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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

School of Physics and Astronomy

Doctor of Philosophy

COHERENT ATOMIC MANIPULATION AND COOLING USING
COMPOSITE OPTICAL PULSE SEQUENCES

by Alexander J. Dunning

The laser cooling of atoms to ultracold temperatures has propelled many groundbreaking
advances in fundamental research and precision measurement, through such applications
as quantum simulators and interferometric sensors. Laser cooling remains, however,
highly species-selective, and techniques for its application to molecules are still in their

infancy.

This thesis broadly concerns the development of laser cooling schemes, based on se-
quences of coherent optical pulses, which can in principle be applied to a wide range of
species. We describe a cooling scheme, in which a velocity-selective impulse analogous to
that in Doppler cooling is generated by a light-pulse Ramsey interferometer, and present
a proof-of-concept demonstration of the scheme using ultracold rubidium-85 atoms as a
test-bed. We realise an interferometer for the atoms, as they are in free-fall after release
from a magneto-optical trap, by inducing stimulated Raman transitions between their
ground hyperfine states. We provide a comprehensive characterisation of these Raman

light-pulse interferometer optics, where particular attention is paid to light shift effects.

Raman pulses, and indeed coherent operations in any quantum control system, unavoid-
ably suffer from systematic errors in the control field intensity and frequency, and these
lead to reductions in pulse fidelity and readout contrast. In parallel to the work on
interferometric cooling in this thesis, we report our preliminary investigations into com-
posite pulses, whereby ‘naive’ single pulses are replaced by sequences of rotations with
tailored durations and phases, for improving pulse fidelity in the presence of inhomo-
geneities. We find that composite pulses can indeed be highly effective in our cold atom
system, and propose that their application in such devices as interferometric sensors is

a promising prospect.
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“That drink,” said the machine sweetly, “was individually tailored to
meet your personal requirements for nutrition and pleasure.”

“Ah,” said Arthur, “so I'm a masochist on a diet am I?”

“Share and enjoy.”

“Oh, shut up.”

“Will that be all?”

Arthur decided to give up.

“Yes,” he said.

Then he decided he’d be damned if he’d give up.

“No,” he said, “look, it’s very, very simple ... all I want ... is a cup of
tea. You are going to make one for me. Keep quiet and listen.”

And he sat. He told the Nutri-Matic about India, he told it about China,
he told it about Ceylon. He told it about broad leaves drying in the sun. He
told it about silver teapots. He told it about summer afternoons on the lawn.
He told it about putting the milk in before the tea so it wouldn’t get scalded.
He even told it (briefly) about the history of the East India Company.

“So that’s it, is it?” said the Nutri-Matic when he had finished.

“Yes, ” said Arthur, “that is what I want.”

“You want the taste of dried leaves boiled in water?”

“Er, yes. With milk.”

“Squirted out of a cow?”

“Well, in a manner of speaking, I suppose ...”

— The Restaurant at the End of the Universe (1980), Douglas Adams



Chapter 1

Introduction

The ability to cool atomic gases to ultracold temperatures and quantum degeneracy
has revolutionized experimental atomic physics [1]. Previously, spectroscopists working
with room temperature or buffer-gas-cooled atomic vapours or beams, or indeed super-
sonic jets, had to contend with significant Doppler and transit-time broadening when

measuring atomic spectra, and quantum coherence effects were largely undetectable.

The production of ultracold atomic gases was made possible by the invention and de-
velopent of laser cooling [2—4], whereby atoms preferentially absorb red-detuned laser
photons which act to reduce the atomic speed, via the Doppler effect. In a magneto-
optical trap (MOT) [5], atoms are simultaneously laser cooled and confined, via position
dependent absorption, and further technical extensions to this, such as magnetic con-
finement and evaporative cooling, allow for the production of Bose-Einstein condensates
(BECs) [6, 7]. The many applications of laser cooled atoms include quantum simula-
tions of many-body interactions in optical lattices [8, 9], quantum information processing
(QIP) with cold trapped ions [10], ultra-precice frequency standards with atomic clocks

[11], and atom intereferometric inertial sensors [12].

Just as ultracold atoms have revolutionised the field of atomic physics, the study of
cold and ultracold molecules opens up many new and exciting avenues of research [13],
of which ultracold chemistry [14] and tests for variations of the fundamental constants
[15, 16] are two prominent examples. Until recently, their complex internal structure
has precluded the laser cooling of molecules. Traditional laser cooling requires a closed

optical transition, such that many thousands of photon momenta can be imparted. In
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2 Introduction

molecules, the myriad ro-vibrational decay routes make this very difficult to achieve
(indeed, even the simplest of atomic structures requires a repumping laser). Schemes
involving multiple repumping frequencies have, however, recently been applied to suc-

cesfully laser cool diatomic molecules [17-19], although the applicable species are few.

Aside from laser cooling, the photo-association [20] of (laser cooled) atoms, has already
been used to create ultracold bi-alkali molecules in the ground vibrational state [21,
22], however such schemes are restricted to those few elements which are accessible to
traditional laser cooling. Other means of cooling molecular samples have been tested,
including buffer-gas cooling [23], evaporative [24] and sympathetic [25] cooling, and the
slowing of molecular beams has been demonstrated using Stark [26] and Zeeman [27]

decelerators.

In [28] Weitz and Hénsch propose a scheme, based on a series of coherent femtosecond
laser pulses which form the optics of a matter-wave interferometer, for the laser cool-
ing of atoms and molecules. The advantage of this ‘interferometric cooling’ scheme is
that photon absorption can be made independent of the laser detuning from an optical
resonance, hence cooling can be applied on several transitions within a ro-vibrational
structure simultaneously. Furthermore, the short pulse durations (and their spectrally
broad profiles) allow for broad simultaneous excitation of multiple ro-vibrational tran-

sitions.

One of the two main lines of investigation of this thesis concerns an experimental proof-
of-concept of interferometric cooling in already-ultracold atoms. A proof-of-concept in
atoms would represent the first experimental step towards the application of the scheme
to molecules. More broadly speaking, the overarching research goal of the project is
to develop pulse-based laser cooling schemes which can be applied to a wider range of

species’ than traditional laser cooling permits.

Interferometric cooling, and atom interferometry in general, requires coherent optical
control over a quantum system of two metastable atomic levels. As in many other
atom interferometry experiments (see, for example [12]), we realise such control with
stimulated Raman transitions between ground hyperfine states in ultracold atoms, and
our choice of element is rubidium-85. With our experimental system we are able to apply

timed pulses with controlled intensity, frequency and phase to a cloud of atoms, whose
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Zeeman sublevels are degenerate, after release from a magneto-optical trap (MOT) at a
temperature of 20 — 100 microkelvin. The description and characterisation of this cold

atom control system forms a large proportion of the work presented in this thesis.

To achieve high interferometric contrast, coherent operations must exhibit high fidelity.
This is compromised in our Raman system by systematic errors in the pulse area and
detuning, due respectively to the range of transition dipole matrix elements (and, to a
lesser extent, intensity inhomogeneities), and to Doppler-broadening. Similar systematic
errors are in fact commonplace in all experiments involving the coherent control of
quantum systems, and accordingly there exist techniques for actively reducing their

detrimental effects.

The second line of investigation of this thesis concerns the use of composite pulses [29]
for improving the fidelity of coherent operations in quantum control systems. Composite
pulses, whereby single rectangular pulses are replaced by series’ of pulses with tailored
durations and phases, are yet to be fully exploited by the atomic physics community.
We expect that along with other fidelity-enhancing techniques such as adiabatic transfer
[30, 31], composite pulses have the potential to significantly improve the performance of
cold-atom-based devices in the presence of systematic errors, and indeed that they have

potential for use in interferometric cooling experiments.

Thesis Layout

In chapter 2 we present the theory of stimulated Raman transitions, upon which our
manipulation schemes are based. We derive the effective two-level Hamiltonian and
associated equations of motion for the Raman system, and describe the Bloch sphere
picture for visualisation of coherent pulses. Rubidium-85, which is our test species
throughout this thesis, is discussed, along with the dipole selection rules for Raman

transitions.

Chapters 3 and 4 then describe the experimental apparatus and procedures involved,
respectively, in the construction of a magneto-optical trap (MOT) for rubidium, and the

generation of Raman pulses.



4 Introduction

In chapter 5 we characterise the behaviour of the Raman pulses. We present measure-
ments of Zeeman splitting and light-shifts before characterising spectral Raman profiles
and Rabi flopping, where the dephasing effects of systematic errors are highlighted. By
comparing numerical simulations to the experimental data, we provide useful insight

into the behaviour of the pulses.

In light of the dephasing observed in chapter 5, chapter 6 details our exploration of
composite pulses for improving pulse fidelity in the presence of systematic errors. We
describe a model for visualision of systematic errors and fidelity in coherent operations,
and present novel results demonstrating rotary spin echoes, before characterising a range
of composite inversion pulses and discussing their relative performance in the context of

atom interferometry.

With a good understanding of the systen in place, we then present results of our prelim-
inary tests of interferometric cooling in chapter 7. This chapter begins with a discussion
of the proposed cooling scheme, followed by an experimental characterisation of its con-
stituent components. We then show modulation of the velocity distribution at a range
of system parameters, before presenting a first demonstration of interferometric atomic
cooling. We finish this chapter with a discussion of the enhancements required should

interferometric cooling be applied to molecules.

Appendix A provides some general theory of atom-laser interactions, including more
detailed explanations of principles which are briefly referred to in the main text. In
appendix B we describe (and present sample code for) the numerical simulations per-
formed throughout the thesis. Appendix C provides an introduction to the principles and
techniques of atom interferometry, and matter-wave interferometry in general, for the
interested reader. Finally, in appenix D we list the publications (existing and potential),

talks and poster presentations arising from the work performed in this thesis.

Note that detailed discussions of composite pulses and interferometric cooling are left
largely to chapters 6 and 7, respectively. In the preceding chapters (2-5) we present the
theory behind, and experimental characterisations of, the cold atom system which we

use for their implementation.
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Theory






Chapter 2

Coherent Manipulation &

Interferometry

The interferometric laser cooling and composite pulse schemes explored in this thesis
are based on coherent transitions in a two-level atomic system, and we realise this
experimentally by inducing stimulated Raman transitions between the ground hyperfine
states of rubidium-85. Broadly speaking, a stimulated Raman transition is a two-photon
process, whereby two counter-propagating laser beams, far-detuned from resonance with
a radiative upper level and with a frequency difference equal typically to the ground

hyperfine interval, induce coherent population transfer between (meta)stable states.

This chapter details the theory governing velocity-sensitive stimulated Raman transi-
tions. Firstly, we introduce the stimulated Raman system, and derive the equations of
motion of the state amplitudes. We then describe the Bloch sphere picture for visualisa-
tion of coherent pulses, and discuss the velocity-sensitive Ramsey interferometer which
forms the basis of the cooling schemes of chapter 7. We then give a brief summary of
the atomic structure of rubidium-85, and finish by presenting a vector formalism for

stimulated Raman transitions.
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2.1 Raman Transitions

In this section we derive the general equations of motion for the hyperfine state am-
plitudes during interaction with two counter-propagating laser beams, which are far-
detuned from atomic resonance. We begin with a three-level system, then apply a series
of transormations and approximations to derive an effective two-level Hamiltonian for
the system, from which the equations of motion are obtained. A particularly detailed
treatment of velocity-selective stimulated Raman theory in the context of cold atoms
can be found in [32]. For the interested reader, and in order to explain particular aspects
of the theory not discussed in the main text, we give a summary of the theory governing

two-level atom-laser interactions in appendix A.1.

2.1.1 3-level system & the Rabi frequency

We start by considering a three-level atomic system, as shown in figure 2.1, in which there
are two lower levels, labelled (ignoring their momenta, for now) |1) and |2) separated by
the difference between their atomic frequencies wio = wo — w1, and an upper level with
atomic frequency ws, labelled |3). The lower levels represent ground atomic hyperfine
states, from which population cannot spontaneously decay. The upper level represents
an intermediate state, from which spontaneous decay is possible, at an optical interval
from the lower levels. Our atom is irradiated by two laser beams of frequencies wr
and wrs, which are counter-propagating along the z-axis. The electric field of the laser

beams is described by

E= lElei(kLl’Z—let""Ql’Ll) + EEQG_i(kLQ'Z_WLWt—d)LZ) T+ c.c. (2.1)
2

2
where k;1 ~ —kjo. By the dipole interaction, the laser wr,, where a = 1,2, couples
the state |n), where n = 1,2, to |3). The two beams are detuned by a large amount
A, from single photon resonance with |3), thus making transfer of population to the
upper level negligible, and allowing for the pair of components with a common detuning
A, = A to induce coherent transitions between |1) and |2). This type of two-photon
transition is known as a stimulated Raman transition. A photon carries momentum

hk, and we expect the transitions to occur within a closed basis, which we therefore
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Figure 2.1: The 3-level Raman system. The arrows indicate the two Raman field com-
ponents, each with its associated frequency wr, and wavevector kr,. The solid (dashed)
arrows indicate interaction of level n with laser a, where n = a (n # a). The Rabi

frequencies are denoted €2,,, and the single-photon detunings are A,,.

preemptively define as |1,p), |3, p+ fkr1) and |2,p+ A(kr1 —kpz2)) (this choice of basis
will become clear in subsection 2.1.2), where p is the initial atomic momentum. The

atomic wavefunction can be written in terms of the amplitudes associated with these

basis states:

(¥ (1)) = ar(t)[1,p) +as(t)[3, p+hkr1) +as(t)|2, p+h(krr —kia)) = | as(t)

and this will evolve according to the time dependent Schrédinger equation (TDSE)

0 A
iho, [X(1)) = H|¥(2)), (2.3)

where the Hamiltonian H = H 4+ V is the sum of the atomic Hamiltonian H A

>, waln)(n| + p?/2M (where M is the atom’s mass) and the interaction Hamiltonian



10 Coherent Manipulation & Interferometry

V = —d - E. The Hamiltonian can be written explicitly as [33]

2

H = 2 oot 1)(L] + huos|3) (3] + hn|2) (2] — d. - E, (24)

where the p term acts on the momentum portion of the basis states. The interaction
teem V = —d-E = —ef - E represents the atom-field dipole interaction, where r is the
vector defining the position of the electron relative to the atomic nucleus. The matrix

elements of V' are defined as

" [ itk pai_1)a
Viz = (n|V]3) = Z - (ez(kLa z+(=1)"wrat+éra) 4 C.C) 13)(n|, n=1,2 (2.5)

a=1,2
where we introduce the Rabi frequency ,, for coupling of level |n) to level |3) by laser

a: )
(n|d - Eq[3)

Qna:_ )
h

n=12. (2.6)
The Rabi frequency is the angular frequency at which population will ‘Rabi flop” between

two states due to interaction with a resonant laser.

2.1.2 The momentum operator

We now explain the reasoning behind the choice of momentum-inclusive basis. The

+iky -z

matrix elements V3 contain the terms e which, when we align k;, parallel to z,

+ikraz

become e . We can re-write this with the closure relation [ dp|p)(p| =1 as

1 x etikraz — /dpeiik“z|p><p|, (2.7)

where the momentum-state wavefunction |p) can be expressed as

o= [ sl = o [ de ) (2:)

Substituting equation 2.8 into equation 2.7 gives

) 1 00 00 )

ikpaz __ i(pthkrqe)z/h _/

e = — d dze z = |d + hkrq){p|. 2.9
Twh/_oo p/_oo |2)(p| p|p £ hkLa)(p| (2.9)
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This shows that the e*™ca'Z part of the interaction term Vj,3 acting on the momentum
portion |p) of the atomic state gives rise to a change in the atomic momentum by +hky,.
Therefore for an atom initially in the state |1, p), coupling to |3, p + ikz1) can occur by
absorption of a photon at wr; (where wrq = ¢/kr,), and subsequently' coupling from
|3, p + hkr1) to |2,p + A(kr1 — kr2)) can occur by the stimulated emission of a photon
at wro. This justifies the choice of momentum-inclusive basis made in the previous

subsection.

2.1.3 The 3-level Hamiltonian

If we apply the rotating wave approximation (which removes the off-resonant terms in
the interaction Hamiltonian, as described in appendix A.1.1), we can write out the full

Hamiltonian for the three-level system in the absence of spontaneous emission from |3)

33]
21’7]\2/[ + hw; 0 m%ei(wmt—¢m)
= 0 (P+h(k§]1v;km))2 + hwy  Blzeilwrattore) | (2.10)
%e—i(wmtﬂbm) %e—i(wmt-ﬂém) % + hws

It is important to be aware of the absent terms here: we have considered only a = n
couplings, that is, where the field at frequency wr, only interacts with the ‘correct’ level
|a). In reality, both lasers will couple to both levels, as illustrated in figure 2.1 and
described by equation 2.5. A treatment considering all combinations of a and n is given
in appendix A.2, and as we discuss there, the result is simply an additional term in the

light shift of each level, which we re-insert later on in this section.

With the Hamiltonian given in equation 2.10, the TDSE exhibits fast oscillations of
a1(t), az(t) and as(t) at frequencies specified by their respective atomic frequencies and
momenta, alongside relatively slow oscillations due to interaction with the laser. In the

following we take steps to transform this Hamiltonian into a more manageable form.

We have the freedom to make the transformation |¥’) = O|¥), where O is some operator

(OTO =T) and |¢) is a transformed state vector. With such a substitution, the TDSE

Tt is important to note that the Raman transition is not a sequential absorption then stimulated
emission process (as is, for example, the case for STIRAP [34]), but is closer to a simultaneous absorption
and stimulated emission process.
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becomes

L0 NN — T (O /
ma(()wqf ) = H(OT|'Y), (2.11)

and if we apply the product rule to the left hand side, operate with O from the left, and
re-arrange, we find
0 A nn ~ 0

h~|¥) = (OHO" —ihO-O" | |0 2.12

i W) = (OHOT —in0 501 ) ), (212)

where the term inside the brackets is the transformed Hamiltonian. Using the above,
we can factor out the fast oscillations in the TDSE by making the substitutions
2

—i| P +hwy |t

ai(t) = bi(t)e ()

—i (p+h(kL17kL2)2+h )t
az(t) = ba(t)e l( M e (2.13)

(p+hky)?
QJMLl -H'ng)t

ag(t) = bg(t)e_i( ,

which is equivalent to the transformation |¥') = 71 |¥) with the diagonal matrix

z‘[pQ +hw }t
ONT 1
e 2M O 0
A [ (p4nGep,; —kp9))?
Ty = o . , (2.14)
2
i (P+;§€ML1) s |t
0 0

where |¥’) is the wavefunction described by the new amplitudes b, (t). By equation 2.12,

the transformed Hamiltonian then takes the more convenient form

0 0 %e*imtﬂbm]
o= 0 0 m%e—i[(ﬁ-w)t—d?w] (2.15)
%eimtﬂbm} h%iei[(AJrls)t*(ﬁLﬂ 0

where A and § are defined overleaf, and if we write out the transformed TDSE for each

level we obtain three coupled differential equations describing the time-evolution of the
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amplitudes of each state:

0 .

ih%bl (t) = %B_Z[At"ﬂfml}b,&(t) (2.16a)
0 ,

i % bolt) = %e—z[mw—m bs(t) (2.16b)

i y(1) = ooy, () 4 PR Aol ) (2160

In the above equations, we have defined the detuning A of the lasers wy,, from single-

photon resonance with the transition |n) to |3) as

([ (p+hkpy)? P’
A= < SMH + w3 SME + wq W1, (2.17)

and the detuning § from the two-photon Raman resonance, which is applied to laser

Wr2, as

5 ((p+h(1;§\2h— kr2))? +w2> B <2§;h +w1> (Wi — wia). (2.18)

Whilst A is large and therefore relatively insensitive to the momentum terms, § is much
smaller, and is highly sensitive to the atomic momentum. At this point we define the

laser detuning from the rest-frame resonance as
0r, = (w1 —wz) — (w1 — wr2). (2.19)

The above transformation represents a move to the interaction picture (we began in
the Schrodinger picture), in which some of the time evolution of the state amplitudes is

‘shunted’ into the transformation operators.

2.1.4 Effective two-level system

In the Raman arrangement the detuning A is large, such that A > |Q11], |Q92], |0], and
therefore the population of |3), and the associated spontaneous emission from |3), is
negligible. In order to simplify our equations further, we make the assumption that the
populations by (t) and by(t) oscillate (via the Raman transition) at a frequency much
smaller than the detuning A. In this case, the exponential terms in equation 2.16c¢

oscillate much faster than b1(¢) and ba(¢) (and A > §), and we can therefore integrate
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2.16¢, assuming by (t) and ba(t) to be effectively constant:

to+t a
ih/ —b3(t')dt' = ih[—bs(to) + bs(to + t)]

O, 5
= ih —bg(to)—z—lAlel[A”mﬂbl(t)—ﬂe’[(AH)t*d’“]bg(t) )

2A
(2.20)
We then substitute this into equations 2.16 which respectively become
0 _ hQuf? R85 sty
., 0 R Qoo s R|Qaz|?
hby(t) = ——H 2200t =0n)p, (1) — ZE220 o (¢ 2.21b
zatg() TN 1() A 2(t), ( )
QF, . Qs

ih%bg(t} — %elmt—ﬂﬁm]bl (t) + %g[(AM)t—ma]bz(t)’ (2.21c)

where we have defined the effective laser phase ¢; = ¢r1+ @2, which is the two-photon
analog to the individual laser phase. Equation 2.21c exhibits only fast oscillations e=*At
(where A > 0) of the intermediate state amplitude b3(¢). These oscillations quickly

average out to zero, and can be omitted [33] from the TDSE, leaving an effective two-

level system.

We can now write down the simplified, two-level Hamiltonian [35]

ch QTRei(ét_QSL)

H=-h (2.22)

%e—i(at—m) QAC
which acts to couple the states |1,p) and |2,p + h(kr; — kz2)), whilst the population
in |3, p + hkp1) remains zero. In equation 2.22, the diagonal terms represent the light
shift of the associated level. As stated previously, this treatment has omitted couplings
where a # n, since they act only to alter the light shifts. The full two-level Hamiltonian
including these terms is given in appendix A.2, and at this point we re-introduce them

in the definition of the light shift of level n:

AC _ Qnal®
00 =>" el 1,2. (2.23)
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These are consistent with the far-detuned light shifts obtained with single-photon cou-
plings in the dressed state picture, as described in appendix section A.1.3. The two-
photon Rabi frequency, the rate at which population ‘Rabi flops’ between |1) and |2) on

resonance, is defined as
Q70

0
R 2A

(2.24)

2.1.5 The dressed state approach

The time-dependent Schrodinger equation for this effective two-level system can be
solved if we shunt the remaining time-dependent terms into transformation operators,
and convert to what is known as the dressed state picture, as follows. We first ap-
ply a uniform shift of —(Q'¢ + Q4')h/2 to the energy scale. This is equivalent to a
transformation (|¥”) = T5|¥’), as in equations 2.11 and 2.12) using the diagonal matrix
Ty = e~ U+ D/2] The transformed Hamiltonian has diagonal elements +h54¢ /2,

where

54C = (¢ — Q%) (2.25)

is the relative light-shift between the two levels. As in appendix A.1.1, we can remove
the time-dependent off-diagonal terms in H if we make a transformation |¥)p = R|¥) =
|1)r + |2) r with the rotation operator

. . e~ i0t/2 0

R =702 — , (2.26)

0 ei§t/2

where o, is a Pauli spin matrix. For reference, the exponent of a Pauli matrix o is given
by €"%® =TI cosa + io sina. This acts to rotate the frame of reference at a rate § about
the z-axis. Substituting R into equation 2.12 gives a transformed time-independent
Hamiltonian (with known solutions) in the rotating frame:

2

Hp=-n| _*?
QiRei(]ﬁL _
2

sy (2.27)
2
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h ~
The eigenvalues of this matrix are A\ = :I:§Q R, where we define the generalised, off-

resonant two-photon Rabi frequency as

Op = /IQR[ + (54C — 5)2. (2.28)

This gives the angular frequency at which the atom will oscillate between |1) and |2).
The procedure for finding the eigenvectors of a matrix of the form Hp are given in
appendix A.1.2. Here, we simply write them down as
O , /o) :
|AL) = cos 5!1)3 e/ _sin 5[2)3 e'oL/? (2.29)

O - ® ,
A=) = Sin§|1>R e~0L/2 4 cos 5!2)3 eoL/?, (2.30)

These are known as the dressed-state eigenvectors, where we have defined

Q,

tan © = ((514;,7_(5) (2313)
—(§4C _
cos© = M (2.31b)
Qr
Q
sin® = Q—R (2.31¢)
R

2.1.6 Solutions to the two-level TDSE

Now that we have a time-independent Hamiltonian, for which we have defined energy
eigenvalues and eigenvectors, we are able to derive the solutions to the time-dependent
Schrédinger equation in the interaction picture. The following describes the procedure

from starting-state to solutions, as adapted from [35].

