministically updated to any index between its current value and the
next write in σ by t, and then mem[x,thr pos] is returned.
Thread creation and execution. Thread creation and execution are implemented as
function calls in P ′. Thus, if a thread t2 is created from a thread t1, the simulation of t1
stops until the call to t2 has terminated. Before the simulation of t2 starts, the current
value of thr pos is stored in a local variable such that when t2 has terminated, the
simulation of t1 restarts from this index. Accordingly, the simulation of t2 starts from
the current value of thr pos. When either the last statement of thread t2 is reached, or
a write after the last guessed write for t2 is executed, or an index greater than Nw is
guessed for a read, then all the calls of thread t2 are returned, including the call that has
started the thread simulation. After the return we check that all write operations that t2
has to execute actually happened.



3 Architecture, Tool setup, and Configuration

Architecture. Our sequentialization is implemented as a source-to-source transforma-
tion in Python (v2.7.1), within the CSeq tool. It uses pycparser (v2.10, github.
com/eliben/pycparser) to parse a C program into an abstract syntax tree (AST),
and then traverses the AST to construct the sequentialized version, as outlined above.
The resulting program can be processed independently by any verification tool for
C. MU-CSeq has been tested with CBMC (v4.2, www.cprover.org/cbmc/) and
ESBMC (v1.22, www.esbmc.org). For the competition we use a wrapper script
that bundles up the translation and calls CBMC for verification. We use the parame-
ters -w24 -t17 -f17 -unwind1 -depth4000 -MaxThreadCreate3, where
w (resp., t) is the bound on the number of write operations (resp., of spawned threads),
f is the unwind bound for for and unwind is the unwind bound for the remaining
loops, depth is the depth option for the backend, and MaxThreadCreate is the
bound on the number of threads that are spawned in any while loop. No timeouts or
memory limits are used in the analysis. The wrapper returns the output from CBMC.
Availability and Installation. MU-CSeq can be downloaded from http://users.
ecs.soton.ac.uk/gp4/cseq/mu-cseq-0.1.zip; it also requires installa-
tion of the pycparser. It can be installed as global Python script. In the competition
we only used CBMC as a sequential verification backend; this must be installed in the
same directory as MU-CSeq.
Call. The tool should be called in the installation directory as follows:
mu-cseq.py -i<file> --spec<specfile> --witness<logfile>

Strengths and Weaknesses. Since MU-CSeq is not a full verification tool but only a
concurrency pre-processor, we only competed in the Concurrency category. Here it
achieved a perfect score.
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