We begin at time ¢y with our effective two-level atom in the state |U'(¢o)) = c1(to)|1) +
ca(t0)|2), where we have already made the transformation with a two-level version of T}.
We first make the transformation |¥”(tg)) = To| ¥ (ty)) to antisymmetrise the Hamilto-
nian as in section 2.1.5. Next we transform |U”(()) to the rotating frame, in which we
have defined the eigenvectors |Ay), by acting on it with the operator R(to) from equation

2.26. The wavefunction in the rotating frame becomes

W (to))r = ea(to)e ™ (M HAD2=010/2)1) 1y (1) ~HHTHBD2¢i0%0/2)9)  (2.39)
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During an interaction with the laser of duration ¢, the atom will evolve according to the
TDSE with the Hamiltonian H R, which can be solved in terms of the time-evolution

operator U (to,t):
U(to + 1))k = Ulto, £)|¥(t)) g, where Ulto, t) = e~/ Hrlt—t0)/h, (2.33)

Given that we have a set of eigenvalues Ay and eigenvectors |A1), which are represented
in the eigenvalue equations Hg|A+) = Ax|A+), a function f(Hg) of the Hamiltonian
(an operator) will obey the equation f(Hg)|A+) = f(A+)|A+). This can be applied
to the exponential function U(tg,t) in equation 2.33 along with the closure relation

MY Ag| + | A=) (A—] = 1 in our two-eigenvector basis to give

Ulto, t) = e HRE=0)/M (X YO0y [+ [A_)(A_])

(2.34)
— ez’)\+(t—t0)/h|)\+><)\+| + ei)\,(t—to)/h‘)\_><>\_"
We can then use Rf(tg + t) and TQT (to + t) to convert back to the initial basis:
(Wl (g + 1)) = T (to + t) R (to + )| ¥ (to + 1)) & (2.35)

From this we obtain the amplitudes c¢i(top + t) and ca(tg + t) after an interaction of

duration ¢t with the laser field (see, for example [33, 35], or earlier work by Ramsey [36]):

7sin O sin (QRt>
2
Q 0
+ ci1(to) [Cos (f) — 4cos ©sin (f) >

(2.36a)
QRt . . QRt
cos <2> + i cos © sin (2>]
78in O sin <92Rt>] )

(2.36D)

ity +1) = ez’(Q‘l“C-l—Qg‘C)t/Qeiét/Q <C2(t0)€i(6to—¢L)

+c (to)e—i(5to—¢L)

These equations are the work horses of all numerical simulations in this thesis. The

amplitudes c; (t) and c2(t) can be numerically calculated and squared to give the resultant
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populations (or probabilities) |c1(¢)[? and |c2(t)|? for any pulse or pulse sequence with a
given laser intensity, laser detuning (both A and §), laser phase, atomic dipole coupling
strength and atomic momentum. Whilst useful for simulations, equations 2.36 offer
little intuitive insight into the population dynamics of coherent Raman pulses. The
next section presents a more visually-intuitive approach to coherent transitions, and

provides a toolkit for understanding the key coherent pulses in atom interferometry.

2.2 The Bloch sphere picture

A useful method for visualisation of coherent pulses, and the topic of this section, is the
Bloch sphere picture. It allows us to visually map out pulses as rotations of a state vector
around the surface of the unit sphere, and gives us a more intuitive understanding of
what occurs during a Raman pulse when, for example, the laser interaction time, phase
or detuning is changed. This treatment was adapted by Feynman [37] from early nuclear
magnetic resonance work by Rabi, Ramsey and Schwinger [38], and (earlier still) Bloch

[39]. A particularly good description of the Bloch sphere picture is given by Shor in [40].

2.2.1 Time evolution of the density matrix

We begin our introduction to the Bloch sphere picture by defining the density matrix p,

which describes a many-level quantum system as a statistical ensemble in a mixed state:
p=3" enciln) (237
n,m

where ¢, is the amplitude of the pure state |n). In an effective two-level system, the
density matrix can be written as

al? e
ﬁ — |\I//><\I’/| _ | 1| 1C9 _ P11 P12 7 (238)

cact o P21 P22
where we have dropped the time-dependence notation for simplicity. In the density
matrix, the off-diagonal terms p12 and po; are known as coherences, and describe coupling
between the two levels due to interaction with a driving field. The diagonal terms p11

and poy are the populations, which are simply the probabilities of the atom being found
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in the associated pure state. We can write the TDSE in its Liouville variant form:

dp

ih
ot

[H, p), (2.39)

which for the Hamiltonian in equation 2.22 gives the equations of motion for the elements

of the density matrix as

m% _ _M;R (5t=61) 1 4 hf;* ~i(ot=61) (2.40a)
hagf —h(Q{'C = Q) p1a + hg P10 (p11 — pa2) (2.40b)
haapil RO — ) pon — %e_i(ét_%)(pn — p2) (2.40c)
hag? __ EQTR emilBt=01) 5 4 WTReiwt—m) D1, (2.40d)

To simplify these equations, we transform to the rotating frame by making the substi-

tutions

51 = Cle_i(St/2 (2.41&)

Gy = coe™t/?, (2.41D)
which transform the coherences of the density matrix to

pra = proe " (2.42a)

pa1 = pare, (2.42b)

and leave the populations unchanged (p11 = p11 and paa = p22). We can then re-write

equations 2.40 as

op11 hr s, ~

ih 5 —Te po1 + %ezmplg (2.43a)
hagf h(6—054) 5 m(pll — o) (2.43b)
hagil = — 1 (6 — 04C) oy — —R L (1) — figa) (2.43¢)
hag? = —@eimﬁ + %e DL Gor (2.43d)

where we have made the substitution §4¢ = Q¢ — Q€.
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2.2.2 The optical Bloch equations

The expectation value of an operator A can be written in terms of the density matrix as
(A) = Tr(Ap) [41]. Considering the expectation values of the Pauli spin matrices, which
are projections of the state vector on to each of the three Cartesian axes x, y and z, we

define the variables

u=Tr(ozp) = p12 + P21 (2.44a)
v =Tr(oyp) = —i(p21 — P12) (2.44b)
w = Tr(azp) = /311 — ﬁgg. (2.446)

Equations 2.44 are then substituted into equations 2.43 to give three coupled differential

equations:

C(;Q: =—(0— 5AC) v— % (QRe*id’L — Q*Rei¢L) w (2.45a)
gq; = (6 - 5AC) u—+ % (QRG%W + QEewL) w (2.45b)
Ow _ o idr s —idr, 5

o = —i(QRe" L p12 — Npre p21)- (2.45¢)

These are a simplified form of the optical Bloch equations (OBEs). The full, general
form incorporates loss due to spontaneous emission, however we choose to neglect such

effects here. In the case where Qg is real (Qr = Q}), the OBEs become

ou

pri ((5 — 5AC) v — Qpsin(¢r)w (2.46a)
gqt) = (6 — 09) u + Qp cos(¢r)w (2.46b)
%L; = —Qprcos(¢pr)v + Qrsin(or)u. (2.46¢)

2.2.3 The Bloch vector

We can now define the Bloch vector R, of which u, v and w are the amplitudes along x,
y and z respectively:

R = uXx + vy + wz. (2.47)
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Differentiating R gives the time-evolution of the Bloch vector, which can be represented

as a torque on R caused by the field vector 2

dR
“Z=RxQ 2.4
dt S (248)
where by inspection we find
Q = Qpcosgrx + Qpsingry — (6 — 64°) z. (2.49)

Given that dR/dt and € are orthogonal, we can see that R rotates around the axis de-
fined by €2, and that (in the absence of any loss processes, such as spontaneous emission)
R maintains a constant length. € has horizontal components 2z and a vertical compo-
nent § —64¢, hence it is inclined out of the x-y plane by an angle arctan ((5 —649)/0Q R)-
Furthermore, we note here that the field vector lies along the eigenvectors given in equa-
tions 2.29 and 2.30. The sphere on whose surface the Bloch vector R exists is known
as the Bloch sphere. We can also see from equation 2.48 that the angular frequency at

which R rotates around €2 is given by

Q] = /03, + (35— 640)?, (2.50)

which is identical to the generalised, two-photon Rabi frequency Qr given in equation
2.28. We can gain some insight into the behaviour of our coherent Raman pulses by
plotting the evolution of the Bloch vector as a function of pulse time for a range of pulse
parameters. The detuning of the laser with respect to the atomic transition, which we
characterise by the term § — 64, affects the trajectory of the Bloch vector as depicted
in figure 2.2. A resonant pulse (§ — 64¢ = 0), as shown in figure 2.2 (a), exhibits
(for ¢, = 0) a field vector along the x axis. The Bloch vector therefore traces out a
great circle in the y-z plane at an angular frequency Qr = Qr. An off-resonant pulse
(|6 — 64€| > 0) is characterised by a field vector which does not lie in the x-y plane. In

this case the Bloch vector traces out a tilted, small circle on the Bloch sphere as shown

in figure 2.2 (b) and (c), at an increased angular frequency Qp = \/Q% + (6 — §4C)2,
It is useful to note that the linear speed along the sphere’s surface remains the same,
as defined by g, regardless of the detuning. The lower plot in the figure shows the

normalised temporal evolution of (1 — w)/2, which is equal to the population in state
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interaction time ¢ x Qp/m

Figure 2.2: Top: Bloch sphere plots showing the initial Bloch vector (blue arrow), the
field vector (red arrow), and the rotation trajectory of the Bloch vector (blue dots), for
(a) a resonant pulse with §—64¢ = 0, (b) an off-resonant pulse with (§ —64¢)/Qr = 0.5,
and (c) an off-resonant pulse with (6 — 64¢)/Qr = 1.0. In all cases ¢, = 0. Bottom:
The excited state population as a function of the normalised atom-laser interaction time
for the parameters given in the upper plots. (a) — solid line, (b) — dashed line, and (c)
— dotted line.

|2), corresponding to the upper plots. We can see that only in the on-resonance case

can we achieve complete population inversion.

Bloch vector trajectories for different values of the Raman beam phase ¢ on resonance
are shown in figure 2.3. Altering ¢ simply acts to rotate the field vector around the
z-axis by the angle ¢;. We can make the Bloch vector rotate in the x-z plane by setting
¢, = /2, for example, and we can reverse its direction of rotation by shifting ¢ by .
This freedom to control the axis of rotation is essential in composite pulses (chapter 6)

and atom interferometry (chapter 7) experiments.

2.2.4 The coherent pulse toolkit

To end this section, we introduce the key operations in atom interferometry. By tailoring
the duration t of our coherent pulses we are able to achieve rotations by well-defined
angles around the Bloch sphere. The two most useful rotations in atom interferometry

are the resonant w/2 and m, which are shown in figure 2.4 (a) and (b) respectively. To
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Figure 2.3: Bloch sphere plots showing the initial Bloch vector (blue arrow), the field
vector (red arrow), and the rotation trajectory of the Bloch vector (blue dots), for
resonant (6 — 04¢ = 0) pulses with (a) laser phase ¢ = 0, (b) ¢ = 7/4, and (c)
¢, = 7/2. The green arrow in each case shows the direction of rotation.

achieve a m/2 pulse, we set Qrt = w/2. This gives rise to a rotation by an angle 7/2
around the field vector, and (for a state initially at the pole) induces an equal super-
position of the two atomic states. Since the two states constituting this superposition
have different momenta and therefore follow different paths in space, the 7/2 pulse is
analogous to a beamsplitter in an optical interferometer. To achieve a m pulse, we set
Qprt = w. This induces population inversion, which is represented by a 7 rotation around
the field vector. The 7w pulse is analogous to a mirror in an optical interferometer, since
it physically deflects the atomic wavepacket, and does so in opposite directions for the
two states, as if approaching a mirror that bisects the angle between them. The third
and final operation in the toolkit is free evolution, which is simply the evolution of the
Bloch vector in the absence of any driving field, as shown in figure 2.4 (c). If the detun-
ing § — 84C is non-zero, the Bloch vector will precess around the z-axis at a rate equal

to this detuning.

The lower plot in the figure shows the population in state |2) as a function of the
normalised detuning parameter (§ —§4¢) /Qg, which may be non-zero due to a non-zero
velocity or laser detuning, for pulse durations corresponding to a resonant 7/2 and a
resonant 7 pulse. At zero detuning, we find their excited state populations |ca|? to be
0.5 and 1.0, respectively. The curves exhibit a ‘sinc-squared’ line-shape, whose spectral
width (FWHM = 7/2) is linearly dependent on the two-photon Rabi frequency Qg. The
increase in spectral width with increasing Q)i is known as power-broadening. These key
operations will be combined in the next section, which discusses velocity-selective atom

interferometry.
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Figure 2.4: Top: Bloch sphere plots showing the three main operations in atom inter-
ferometry. Plots (a) and (b) show a 7/2 and 7 pulse, respectively, with the field vector
(red arrow), the initial/final Bloch vectors (light/dark blue arrows), and the Bloch vec-
tor trajectory (blue dots). Plot (c) shows Free evolution where Qr = 0 and the Bloch
vector precesses about the z-axis. Bottom: Resultant excited state population as a
function of the normalised detuning parameter for a 7/2 pulse (dashed line) and a =
pulse (solid line).

2.3 Velocity-selective atom interferometry

This toolkit of coherent pulses allows the construction of a light-pulse atom interferom-
eter. The interferometer schemes of interest in this work are those which are velocity-
sensitive, that is, where the phase accrued between the two paths in the interferometer
depends on the initial velocity of the atom. One example of this is the most basic inter-
ferometer sequence: § — 5. This is commonly referred to as the Ramsey sequence, since
it is inspired by Ramsey’s early work on his method of separated oscillatory fields [36]. In
the following we give a short treatment of the phase accrued within this interferometer,

and discuss its dependence on the atomic velocity.

2.3.1 The Ramsey interferometer

This sequence is summarised in figure 2.5. We begin with an atom in the state |1, p),

such that ¢1(fp) = 1 and cz(t9) = 0. A Raman 7 pulse of length 7 = 26 at tg = 0 puts
R
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the atom into an equal superposition of the states |1, p) and |2, p+ h(kr1 — kz2)). This
pulse has an effective phase <Z>(Ll). Application of equations 2.36 to find the state at the

end of the 7 yeilds

. 4 1
ci(r) = Qi+ ) T/2 jibT/2 (1 —icos®)

AC | AC 1 €5 (2.51)
_ Q{4 Y) /2 —idT/2 ipr 7 s
co(1) = €' 2 e 7 (e L jsin @) .

The two coherent components of this superposition subsequently diverge in space, since
they have different momenta. After the initial pulse, the atom is left to evolve for a
time T" with the Raman interaction switched off. During this period of free evolution
Q1 =09 =Qr =0, hence Qr=—-6,cos0 =—1andsin® =0 (the light-shift terms also
disappear), and the Bloch vector precesses around the z-axis at the angular frequency

6. The state amplitudes become

a(r+T) = eiér/%l(f) [cos <_52T> + isin (?ﬂ)} = ¢1(7)
co(t+T) = e—iéf/zc2(7) {cos <_52T> — 4sin (_‘;T>] = eo(7),

and we find, as expected since the state eigenenergies have been factored out in the

(2.52)

interaction picture, that the amplitudes are unchanged during free evolution. Finally,

s

another 5

pulse is applied, with a laser phase ¢(L2), after which the amplitude of the

upper state |2,p + (k1 — kro)) is

221+ 171) = U A )T o —idT

1

: i i? —isT (; (2.53)
§sm® e’ (i —cosO) + €L e (i 4+ cosO)] .

We can simplify this by defining a relative phase qb(Lrel) = (LQ) — qb(Ll) between the two §

. - (1) .
pulses, and taking e’’’ outside the square brackets:

) . ) e
02(27' + T) _ 61(ch+Q‘24C)T€—157'6—7,6 T/261¢(L) «

% sin® | (i — cos ©) + i T—01") (i + cos @)} .

(2.54)
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Figure 2.5: The § — 5 (Ramsey) interferometer. (a) Wavepacket position-time diagrams
for the interferometer, in the absence of external potentials. (b) An example Bloch sphere
representation of the 5 — 7 sequence, in which the phase of both pulses is ¢ = 0. The

light (dark) blue arrow is the initial (final) state vector, and the red arrow is the field
vector. (c) Resultant upper state populations (equation 2.55) as a function of detuning
d for fixed relative pulse phase and different pulse spacings T', given in the legend. (d)
As (c), with fixed T" and different relative phases.

To clarify, this relative phase is distinct from the effective phase introduced in section

2.1.4. The amplitude c2(27 4+ T') is squared to give the population of the state

5T_¢(rel) 5T_¢(rel) 2
cos % — cos © sin % , (2.55)

which in the case where the laser is close to resonance (§4¢ — § < Qg, and therefore

lca(27 +T)|* =sin? ©

cos O ~ 0 and sin© ~ 1) becomes

lea (27 + T)J? ~ [1 +eos(8T — ¢ (2.56)

1
2
The resultant upper state population follows an oscillation whose period is dependent
on the time 7" between the 7 pulses, as illustrated in figure 2.5 ¢ where we plot equation

2.55 as a function of the detuning ¢ for a fixed relative laser phase. We find an increased
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period at smaller values of T'. Figure 2.5d shows the effects of the relative phases of the
two 5 pulses. Shifting (bgel) by 7 simply shifts the maxima of the Ramsey pattern along
by half of one oscillation period. In both 2.5¢ and 2.5d the light-shift §4¢ = 0. The
curves are enclosed within a Gaussian envelope, which we can shift left or right by making
54 non-zero. It is important to note that an interference pattern is only observed if
the two wavepackets are still spatially overlapping as the second pulse is applied. The
spatial extent of a wavepacket, otherwise known as its coherence length, is limited by

the position-momentum uncertainty principle leo, = h/2Ap > Az, and therefore fringes

are observed if the momentum-spread Ap of the wavepacket is sufficiently small.

2.3.2 Velocity-dependent phase

As we have seen in figure 2.5, the output state of the interferometer, as determined by
the interferometer phase, depends on the value § attributed to the atom. Returning to
the definition of § given in equation 2.18, we can write the momentum-inclusive detuning

as
p-(kp1 —kro2) N Ak —kpr2)?

0= -0+ M i

(2.57)

The first term on the right hand side is, as described, the laser detuning. The second is
the velocity-dependent, or Doppler shift term which can be written as v - (k1 — kz2)
where v is the atomic velocity. For a cold atom moving at 50 mm/s and interacting
with counter-propagating (kr; = —kr2) 780nm beams, this term is equal to around
27 x 128kHz. It is useful to define at this stage the Raman recoil velocity,” i.e. the

change in atomic velocity upon undergoing the Raman transition, as

(ki — k
VR = (“ML?) (2.58)

We can therefore label the third term in equation 2.57 as the Raman recoil shift Mv?% /2h,
which for a rubidium-85 atom (mass number 85) interacting again with 780 nm light is

approximately 27 x 15.4 kHz. The corresponding Raman recoil velocity is vg = 12mm/s.

We can see from the above that the output state of the § — 7 interferometer is dependent

on the initial velocity of the atom. Since the output state determines whether or not the

2 As opposed to the single-photon recoil velocity, which is half of this value.
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atom has absorbed a photon (or two in the case of Raman transitions), this represents a
velocity-dependent impulse. Chapter 7 explores this principle, and its use in engineering

atomic cooling forces.

2.4 Rubidium-85

In the previous sections we have discussed Raman transitions and interferometry based
on a system of three atomic levels, namely |1,p), |3, p+hkr1) and |2, p+A(kr —kr2)).
This section describes an atomic system of such form in rubidium-85, which we use in

experiments in the lab.

We begin this section with a brief summary of atomic structure. Note that detailed

explanations can be found in many textbooks, including Foot [42] and Atkins [43].

2.4.1 Atomic structure

We describe the state of an atom by its corresponding set of quantum numbers. It is
important to note that here we consider only the (hydrogen-like) alkali metals, which
exhibit a single outer electron. Ignoring the electron spin for now, the necessary quantum
numbers are n,l and my;, and the electron wavefunction, described by these quantum

numbers, can be written as the product of a radial and an angular part:

¢n,l,ml (’l“, 07 ¢) = Rn,l(r)yi,ml (9, ¢) (259)

The radial part of the wavefunction is represented by the Laguerre polynomials R,, ;().
The principal quantum number n = 1,2,3,..., which originates from the Bohr model
of the atom, specifies the orbital ‘shell’ in which the outermost electron is situated, and

describes the electronic energy according to E,, oc 1/n?.

The angular part of the wavefunction is described by the spherical harmonics Y; ,,, (6, ¢),
which satisfy the simultaneous eigenvalue equations IAJQYLml = l(l+1)h2Yl,ml and IAJZYl,ml =
hmyY) m,, where L is the angular momentum operator, whose z-component is L, =

—ih%. The orbital angular momentum quantum number [ takes the values! =0,1,2,...,n—

1, and specifies the angular momentum eigenvalue of the electron according to \/I(Il + 1)A.
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The magnetic quantum number m;, which describes the projection of [ along the z-axis,
takes the values m; = —I,—l 4+ 1,...,[, and specifies the z-component of angular mo-

mentum as myh.

The electronic spin angular momentum S, described by the quantum numbers s = % and
mg = :I:% (since electrons are Spin—% particles), gives rise to an intrinsic electron magnetic
moment ps = —ppgsS/h, where up is the Bohr magneton and gs ~ 2 is the electron
g-factor. The interaction between ps and the magnetic field created by the orbiting
electron is known as the spin-orbit interaction. This leads to the definition of the total
electronic angular momentum J = L + S, where the quantum numbers j and m;, which
respectively describe the total electronic angular momentum and its projection along
the z axis, take the values j = |l —s|,|l —s+1[,...,l+s,and m; = —j,—j+1...,].
The spin-orbit interaction acts to split the levels into states separated typically by many

THz, giving the atom so-called fine structure.

The atomic nucleus also exhibits spin angular momentum I, specified by the quantum
number I. This gives rise to an intrinsic nuclear magnetic moment, which in turn
interacts with the magnetic fields generated by the electron. In light of this we define
the total angular momentum F = J + I, which we specify by the total atomic angular
momentum quantum number F' = |j—1I|,|j—I+1|,...,j+I and its magnetic counterpart
mp = —F,—F+1..., F. These interactions with the nuclear spin give rise to energy level
structure typically on the scale of GHz, known as hyperfine structure. In our experiments,

we induce coherent transitions between levels within this hyperfine structure.

Each hyperfine state F' is split into 2F + 1 magnetic-sensitive substates labelled mp.
We refer to these sublevels as Zeeman sublevels, since the magnetic fields considered in
our experiments induce Zeeman-like (weak field) splitting. The energy shift of a Zeeman

sublevel mg due to an external magnetic field of magnitude B is given by
AE7ceman = uBgrmrB, (260)

where pp is the Bohr magneton and gr is the Landé g-factor, which can be measured

experimentally for a given transition.
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The set of quantum numbers given in the above allows us to write the full spectroscopic

notation, or term symbol, for an atomic state as
n* L (F,mp), (2.61)

in which for hydrogenic atoms, S = s, L =1 and J = j. Conventionally we replace the
numbers L =1=0,1,2,... with the letters L = S, P, D, ..., giving rise to the notion of

‘s-orbitals’, etc.

2.4.1.1 Rubidium-85 structure

The structure of rubidium-85 (**Rb, atomic number Z = 37), relevant to the experiments
in this work, is shown in figure 2.6. This particular sub-section of the structure is known
as the rubidium Ds line, which is represented by fine structure transitions within the
manifold defined by the levels |525; /2) and 152 Py /2), and can be addressed by tuning our
laser to around 780 nm. Within these two levels, the nuclear (I = 5/2) and electronic
(lower, upper J = 1/2,3/2 respectively) angular momenta interact to give a hyperfine
level splitting defined by the quantum numbers F' and mp as described previously. As
shown in the figure, the lower level is split into two hyperfine states |52, 12, B =2,3),
separated by 3.036 GHz, and the upper level is split into four \52P3/2,F =1,2,3,4),
separated by smaller intervals. In our experiments, we drive Raman transitions between
the levels [52S) o, F = 2) and 525 5, F' = 3) which are respectively split into 5 and 7
magnetic-sensitive Zeeman sublevels. The Landé g-factors for each hyperfine level are

given in figure 2.6, along with the coefficient ppgp, which is quoted in MHz/G.

2.4.2 Dipole transitions

Broadly speaking, dipole transitions between atomic levels occur when the frequency of
an applied alternating electric field coincides with an inter-level frequency interval, or
atomic resonance. They obey selection rules governed by the conservation of angular
momentum, which to some extent we are able to visualise in terms of an overlap between
the atom and photon wavefunctions. For a dipole transition from state |, F,mp) to

|/, F', m/), where a describes all quantum numbers other than F and mp, the coupling



Coherent Manipulation & Interferometry 31

F=4
gr=1/2
(0.70 MHz/G)
100.205(44) MHz
l 120.640(68) MHz
5"Py A ¢
f 20.435(51) MHz
\ \ ? 9 =T/18 F=3
83.835(34) MHz (0.54 MHz/G)
113.208(84) MHz 63.401(61) MHz
gr=1/9
# (0.16 MHz/G)
‘ F =
v 29.372(90) MHz F_
T gp=—1 -
(- 1.4 MHz/G)
780.241 368 271(27) nm
384.230 406 373(14) THz
12 816.546 784 96(45) cm ™!
1.589 049 139(38) eV
F=3
gr=1/3
(0.47 MHz/G)
1.264 888 516 3(25) GHz
2 ¥
57S, /2
3.035 732 439 0(60) GHz
1.770 843 922 8(35) GHz
F =2

gr==1/3
(—0.47 MHz/G)

Figure 2.6: (Taken from [44]) Rubidium 85 energy level diagram.
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strength, or Rabi frequency, is given by the overlap integral

1
Qf;'?mFMF’,m;,} = _ﬁ<a/?F,amlF|d Eola, F,mp), (2.62)

where E, (a = 1,2 in the Raman system indicates the particular beam) is the electric
field vector, and d = er is the atomic dipole moment, as determined by the electron’s
charge e and position r relative to the nucleus. We can decompose both r and E, into

irreducible components within the spherical basis defined by the unit vectors

&1 = —(X+iy)/V2, (2.63a)
& = 2, (2.63b)

é_1 = (x—1iy)/V2, (2.63¢)

in which the scalar product is given by (Appendix F in [45])

d-E, =eE, Y (—1)Irqe (2.64)
q
where ¢ = —1,0,1 and ¢, describe the polarisation of the electric field, in order to
re-write equation 2.62 as
ek
O sy =~ S (Ve T F el o). (2.65)

We are able to simplify this by application of the Wigner-Eckart theorem, which states
that for an irreducible tensor operator T(f , the overlap integral (o, F”, m};\qu|a, F,mpg),
where a describes all quantum numbers other than F and mpg, is proportional to the
Clebsch-Gordan coefficient

(F' mlp|F kymp, q) = (=1)F ~FmeoF 17 FokF (2.66)

m’p q —mpg

in which k£ and ¢ depend on the properties of the operator and the term in parentheses
is a Wigner 3-j symbol [46], with a constant of proportionality (o/, F'||T*||c, ), known
as the reduced matrix element. The reduced matrix element is independent of mpg and

q, and we are able to factor out its dependence on F', leaving a reduced matrix element
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that depends only on the initial and final n, L, and J quantum numbers by writing

(o, F'| T, F) =(c/, J'|T*||a, J) (—1)F"FTHR+T 5

J J ok (2.67)
VEF +1)(2J +1) ,
F' F I

in which the term in braces is a Wigner 6—j symbol. Since it is a vector, the position

operator T has rank k = 1, hence by applying the Wigner-Eckart theorem to equation
2.65 we arrive at the final form for the Rabi frequency

Q@ _ e aps Ve o G(F', F,J', J,1,m, 2.68

‘vaF>7‘F/7mlF‘)__ h < H H >Z(_ ) €—q ( sy Ly 7mF7mF7Q)~ ( : )

q

where we have separated the experimental, empirically soluble parameters from the

purely geometrical term

G(F',F,J, J,I,my, mp,q) =(—1)2F+/+H+me JOF £ 1)2F +1)(2J + 1) x
F' 1 F J J 1 (2.69)

my q —mp F' F I

The Wigner 3—j and 6—j symbols can be calculated using the ThreeJSymbol and SixJSymbol
functions in Mathematica [47], and the reduced dipole matrix element for the 55/, —
5P transition as found in Steck’s alkali D line data [44] (along with tabulated values
of G) is 3.58425(74) x 1072 Cm.

The 3-j and 6-j symbols in the above equations impose a neat statement of the selection

rules based on the associated transition quantum numbers: the product of the symbols

Polarisation Transition Amp
Left circular (LCP) k || &g ot +1
Right circular (RCP) k || & o -1
Linear € || &9 (€ || 2) 0 0
Linear € || y at=(ct+07)/V2 +1
Linear € || x 7 =(cT—0o7)/V2 £l

Table 2.1: Table showing the possible polarisation states of the driving field photon,
and their associated dipole transitions, where €y = z is the quantisation axis of the
transition, and € is the polarisation vector of the photon. For the circularly polarised
cases, the photon is considered to be moving in the positive &y direction.
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is equal to zero unless:
1. AJ=J —J=0,%1 except for J=0— J =0.
2. AF =F — F =0,%+1 except for F=0— F' =0.
3. Amp =mlp —mp = —q.

These selection rules reflect angular momentum conservation. The angular momentum
of the photon is added to (subtracted from) the atom in any absorption (emission) event,
and this imposes restrictions on the types of transitions allowed, dependent on the photon
polarisation and the intitial and final mpg states. A linearly polarised photon whose
wavevector is perpendicular to the quantisation axis (k L €y) and whose polarisation
vector is parallel to it (e || &) drives a 7¥ transition, whereby Amp = 0. A circularly
polarised photon whose wavevector is parallel to the quantisation axis (k || €y, moving
in the positive €y direction) and whose polarisation vector rotates counter-clockwise
as observed from the reciever is denoted LCP (left-circularly-polarised, helicity +1),
and drives 0T transitions, whereby Ampr = +1. This is represented by the ¢ = —1
component of equation 2.68. Similarly, an RCP (right-circularly-polarised, helicity —1)
photon, ceteris paribus, drives o~ transitions, whereby Amp = —1, as represented by
the ¢ = 1 component of equation 2.68. A good description of the circular polarisation

and corresponding helicity states is given in [? ].

Furthermore, a linearly polarised photon whose electric field vector is perpendicular to €y
(i.e. along X = —(é11—€_1)/V2 or § = i(é&41+@é_1)/V/2) drives an equal superposition
of o7 and o~ transitions. These are labelled 7+ = (6 +07)/+/2 for polarisation parallel
toy and 7~ = (6 —07)/V/2 for polarisation parallel to . All of the above polarisation

states and their associated labels and mp selection rules are summarised in table 2.1.

2.4.3 Raman transitions

In order to create a Raman system in 8Rb we require two laser beams at 780.243 +
% nm, separated in frequency by the lower hyperfine splitting wgrg = 27 x 3.036 GHz.
With this we can drive Raman transitions between |55 o, F' = 2) = |1, p) and |55 /9, F' =
3) = 2, p+ (k1 —kz2)) via the upper states [5P; /o, F') = |3, p + hkz1), provided that

the detuning A from single-photon resonance is large. The coupling strength for the
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Raman transition (equation 2.24) is determined by the product of the two single-photon
transition coupling strengths, and by inspection of the dipole selection rules given in the
previous section, we find that Raman transitions may occur via more than one upper F’
hyperfine level. This makes the problem of describing the system rather more complex,
however a useful formalism for describing Raman transitions via multiple atomic levels,
which we adopt here, is given by Bateman et al in [48]. We discuss the general concepts

of this formalism in the following.

2.4.3.1 Vector formalism for multiple Raman routes

In the regime where the hyperfine splitting of the upper state levels is much smaller
than the single-photon detuning A we can make the approximation A\, 1m)) =

AIF,mF),|2,m’F> ~ .-~ A, and treat all transitions as having the same A.

Considering the system consisting of two lower and four upper hyperfine levels (F' = 2,3
and F' = 1,2,3,4), we can write the single-photon couplings (equation 2.62) associated

with the two Raman beams as components of two vectors:

_ (ol (a) (a) (a)

Q0 = (Q|2,mF>,\1,m;>’ Qo mpyf2mpys Yzame) [3ml): Q|2,w>,|4,m'F>> (2.70a)
_ (0@ (a) (a) (a)

oo = (Q|3,mp>,\1,mg>’ ey l2my) 3mpe) [3.mh) Q|3m>,|4,m'p>>' (2.70b)

Next, the two-photon Rabi frequency is re-written for the system of multiple upper levels

as the scalar product® of these two vectors where a = n

_ Q11 - Qa2

Q
R 2A )

(2.71)

(we omitted the terms g, with a # n earlier due to their fast oscillatory nature) and
this can be expressed in terms of the reduced matrix element, the electric field strengths,

and the detuning A as

(ST
Qp = INE BT Ey|G11 - Gagl, (2.72)

3Note that this vector formalism is a subset of a more general tensor notation for transitions between
multiple levels, and for systems with larger numbers of levels, tensor products must be considered when
calculating the coupling strengths.
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where the vectors Gy, constitute the corresponding single-photon G coefficients (see
equation 2.69) for coupling of level n by laser a. In this formalism, we have separated the
experimental parameters from the purely geometrical term |G1y - Gaa|, which describes

the dipole matrix elements of the Raman transition.

By inspecting equations 2.70 and considering the selection rule AF = 0,+1, we can
see that both the fourth component of €21; and the first component of Q9o (and their
corresponding components in Gy 22) are equal to zero. This makes the term |G1; - Goo|
only dependent on the middle two components, i.e. our Raman transitions occur via

F' =2.3.

This vector formalism is also useful for expressing light-shifts in the Raman system. In
order to incorporate the effect due to all upper levels we can re-write the light shift term

as

AC Q1> (|24
_ _ 2.
0= 3 (M~ e 273

where we have used double-bars to denote the vector norm.

Finally, for completeness we express the generalised, off-resonant two-photon Rabi fre-

quency in the vector formalism as

2
~ Q11 - Qo] \? 19117 (192412
Qr = ( A +1> A~ A, 5| . (2.74)

a=1,2

2.4.3.2 Raman polarisation arrangements

The polarisations of the two Raman beams determine the allowed transitions between
the various mp states. For example, with two counter-propagating opposite-circularly
polarised photons, one with LCP (helicity —1) propagating in the positive €y direction
and the other with RCP (helicity +1) propagating along —é&y, we can drive Raman
transitions between the lower levels |2, mp) and |3, mp) via the two upper levels | F', mp+
1), where F’ = 2,3. This is the relatively simple arrangement which we label, for obvious
reasons, o — o. As another example, if we have two orthogonal linearly polarised
photons whose electric field vectors are both perpendicular to the quantisation axis
€ = 2z, i.e. €1 || y and €2 || %X, then we drive Raman transitions along four distinct

routes, namely: |2,mp) <> |3, mp) via |F',mp £ 1), where F/ = 2,3. This arrangement
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Figure 2.7: Allowed Raman routes on the 85Rb Dy line in: (a) the o+ — o™ polarisation
arrangement; and (b) the 7™ —7~ polarisation arrangement. The blue (red) lines indicate
Raman routes via F/ = 2 (3). In (b), only Raman routes from two starting mp states
are shown in order to avoid overcrowding. The splittings of the levels are not shown to
scale.

is labelled 7+ — 71—, and is commonly referred to as ‘lin-perp-lin’. The Raman routes
associated with the two aforementioned polarisation arrangements are depicted in figure
2.7, and we give a summary of these and other polarisation combinations and their

allowed Raman routes in table 2.2.

It is interesting to note that the 7t — 7, 7~ — 77—, 7% — 7% and 6% — o T arrangements
Transitions Raman Routes (via)
ot —ot |2, mp) < |3, mp) |F',mp + 1)
o —o~ |2, mp) <> |3, mp) |F',mp — 1)
0 — ot 12,mp) < |3,mp —1) |F',mp)
0 — o~ 12,mp) <> [3,mp+1) |F',mp)
J— 2,mp) < [3,mp+1) |F',mp)
12,mp) < |3,mp —1) |F',mp)
R |2, mp) <> |3, mp) |F',mp +1)
|2, mp) <> |3, mp) |F',mp — 1)

Table 2.2: Table summarising the polarisation states of the two Raman driving field
photons and their associated dipole-allowed Raman routes. The two polarisation vectors
are €12, and the quantisation axis is &y = z. In all cases, F' = 2, 3.
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(i.e. parallel linear and orthogonal circular) do not drive Raman transitions, because the
dipole matrix elements for their allowed Raman routes via F’ = 2 and F’ = 3 cancel
each other out. As an example of this, we look at the mp = 1 sublevel in the 7% — 7¥

arrangement. In this case €; = e = 0, and the scalar product of the G-coefficient vectors

is

|G1 - Go| = (1/3/20, /7/108, —+/16/135, 0) - (0, 1/8/189, \/5/216, —\/15/56),
(2.75)

which is equal to zero. This is the same for all mp levels in all of the above-mentioned
arrangements, and provides the reasoning for the absence of |2, mp) <> [3,mp £+ 2) (via
|F',mp + 1), where F’ = 2, 3) transitions in the lin-perp-lin arrangement. This is only
valid if we treat all the upper levels as having the same single-photon detuning A — the

approximation we set out with.
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Chapter 3

Rubidium MOT & experimental

procedures

In order to realise the Raman system described in the previous chapter, we require an
ultracold sample of rubidium atoms isolated from their environment, and a means to
prepare and measure their internal state before and after the Raman pulses are applied.
As in most cold atom labs, the starting point is the magneto-optical trap (MOT) [5]. The
MOT, a three-dimensional arrangement of counter-propagating laser beams converging
on the zero-point of a quadrupole magnetic field, achieves confinement and cooling of
atoms via position- and velocity-dependent absorption of photons. With the MOT in

place, atomic state preparation and detection is performed by optical pumping.

This chapter describes the experimental setup and procedures regarding the rubidium
MOT. We begin with a brief introduction to the key theoretical principles behind the
MOT, before describing and characterising key aspects of the setup. Here we do not
offer a detailed treatment of magneto-optical trapping theory. For this we refer the
reader to previous PhD theses in this work [49, 50], and to the extensive literature, for
example Metcalf & Van der Straten [51], Weiner & Ho [52] or Foot [42]. Furthermore,
many experimental aspects of our MOT are extensively documented in previous PhD
theses [49, 50, 53, 54]. We choose here only to discuss the experimental aspects which
are of greatest relevance to the Raman experiments of the following chapters, and refer
the reader to these theses for insight into the more technical aspects of the setup, such

as specific details of the lasers, spectroscopy, and vacuum chamber.

41
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3.1 Principles of magneto-optical trapping

The scattering force imparted on a two-level atom by a near-resonant laser beam is
given by the photon momentum Ak, where k is the wavevector, multiplied by the rate of
photon scattering Rgcat = ['p22, in which I' is the spontaneous decay rate, or linewidth,
and poo is the population of the upper level, as introduced in section 2.2. By solving the
optical Bloch equations, which are identical to equations 2.43 except for the inclusion
of the decay term I', we can find the form of pos in the steady-state. The force then

becomes
rO2/4

Fsca = hk )
¢ 82+ T2/4+02/2

(3.1)

where (2 is the transition Rabi frequency and § is the detuning from resonance, as seen
by the moving atom. As we have seen in chapter 2, the detuning  of the laser from the
atomic transition is dependent on the velocity of the atom, via the Doppler shift. There
is also an implicit dependence of § on the magnetic field B via the Zeeman shift for an
atom with internal magnetic-sensitive sub-structure. These effects conspire to give an
atomic detuning

0=46r,—k-v—pupgmB, (3.2)

where 67, = w — wy, is the detuning of the laser from the unperturbed resonance, k - v
is the Doppler shift (where v is the velocity of the atom), and upgmB is the Zeeman
shift (where g is the Landé g-factor and m is the magnetic quantum number). Since the
likelihood of the atom to absorb photons, and therefore the impulse, depends on |d|, we
can engineer forces based on the velocity and the magnetic field. More specifically, the
Doppler term allows for a velocity-dependent force, and the Zeeman term allows, if we

have some position-dependence in the magnetic field, for a position-dependent force.

We can generate a one-dimensional cooling force, known as optical molasses, by illu-
minating our atom with two counter-propagating laser beams, whose frequencies are
red-detuned (67, > 0) from the atomic resonance. In this case || becomes smaller when
k and v are opposing, and therefore absorption (and the associated recoil) becomes more
likely when the atom is moving towards the beam. The resulting effect is a 1-D velocity-

dependent damping force, which acts to cool atoms within a small range of velocities.
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This can be extended to three dimensions by simply employing three orthogonal pairs

of these beams.

Furthermore, if we situate our atom at the centre of a quadrupole magnetic field, whose
magnitude B increases with increasing distance from the centre, we can engineer a
position-dependent restoring, or trapping force on the atom, whereby absorption be-
comes more likely as the atom moves away from the trap centre. This is only possible
when the counter-propagating pairs of cooling beams are orthogonally polarised, that is

either perpendicular-linear or left-right circular.

With these methods in place we can cool the atom whilst confining it to a small region of
space, however cooling cannot occur indefinitely. The rate at which the atom is cooled by
the optical molasses is at some point balanced by the rate of heating due to spontaneous
emission events and their associated directionally-random recoils. Equating these two
rates, and now considering the one-dimensional temperature T where mv?/2 = kgT/2,

we find the Doppler cooling limit to be

hI'

= — 3.3
e (33

D

which occurs for §; = I'/2. For 8°Rb, the Doppler cooling limit is Tp = 146 uK. In
practice, temperatures much lower than Tp are achievable with optical molasses, due
to the somewhat fortuitous presence of sub-Doppler cooling mechanisms. Sub-Doppler
cooling arises due to dissipative redistribution of population between, and differential
light shifts of, the atomic Zeeman sublevels in the presence of polarisation gradients and
changing quantisation axes. Whilst we exploit the effects of sub-Doppler cooling in our
experiments, we choose to refer the reader to the literature (for example [51, 52]) for a

more involved discussion of the theory behind it.

3.2 MOT lasers

In order to make a MOT for 8Rb we require our lasers to address a two-level closed, or
cycling, optical transition within the atomic structure. The transition must be closed
because we require many thousands of scattering events for efficient cooling and trapping.

A suitable candidate in ®°Rb is the |55 /9, F = 3) — [5P;, F' = 4) transition, since
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v v —3 Cooling |58y, F=3) = |5Py,, F'=4) - 8,

58y, —; Repump |58, F=2) = | 5Py, F=3)

v F=2 Depump |5S;,,, F=3) = |5P3p, F'=3)

Figure 3.1: Optical transitions in ®Rb used in the experiments. The cooling and repump
transitons are used for magneto optical trapping, the depump transition is used for
optical depumping into F' = 2. The solid arrows indicate absorption routes, whilst
the dashed arrows indicate the associated spontaneous emission routes. The colour-
associations in this diagram are applied consistently in the remainder of this chapter.

the only decay route from the upper level allowed by the dipole selection rules takes
the atom back to [55,/5, F' = 3), and the cycle can continue. This is known as the
cooling transition, and to this we tune our cooling laser. We detune from resonance by

01, (typically 1 —3T") in order to allow for Doppler cooling.

Operating at this frequency, the cooling laser will occasionally, with some small yet non-
negligible probability, excite atoms into the [5P3 5, F' = 3) level, from which spontaneous
decay into the dark (i.e. not coupled by the cooling laser) lower level |55 2 F = 2) is
possible. In order to pump population out of this dark state and back onto the cooling
transition we employ a repump laser, tuned to the [5S; 9, F' = 2) — [5P39, F' = 3)
transition!. This quickly re-populates |5.5; /2, F " = 3) via spontaneous emission from the

upper level.

The levels discussed above are depicted in figure 3.1. We also include in figure 3.1
the depump laser which, whilst not at all necessary for magneto-optical trapping, is an
important component in chapter 7 of this thesis. The depump laser is resonant with

the transition |55} 9, F' = 3) — [5P;/9, F' = 3), and therefore allows for rapid optical

LA repump laser resonant with the |5Ps,2, F’ = 2) upper state would also be suitable.
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Figure 3.2: Schematic of the lasers, spectroscopy and switching apparatus for the MOT.
HWP - half waveplate; QWP — quarter waveplate; (N)PBSC — (non-)polarising beam-
splitter cube; FOI — Faraday optical isolator; RVC — rubidium vapour cell; BSa — beam
sampler; NDF — neutral density filter; PD — photodiode.

pumping of all population into the |55 5, F' = 2) level. A schematic of the MOT laser

apparatus is shown in figure 3.2, and described in the following.

3.2.1 Cooling & Repump lasers

The MOT laser beams (cooling — red, repump — pink) are derived from in-house-built
external cavity diode lasers (ECDLs), which output around 45 mW. Each ECDL consists

of a Sharp GHO7895A6C laser diode (nominally 785 nm but can be tuned to 780 nm) and
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an 1800 lines/mm Edmund Optics holographic grating in the Littrow configuration. The
current to the laser diode is controlled by a Newport 505 LD controller, and the tuning
angle of the grating is controlled by application of voltage to a Thorlabs AE0203D04F
piezo stack. The temperature of the laser diode is regulated by a Newport 300 tem-
perature controller connected to a Laird SH10,95,06 Peltier thermoelectric cooler and
ADb90 temperature sensor. Each laser is frequency-stabilised via pump-probe frequency
modulation spectroscopy (FMS) in a rubidium vapour cell. All modulation and locking
circuitry was designed and constructed by Matt Himsworth, and particularly good de-
scriptions of the spectroscopy and PID, along with details and characterisation of the

ECDLSs, can be found in his PhD thesis [50].

3.2.2 Beam Switching

We require the ability to switch the MOT beams on and off quickly, and to control
their individual intensities during experiments. This is achieved by a series of acousto-
optical modulators (AOMs). An AOM consists of a transparent crystal through which,
upon application of an oscillating voltage to a piezo stack, an acoustic wave is passed.
An optical beam passing through is diffracted (i.e. spatially deflected) and shifted in
frequency according to Kpeam out = Kbeam in + "Kacoustic wave Where n is the diffraction
order, k__ is the associated wavevector, and the amount of light diffracted is dependent
on the amplitude of the acoustic wave. We employ a combination of Gooch & Housego
and AA Optoelectronic AOMs, each driven by an AA Optoelectronic VCO-amplifier
driver. The beams are switched by separate primary AOMs (labelled ‘cooling’ and
‘repump’ in figure 3.2), before being passed through a common secondary AOM ( labelled
‘Common’), which directs the two beams into separate optical fibres. We achieve 80 —
85 % diffraction efficiency into the 1st order of the AOMs. One benefit of switching the
beams with two AOMs in series rather than just one is the extra extinction (60 dB rather
than 30dB), which is necessary in our experiment where small residual intensities can
cause state-altering optical pumping. Another advantage is that if the two AOMs in
series apply equal-and-opposite frequency shifts to the diffracted laser beam there is a

net shift of zero after switching, and therefore no offset is required in the laser locking.?

2This can be difficult in pump-probe spectroscopy, however an offset-lock or phase-lock [55] would
provide one possible solution.
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This is the case for the repump beam in our setup: the primary repump AOM shifts the
frequency by —110 MHz, and the common by +110 MHz. On the cooling beam path,
the primary AOM shifts the frequency by +80MHz, and the common by —110 MHz,
giving a combined frequency shift post-locking of —30 MHz. This represents, if we are
to lock to the centre of the [55)/y, F' = 3) — [5P;)9, F' = 4) transition, a detuning
01, =~ 5" (where I' = 27 x 6.06 MHz), which larger than desired for efficient cooling and
trapping. To reduce 7, we shift our FMS locking signal zero-point by ~ 10 MHz using
an electronically-generated offset in the PID loop, and we typlically work at a detuning
07, =~ 3I'. The two primary AOMs are separately controlled using the two outputs of
a Tabor 8024 arbitrary waveform generator, connected to the modulation pins of the
respective AOM amplifiers. This allows for arbitrary time-dependent control over the
beam intensities. To control the common AOM, since we do not require arbitrary control
over its diffracted intensity, we use a TTL signal (0,5V only) generated from one of the

8 outputs of a computer-controlled SpinCore PB24-100-32k Pulse-Blaster.

3.2.3 Depump beam

The depump beam (purple) is generated by picking off and down-shifting a portion of
the cooling beam before its primary switching AOM with another AOM. The depump
AOM'’s central resonant frequency is 110 MHz, but we drive it at 130 MHz using an
independent variable Mini-Circuits POS-150+ voltage-controlled oscillator and ZHL-1-
2W amplifier. We are able to achieve diffraction efficiency of ~ 35 % into the depump
beam with this setup. This beam, as previously mentioned, is not required for magneto-
optical trapping and is used only in the interferometric cooling experiments of chapter
7. When switched on, it is combined at a non-polarising beamsplitter cube with the
repump beam. The cooling and repump/depump beams are sent to the MOT chamber

through separate optical fibres.

3.3 MOT chamber

The vacuum chamber in which we form our magneto-optical trap is an octagonal stainless-
steel construction which was machined in the departmental mechanical workshop. The

chamber has ample optical access via anti-reflection-coated viewports, and is mounted
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Figure 3.3: Diagram of the optical setup surrounding the MOT chamber, which is
situated on an elevated breadboard. (a) View from the side of the chamber, showing the
repump and cooling beam paths, where only one horizontal cooling beam is included to
avoid overcrowding. (b) View from the top, showing only the horizontal cooling beams.
o* indicates the polarisation of the beam, and the origin of the coordinate system is the
crossing point of the cooling beams. HWP — half waveplate; QWP — quarter waveplate;
PBSC - polarising beamsplitter cube.

on an optical breadboard and elevated above the optical bench to allow access from
below. It is held at a pressure of less than 10~° mbar by an ion pump, and rubidium
gas is dispensed upon the passing of current through getters housed inside. We once
again choose to refer the reader elsewhere for technical details. A particularly detailed
description of the MOT chamber and its assembly and preparation can be found in Sunil

Patel’s thesis [54].

3.3.1 Optical fields

The optical apparatus surrounding the MOT chamber is illustrated in figure 3.3. At
the output of the fibre, the cooling beam is collimated to a 1/e? diameter of 7.5 mm by
a Thorlabs F810APC-780 doublet lens system. The beam, which has an optial power
typically around 8 mW, is split 1:2 by a half waveplate and polarising beamsplitter cube,
and one third of the light is sent upwards through the centre of the chamber via a quarter
waveplate. The ingoing beam is right-circularly polarised, such that ¢~ transitions are
dipole-allowed. Upon exit through the top viewport the beam is retro-reflected, and
double-passed through another quarter waveplate such that upon re-entry through the

top viewport the beam is left-circularly polarised, and the retro-reflected beam drives
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o™ transitions. The remaining two thirds of the cooling light are diverted up towards
the optics situated on the elevated breadboard, and then split 1:1 by another polarising
beamsplitter cube. The resulting two beams are sent, again via quarter waveplates
and again retro-reflected, along the two orthogonal horizontal directions depicted in
the figure. Whereas the vertical beam enters the chamber with ¢~ polarisation, the
horizontal beams enter with o*. This polarisation arrangement is necessary for trapping
in three dimensions due to the orientation of the field lines within the quadrupole field.
Note that the horizontal MOT beams are rotated about the centre of the chamber. This

is to allow access for the Raman beams (chapter 4), which we align along the z-axis.

The repump (and depump) beam enters the chamber separately from below, with circu-
lar polarisation (preparation optics not shown in the figure) and at an angle of approx-
imately 45° to the optical table. It intersects the crossing point of the cooling beams,
and upon exit from the chamber it is retroreflected via a quarter waveplate such that

the polarisation on the retro-reflected path is orthogonal to the input.

3.3.2 Magnetic fields

The magneto-optical trap requires a quadrupole magnetic field, which we generate with
a pair of current-carrying coils in the anti-Helmholtz configuration, that is, where the
axial distance between the two identical coils is equal to their radii and the current
flows in opposite directions, as shown in figure 3.4a. These coils comprise 432 turns
of 22 gauge insulated copper wire, wound on aluminium former rings, and mounted on
the top and bottom of the MOT chamber. Passing 2 A through the quadrupole coils
gives a field gradient of around 5G/cm along the coil axis. The quadrupole coils are

water-cooled to avoid overheating.

In order to compensate for stray magnetic fields, which arise primarily due to the Earth’s
core and the ion pump, and act to offset the quadrupole field zero, we employ three
orthogonal pairs of current-carrying shim coils, as depicted in figure 3.4 b. These each
consist of 330 turns of copper wire wound on aluminium former rings, and mounted on
opposite sides of the MOT chamber along all three Cartesian axes. We apply current to
the shim coils using voltage-to-current converter circuits capable of 0.1mA resolution in

order to allow fine adjustment of the fields. The two coils in each pair are connected in
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(a) () )

Anti-Helmholtz
coils

Figure 3.4: Diagram of the magnetic field setup around the MOT chamber. (a) Sketch
of the magnetic quadrupole field (blue lines) due to an anti-Helmholtz coil pair. (b)
Current-carrying coil arrangement: orange — shim coils; red — anti-Helmholtz MOT
coils. The direction of applied current is given in all cases, and Iy = —I>. The origin of
the axis set is the position of the MOT cloud.

series to give equal (and equi-directional) currents, and give a magnetic field along their
common axial direction which varies by less than 0.5% across the width of the cooling
beams at the centre of the chamber. We also use the z-axis shim coil pair to provide a
quantisation field for Raman transitions, where the Raman beams lie along the z-axis

(see chapter 4).

3.3.2.1 Switching

For the Raman experiments of interest in this work, and in order to allow sub-Doppler
cooling mechanisms to occur effectively, we require the ability to switch off the quadrupole
field quickly and efficiently. To this end, the quadrupole coils are linked to a simple field-
effect transistor (FET) switch [56], as shown in figure 3.5 a, where a suppression diode
is placed in parallel with each coil to limit the inductive voltage spike. We also place
a Zener diode with Zener voltage Vz = 39V in series with the suppression diode to
allow some voltage overshoot, which leads to a faster current switch-off according to the
formula V = —L% where V is the voltage, I is the current, and L is the coil inductance.
The larger the Zener voltage, the larger the inductive voltage spike and the faster the
field switch-off.
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Figure 3.5: (a) Circuit diagram for MOT coil switching. (b) Measurement of the mag-
netic field decay after the quadrupole coils are switched off. The red curve was taken
before the aluminium rings on which the copper coils are wound were cut, and the blue
curve was taken after. These curves were measured using a Hall effect sensor placed
close to one of the quadrupole coils.

3.3.2.2 Eddy currents

Fast switch-off of the quadrupole field is inhibited by eddy currents flowing in large
conductive loops around the MOT chamber. These eddy currents, which are caused by
the changing magnetic field at the time of switch-off, in turn create magnetic fields at the
centre of the chamber which take several milliseconds to decay. The primary conductors
of eddy currents are the aluminium rings around which all the coils are wound.? In order
to preclude eddy currents in the aluminium rings, we simply made a cut in each to break
the conducting loop. This was of course anything but simple, since the copper coils were
already wound on them, however Damon Grimsey of the mechanical workshop carried
out the job skilfully. The effects of cutting the aluminium former rings is shown in figure
3.5b. These data were taken by measuring the signal from a Honeywell SS94AF Hall
effect sensor placed close to the quadrupole coils. The time taken for the field to decay
to 10% of its on state, which we label ¢1, was reduced from 4.8 ms to 1.4ms as a result
of the cuts — a significant reduction. It is assumed that ¢; is approximately the same at

all points inside the chamber.

3The resistivity of aluminium is only a factor of 1.7 greater than that of copper. As a further note,
whilst we cannot preclude eddy currents in the vacuum chamber itself, the resistivity of stainless steel
(from which it is formed) is large: ~ 41 times that of copper.
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An important consideration regarding eddy currents is the symmetry of the experimental
arrangement. If there is a large conducting loop on one side of the chamber but not the
other, for example, then the switch-off of the fields will be asymmetric about the centre of
the chamber, and in the presence of the MOT beams the atoms will be pushed out of the
trapping region. After cutting the aluminium coil rings there remained, unfortunately,
some significantly-sized conducting loops which could not be cut, such as the optics
mounts and, to a lesser extent, the chamber itself. Although eddy currents cannot be
stopped in these components, care was taken to ensure that they were arranged around
the chamber in a symmetric manner in order to avoid an asymmetric switch-off. One
particularly notable contributor to asymmetric eddy currents was the aluminium optical
breadboard on which the MOT chamber itself was mounted. We relieved ourselves of this
problem by taking a hacksaw to the breadboard, ensuring of course that the structure

would remain sound.

v
Amplifier
SRS
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v
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DSOX3024A
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Figure 3.6: Optical arrangement for imaging and detection of the MOT cloud. The
PMT system is used for fluorescence detection, and the CCD system is used for video
monitoring.
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3.4 Imaging and detection

The MOT imaging and detection setup is illustrated in figure 3.6. When in the presence
of the MOT lasers, the atom cloud fluoresces at 780 nm, making it relatively simple to
image. Basic video imaging is performed with a Watec 902HC Ultimate CCD camera
and zoom lens system, which is connected to a monitor. This is used primarily to check

for the presence of the MOT, and as a diagnostic tool when locking the MOT lasers.

More precise detection is performed using a Hamamatsu H7422-50 photo-multiplier tube
(PMT) and fixed custom telescopic lens system, which collects fluorescence from the
atom cloud. The current signal from the PMT is amplified by a Stanford Research
Systems SR570 amplifier before being sent to an Agilent DSOX3024A oscilloscope. This
detection method can be used to measure the relative population in the two hyperfine

ground states as discussed in section 3.5.3.

3.5 Preparation and readout sequence

The experimental sequence applied for preparing the atoms for Raman manipulation,
and then measuring their internal state afterwards, is represented in figure 3.7. The

steps are as follows:

1. MOT: Atoms are initially trapped and cooled to 80 < T < 230 pK in the magneto-

optical trap.

2. Molasses cooling: (See section 3.5.1.) The quadrupole field is switched off and
the intensities of the cooling and repump beams are ramped down linearly over 1 ms
to 20 % of their normal MOT values. The atom cloud is then allowed to cool in the
molasses beams for a few ms (¢, typically 6 ms), after which the velocity distribution

resembles that in figure 5.10, and the temperature is typically 20 < T' < 80 uK.

3. State preparation: (See section 3.5.2.) The repump beam is switched off and the
atoms are optically pumped in tsp = 1 ms into the [55) /5, F' = 2) state by the cooling

laser.

4. Raman pulse window: (see chapter 4) Raman pulses are applied to the atoms.



54 Rubidium MOT & experimental procedures

o (2] (3] (4] ®© O

MOT | Molasses cooling State Raman pulse | State readout ; MOT
preparation window : : ;o

Cooling
beams

Repump -
beams ¢
MOT fre
B-field P
-

PMT
signal A I A
R N[i &

tm tsp ~1ms tsr tsp i time

Figure 3.7: Diagram of the experiment sequence timings (not to scale). The individual
stages are described in the text.

5. State readout: (See section 3.5.3.) The cooling laser is switched on for tgp =
300 us, causing atoms in |55 2 F = 3) to fluoresce, and to be gradually pumped
into 559, ' = 2) (as in step 2). Immediately after this, all atoms are pumped
to [551 /2, F' = 3) by the repump laser (t,ep = 5pus pulse), and the cooling laser is
switched on once again for tsr to pump atoms back to |55 /5, F' = 2). The ratio
of amplitudes of the decay curves during the two cooling laser pulses (Ar/An),
as measured with the PMT, is a normalised measure of the upper hyperfine state

population |ez|?.

6. MOT: Both MOT lasers and the quadrupole field are switched on, and atoms are

trapped and cooled in the MOT for ~ 500 ms before the sequence is repeated.

3.5.1 Molasses cooling

As mentioned previously, we do not offer a theoretical discussion of sub-Doppler cool-
ing mechanisms here. We do exploit them, however, in order to bring the temperature
of the atom cloud down further before the Raman pulses are applied. We do this to
minimise the Doppler-broadening-induced dephasing effects apparent in Raman manip-
ulation with limited Rabi frequencies (see chapter 6). For sub-Doppler cooling to occur
effectively accross the entire cloud, the quadrupole field must be switched off, and any
stray magnetic fields nulled. Furthermore, sub-Doppler mechanisms occur more readily
at lower laser intensities than those of the near-saturation-intensity cooling beams. This

is because atoms require time to move across significant lengths of a periodic potential
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landscape created by relative AC Stark shifts in polarisation gradients, before they are
optically pumped by the beams. Lower intensity beams lead to a lower scattering rate,
and in general more efficient sub-Doppler cooling. In fact, the resultant temperature is
found to be approximately linearly proportional to the intensity in [57]. It is possible
also to reduce the scattering rate by increasing the cooling beam detuning, however in
our setup reducing the intensity is much easier. In a similar sense, the magnetic fields
must be nulled such that light shifts within the potential landscape are not dwarfed by

Zeeman shifts.

After the quadrupole coils are switched off, the intensities of the cooling and repump
beams are linearly ramped down to 20% of their normal MOT values over a period of
1ms. We ramp the intensity, as opposed to stepping it, because the velocity capture-
range of the molasses decreases with decreasing intensity, and we wish for this to happen
gradually so as to minimise the loss of atoms. The cloud is then left to undergo sub-
Doppler cooling in the molasses beams for a time t;; (typically 6 ms) after which the
temperature of the atoms is sufficiently reduced. The velocity distribution of the atoms
at this stage is given in figure 5.10b of section 5.2.1. It is important to note that some
experiments in this work are performed in the velocity-insensitive arrangement, whereby
the Raman beams co-propagate. In this case the molasses cooling stage is not necessary,

since Doppler-broadening does affect the Raman transition.

3.5.2 State preparation

Before Raman pulses are applied, the atoms are prepared by optical pumping into state
|1), the lower hyperfine level |55 /o, F' = 2). This is done by irradiating the atoms with
only the cooling beams. Since the cooling laser occasionally couples to |55/, F' = 3),
atoms are gradually lost from the |55/, F' = 3) <> |[5P3/, F' = 4) cooling cycle to
15512, F = 2), which is a dark state in the absence of the repump laser. At the re-
duced cooling beam intensity (the same as that applied in the molasses stage), the state
preparation process is complete within {gp = 1 ms, and the atoms end up approximately
evenly distributed across the 5 Zeeman sublevels of the |55 o, F' = 2) state.* Prepara-
tion into [55 /9, F' = 2) could be achieved using the depump laser (see figure 3.1) in a

much shorter time (a few us since the depump transition is not closed), but we choose

4This is verified in section 5.1.2.
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instead to use the cooling laser since it continues to provide an optical molasses for the

atoms during the preparation stage.

The depump laser is used when we apply multiple sequences of Raman pulses and re-
quire fast optical pumping into the |55 2. F = 2) level between sequences (see chapter
7). This is the depump laser’s only purpose in this work, however it could also be
applied in conjunction with the repump laser to achieve spin-polarisation [58] of the
atoms, described as follows. If both the repump and depump lasers are applied linearly
polarised along the quantisation axis, which we can define with a magnetic field, such
that both beams induce 7 transitions, then |55} /5, F = 3, mp = 0) is a dark state (the
dipole matrix elements for transitions from this state are zero). After a number of spon-
taneous emission cycles, all atoms accumulate in this dark state, which is insensitive to
magnetic fields. Our current experimental setup allows for application of this technique
without requiring any experimental alterations. Although not tested in this work, spin-
polarisation is commonly used when preparing atoms for interferometry experiments,
since atoms in a single, magnetically-insensitive state exhibit a more homogeneous Rabi

frequency than atoms distributed across all Zeeman sublevels.

3.5.3 State readout

After the Raman pulses have been applied, we measure the resultant internal state
of the atoms. The initial readout pulse is a tgg = 300 us application of the cooling
beams. As described in the previous sub-section, in the presence of the cooling laser
(no repump), population in |55y, F' = 3) is gradually pumped into |55/, F' = 2).
The PMT fluorescence signal during the readout pulse exhibits an exponential decay
as a function of time, and the amplitude Ap of this decay signal is proportional to
the number of atoms in |55/, ' = 3). In order to measure the population (i.e. the
total fraction of the cloud) in |55} 3, F' = 3), which we label |c2|?, we must normalise
Ap according to the amplitude observed when all atoms begin in |55 12, F = 3). To
this end, after the initial readout pulse, we pump all atoms into |55 o, F' = 3) with a
trep = D s pulse of the repump laser, before applying the normalisation pulse, which is
simply another tgp = 300 us application of the cooling beams. We label the amplitude

of the decaying exponential as measured by the PMT during the normalisation pulse
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Apn. Decaying exponetials are fitted to the data pulled from the oscilloscope, and the

ratio AR/AN = ‘62‘2.

3.6 MOT characterisation

The following contains a characterisation of the aspects of the MOT which are important
for the Raman experiments of later chapters. For a full characterisation, including details
of the loading rate and steady state atom number, we refer the reader to previous theses
on this work [49, 50, 53, 54]. The most important characteristics of the MOT are its

size and temperature, and we discuss these in the following.

The temperature of our MOT cloud in normal MOT operation, i.e without pure mo-
lasses cooling, has been measured previously using the release and recapture method
[59], giving results which vary between 80 < T' < 230 uK. These temperatures are nor-
mal for a MOT, and the wide range is due to varying experimental conditions between
measurements. A particularly thorough treatment of this can be found in James Bate-
man’s PhD thesis [49]. The release and recapture method can tell us the temperature,
but does not offer a detailed picture of the wvelocity distribution, which is an important

factor in determining the behaviour of Raman transitions.

In this thesis, we measure the velocity distribution of the atoms using a technique
known as Raman velocimetry. Understanding the application of this method requires
some appreciation of how our Raman beams are applied, and this can be gained from
the following chapters. We therefore choose to include the results, and the necessary

brief digression into the theory, in section 5.2.1.

3.6.1 Size and shape

Figure 3.8 shows an image of the MOT cloud taken with the Watec CCD camera. We
deduced the length scales by photographing a standard rule with the same imaging
system. The cloud has an approximately Gaussian shape, as illustrated in subplots (b)
and (c), where deviations from the perfect Gaussian are due to slight misalignments of,
and imperfections in, the MOT beams and/or magnetic fields. It is important to note

that the size and shape of the MOT varies from day-to-day due to changing temperature
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Figure 3.8: Imaging the magneto-optical trap. (a) is a false-color image of the MOT
cloud, taken with a CCD camera. (b) and (c) are 1D slices through the centre of the
MOT cloud along the x and y directions, respectively, where the blue crosses are data,
and the red curves are least-squares fits of Gaussian functions to the data. D, , is the
full-width half-maximum of the respective fit.

and magnetic fields (certain components of the apparatus can become magnetised, for
example), and to small drifts in the alignment and tuning of the MOT beams. Figure

3.8 represents one of the more visually appealing manifestations of the cloud.

We find the full-width at half-maximum diameter of the cloud to be ~ 210 yum in the
horizontal direction and ~ 230 um in the vertical direction. This difference is partly
accounted for by the fact that the gradient of the quadrupole field is different along
the vertical and horizontal directions. Furthermore, differences in intensity between the
three cooling beam pairs can lead to a ‘squeezing’ of the cloud along one particular di-
rection. Such small effects, however, are not critical to the behaviour of the experiments.
A more important result is that the entire MOT cloud fits well within a square of side
1mm. We shall use this when considering suitable Raman beam profiles, as discussed in

chapter 4.

3.6.2 Expansion in free-fall

When the quadrupole coils are switched off, leaving the cooling and repump beams on,
the trapping force on the atoms is removed. However, some non-trapping, position-
dependent forces may remain, due for example to stray magnetic fields, as described in
section 3.3.2.2. One good diagnostic method for detecting stray fields is to image the
expansion of the atom cloud in the presence of the MOT beams after the quadrupole

field has been switched off. If stray fields are present, the atoms will be ‘thrown’ out of
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Figure 3.9: Monitoring the magneto-optical trap with a fast camera as the quadrupole
field is switched off. The time above each plot is the approximate time after switch-off.

the trapping region upon switch-off. Since the MOT beams cause the atoms to fluoresce,
imaging is easily done with a fast camera. We use a ProSilica GigE680 500 frame-per-
second CCD camera, mounted on the imaging system in place of the PMT, and record
the falling atoms in real time. We monitor the free-fall motion, and tweak the shim
coil currents until it resembles a vertical drop (as opposed to a throw) under gravity.
The results of this are shown in figure 3.9. The time after switch-off of the quadrupole
coils is given above each sub-plot. No advanced triggering was employed in this case, so
these times are only rough approximations based on the respective time-stamps of the
video frames. We observe an accelerating downward displacement over time, indicating
that stray fields have been mostly nulled, however the displacement appears less than
expected under gravity (after 10 ms we expect a displacement of 500 pm, and after 20 ms,
2mm). This can be attributed to either a systematic offset in the given timings, or the
non-instantaneous switch-off of the trapping potential. Since the quadrupole field takes
around 3ms to null completely, there will remain a residual trapping potential for this
time, acting to inhibit the free fall of the cloud. Importantly, what the free-fall data
also tell us is that 10 ms after the quadrupole field is switched off, the atom cloud fills a
cross-section of space not much larger than 1mm across. This means that we can allow
the atoms to cool in the molasses beams (after the quadrupole coils are switched off)
for an ample period of time (10ms is more than enough) without significant ballistic

expansion and the associated loss of signal.






Chapter 4

Raman pulse generation

To induce coherent stimulated Raman transitions (see chapter 2) in our atom cloud we
require two mutually phase-coherent ‘Raman beams’ which are spatially separable. The
two Raman beams are required to have a frequency difference equal to the ground hyper-
fine splitting in rubidium-85 wyrs = 27 x 3.035732440 GHz plus a precisely controllable
detuning d7,, and control of the beams’ relative phase ¢y, is also required. It is possible to
build such a system with two independent, narrow-linewidth lasers as the Raman beams,
mutually phase-locked [55] via a frequency reference, as in [60]. We choose in this work,
however, to derive the two Raman beams from a single laser source, and generate the
required spatial and spectral splitting using acousto- and electro-optical modulators, as
in [12, 61]. With this well-established technique, phase coherence is built-in and the
linewidth of the Raman transitions is limited only by the stability of the synthesised

microwave frequency.

This chapter describes the experimental setup used to generate Raman pulses. We begin
with an overview of the experimental setup, and go on to describe each of its key aspects

in detail.

61
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4.1 Overview

A schematic of the experimental setup for generation of Raman pulses is shown in figure
4.1. The setup is summarised in the following paragraph, and a more detailed description
of the constituent apparati and procedures is provided in the remaining sections of this

chapter.

The continuous-wave laser beam from a high power external cavity diode laser is spatially
split into two beams using an acousto-optical modulator (AOM) at 310 MHz. The first-
order deflected (and therefore frequency-shifted) output from the AOM is chosen as
one of the Raman beams, and is at this stage ready for amplification. The undeflected
beam at the output of the AOM is passed through an electro-optical modulator (EOM)
operating at 2.725732440 + 01, /2w GHz. This generates two first-order sidebands on
the beam, one of which is separated in frequency from the AOM-deflected beam by an
amount equal to the ground hyperfine splitting wprg plus the detuning §7,. The carrier
wave and unwanted sideband are removed from the optical spectrum of the beam using
polarisation optics and frequency-domain interferometry respectively. The frequency
and phase difference of the beams are controlled by a microwave frequency synthesiser
linked to an 1&Q modulator with inputs generated by an arbitrary waveform generator.
After spectral preparation, the Raman beams are individually amplified by tapered
amplifiers in order to increase the achievable Rabi frequency. They are then combined
at a polarising beamsplitter cube with orthogonal polarisations and passed through an
AOM, which acts as a fast switch to shape the Raman pulses. The beams are sent
to the MOT chamber independently via two optical fibres, and the particular fibre
through which each beam is passed can be inverted using a Pockels cell and polarising
beamsplitter cube. At the output of the respective fibre, each beam is passed through
a refractive beam shaper and focussing lens to produce a 'top-hat’ beam profile which
is imaged onto the cold atoms. The beams are aligned counter-propagating along the
z-axis, and we apply a current I, to the z-axis shim coils to provide a quantisation field

for the transitions.

In the following sections, the respective stages of Raman pulse generation are described

in more detail.
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Figure 4.1: Experimental schematic for Raman pulse generation. The annotation bub-
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4.2 Laser Beam Source

The initial continuous wave laser beam is derived from a Sacher Tiger high power
external cavity diode laser. This incorporates an anti-reflection-coated tapered diode
chip which emits from its narrow back facet onto an optical grating in the Littrow
configuration. The grating disperses unwanted frequency components and reflects the
required component back into the tapered chip, which in a single pass amplifies the
signal to an optical power of ~ 200mW! and outputs a beam at \g = 27mc/wy ~
780.27 nm at its enlarged output facet. We can adjust this wavelength, which we monitor
with an Advantest Q8326 wavemeter (accuracy 0.001nm), by tuning the coarse and
fine grating angles (adjustment screws and piezo actuator respectively), and the laser
diode current, which is typically around 2.6 A. The laser diode output is collimated and
passed through two Faraday optical isolators, both of which are necessary for stability
of the diode. Although the Tiger laser offers a higher power than standard diodes in a
simple configuration, its mechanical construction does not lend itself to its usability. For
example, the vertical and horizontal tuning actuators for the grating are coupled, making
tuning the wavelength whilst maintaining constant optical power difficult. However once
aligned and tuned we find the device sufficient for our experiments. The Tiger laser is not
actively stabilised to a frequency reference, because fluctuations in its output frequency,
which translate into variations in the detuning A, are on the order of MHz and are
therefore not detrimental to the fidelity of stimulated Raman transitions where A is

typically many GHz.

4.3 Microwave Frequency Shift

The microwave frequency shift is generated by modulation of the optical spectrum, using
stable electronically synthesised signals with a common frequency reference, as described

in the following.

!The manufacturer specifies a maximum output power of 1W, however the highest achieved with this
particular device is ~ 350 mW.
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4.3.1 Acousto-Optical Modulator

In order to induce velocity-sensitive transitions in the atom cloud, we require that the two
Raman beams are counter-propagating when interrogating the atoms, and a prerequisite
for this is that the two beams are spatially separate. To create two separate beams (and
to provide a proportion of the frequency shift) we split the output beam from the Tiger
laser into two using a Gooch and Housego FS310-2F-SU4 acousto-optical modulator
(AOM), which is driven continuously at Qaon = 27 X 310 MHz. The AOM is driven by
a Marconi 2022 signal generator in series with a RFPA 05 2616 amplifier, which supplies
a sine wave at 1.5 W, 310 MHz to the AOM’s transducer terminal. Approximately 15%
of the optical power is diverted into the AOM’s first order and undergoes a frequency
shift of 4310 MHz. The deflected beam at the output of the AOM is chosen as one of
the final Raman field components. It has an angular frequency ws4 = wg + Qaowm, and

is at this stage ready for amplification (see section 4.6).

4.3.2 Electro-Optical Modulator

The majority of the frequency shift is generated by passing the undeflected beam at
the output of the AOM through a New Focus 4431M electro-optical modulator (EOM)
operating at Qp = wprs — Qaom + 01 = 2w x (2.725732440 + 65, GHz). The EOM
generates a series of spectral sidebands on the beam with angular frequency w, = wg +
nQlp, where n (# 0) is an integer and the amplitude of the respective components
becomes negligibly small where |n| > 1. At the output of the EOM, the beam spectrum
consists of the carrier (wp) and two spectral sidebands with angular frequency wy; =
wo + Qp. Taking the difference in angular frequency between the lower sideband at the

output of the EOM and the single component comprising the AOM-deflected beam gives

wa —w_1 =wo+ Qaom — (wo — Q) = Qaom + wirs — Qaom + 0L = wurs + 0. (4.1)

It follows that we have two spatially separated optical fields with a controllable frequency
difference approximately equal to the hyperfine splitting in rubidium, as required for
stimulated Raman transitions. The procedures for removing the remaining unwanted
frequency components from the EOM output spectrum are described in sections 4.4 and

4.5.
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Figure 4.2: Spectral density plot taken from an optical spectrum analyser (OSA) at the
output of the EOM. The free spectral range of the OSA is 2 GHz, hence the two peaks
at £2.725 GHz appear at £0.725 GHz.

The electro-optic modulator device consists of a Mangesium Oxide doped Lithium Nio-
bate MgO:LiNbO3 electro-optic crystal positioned inside a microwave cavity. The crystal
exhibits a birefringence which is dependent on the electric field inside the cavity, and
modulates the phase of one polarisation component of the incoming laser beam at a
frequency equal to the applied microwave signal. The EOM is driven by an Agilent
8648C frequency synthesiser in series with a Miteq AMF-6B-027029-40-37P amplifier,
which applies a sine wave at 5W to the input terminal of the microwave cavity. A char-
acterisation of our EOM, from which we state key findings here, can be found in James

Bateman’s PhD thesis [49].

The relative sideband power available is much lower than expected given the manufacturer-
specified ratings. We observe a reduced performance, as if only 44% of the beam is being
modulated by the EOM. If this can be attributed to under-performing circuitry, this is
equivalent to a microwave cavity quality factor @@ ~ 124 (specified in the ratings as
273). It follows that the EOM is probably partially damaged (part of the crystal may
have degraded due to excessive power dissipation, for example) however despite this the
relative sideband power available is just sufficient for our requirements. Another impor-

tant characteristic of the EOM is the full-width half-maximum of its cavity resonance.
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Figure 4.3: The 1&Q modulator. Left — block diagram of the device; Right — I vs Q,
where the phase shift applied to the signal is ¢ = arctan(Q/I).

This was found to be 22 MHz, which is sufficient for broad detuning around Raman

resonarnces.

4.3.3 Phase & Frequency Control

The frequency generated by the Agilent 8648C is computer-controllable with 1 Hz res-
olution by serial commands via GPIB, however the relatively slow (~ 40ms) GPIB
interface does not suffice for altering the EOM frequency during a (typically > 1ms)
pulse sequence, and the Agilent is not capable of varying the phase of the two Raman

beams without additional apparatus.

We require control of the relative phase ¢, (we drop the ‘L’ subscript for the remainder
of this chapter, for simplicity) between the two Raman beams in order to manipulate
the trajectory of the atomic state around the Bloch sphere during transitions. To do
this we use a Miteq in-phase & quadrature-phase (I&Q) modulator in the signal path
between the Agilent frequency synthesiser and the Miteq amplifier. A schematic diagram
of the 1&Q modulator is shown in figure 4.3. The signal Six = cos(Qpt) at the input
of the 1&Q modulator is split into two paths, one of which is phase-shifted by 90°. The
non-shifted (S = cos(Q2gt)) and shifted (Sq = cos(Qgt + 7/2) = sin(Qgt)) signals
are independently mixed with signals generated by a Tabor 3362 arbitrary waveform
generator, and then summed together at the output of the device. With application of
voltages I = cos¢ & ) = sin ¢ to the respective 1&Q mixer inputs, the output signal

becomes

SouT = cos(Qgt) x cos(¢) + sin(Qgt) x sin(¢) = sin(Qgt — ¢) (4.2)
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Figure 4.4: Intensity fluctuations of the EOM output sideband measured during a w
phase shift by the 1&Q modulator. In (a) the phase change 0 — 7 is applied instanta-
neously. In the upper traces, the phase is swept from 0 — 7 over a short time ¢, where
in (b) t =20ns, (c) t =50ns, (d) t = 100ns, and (e) ¢t = 200ns. In each case, Al is the
intensity contrast (Imax — Imin)/(Imax + Imin), which quantifies the intensity excursion,
and ¢r is the duration of the transient.

and the phase of the signal at the output is shifted by ¢ = arctan(Q/I) relative to the

input.

From equation 4.2 we see that it is possible to alter the frequency of the EOM signal by
applying sinusoidal functions to the mixer inputs of the 1&Q Modulator. The output
signal can be detuned from the input signal in frequency by setting ¢ = 1t and applying
the required time-varying voltages to the 1&Q mixer inputs. This is particularly useful
in applications where the frequency must be changed quickly during a pulse sequence, or
where chirped pulses are required such as in adiabatic rapid passage (ARP) sequences.

In the following paragraphs we investigate the performance of the 1&Q modulator.

Due to the nature of the device, which operates by single-sideband modulation [62], there
must be a non-zero signal on one of the 1&Q ports for any signal to be output by the
modulator. When performing a 7 phase shift from any starting phase, both 1&Q voltages
pass through zero simultaneously (easily visualised with figure 4.3), and as they do so
the output is instantaneously switched off. This leads to transients in the intensity of the

EOM sideband during 7 phase shifts, as shown in figure 4.4(a). We also show in figure
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Figure 4.5: RF signals measured directly at the output of the 1&Q modulator. (a): Raw
data for phase shifts ¢ = 0 (blue), ¢ = § (red), and ¢ = 7 (green). (b): Output RF
amplitude as a function of the applied phase shift ¢. (¢): Output measured phase @act
as a function of the applied phase shift ¢. In the latter two the dashed line represents
the ideal behaviour.

4.4 how these transients vary when the phase is swept from 0 — 7 for a range of sweep-
durations ¢. In the case where the phase is changed instantaneously, we observe the
largest intensity excursion (Al = [Ijhax — Imin)/[Imax + Imin] = 0.075), and the shortest-
lived transient ({7 = 85ns). Since Al and tr are small in this case, we expect there to
be no significant unwanted effects on the Raman transition during instantaneous phase
changes. Sweeping the phase over time reduces the intensity excursion AI (increasingly
with increasing t), but extends the duration ¢p of the transient, so we choose not to

employ phase sweeps in the Raman experiments of the following chapters.

As a further diagnostic, we used an Agilent 86100C DCA fast oscilloscope to directly
monitor the 2.726 GHz signal at the output of the I&Q modulator at a range of different
applied phase shifts. Figure 4.5a shows three RF waveforms at different values of the
phase shift ¢. With these data, we were able to measure the actual phase shift and
amplitude of the modulated RF signal directly. Figure 4.5b shows the fractional change
in RF output amplitude AA as a function of the phase shift ¢. This is calculated
by AA(¢) = [A(¢o + ¢) — A(do)]/A(dp). It is important to note that in these scans
the total phase shift applied to the signal is ¢y + ¢, where we set the offset phase
po = arctan(Qo/Io) = 7/4, and therefore Iy = Qo = 1/1/2. We can see from the figure
that the amplitude depends upon ¢. The maximum fractional amplitude excursion is
AA = —0.33, which occurs at ¢ ~ 37w /4, and there is a similar reduction at ¢ ~ 77 /4.

These points represent regions where Qg + Q) ~ 0. We also observe amplitude changes
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of around AA = 0.09 at ¢ ~ /4 and 57 /4, where Iy + I ~ 0. Figure 4.5c shows the
measured phase shift ¢, as a function of the applied phase shift ¢. We can see from
the plot that the relationship is non-linear. The curve exhibits plateau regions around

integer multiples of 7/2, and at odd-integer multiples, ¢act # ¢.

This behavior is likely to be due to non-linearities in the 1&Q mixer stages within the
device. We plan to calibrate the signals applied to the device to correct for these non-
linearities in the future, however since these data were taken late on in the writing of
this thesis, we simply use them to adjust numerical simulations, for example in chapter

6, where phase shifts are used in composite Raman pulse experiments.

4.4 EOM-Output Carrier Removal

As shown in figure 4.2, the beam contains unwanted spectral components after passing
through the EOM. The carrier, at angular frequency wg, must be removed from the
beam in order to avoid single photon coupling to the intermediate level during Raman
transitions. Here we achieve carrier removal by using simple polarisation optics at the
output of the EOM, along with feedback to a liquid crystal cell for stabilisation (see
figure 4.6). A paper on this technique has been published (Cooper et al [63]), and the

following is a brief digression into the theory behind it.

The electro-optic modulator acts on only one polarisation component of the linearly
polarised input beam. We assume this to be the vertical component, and write the

EOM output beam in Jones matrix notation as

B4 ei(wot—i-m cos Qpt) cos 6 (4 3)
e™ot gin § 7 '
which, when expanded using the Jacobi-Anger identity can be written as
Jo(m)cos6\ . cosf\ . .
E—=A 0( ) ezwot + A ezwot Z ian(m)engt. (4'4)
sin 6 0 n#0

The first term represents the carrier wave, and the second represents the series of side-

bands each denoted by their index n. J,(m) is the nth order Bessel function of the
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Figure 4.6: Optics and feedback electronics for removing the carrier from the EOM
output spectrum. LCC — liquid crystal cell; QWP — quarter waveplate; HWP — half
waveplate; PBSC — polarising beamsplitter cube; BSa — beam sampler; PD — photodiode;
DAC - digital-to-analogue converter; SW — switch.

first kind as a function of the modulation depth m of the EOM which is ~ £. If a
polarising beamsplitter is placed in the beam path with its transmission axis orthogonal
to the polarisation of the carrier, the transmitted beam will comprise only a reduced
proportion of the sidebands, given by

—sin .
Esidebands = 4 7| cososin 7 Z i T (m) et o et (4.5)

cos n0
where ¢ = arctan(J,(m)/ tan ) is the angle between the polarising beamsplitter’s trans-
mission axis and the modulation axis (vertical). It follows that the power remaining in

the first order sidebands is equal to

A2 cog? 2
Py = A? cos? 0sin? pJ1(m)? = cos” 071 (m) 5 (4.6)
1+ (Jo(m) cot 0)

which is maximised where cos?6 = 1/(1 + |Jo(m)|). From this we can see that there
is a substantial loss of power (~ 75%) in the sidebands after carrier-removal, however
the spectral purity of the beam is maintained, and power can be recovered by optical

amplification of the low-power sidebands (see section 4.6).

In practice, unwanted birefringence in the EOM crystal causes the polarisation of the
output to become elliptical, thus reducing the ability of the polarising beamsplitter to
remove the carrier from the spectrum. This birefringence is temperature-dependent and

varies over periods of minutes, therefore unless we maintain a constant temperature in
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Figure 4.7: Spectral density plot taken from an optical spectrum analyser after removal
of the carrier from the EOM output spectrum. The free spectral range of the OSA is
2 GHz, causing the sidebands (£2.725 GHz) to wrap.

the lab, active correction of the output polarisation is required to maintan low carrier
power. This is achieved experimentally by using an E7 liquid crystal cell in the beam
path as a variable phase retarder. The phase delay of one polarisation component passing
through the cell is controlled by applying a variable-voltage AC signal at 1 kHz and 1-3
Volts, generated by an Arduino micro-controller and digital-to-analog converter chip, to
the electrodes of the cell. The polarisation spectroscopy based Hansch-Couillaud [64, 65]
method is used to generate an error signal which has a finite gradient and crosses zero
where the polarisation of the ouptut is linear, as described in previous work [65], and
locking can be maintained for periods of hours. Carrier suppression of 30dB is achievable
with this technique, thus effective removal of the carrier is achieved as shown in figure

4.7.

4.5 EOM-Output Sideband Removal

Once the carrier has been removed from the beam spectrum (Section 4.4), we are left
with two sidebands at wg+Qp. One sideband constitutes one of the Raman beams (this

lower-frequency beam is known as the ‘anti-Stokes’ field), and the other is an off-resonant
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field which, although it does not induce unwanted atomic transitions, induces a light-
shift in the energy levels. For a pulse sequence consisting of equal-intensity pulses this
light-shift is merely a constant, correctable frequency offset, however where the pulse
intensity is varied, the level shift is more difficult to correct. The light shift affects Raman
transitions within different Zeeman sublevels differently, such that a larger light shift
accompanying the Zeeman splitting is observed for higher-intensity pulses (see section
5.1.2). It is possible to nullify this light-shift by adjusting the magnetic field, but its
behaviour becomes more difficult to predict when multiple laser frequency components
are present. With this in mind, and with a view to increasing the available power in the
anti-Stokes frequency component (upon amplification, power must be shared between
all present frequency components), we remove the off-resonant sideband from the beam
spectrum. This is done using a Mach-Zehnder interferometer. A paper on this technique
has been published (Cooper et al [66]), and we describe its implementation in our setup
in the following. It is important to note that we here re-use algebraic variables (4,

etc) which do not necessarily correspond to those defined previously.

Within a Mach-Zehnder interferometer, phase difference accrues between the two inter-
ferometer arms according to d(w) = wn(w)Al/c, where n(w) is the refractive index of
the medium and Al is the length difference between the arms. For two frequency com-
ponents separated by an angular frequency AS) we have a difference in phase difference,

assuming a constant dispersion, given by

dé(w) AQ — Al {U(W) +WZZ] AQ = T AQ (4.7)

dw c Ws

AS(AQ) =

where wj is the frequency difference between components separable by the interferometer,

given by
e

B Al [n(w) —i—wj—g} ‘

Ws (4.8)
At the output port of the interferometer, the transmitted intensity of an input frequency

component will vary as |1 — ei‘s(‘”)|2, and in our case A() in equation 4.7 is equal to 2Qp,
so if we choose the path length difference such that ws; = 22, we can separate the two

EOM-output sidebands.
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Figure 4.8: Optics for removing off-resonant sideband from the EOM output spectrum.
TEC — thermo-electric cooler; PD — photodiode; PID — proportional-integral servo. The
annotation bubbles indicate the beam spectrum at the corresponding point.

4.5.1 Mach-Zehnder Interferometer

We use a custom-made fibre optic Mach-Zehnder interferometer (figure 4.8) from Oz Op-
tics, which is constructed with polarisation-maintaining fibres aligned to non-polarising
beamsplitter cubes. The inner arms of the interferometer differ in length by ~ 19.5mm,
equivalent to Al = 7¢/ws &~ 27.5mm in free space, with the longer arm length roughly
15cm. The interferometer is highly sensitive to changes in temperature in the lab, so
it must be actively locked to the desired phase difference in order to achieve long-term
stability. This could be achieved by feedback to a stress-inducing piezo-electric trans-
ducer on one arm of the interferometer, however we choose to stabilise the device by
controlling the temperature. To generate a suitable error signal we take the carrier
light removed from the main beam using the polarising beamsplitter cube as described
in section 4.4, and pass it backwards through the secondary output port (C) of the
interferometer. A photodiode is placed at the secondary input port (B) to monitor
the backwards-transmitted carrier intensity, which is determined by |1 — e®(w-1+28)|2,
where 0(w_1 4+ Qg) = 0(w_1) + Ad(Qg). From equation 4.7, for a modulation frequency
Op = ws/2, we achieve an error signal equal to |1 — e®“-1)%2)|2  which has a finite
gradient and is equal to half of its maximum value where d(w_;) = 0 and d(w41) = 7,
i.e. where the unwanted sideband is minimised at the output port. The photodiode
current is amplified and passed into an Arduino micro-processor, where a proportional-

integral (PI) feedback signal is generated in software. Feedback is applied in the form of
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Figure 4.9: Complete spectrum of the combined Raman beams measured with an optical
spectrum analyser (OSA) after spectral filtering of the carrier and off-resonant EOM
sideband, and power amplification. The free spectral range of the OSA is 2 GHz, causing
some components to wrap.

a square-wave with variable duty-cycle to the gate pin of a FET which switches current

to a Peltier thermo-electric cooler (TEC).

The sideband suppression achieved with the stabilised Mach-Zehnder is illustrated in
figure 4.9, where we plot the spectrum of the combined Raman beams after carrier and
EOM sideband removal, and amplification (see section 4.6). We can achieve sideband ex-
tinction of ~ 30 dB, limited by the error in the fibre arm length difference and alignment
of the attached beamsplitter cubes. The interferometer remains stabilised for periods
of hours, and is subject to slight drift due to slow variations in carrier intensity. This
could in principle be corrected by monitoring the signal intensity at port C with a beam

sampler and photodiode, and adjusting the error signal accordingly.

4.6 Power Amplification

After spectral preparation, the AOM and EOM output beams have optical powers of
less than 5mW, which is insufficient for high Rabi frequency Raman experiments. Pre-
amplification and ‘cleanup’ of the EOM output beam is required between the carrier
removal and sideband removal stages, due to insufficient optical power and poor spatial

beam-quality. This is achieved by injection locking a laser diode (with no external
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cavity), which is thermally regulated and controlled as described in section 3.2.1. An
anamorphic prism pair (APP in figure 4.1) is placed at the input to the diode’s aspheric
collimating lens to aid mode-matching. The output beam is a spectrally pure copy of
the input, with optical power around 12mW (diode DC current 110mA) and a cleaner
spatial beam profile which is suitable for coupling into the fibre-optic Mach-Zehnder
interferometer. At the output of the interferometer, with which we can achieve 40%

throughput, the sideband power is approximately 3mW.

The two Raman components are individually amplified by tapered amplifiers. We employ
a Toptica BoosTA amplifier, which outputs ~ 300mW at maximum current with 3mW
seed power for the EOM beam, and an in-house built HOLabs tapered amplifier, which
outputs up to 500mW with 5mW seed power for the AOM beam. After amplification,
the two beams are combined with orthogonal polarisations at a polarising beamsplitter
cube. Figure 4.9 shows the spectrum of the combined Raman beams after spectral
filtering (see sections 4.4 and 4.5) and amplification. Note that the second-order EOM
sidebands are visible on the Raman beam spectrum. These extra off-resonant spectral
components will lead to minor additional light shifts of the atomic levels, although these

are found to be negligible in experiments.

Although it is not always strictly necessary, we employ a heated Rb vapour cell to absorb
any resonant amplified spontaneous emission (ASE) from within the Raman beams. This
ASE emerges from the Tiger laser itself, and also in part from the tapered amplifiers.

The heated vapour cell is placed after the pulse-shaping AOM, which we describe below.

4.7 Pulse Generation

To generate the Raman pulses we pass the combined continuous-wave Raman beams
through a Gooch and Housego M080-2B/F acousto-optical modulator, which is driven
by an AA opto-electronic MDA80-B4 80 MHz VCO and amplifier. Pulses are applied to
this AOM by a computer-programmed Tabor 8024 arbitrary function generator, and the
1st order diffracted beam at the output forms the Raman pulse. We achieve a coupling
efficiency into the 1st order of 0.85 with a collimated beam, and the 90% rise/fall time
of the pulse as measured with a Thorlabs DET10A photodiode is 365ns, as illustrated

in figure 4.10. This rise/fall time means that our Raman pulses do not have the desired
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‘rectangular’ temporal shape, but instead exhibit smoothed edges, which at short pulse
times (¢ < 5 us) will form a significant portion of the pulse. Furthermore, there appear
to remain long (> 1 us) ‘tails’ after switching. This is clear from the non-zero intensity
apparent in figure 4.10a after the 2nd dashed red line. Such effects will impact the
behaviour of Raman transitions, and are to be considered when analysing performance.
The rise/fall time of the AOM could be decreased by reducing the width of the Raman
beam passing through the AOM crystal, thus making the acoustic wave traverse the
beam in a shorter time. The intensity of the Raman pulse can be varied by changing

the voltage applied by the function generator.

4.8 Direction Switching

For some of the atom interferometry experiments performed in this work, we require
the ability to invert the relative directions of the two Raman beams impinging on the
atom cloud. This allows us to move out of the closed momentum basis and impart a

momentum greater than h(ky; —kz2) to the atom during a pulse sequence. To invert the

(a) Switch-off

Beam intensity (arb.)

Beam intensity (arb.)

0 200 400 600 800 1000 1200 1400
time (ns)

Figure 4.10: Intensity in the 1st-order diffracted beam of the Raman-pulse AOM as a
function of time, as measured with a fast photodiode for (a) switch-off 5 — 0V and (b)
switch-on 0 — 5V. In both plots, the switch occurs (1st red line) at 200 ns and the 90%
rise/fall mark (2nd red line) is at 565 ns, indicating a rise/fall-time of 365 ns.
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Figure 4.11: Measured intensity at the output of the polarising beamsplitter cube after
the Pockels cell, during a sample AOM pulse sequence for a single linearly polarised
beam. The Pockels cell is switched on between the two dashed vertical lines. The red
curve corresponds to one output, and the blue to the (orthogonal) other.

relative beam orientation we pass the combined Raman beams with orthogonal linear
polarisations (one vertical, the other horizontal), through a Pockels cell, which upon
recieving a high-voltage pulse to its electrodes, rotates the polarisation of each beam by
90°. The two Raman beams are then separated according to their polarisation along
each of the two orthogonal output ports of a polarising beamsplitter cube (PBSC). and

passed along single-mode optical fibres toward the MOT chamber.

4.8.1 Pockels Cell

The Pockels cell we employ is a Leysop EM508 KD*P (Potassium Dideuterium Phos-
phate) cell, whose half-wave voltage at 780nm is ~ 4.5kV. It is driven by an OEM Tech
QBU-BT-6024 Pockels cell driver, which can apply HV pulses up to 6 kV synchronously
with an external 5V signal, which we generate with a computer-programmed Tabor 8024.

The rise time of the Pockels cell according to the manufacturer is typically < 0.5ns.

We characterise the switching performance of the Pockels cell by measuring the intensity
at the output of each port of the PBSC for a single input polarisation, as shown in figure

4.11. We apply a sequence of four Raman beam pulses, with polarisation aligned to one
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axis of the PBSC, to the Pockels cell. A 4.5kV signal is applied to the cell before
the 2nd pulse, and is later switched off after the 3rd, as indicated by the dashed lines
in the figure. We therefore expect the 2nd and 3rd pulses to exit from the opposite
PBSC port to the 1st and 4th. The most important characteristic is the extinction
provided by the cell between output ports, and figure 4.11 shows this to be close to 100%.
Interestingly, however, there appear to be significant non-linearities in the switching
extinction. Some of the light emerges with the incorrect polarisation for short periods
during each pulse, including when the Pockels cell is switched off. Whilst the reasoning
behind this behaviour is not understood, it constitutes another factor to be considered

when analysing the behaviour of our Raman transitions.

4.9 Beam Shaping

The effective Rabi frequency €Qes in Raman transitions (see section 2.1.5) depends
strongly on the local intensity of the laser beams. An atom cloud illuminated by a
Gaussian beam, for example, will exhibit a higher Rabi frequency at the centre of the
beam than at the edges, and, depending on the extent of this intensity gradient, dephas-
ing of the atomic states will occur during a Raman pulse. Therefore, to avoid dephasing
in Raman pulses we would like to work with a spatially homogeneous beam across the
extent of the atom cloud, which after a typical period of ballistic expansion is ~ 1 mm
across (see section 3.6.2). There are two routes to a homogeneous beam: first, we could
employ large-radius (> 10 mm) Gaussian beams such that the atom cloud ‘sees’ only the
central, relatively homogeneous region of the beam, and increase the total laser power
to maintain a high intensity; or second, we could use beam-shaping optics to generate a
homogeneous profile. The former allows for spatially homogeneous, collimated Gaussian
beams which are essential for many large area atom interferometry (and in particular
gravimetry [12]) experiments, however the required extra laser power, which scales as
the radius squared, is not achievable in our system. The latter approach offers the pos-
sibility of generating a small, flat-top profile in which all the laser power is contained.
The disadvantage of this technique for many interferometry experiments is that typically

the beam profile is only spatially homogeneous along a small longitudinal focal region
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of the beam?, however this is not a problem in our experiments, so we proceed with this

approach.

To shape the Raman beams, we use a refractive, graded-index Topag Lasertechnik GTH-
4.2.2 Gauss-to-top-hat beam shaper, as shown in figure 4.12, in the path of each beam.
The GTH-4.2.2 converts a spatially-filtered, collimated Gaussian beam of 1/e? diameter
4mm to a square top-hat beam in the focal plane of a spherical lens, which is placed
after the beam-shaper. The side-length [ of the flat-top profile is dependent on the
focal length f of the lens, by the relationship [ = f x 2.2/1000 where [ and f are in
mm. The spatial beam profiles of the spectally-filtered (un-collimated) and f = 400 mm
flat-top beams are shown in figure 4.13. In the Raman experiments of the following
chapters, we use lenses with f = 750 mm, which according to the specifications should
give approximately square (I ~ I, = [) top hat beams with side [ = 1.65mm. In
practice, we observe different sizes, namely [ = 1.7mm and I3 = 1.4mm, and this leads
to different intensities I1 o = P12/ 1%72 where the beam powers P » are equal (by a factor
of Is/I; ~1.5).3 Since the light shift due to beam a is dependent on its intensity I,
we expect that the resultant effect will be a constant light shift. In experiments where
the beam directions are swapped, this may be a problem, however in our particular
arrangement, simulations suggest that an imbalance of intensities of this order has only
a small effect on the overall light shift. The spatial quality of the top-hat profile is
extremely sensitive to the quality and characteristics of the input beam. Careful pre-
spatial-filtering is essential for a good top-hat profile, and interestingly it does not suffice

to use the collimated output of a single-mode optical fibre.

2Generating a collimated flat-top beam using beam-shaping optics is difficult and not considered
here.

3Note that here [, » indicate the side lengths of the two different square-profile beams, and in figure
4.13 I,y indicate the side lengths of a single beam in the x and y directions, where I, >~ [,.

Aspheric 1/e? Beam Spherical
lens 4mm  Shaper lens
Pinhole < 7 >

Figure 4.12: Optics for shaping each Gaussian Raman beam into a top-hat. The beam
is collimated at the output of an optical fibre and then passed through a spatial filter. It
is re-collimated with a 1/e? diameter d = 4 mm, then passed through a polarising filter
(PBSC), before the GTH-4.2.2 beam shaper. The top-hat beam is then formed in the
focal plane of the subsequent spherical lens.
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Figure 4.13: Spatial laser beam profiles measured with a CCD camera. (a) is the beam
after the spatial filtering pinhole, and (b) is the top-hat beam in the focal plane of the
lens with f = 400mm. The 1D plots on the right are slices taken through the centre
of the beam perpendicular to the corresponding axis, and in (a) each red line is a least-
squares fit to a Gaussian function. d, are the horizontal and vertical 1/e? diameters
as determined by the fits, and [, , are the horizontal and vertical side-lengths of the top
hat.

To align each Raman beam onto the atom cloud, we use a CCD camera and zoom
lens system to image the MOT directly along the Raman beam path by looking into
the heavily attenuated beam, and adjust steering mirrors to overlap the beam with the
MOT cloud. The beams are aligned with their wavevectors k1 12 along the z-axis, that
is, (anti-)parallel to the magnetic field created at the MOT location by the z-axis shim
coils (see figure 3.4). The z-axis is therefore taken to be quantisation axis of the Raman
transition, and we can control Zeeman splitting in the atomic sublevels by tuning the

shim coil current I,. This is characterised in the next chapter.






Part 111

Results

83






Chapter 5

Raman pulse characterisation

With the MOT and Raman systems in place, we are able to realise two-level, velocity-
sensitive manipulation of cold rubidium-85 atoms. Raman pulses, with their associated
momentum recoils, form the beamsplitters and mirrors of our rubidium interferometer,

used in chapter 7 to generate a velocity-selective excitation.

This chapter details the demonstration and characterisation of coherent Raman transi-
tions in our system. We initially investigate co-propagating, velocity-insensitive Raman
transitions, and in this arrangement characterise the Zeeman structure, light shifts,
and Rabi frequency. We then explore the inherently more inhomogeneous counter-
propagating, velocity-sensitive arrangement, in which we perform temperature measure-
ments via Raman velocimetry. Particular attention is paid to dephasing in Raman

pulses, which we attempt to actively repress in chapter 6 by way of composite pulses.

5.1 Velocity-insensitive Raman pulses

In the co-propagating arrangement, Raman transitions can be treated in the manner
introduced in section 2.1, but with the momentum-dependent terms removed from the
equations. This results in transitions which are not Doppler-broadened, and there-
fore suffer less dephasing at low Rabi frequencies, because the detuning § is not sensi-
tive to the atomic velocity. Without momentum-dependence, we simply write the ket
states for the three level system as |1) = [5S51/5, F = 2), [2) = [5S;/9, F = 3), and

13) = [5P3/9, F' = 2,3), where the corresponding state amplitudes are ci, ¢, and cs.

85
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Figure 5.1: Optical setup (after spectral preparation — see figure 4.1) used to produce
co-propagating Raman beams. *Present only in the o — o arrangement. QWP — quarter
waveplate; HWP — half waveplate; (N)PBSC — (non-)polarising beamsplitter cube.

Since the Zeeman splitting, light-shifts, and Rabi frequency of the Raman transition
behave in the same way in both the co- and counter-propagating arrangements (except
for the extra momentum-dependent detuning in the latter), we can gain a good under-
standing of the behaviour of both by characterising the system in the simpler case of
co-propagating beams. Experimentally, we produce co-propagating beams by making a
small adjustment to the optical setup described in the previous chapter, as illustrated
in figure 5.1. Both beams are sent to the MOT chamber through the same optical fibre,
and their relative polarisations are controlled by the half waveplate at the input, and
the quarter waveplate and polarising beamsplitter cube at the output. We use the arm
which provides a top-hat beam with side length I = 1.4 mm, and in this arrangement

we can balance the intensities /1 o simply by equalising the beam powers P; ».

5.1.1 Zeeman structure

In this section we characterise the magnetic field dependent splitting of the Zeeman
sublevels. By testing this, we can gain insight into how to adjust the magnetic fields in
order to achieve Zeeman degeneracy, and calibrate the shim coil current dependence of
the resultant field. Figure 5.2 shows co-propagating Raman transitions in the o — o
arrangement at different values of the z-axis shim coil current I, (see figure 3.4), which
is proportional to the magnetic field strength B, along the axis of the Raman beams.

In each of the subplots in figure 5.2 a, the detuning d;, is scanned whilst A, the laser

power and the pulse length (all given in the figure caption) are held constant. The
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relatively long pulse length was chosen so that the measurements reflected the steady-
state (dephased — see section 5.1.4) hyperfine populations. Each point is an average
over 8 shots, and each scan takes approximately 7 minutes. The red curve in each
plot is a 4-point moving average of the data. Figure 5.2b shows the detuning (shift
in position of the peak) of each Zeeman sublevel as a function of I,, where the points
are measured values and the lines are weighted least-square fits to the data. The peak
positions (and errors thereof) are judged by eye, taking into consideration their width,
shape and visibility. We observe linearly increasing splitting of the 5 Zeeman sublevels

with increasing shim coil current, where Zeeman degeneracy occurs at ~ 74 mA.

The peak |c2|? values in each scan indicate the resonant steady-state populations of the
levels. In the lower plots 5.2a iii & iv we observe steady-state populations for each
Zeeman sublevel of ~ 0.1, which is expected in the case where the atoms are evenly
distributed across the 5 sublevels. The upper subplot 5.2 a i shows a Zeeman-degenerate
steady state population of ~ 0.45. In the absence of inhomogeneities we would expect
this to be 0.5, however since the Zeeman levels have different coupling strengths due
to their different dipole matrix elements, there are multiple resonant Rabi frequencies
Qp present during the transition. This limits the maximum transfer fraction (which is
essentially the average transfer fraction over the 5 sublevels for an optimal pulse length)
to around 0.96 and therefore sets the maximum steady-state population at half of this
value. The remaining difference can be made up by other sources of dephasing, which

are discussed along with the above in section 5.1.4.

Prior to performing this scan, the magnetic fields in the x and y directions were cali-
brated to allow Zeeman degeneracy by iteratively adjusting I, and I, (the x and y shim
coil currents) and measuring the Zeeman splitting in the same way as figure 5.2. With a
strong magnetic field perpendicular to the equal-circularly-polarised Raman beams, we
observe suppression of the Zeeman peaks shown in figure 5.2. These peaks are replaced
by peaks attributed to Raman transitions between |2, mp) <+ |3, mp £+ 1), as discussed
in [67]. This is explained by the relative orientation of the magnetic (quantisation) field
vector and rotational plane of the beams’ polarisation vectors. If the magnetic field
vector is orthogonal to the wavevector of the Raman beams, then for dipole transitions
the light is effectively linearly polarised, with components both parallel and perpen-

dicular to the quantisation axis. This is described by the two-beam polarisation state
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Figure 5.2: Zeeman sublevel splitting in the co-propagating o™ — o arrangement. (a)

Zeeman spectra at different values of the z-axis shim coil current I,. In each plot, the
blue crosses are experimental data and the red curve is a 4 point moving average of the
data. (b) Sublevel peak positions as a function of I,. The circles are measured values,
and the lines are least-square fits, whose gradients are tabulated in (c). The combined
Raman beam power is P = 13mW, the detuning A = 27 x 10.5 GHz, and the pulse
length is 50 us.

q = (0,%1), which gives rise to the aforementioned transitions.

The Zeeman sublevels are shifted in energy by the magnetic field B, according to equa-
tion 2.60, where the shift in frequency is given by A fzeeman = AFZeeman/h Hz. For the
sublevel mpg in rubidium-85 the Zeeman frequency shift is A fzeeman = grmpe x 1400
kHz/G, where g = 1/3 for the |55} 5, I' = 3) state and gr = —1/3 for 555, F' = 2).
Comparing this to the weighted average of the 4 magnetic-sensitive curve gradients (di-
vided by mp) in figure 5.2, which is 3.2(3 +-4) kHz/mA, we calculate the magnetic field

strength as a function of current to be 3.4(3 +£4) mG/mA.

Another inference which we draw from these data is that the magnetic field at the
interrogation region is, to a good approximation, uniform. A non-uniformity in B,
across the spatial extent of the atom cloud would be manifest in a broadening of the

magnetic-sensitive sublevels mp # 0, and this is not observed.
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5.1.2 Light Shifts

As discussed in section 2.1 and appendix A.1.3, we expect to observe shifts in the energies
of the atomic levels due to the presence of alternating electric fields. These light shifts
[68], or AC Stark shifts, are given, for a single-photon transition, by Q4¢ = |Q|2/4A,
where 2 is the transition Rabi frequency and A is the detuning of the field from the
transition resonance. These shifts emerge from the single-beam, two-level dressed state
picture in the limit of large detuning (A > Q). In Raman transitions the quantity of
interest is the difference between the light shifts of the lower hyperfine levels |55 o, F' =
2), level [1), and |58 , F' = 3), level |2), which we defined (in the vector formalism) in

equation 2.73.

Due to variations in the Rabi frequency between the different mp sublevels, dependent
in part on the polarisation, we expect the light shift to vary between sublevels. This will
potentially give rise to intensity-dependent splitting of the Zeeman levels which, when
applying pulse sequences with varying intensity, is undesirable. In the following, we
investigate the behaviour of the light shift in both the 6™ — o™ and 7™ — 7~ polarisation
arrangements (see table 2.2 and figure 5.3b), and compare the results with estimated

values based on equation 2.73.

Weiss et al in [69] state that in order to equalise the light-shifts of the two levels in the

Raman system, one must adjust the intensities I 2 to satisfy the condition

h_y, 28 (5.1)
I wrrs — A’ '

which can be easily derived by setting equation 2.73 equal to zero and rearranging. This
will only yield positive values of I;/I5 in the case where |A| < wypg. Since in our
experiment the detuning |A| always exceeds wprg, no such condition is possible, and

the light shifts cannot be balanced.

51.2.1 ot —ot

The results for the 0™ —o™ case are shown in figure 5.4. The plots in figure 5.4 a show the
Zeeman spectra for 5 different combined Raman beam powers P = P; + P, (given in the

plots) where P; ~ P5, obtained in the same way as in figure 5.2, and figure 5.4 b shows
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Figure 5.3: Sublevel couplings contributing to light shifts in the Raman system. The
dashed lines are dipole-allowed routes in the 77 — 7~ arrangement, and the solid lines
are those in o™ — o*. The blue lines indicate transitions which form part of a Raman
route, and the red lines indicate those which do not. We only show a select few lines to
avoid overcrowding.

the peak positions of the individual Zeeman levels as functions of P. The degeneracy
of the mp levels was lifted by setting the z-axis shim coil current to I, = 122mA,
thus providing a sufficiently strong magnetic field. In figure 5.4 b, the points are the
measured values, (the horizontal error bars account for uncertainty on the beam power
measurement) the dashed lines are least-square fits to the points, and the solid lines
are numerical simulations based on equation 2.73. For a rough quantitative comparison
between experiment and theory, we tabulate the line gradients in kHz/mW in figure 5.4 c.
Broadly speaking, what we observe in the o™ — o* arrangement is a linear Zeeman-like
light shift induced splitting of the mp levels, dependent on the Raman beam power. We
observe an average splitting between adjacent sublevels of 3.2+ 0.3 kHz/mW, where the
combined top-hat Raman beam has side length I = 1.4 mm. We find good qualitative
agreement between experiment and theory for all of the sublevels. Quantitatively, not
all of the simulated gradients lie within the stated experimental errors, but this can
be attributed to further uncertainties, such as that in the detuning A, which are not
considered in the simulations. The non-zero gradient of the mp = 0 curve, and the
overall asymmetry between +mp (# 0) sublevels about d;, = 0, arises due to the a # n

terms in the light shift. As mentioned previously, it is not experimentally possible where
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Figure 5.4: Light shifts of the individual Zeeman sublevels in the co-propagating o+ —o™
arrangement. (a) Zeeman spectra at 5 different Raman combined Raman beam powers
P = P, + P, where P} =~ P5. (b) Peak positions as functions of P for each mp sublevel
(individually labelled) where the circles are measured values, the dashed lines are least-
square fits to the circles, and the solid lines are theoretical values based on equation 2.73
assuming the experimentally-measured parameters A = 27 x10.5 GHz and I, = 122 mA.
(c) Tabulated gradients of the fits and simulations in b, given in kHz/mW.

|A| > wprs to remove this asymmetry by balancing the intensities.

By subtracting the light shifts at 13 mW as observed in figure 5.4 from the Zeeman shift
curves in figure 5.2, we estimate that the true zero-point of magnetic field along the

z-axis occurs at [ ,50) = 86 =5 mA. We impose the error on I éo)

empirically to reflect the
fact that it will vary with changing MOT position (when the MOT beams are realigned,

for example), and with drifting stray fields in the lab.

5.1.2.2 wt —a—

The results for the 7+ — 7~ arrangement are shown in figure 5.5. We observe distinctly

different behaviour to the o+ — o+ arrangement, in that all the Zeeman sublevels in the

+

T — 7~ arrangement are light-shifted in the same direction. Moreover, the gradients of

the curves are all similar, and we do not observe a Zeeman-like splitting of the levels. We
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Figure 5.5: Light shifts of the individual Zeeman levels in the co-propagating 7™ — 7~
arrangement. (a) Zeeman spectra at 5 different Raman combined Raman beam powers
P = P, + P, where P, = P». (b) Peak positions as functions of P for each mp sublevel
(individually labelled) where the circles are measured values, the dashed lines are least-
square fits to the circles, and the solid lines are theoretical values based on equation 2.73
assuming the experimentally-measured parameters A = 27 x 10.8 GHz and I, = 122 mA.
(c) Tabulated gradients of the fits and simulations in b, given in kHz/mW.

once again observe an overall asymmetry about d; = 0, and the apparent discrepancy
between experiment and theory for the mp = 0 sublevel arises due to the off-trend
position of its peak in subplot 5.5a iv, which is not observed for any of the other

sublevels.

The detailed quantitative analysis of this data, and its level of agreement with the model,
is rather less interesting than what the general trends tell us about the light shifts
in different polarisation arrangements. In the o™ — o™ case we observe an intensity-
dependent splitting of the levels. Therefore if the atoms are Zeeman-degenerate for a
pulse at intensity I4, they will not be Zeeman-degenerate at some different intensity
Ip. Since the splitting is approximately linear, i.e Afrs o< mp x I, we can correct for
this, and regain Zeeman degeneracy by varying the magnetic field B, along the axis of

the Raman beams (where A fzeeman X mp X B,) via the Zeeman effect. However in
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rapid pulse sequences where, say, an intense pulse is immediately followed by a weak
one, fast-switching of the magnetic field is not possible on the necessary timescales. In
the 7+ — 7~ arrangement we need not worry so much about such effects because all the
sublevels are shifted by a roughly equal amount. We therefore conclude that the 7+ —7~
polarisation arrangement is more robust in this respect. This is suggested briefly in the
context of Raman cooling in [61] however no data, or indeed theory, regarding the light

shifts is given in that particular article.

5.1.3 Spectral pulse profile

With some understanding of the Zeeman and light shift behaviour, we are able to adjust
the parameters of the experiment to allow for Zeeman-degenerate Raman pulses. In this
section, we demonstrate a Zeeman-degenerate 7 pulse in the co-propagating o+ — o
Raman arrangement, and characterise it by comparison with a numerical simulation.
The spectral profile of the 7 pulse is shown in figure 5.6. This was obtained after cor-
recting for Zeeman and light-shift-induced splitting by adjusting the shim coil currents.
The resultant population |ca|? is measured at a range of laser detunings &y, for a fixed
pulse duration 7 = 6 us. We determine the required 7 for the 7 pulse by measuring
the position of the first peak in a Rabi flopping experiment (see section 5.1.4), after the
light-shifted resonant frequency 67, — 64¢ = 0 is determined empirically from a prelim-
inary spectral scan with a fixed pulse length. In this experiment, the duration of the
molasses phase was t); = 3ms. It is important to stress that the temperature does not
affect the spectral properties of a Raman transition in the co-propagating arrangement,
so the additional cooling afforded by the molasses phase provides little benefit. Each
data point (blue circles) is an average over 8 shots, and the complete experiment takes
around 7 minutes. The combined Raman beam power was measured at 24 + 1mW,
giving a combined intensity of approximately 12kW /m?2. The single photon detuning A
was measured to be 9.5 + 0.5 GHz, and the z-axis shim coil current was I, = 58.5mA,
which corresponds to a magnetic field of B, = —101 mG if we take the zero-point to be

IS)) = 88.0mA (a reasonable estimate — see section 5.1.2.1).



94 Raman pulse characterisation

0r /27 (kHz)

10 —400 =300 =200 —100 0 100 200 300
— Avg.
— mp=-1
0.8F o
mp=+1 Param. Value
I 5.5+0.5 KW/m?
I 5.5+0.5 KW/m?
A 211 X 9.5 GHz
B, -101 mG
T 6 us
S 0.95

Figure 5.6: Spectral profile of a Zeeman-degenerate Raman transition in the co-
propagating ot — o™ arrangement. The blue circles are experimental data, and the thick
red curve is a numerical simulation of the average |c2|? over all mp = —2, ..., 2, assuming
the parameters given in the table to the right and an equal distribution across sublevels.
The thin curves are simulations for the individual mp = —1, 1 sublevels. Experimentally-
measured parameters were 12 = 6+ 0.5 kW/mz, and A =27 x 9.5+ 0.5 GHz.

The data exhibit a sinc-squared-like shape as expected (see figure 2.4), which is some-
what washed out at the shoulders. We can gain some insight into the effects of cer-
tain experimental parameters, and test agreement between experiment and theory, by
comparing the data to a numerical simulation. The thick red curve in figure 5.6 is a
simulation of the average resultant |cz|? across the five sublevels mp = —2,...,2 (the
observed quantity in the experiment) corresponding to the parameters given in the table
to the right of the plot, calculated using equations 2.36. In the simulation we find a good
fit to the data with I o slightly lower than the experimentally measured values, where
A is as measured. The parameter S is discussed in section 5.1.3.1. We use the field
intensities I1 2 and detuning A along with equation 2.72 to calculate the Raman Rabi
frequencies 2r, and the light shifts are calculated using equation 2.73. The magnetic
field is included in the simulation by addition of the Zeeman shift term upgrmpB, to
the detuning § in equations 2.36. In these velocity-insensitive simulations, the momen-
tum terms are removed from the equations. It is important to note that this simulation,
along with all others in this thesis, considers an even initial distribution of atoms across
the five Zeeman sublevels. That is, we assume each level constitutes 20% of the total

number of atoms — an assumption reinforced by the data in figures 5.2 a, 5.4 a, and 5.5 a.



Raman pulse characterisation 95

We find that the washing out at the shoulders is due to the fact that B, does not fully
compensate for the light shift induced splitting of the mp sublevels (see section 5.1.2.1).
This is illustrated in the plot by the thin lines depicting the individual sublevels mp = —1
(green) and mp = +1 (cyan), which are non-degenerate. Intensity noise is included in
this simulation (indicated by the ‘errors’ on I;2) to account for the inhomogeneity of
the Raman beam profile. The effect of this is illustrated more clearly in section 5.1.4,

where we also explain its implementation.

The only ‘free’ parameter in the numerical simulation is S, a scaling factor which mul-
tiplies the simulated resultant value of |cp|?. This is required because, although their
spectral shape agrees well with the data, the simulations give amplitudes slightly higher
than what we observe. The inclusion of a scaling factor might be considered unsatisfying,

however its origins are clear, as described below.

5.1.3.1 Loss of atoms

We expect some fraction of the atoms to leave the interrogation region (the lo = 1.4 mm
cross-section of the Raman beams) under ballistic expansion during and immediately
after the molasses phase, leading to a reduction in the maximum achievable |co|?, as
illustrated in figure 5.7 a. The readout and normalisation pulses (see section 3.5) cause
atoms within the detection region (the D ~ 7mm cross-section of the cooling beams)
to fluoresce. Therefore atoms expanding out of the interrogation region but remaining
inside the detection region, will be detected by the readout pulse but not excited by the
Raman pulse, and a number of atoms contributing to the readout signal will not have
‘seen’ the Raman beams. This effect was partly characterised in section 3.6.2, where we
concluded that the majority of the cloud remained within a 1 mm-side cross section over
10 ms after the quadrupole field was switched off. However, it would appear that there

is a greater loss of atoms from the interrogation region than suggested in figure 3.9.

In order to investigate whether loss of atoms was the reason behind the lower-than-
expected observed |ca|2, we measured |cz|? on-resonance (§ — 64¢ = 0) for a 7 pulse
applied at different times. The duration of the molasses phase was t;; = 1.5ms, and
we applied a 500 us preparation pulse as normal. At a time tg after the preparation

pulse, the 7 pulse was applied (7 s in this case). The state readout pulse was applied
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Figure 5.7: Demonstration of the loss of atoms from the interrogation region. (a) Sketch
showing atoms ballistically expanding out of the interrogation region, and the associated
PMT signals. The readout amplitude is smaller as atoms are lost, but the normalisation
amplitude remains constant (|ca|?> = Ar/An). (b) Population in |2) after a resonant 7
pulse, as a function of the start-time tg of the pulse.

at a fixed time (5ms) after the preparation pulse. Figure 5.7b shows the results of the

experiment.

At low tg we observe |c2|? values of around 0.9, which is close to the maximum achievable
(~ 0.96), and after t5 = 1ms |ca|? begins to decrease. The red line on the graph is a
least-squares fit of a straight line to the data after tg = 2ms, and is intended merely
as an aid to the eye. After 4ms the resonant transfer fraction has decreased to ~ 0.7,
representing a scaling factor at this point of S = 0.7/0.96 = 0.73. This behaviour
represents evidence that atoms are indeed being lost from the interrogation region as the
atom cloud ballistically expands. Whereas in the above experiment the atom cloud was
left to expand in the absence of the cooling and repump beams, in all other experiments
in this thesis the Raman pulses are applied immediately after the state preparation
pulse, following a molasses duration t;;. Since the molasses will continue to provide a
cooling and impeding effect, even in the absence of the quadrupole field, we can consider
the values of S here as a lower bound on the parameter (the upper bound is 1) in our

simulations, and we expect S to be larger in the other experiments.
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5.1.4 Rabi Flopping

When the resonant (§ — 64¢ = 0) Raman beams are switched on, we expect the atoms,
which we prepare in state |1), to oscillate, or ‘Rabi flop’, between the hyperfine levels |1)
and |2) at a rate equal to the two-photon Rabi frequency g, given in equation 2.72. We
can test this experimentally by measuring the evolution of the population in state |2)
as a function of the duration of the Raman pulse. A characterisation of the two-photon

Rabi frequency is given in section 5.1.4.1.

Since there are many atoms in the cloud, and many environmental and internal effects
to which they are sensitive, we expect there to be inhomogeneities in the Rabi frequency,
borne out in dephasing of the Rabi oscillations. This was observed to some extent in the
previous section, however it is illustrated more effectively when considering Rabi flop-
ping. We discuss the prominent sources of dephasing in section 5.1.4.2, and afterwards

go on to demonstrate ‘optimal’ Rabi flopping, where dephasing has been minimised.

5.1.4.1 Two-photon Rabi frequency

The two-photon Raman Rabi frequency is proportional to the product of the two single-
photon Rabi frequencies, as shown in equation 2.72. In order to test this experimentally,
we measured the frequency of Rabi flopping at a range of Raman beam powers. The
results are shown in figure 5.8. Part a of the figure shows the measured population in
state |2) as a function of the Raman pulse length, for 5 different Raman beam powers
(given in the plots) at a detuning A = 27 x 12.5 + 0.5 GHz. Each point is an average
over 8 shots, and a complete scan takes approximately 7 minutes. The red curve in each
plot is a 6-point moving average of the data. These scans are taken close to resonance,
such that 64¢ — § <« Qp, and we have attempted to minimise the light-shift splitting
by compensation with a magnetic field, as discussed in the previous section. Since these
data were taken in the o™ — o™ arrangement, we expect to see a change in the maximum
value of |cy|? with changing beam powers, due to the light-shift. This is indeed shown
by the data, since the curves have different amplitudes. Figure 5.8 b shows the Rabi
frequency as a function of the combined Raman beam power P = P; + P, where the
beam powers are approximately equal (P; = P»), as measured from the scans in 5.8 a.

We expect Qg to be proportional to /Pi/Ps, since Q,, x E, x /I, x /P,, and
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Figure 5.8: Rabi flopping in the co-propagating ot — ot arrangement. (a) Measured

F = 3 state population as a function of Raman pulse length ¢ at a measured detuning
A =27 x12.5 GHz for five Raman beam powers P = P, + P, ~ 2P (given in the plots).
(b) Rabi frequency as a function of P: circles — measured values from (a); solid blue
curve — least squares fit to the circles; red curves — theoretical values assuming detunings
given in the legend.

therefore where the powers are equal Qr o P. We calculate the effective Rabi frequency
(so-called since we are observing the combined, or average, value of Qi across all mp
levels) by measuring the half-period of oscillation 7.f/2 and applying it in the formula
Qoff = 1/7eg. The error on 7.¢/2 is judged by eye according to the ‘sharpness’ of the
initial Rabi flopping peak, and appears large in the plot due to the nature of the error
propagation. The solid blue line on the graph is a least-squares fit to the data, which
is linear as expected and exhibits a y-axis intersection of ¢ = —0.34 £ 0.72, which is
consistent with the origin. The red curves on the plot are theoretical values, which we

calculate using the formula

1
Tl = mn; .
(5.2)

QAN Z ( [2,mp),|F’, mF)Q|(§,)mF>,|F’,m’F>>’

mpg mp
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in which N, = 5 is the number of Zeeman sublevels, and since we are using the o+ —o™
arrangement, m, = mp+1. Once again, we can evaluate this by calculating (or looking
up in Steck [44]) the associated dipole matrix elements for each transition, and inputting
the measured beam intensities I 2 = P2/ I3 (where Iy = 1.4mm) and detuning A. In
the figure we show curves for three different values of A (given in the legend). We find
that the gradient of the experimental curve is smaller than that of the theory, assuming
the measured parameters in the simulation, and the difference is equivalent to a 20%
over(under)estimate of the measured value of P (A). A is measured using a wavemeter
into which both Raman beams (~ 3 GHz apart) are channelled, and since the resulting
measurement is some combination of the two wavelengths, a systematic discrepancy
in the measurement may arise. Further to this, a systematic offset in the measured
intensity of the Raman beams may arise due to an asymmetric top-hat profile, or to
regions of lower/higher than average intensity within the cross-section of the beams.

These discrepancies are considered in the simulations of the remainder of this thesis.

5.1.4.2 Sources of dephasing

Figure 5.8 a shows that much dephasing occurs during Rabi flopping. The upper state
population |ca|? reaches its steady state in all cases after only two Rabi cycles, and its
peak value, which occurs after half of one Rabi cycle, is much lower than what we desire

for an efficient 7 pulse. The primary sources of dephasing during Raman pulses are:

1. Differences in resonant two-photon coupling strengths between the Zee-
man sublevels
This is unavoidable when working with Zeeman-degenerate transitions. Raman routes
within all of the five Zeeman sublevels (see figure 2.7a) contribute to the measured
average |c|?, and the two-photon Rabi frequency Qr = Q11 - Q22|/2A for each mp
level is different. Note that Qg for the sublevel mp is equal to that of the sublevel
—mp, hence assuming complete Zeeman-degeneracy there are three distinct Rabi
frequencies present. On-resonance, this source of dephasing puts an upper limit on

|ca|? for a 7 pulse of approximately 0.96.

2. Intensity variations across the Raman beam profile

The top-hat Raman beam exhibits spatial intensity inhomogeneities, as shown in
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figure 4.13b. Since the Rabi frequency is dependent on the electric field strength,
such inhomogeneities cause variations in the Rabi frequency across the extent of the
atom cloud, giving rise to dephasing. Even the most spatially homogeneous top-hat

achievable with the current setup exhibits an intensity noise of around +5%.

3. Zeeman non-degeneracy
This occurs when (a) there is a non-zero magnetic field perpendicular to the Raman
beams, or (b) the magnetic field parallel to the Raman beams does not cancel the
light-shift-induced splitting of the levels (see section 5.1.2 and figure 5.6). Zeeman
non-degeneracy leads to a different value of the laser detuning dr, and therefore a

different Qp, for each of the Zeeman sublevels.

4. Broadening of the detuning 4
Where § varies from the expected value, there is an associated variation in the
two-photon Rabi frequency Qr. This can occur due to systematic changes in the
laser detuning 07, or to the Doppler effect via the detuning term (kp; — kzo) - v
in the velocity-sensitive arrangement. For small splittings between the sublevels

(A fzeeman + Afrs < Qr), source 3 can be considered as an effective broadening of 9.

Assuming optimal beam quality, the only significant handle available to us if we are
trying to minimise dephasing in the co-propagating arrangement, is the magnetic field,
which we control by changing the currents I, , . through the three independent, orthog-
onal pairs of shim coils (see figure 3.4). Painstaking tweaking of these currents can lead
to a significant increase in performance, as shown in the following section. All of the
above sources of dephasing can be considered as systematic errors, and we take a more

active approach to suppressing them, by way of composite pulses, in chapter 6.

5.1.4.3 Near-optimal performance

Figure 5.9 shows Rabi flopping at Qeg ~ 27 x 32kHz where the magnetic fields have
been optimised to give maximal Zeeman-degeneracy. The experimental parameters for
this scan were measured to be A = 27 x 16.54+0.5 GHz, I, = 78 mA, 6 = 27 x —10kHz,
and the combined power P = P; + P, = 16 = 1 mW. We can see from the plot that the
peak |ca|? value is significantly increased compared to the scans in figure 5.8, and that

the experimental contrast of the Rabi oscillations is greater. The thick red curve in the
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Figure 5.9: Rabi flopping in the co-propagating o™ —o ™" arrangement where the magnetic
fields have been adjusted to give maximal Zeeman degeneracy. The blue circles are
experimental data, and the thick red curve is a numerical simulation, assuming the
parameters given in the table to the right. The dashed red curve is a simulation with
identical parameters, except without noise on /1 2. The thin solid lines show two of the
five individual m g sublevels, indicated in the legend.

figure is a numerical simulation of the average |c2|? assuming the parameters given in
the table to the right of the plot, where in this case we find good agreement with the

data assuming the experimentally measured values of P and A.

The dephasing in this case is dominated by sources 1 and 2 in the above list, the effects
of which we are able to simulate. We simulate the effects of source 2 by adding n x Al,
where 7 is a uniformly pseudo-randomly generated number —1 < 7 > 1 and AI (denoted
as the ‘error’ on I in the parameter table) is the maximum intensity excursion, to the
intensity ;2. We simulate a Rabi flopping curve for 50 different pairs of intensities
I1+m A1, Is+19A9 and take an average of these to get the resultant curve. Furthermore,
each of the 50 curves are themselves averages of 5 sub-curves corresponding to the 5
ot — 0% Raman routes (associated with the 5 Zeeman sublevels), which differ due to
their different associated dipole matrix elements. We find that without intensity noise,
as shown by the dashed curve in figure 5.9, some of the contrast is maintained at longer
pulse times, but the effect is somewhat negligible for the first two Rabi cycles. It is
important to note that the intensity noise is only spatial in these simulations, and we
do not consider intra-pulse intensity variations — this would be very difficult to simulate

for relatively little intuitive gain.



102 Raman pulse characterisation

The effects of source 1 in the above list are illustrated by the two thin curves in the
plot, which are simulations of the individual sublevels mp = +1 (cyan), and mp = +2
(magenta). Unlike in figure 5.6, these levels are spectrally degenerate, but the difference
in the inherent coupling strengths between the five sublevels leads to rapid dephasing
between them during pulses. We find that the sublevels mp = £1 (mp = £2) exhibit
Rabi frequencies which are 6% (25%) lower than that of mp = 0. Given that the
observed |cz|? is an average value of the five sublevel curves, we can see that source 1
acts to reduce Rabi flopping contrast at short pulse times, and source 2 acts to impede

the revival of contrast where the sublevels rephase at later pulse times.

Note that in the simulations performed throughout this thesis, we assume transitions
along individual sublevel routes to remain independent throughout the course of the

pulse or pulse sequence, and that there is no mixing of population between the sublevels.

As a general comment, the velocity-insensitive Rabi flopping illustrated in figure 5.9
exhibits considerably less dephasing than has been reported for example by Butts et
al [70], who performed spin-polarization so that only the mp = 0 level was populated
before applying their (Gaussian beam) Raman pulses. This may be due to the improved

Raman beam homogeneity afforded by the top-hat beams in our experiment.
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5.2 Velocity-sensitive Raman pulses

In the velocity-sensitive, counter-propagating Raman arrangement, the momentum terms
are re-inserted into the model, and we are able to perform useful interferometry by
spatially splitting and recombing wavepackets. The ket states are written, for simplicity,
as |1,p) = |1), |3,p + hkr1) = |3) and |2,p + A(kr1 — kr2)) = |2), and as before the

associated amplitudes are cj, c3 and cy respectively.

In the co-propagating arrangement half of the power was ‘dumped’ at the non-polarising
beamsplitter cube before the fibre (see figure 5.1). In the counter-propagating arrange-
ment the beams are deliverered to the MOT chamber independently, and (excluding
unavoidable losses such as fibre-coupling inefficiencies) all of the power is retained in
the Raman beams. We can therefore take advantage of the extra power-broadening in
the velocity-sensitive arrangement, but as we demonstrate in section 5.2.2, the spread
in atomic velocities and the associated Doppler-broadening of § leads to significant de-

phasing.

We begin this section by re-visiting the velocity distribution of the atom cloud. Measure-
ments of the spectral Raman pulse profile in the velocity-sensitive system (equivalent to
the velocity-insensitive results of section 5.1.3) are described in the next chapter, where

we explore methods for improving fidelity.

5.2.1 Raman velocimetry

Since the Raman transition is sensitive to the atomic velocity v,, we can use it as a
sensitive means of velocimetry, as in the experiments of, for example [12, 58, 60, 67].
The detuning of the velocity-sensitive Raman transition is given in equation 2.57 which,
when we include the light shift, becomes

p- (ki1 —kr2) . Ak — kpo)?

_gAC _ _
§—6 o + i Wi

(5.3)

If we set our effective detuning 6§ — §4¢ = 0 and use counter-propagating Raman beams

such that kj; ~ —kjo = kz, this becomes

2
L (5.4)

5, =2
L= M
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where v, is the velocity component in the z-direction and v is the two-photon Raman
recoil velocity. This tells us that an atom resonant with the Raman beams will have a
velocity whose z component is proportional to the detuning 7. An atom starting in |1, p)
with the corresponding resonant velocity will be excited by the Raman beams to |2, p +
h(k; —ko)). It is therefore possible to build a picture of the atomic velocity distribution
simply by measuring the resultant state of the atoms after a Raman pulse at a range
of 7, detunings. Raman velocimetry represents a more robust method for measuring
temperature than the previously-performed release-and-recapture method [49, 50, 59],
since rather than providing a signal which is integrated over the whole atom cloud, it

allows for observation of structure within the velocity distribution.

The resolution of the measurement is limited by the intensity of the pulse, since the

spectral linewidth of the Raman transition is power-broadened according to the two-

photon Rabi frequency 2r. In order to achieve high resolution we therefore require a

sufficiently low-intensity pulse. Furthermore, the fundamental limit on the resolution of

the measurement is determined by the duration ¢ of the Raman pulse, according to the

Fourier-limited pulse width (see [42] section 9.8, for example)
Av 1

—a 5.5

YT (5.5)

which tells us the minimum velocity-width of the transition. Assuming a sufficiently low-

intensity pulse, for a resolution equal to vg with A ~ 780 nm, we would set ¢t = 50 us.

The result of a Raman velocimetry experiment immediately after a ¢3; = 6 ms molasses
cooling stage (step 6 in section 3.5) is shown in figure 5.10, where we measure the
resultant population |cz|? as a function of the laser detuning d;, for a fixed pulse duration
7 =110 pus. In figure 5.10 a, the blue circles are experimental data and the red curve is
a numerical simulation using the parameters given in the table. As a reminder, the two
beams are imbalanced in intensity, assuming equal powers, due to the difference in beam
size (I; = 1.7mm, [y = 1.4mm). Whilst we would prefer to use low power beams with,
say, P12 = 1mW for increased velocity resolution, this leads to very low signal-to-noise
since there are fewer atoms excited by the pulse. To preserve signal-to-noise at a workable

level we instead apply beams at P; o ~ 12 mW. Because of this, whilst the spectral profile
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Figure 5.10: Velocity distribution of the atom cloud after a t;; = 6ms molasses phase,
measured by Raman velocimetry. (a) Measure of the population in |2) after a velocity-
sensitive o™ — o Raman pulse of duration 7 = 50us, for a range of detunings d;,. The
blue circles are experimental data and the red curve is a numerical simulation using
the parameters given in the table. (b) The reconstructed velocity distribution from the
numerical simulation.

of the Raman transition is a good approximation to the velocity distribution of the
atom cloud, it is not a direct measure. We must instead reconstruct an estimate of the
velocity distribution from the parameters used in the best-fitting numerical simulation.
Sub-Doppler cooling is most effective at the center of the cooling region, as discussed
in [71], and it is therefore common for the resultant velocity distribution to exhibit two

distinct Gaussians. With this in mind we model the normalised velocity density as

1
pv(Uz) = @+ a (ale_%(vz/m)2 + 026_%(Uz/02)2> ) (5'6)
1 2

where a1 are the amplitudes and o1 the widths of two Gaussians. We find a good

fit to the data where a;/as = 4 (the result is independent of the absolute amplitudes)
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and o1 = 1.8vg, 01 = 7.5vg. The 1D temperature of a Gaussian velocity distribution of

width o, is given by

Mo? 0\ 2
T="0 148 <"> 1K, (5.7)
kg UR

hence the velocity distribution, as shown in figure 5.10b, represents a narrow central
component with temperature 7' = 4.8 uK and a broader background at T = 83 uK.
These are realistic parameters, and furthermore the two-component spectral profile we
observe is similar to the time-of-flight data published in [71]. For comparison, the recoil
limit for sub-Doppler cooling of rubidium-85 is T = 0.37 uK, and the Doppler cooling
limit is Tp = 145 uK. Integrating the two estimated distributions, we find that roughly
50% of the cloud is contained within each, hence the average temperature of the cloud
is ~ 44 uK. It is important to note that the velocity distribution is highly sensitive
to experimental parameters such as the intensities and detunings of the MOT lasers,
the magnetic fields, and the parameters describing the Raman beams themselves. As
a consequence, it is highly variable, and we observe variations in temperature from

day-to-day. The scan in figure 5.10 was taken after much iterative optimisation.

5.2.2 Rabi Flopping

We now investigate Rabi flopping in the velocity-sensitive Raman arrangement. As
mentioned previously, since there is a distribution of atomic velocities within the atom
cloud we expect there to be a large inhomogeneity in 0 in this arrangement, which will

add another source of dephasing to those discussed in section 5.1.4.2.

Velocity-sensitive o7 — o7 Rabi flopping at Qe ~ 27 x 200kHz is shown in figure
5.11. The Raman beams were measured to carry powers of P| =~ P» = 44mW, and
their single-photon detuning was A = 2w x 15 £ 0.5 GHz. To offset the light shift
induced sublevel splitting and bring the sublevels into degeneracy, the z-axis shim coil
current was set to I, = 59mA, and we empirically located the light-shifted Raman
resonance at 6;, = 64¢ = 27 x —50kHz. After running simulations with a range of
velocity distribution parameters, we find a suitable approximation to the data where
o1 = 3 X vR, 0o = 10 X vg, and aj/as = 3. This represents a realistic post-molasses
velocity distribution, with a central peak at 13 uK, a background at 148 uK, and an

average temperature of 7' ~ 84 uK. Simulations also approximate the data well where



Raman pulse characterisation 107

Param. Value
I, 12+1 kW/m?
L 17+1 kW/m?
A 211 X 15.0 GHz
61 21 X -50.0 kHz
B, -101 mG
0; 3 Xvg
g, 10 X vy
a;/a, 3

Avg. S 0.95

w/0 noise

0.0 ' ‘ ’ ’
0 20 40 60 80 100

pulse length ¢ (us)

Figure 5.11: Zeeman-degenerate Rabi flopping in the counter-propagating o™ — o™ ar-
rangement. The blue circles are experimental data, and the red curve is a numerical
simulation, assuming the parameters given in the table to the right of the plot. The thin
curves are numerical simulations of the individual sublevels mp = 41, 42, indicated in
the legend.

we set B, = —101 m@G, suggesting a zero-point current I, ;0) = 88 mA, which once again
agrees with the measured value. Similarly to figure 5.8, we find better agreement with
the data where P (A) in the simulation is around 20% lower (higher) than the measured
value (these are equivalent, but we typically apply a reduction of P, rather than an

increase in A, in the simulations).

We observe a higher Rabi frequency than that in the velocity-insensitive arrangement,
because the beams have greater intensities, and due to the spread in velocity we observe
a more rapid dephasing. The initial peak exhibits an upper hyperfine state popula-
tion of |e2|? ~ 0.5, as compared with the ~ 0.85 observed in the velocity-insensitive
arrangement. The effects of Doppler-induced dephasing are indicated more clearly in
the simulated curves for the individual sublevels, of which we plot mp = +1 (cyan) and
mp = +2 (magenta) in the figure. Once again, although the sublevels are spectrally
degenerate, they rapidly dephase during pulses due to their different dipole matrix ele-
ments, but in the velocity-sensitive arrangement we find that their peak and steady-state
|c2|? values are greatly reduced. In light of this we conclude that source 4, the broad-
ening of the detuning §, dominates the dephasing in velocity-sensitive pulses at short
pulse times. Furthermore, we expect to observe more dephasing with a wider spread

in velocities, given a fixed beam intensity and detuning. We characterise this effective
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temperature dependence in the next chapter, where to preempt more specifically, in

figure 6.8 we plot the simulated peak fidelity as a function of velocity width.

5.3 Conclusion

In this chapter we have demonstrated that our experimental system is capable of pulsed,
velocity-sensitive, two-level manipulation of cold rubidium. We found that the Raman
pulses are subject to significant dephasing, due to broadening effects (Doppler, Zeeman,
and light shift), beam intensity inhomogeneities, and varying inherent coupling strengths
across the Zeeman sublevels. The numerical simulations performed in this chapter, which
we find to agree well with the data, have provided extra insight into the behaviour of
the Raman pulses, particularly in the cases of Zeeman-degenerate transitions where the

behaviour of individual sublevels is not experimentally resolved.

Our investigations into light shifts revealed that in the o™ —o™ polarisation arrangement,
Raman pulses cause a Zeeman-like light-shift-induced splitting of the mp sublevels, and
that such splitting is absent in the 7+ — 7~ (lin-perp-lin) arrangement. From this we

learn that the latter is more robust in schemes where varying pulse intensities are applied.

Since coherence (a lack of decoherence, where decoherence is distinct from dephasing) is
achieved on timescales of over 100 us, and sufficiently high Rabi frequencies are available
(we demonstrate this clearly in section 6.3.2), we conclude that the system is suitable

for tests of interferometric cooling.



Chapter 6

Composite Raman pulses

As demonstrated in chapter 5, coherent pulses in the velocity-sensitive Raman system
are subject to dephasing of atomic states. Dephasing is brought about by the presence
of systematic variations in such system parameters as the intensity and detuning of the
control field, and the velocities and angular momenta (Zeeman states) of the atoms (and
hence the atom-light coupling strengths). For high-contrast interferometry and cooling
we would like our experiment to exhibit robustness against these systematic errors,
and, to this end, this chapter details our initial investigations into composite pulses
for improving pulse efficiency in our system. These investigations represent a basic
feasibility study of composite pulses for improving pulse fidelity in atom interferometric

sensor applications.

The composite pulse is an established technique, developed by the nuclear magnetic
resonance (NMR) community, for suppressing the effects of systematic errors in quantum
control. A particularly comprehensive summary of composite pulses and their respective
applications in NMR is given by Levitt in [72]. Broadly speaking, a composite pulse is a
sequence of control field pulses with tailored durations and phases, which acts to replace

the ‘naive’ single pulse, and offers increased tolerance to systematic errors.

Whilst composite pulses are a staple tool in NMR, they have not yet been fully exploited
in atomic physics labs. They are in principle applicable to any system involving the
quantum control of a two state system, and have been applied already outside NMR to
the manipulation of superconducting qubits [73] and diamond NV colour-centres [74],

and to trapped ions [75-78] for the purposes of quantum information processing (QIP).
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In neutral atom based experiments, closer to the work in this thesis, composite pulse
techniques have been employed to correct for inhomogeneities in spin squeezing [79]
and optical lattice qubits [80-82]. Closer still to this work, composite pulses have been
recently demonstrated to improve readout contrast in large area Raman pulse atom
interferometry [83]. This latter experiment was performed in a similar system to ours,
except that the atom sample was spin-polarised into the magnetic-insensitive Zeeman
sublevel mp = 0, and a narrow (7" < 0.5 uK) velocity class was pre-selected (using a
Raman transition) from the initial velocity distribution. Such extra preparation results
in a much less inhomogeneous system, but leads to a loss in atom number and hence a
lowering of signal-to-noise. Furthermore, we intend to design a system for the cooling
of atoms and molecules which have not undergone heavy state preparation and which
are not already below the recoil temperature, therefore these initial preparation steps,

although essential in precision atom interferometry, are avoided in our investigation.

In the following, we first describe a model for visualisation of systematic errors in two-
level quantum systems based on the Bloch sphere picture, which is applicable to the
Raman system used in this work. We then go on to report experimental tests of a range

of composite pulses, and analyse their behaviour.

6.1 Composite pulse visualisation

In section 2.2, we introduced the Bloch sphere picture as a useful tool for visualisation
of coherent pulses in atom interferometry. We defined the unit Bloch vector R, whose
Cartesian amplitudes are given by the parameters u, v, & w — the expectation values
of the o, . Pauli operators. Control field pulses are manifest as an effective torque
on the Bloch vector, and cause it to rotate about an axis defined by the detuning and
phase of the field, which we describe by the field vector €2. In this chapter, we impose
a coordinate transformation, and switch to describing the quantum state on the Bloch
sphere in terms of the angles ¥ and ¢, which are respectively the polar and azimuthal

angles of the spherical coordinate system. These angles relate directly to the Cartesian
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(b)

Figure 6.1: (a) A sketch of the quantum state vector |¢) (blue arrow) on the unit sphere,
as defined by the angles ¥ and ¢. (b) A sketch of the field vector (red arrow), as defined
by the angles a and ¢. Control field pulses are represented by unitary rotations of the
state vector around the field vector by an angle 6, as indicated by the green arrow.

components of R according to the coordinate transformation

u = sind cos (6.1a)
v =sinvdsiny (6.1b)
w = cos ¥, (6.1c)

and can be used to define the state |1) of the quantum two-level system

1) = cos <z> 1) + ¢ sin (Z) 2), (6.2)

depicted in figure 6.1a. As in section 2.2, control field pulses correspond to unitary
rotations of [¢)) on the surface of the Bloch sphere. By solving the time-dependent

Schrodinger equation, we find that the unitary rotation propagator

U(t) = exp <; /O t ﬁ(t')dt’) (6.3)

which translates |¢)) to some other point [1)') on the Bloch sphere according to [¢)') =
U(t)|v), takes the form [84]

U(9, ¢, a) =cos <§> L =isin <g> 8 (6.4)

[ox cos(¢) cos(a) + oy sin(¢@) cos(a) + o4 sin(a)],
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where the desired rotation, azimuth and polar angles are respectively related to the

parameters introduced in section 2.2 according to

0=Q0pxt (6.5a)

¢ = oL (6.5b)

a = arcsin <_(5(_25AC)> (6.5¢)
R

As depicted in figure 6.1 b, and explained in section 2.2, the state vector rotates around
the field vector (defined by the angles o and ¢), by the angle §. Note that in the above,
the variables ¥ and ¢ are distinct from 6 and ¢. As discussed in section 2.2, interaction
with a resonant control field corresponds to rotation about an axis in the equatorial
plane (o = 0), and results in Rabi oscillations at an angular frequency Qrp = Qp in
the hyperfine state populations as functions of the interaction time ¢, while off-resonant

fields correspond to inclined rotation axes, as depicted in figure 2.2.

6.1.1 Notation

The composite pulse sequences explored here all use control fields that are intended
to be resonant so, for simplicity, we assume « in equation 6.4 to be zero and use the
notation 64 = U(#, ¢,0) to represent a rotation defined by the angles 6 and ¢ (written
in degrees). A sequence of such rotations is written as 02)11) 95522) ... where the pulses are
applied in chronological order from left to right. The two key resonant pulses in the

toolkit (section 2.2.4) are therefore denoted 180 for the 7 pulse (¢ = 0), where we set

QpT =7, and 90g for the § pulse, where Qp7T = 7/2.

6.1.2 Systematic errors

The 0, ¢, o formalism lends itself to a simple quantitative treatment of systematic errors
and their effects. Systematic errors are manifest in a deviation from the correct rotation
propagator, that is, the correct propagator U (6, ¢, «) is replaced with an incorrect prop-
agator V (0, ¢, «). In the literature on composite pulses for NMR, there are two distinct

classes of error, which in the Raman system are linked. These are described below.
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6.1.2.1 Pulse-length errors

A pulse length error is represented by a deviation A8 = Qp x At (or equivalently
)

AO = AQp x t) from the desired, or central, rotation angle 6 = Qg x t. For a resonant

(6 —64¢ =0, Qr=0 r) rotation with a small fractional pulse-length error e = Af6/0,

V(6,0,0) = U((1 +€)8,0,0) + O(e?)

=U(0,0,0) — 6% [sin <Z>]l + i cos <g>ax] +O(e?) (6:6)

(plus higher order terms). In our system, these resonant pulse length errors occur
due to spatial inhomogeneities across the Raman beams, and to the different dipole
coupling strengths associated with the different Zeeman sublevels (sources 1 & 2 in
section 5.1.4.2), both of which are manifest in variations in the resonant two-photon

Rabi frequency 2g.

6.1.2.2 Off-resonance errors

An off-resonance error is represented by an inclination in the axis about which the state
vector rotates (the field vector), out of the equatorial plane, due to a non-zero detuning
(6 —64C £ 0). Defining the fractional off-resonance parameter as f = (§ — 64¢)/Qg, we

find that for small f,

V(0,¢,0)=U (0,¢,sin"'(f)) + O(f?)

(6.7)
=U(0,¢,0)+ fisin (g) oz + O(f?).

Off-resonance errors occur in our system due to Doppler shifts in the atomic detuning,
and to Zeeman and light shift frequency-splitting of the mp sublevels (sources 3 & 4 in
section 5.1.4.2). As illustrated in figure 2.2 of section 2.2, for a fixed Q2 the field vector

5AC

Q) becomes increasingly tilted out of the x-y plane as § — is increased.

In the Raman system, and indeed any two-level system described by the generalised,
off-resonant Rabi frequency Q = vQ2 + 62 where § is the resonant Rabi frequency and &
is the detuning from resonance, an off-resonance error is always accompanied by a pulse
length error. This is because a change in 6 leads to a change in the rotation rate €,

and hence a change in the observed rotation angle 6 for a given time 7. This somewhat
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degrades the relevance of our treatment of these systematic errors as two distinct types;
however, since in the following we test composite pulses which are designed for robustness
against either pulse length or off-resonance errors, we choose to continue with this

treatment, and characterise the pulse fidelity as such.

6.1.3 Pulse fidelity

It is common to characterize the effectiveness of a composite pulse by the distance on the
Bloch sphere between the final state Vi) and the intended target state U|ty). This leads
to the definition of the pulse fidelity F, which for a general rotation from an arbitrary

starting point is given by

‘Tr(UTV)‘
- Tr(UtU) (6:8)
and for a specific starting state |¢) is defined as
Fiuy = [IVIUL) . (6.9)

In each case, the corresponding infidelity Z = 1 — F, and its dependence upon the pulse-
length and off-resonance errors € and f, is also used to quantify the pulse’s effectiveness.
For example the basic 180y pulse has infidelity terms O(e?) and O(f?) (plus higher-order
terms), due respectively to pulse-length and off-resonance errors (note that O(n™) error
terms in V (6, ¢) become O(n*") in T), where the error terms are determined from the
Maclaurin expansion of Z. By substituting the ‘naive’ 64 pulse with a composite pulse,

it is possible to remove or reduce these second (and often higher) order infidelity terms.

There are two distinct types of composite pulse, each characterised by its associated
fidelity. The first type is known as the general rotor. This is a composite pulse designed
to perform the correct rotation from any arbitrary starting point on the Bloch sphere.
Hence to describe the fidelity F of a general rotor we typically use equation 6.8. The
second type is the point-to-point pulse. This is a composite pulse designed to perform a
rotation from a specified starting point [1);) to a specified end point |1/ f). Point-to-point
pulses are typically shorter than general rotors. The fidelity of a point-to-point pulse is

given by equation 6.9.
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For components of more complex interferometer schemes, different measures of pulse
effectiveness may be relevant, for one may be more interested in, say, the phase un-
certainty of a superposition than in the balance of the superposed components. Here,
however, we investigate only m, or inversion pulses which aim to make the rotation
|1) — |2) or wvice versa. For an inversion from the starting state |1)) = |1) to the target
state U|1) = |2), where the erroneous resultant state is |texp) = V|1), the fidelity takes
the form Flyy = (Yexp|2) = |ca|*.

For the purposes of this work, the most important characteristic of a composite inversion
is its peak fidelity

Fp = ‘02’2 . (6.10)

L—($AC:07
which indicates the efficiency of inversion with a resonant pulse. Another key feature is
the spectral width of |c2|? which, broadly speaking, indicates the robustness of the pulse

against off-resonance errors. We characterise both of these in sections 6.3.1 and 6.3.2.

6.2 Rotary spin echoes

In this section, we re-visit velocity-sensitive Rabi flopping, and apply to it what may
be considered a basic form of composite rotation — the rotary spin echo.! In section
5.2.2 we presented resonant Rabi flopping in the velocity-sensitive Raman arrangement,
and discussed the significant sources of dephasing therein. We re-plot those results in
figure 6.2 a, where the blue circles are the experimental data and the red curve is the
numerical simulation using the parameters given in the table in figure 5.11. In summary,
the accrued systematic errors cause the atoms’ states to dephase rapidly with respect to
each other, until a quasi-steady-state is reached at |c2|? ~ 0.28. The system has dephased
completely after only one Rabi cycle, and the peak fidelity Fp = 0.48. The two primary
sources of dephasing are, as described in sections 5.1.4.2 and 5.2.2, differences in inherent

coupling strengths across sublevels, and Doppler-broadening.

A basic method for reducing the dephasing effect in Rabi flopping is the rotary spin echo
[82]. Reminiscent of Hahn’s original spin echo experiments [85], this is a repeated appli-

cation of the sequence 640441500, which gives greatly enhanced Rabi flopping contrast in

!This is not a composite pulse in the traditional sense, but it does give a neat demonstration of how
altering the phase of the control field can enhance the contrast of an observable.
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Figure 6.2: Measure of the upper hyperfine state population |ca|? as a function of in-
teraction time ¢ with the Raman beams: (a) Rabi flopping with a regular rectangular
pulse; (b) Rabi flopping with rotary echoes. The inset is a highly-sampled dataset for
the indicated portion of (b). Blue circles are experimental data, and red curves are
numerical simulations using the parameters given in figure 5.11. The blue curve is a
simulation assuming a 7/6 phase noise; (c) Bloch vector trajectory during the rotary
echo 3600360150 in the presence of an off-resonance error: Bloch vector trajectory (dark
blue dots) and initial (light blue) and final (dark blue) Bloch vectors, along with the
field vectors (red) during the first rotation (i) and the second rotation (ii).

the case where 8 = 360°. The 180° phase shift every whole Rabi cycle causes a deflection
of spin vector trajectories and a cyclical recombination, or ‘echo’, of divergent spins. A
visual representation of the rotary echo on the Bloch sphere for the case of off-resonance
errors, which as previously discussed come with attached pulse-length errors, is shown
in figure 6.2 c. During the initial 360 rotation (figure 6.2c¢ i), the Bloch vector (initial
— light blue, final — dark blue) rotates about the inclined off-resonant field vector (red),
and due to the associated systematic errors, overshoots |1), the target point. When the
phase ¢, of the beams is shifted by 180°, the field vector €2 is rotated 180° about the
z-axis (see figure 2.3), hence during the second rotation (figure 6.2 ¢ ii) the Bloch vector
follows a reversed trajectory which is an approximate mirror image of the initial rota-

tion. Since the duration of both rotations is the same, the initial overshoot is ‘undone’
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by the second rotation, and the Boch vector arrives at the ‘echo’ much closer to |1).

The remarkable increase in Rabi flopping contrast with this technique is presented in
figure 6.2b. This scan was taken immediately after that of figure 6.2 a, so that a com-
parison could be made using a numerical simulation assuming the same parameters (see
figure 5.11). Whilst good considering the now-large parameter space, the agreement be-
tween experiment and simulation appears divergent with increasing pulse duration, and
this behaviour solicits some discussion. The simulation suggests that contrast should be
preserved without decay for the duration of the scan after ¢ ~ 20 us. The data, however,
exhibit a decaying contrast. It is important to note that since in this scan ¢ was sampled
incrementally (from 0 us to 100 us), as opposed pseudo-randomly, this dataset is sub-
ject to drift. Whilst this may contribute to the observed decay in contrast, simulations
suggest that the magnitude of drift required to account for all of the observed decay is
equivalent to a change in Qg of —40% from the beginning of the scan to the end. This
is unreasonably large, so we must look elsewhere for sources of decay. Rakreungdet et al
in [82], after observing similar lower-than-expected dephasing times, consider the effects
of phase noise in rotary echoes, brought about by imperfect performance of frequency-
synthesising and phase-shifting apparatus. In light of this, we simulate the rotary echo
assuming uniform phase noise, which we model by adding 1 x A¢r, where 7 is a pseudo-
randomly generated number —1 < 1 > 1 (from a uniform distribution) and A¢y, is the
maximum phase excursion, to the phase ¢r. We find good qualitative agreement with
the data where A¢y = 7 /6 radians, as represented by the blue curve in figure 6.2b. The
manufacturer of the I&Q modulator (see section 4.3.3) specifies a phase noise of £7°
(A¢r = m/25radians), which is much smaller than the simulation suggests, however we
expect that there may be further significant sources of electical phase noise, possibly as-
sociated with the electro-optical modulator (see section 4.3.2). Furthermore, it is likely
that a large amount of phase noise in the counter-propagating Raman arrangement could
accrue due to relative motion of the optics along the two separate beam paths. This
effect would be more pronounced on longer timescales, since the mechanical motion of

the optics will be relatively slow compared with the Rabi frequencies concerned here.

For completeness, we include here other possible causes for the decay in contrast, namely:
(a) accrued effects due to the transient change in intensity upon phase shifts (see figure

4.4); (b) incorrect phase shifts and phase-dependent intensities (see figure 4.5); and (c)
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unwanted state evolution during the finite switch-on/off time of the Raman beams (see
figure 4.10). None of the above were included in the simulations. Furthermore, we do not
rule out the possibility that the velocity distribution and scaling parameters used in the
simulation may be incorrect, since we did not take a Raman velocimetry measurement

before taking the data.

Aside from the rephasing effects of the rotary echo, figure 6.2b represents a demon-
stration that our system exhibits long coherence times. After an interaction with the
resonant Raman beams corresponding to § = 407 radians = 7200° and beyond, time-
dependent features in |c2|? remain visible over experimental noise. This combined co-
herent interaction duration is longer than that of any interferometric sequence intended

for trial with this experimental setup.

Although it is a neat demonstration of how composite rotations can improve the readout
signal of a particular observable, the rotary spin echo is useful only in its enhancement

of Rabi flopping, which has little useful application.

6.3 Composite inversion pulses

In this section, we demonstrate composite rotations which counteract dephasing in 7,
or ‘inversion’ pulses in our Raman system. There exists a large ‘zoo’ of composite
inversion pulses, all well-documented by the NMR community, but we restrict ourselves
to just a select few in this work. Section 6.3.1 details the results of composite inversion
pulses in the o™ — o counter-propagating Raman arrangement which, due the light shift
behaviour described in section 5.1.2.1, exhibits large off-resonance errors. Following this,
section 6.3.2 details the results of composite inversion pulses in the 7™ —7~ arrangement,

in which off-resonance errors are smaller.

In order to characterise the peak fidelity Fp and the spectral width of each composite
inversion pulse, we measure the resultant population |cz|? at a range of normalised laser
detunings 01, /Qeg, as shown in figures 6.3 and 6.6. For comparison, the result for a basic
180¢ pulse is shown in each case. To gather these data, measurements for all of the
five pulses were interleaved within the same experimental run, at randomised sample

detunings 6. This ensured that the spectral profile was less vulnerable to drift, and
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that all of the pulses could be comfortably modelled by a common set of parameters,
as given in the table to the right of the plots. Each data point in figures 6.3 and 6.6 is
an average over 16 shots, and each set took around 40 minutes to collect. The effective
Rabi frequency was measured (as described in section 5.1.3) in order to estimate the 7
pulse time t,. A discussion of each of these curves, along with some which we choose
only to simulate, is given in the following. Descriptions of each of the sequences, along
with their expected performance in the presence of each type of error, are adapted from

discussions with Jonathan Jones of the University of Oxford.

6.3.1 o —o"

In the o™ — 0" arrangement, the mp sublevels are separated due to the AC Stark shift,
depending on the intensity of the Raman beams (see section 5.1.2.1). As described
previously, this intensity-dependent splitting can be counteracted via the Zeeman shift
by an offset in the magnetic field along the axis of the beams. The measured beam powers
corresponding to figure 6.3 were P;2 = 60 & 2mW, corresponding to the intensities
I = 20kW/m? and I, = 30kW/m?, and the single photon detuning was A = 27 x
9.0+0.5 GHz. We find good agreement between the data and simulations where I; 2 (A)
is around 30% lower (higher) than the measured value (see section 5.1.4.1), hence the
reduced intensities in the table. With these parameters, and in the absence of a magnetic
field along the z-axis, the splitting between adjacent sublevels is approximately 250 kHz.
This implies (see section 5.1.1) that a magnetic field of B, = —250/(2x0.47) = —267 mG,
corresponding to a shim coil current I, ~ 86 — (267/3.43) = 8 mA, would be required to
bring the levels into degeneracy. Such an offset would lead to a complete loss of signal
(without realignment) due to the shift in the zero-point of the MOT quadrupole field,
so we choose not to apply it here, and we instead work at I, ~ 80mA (equivalent to
B, = —11mG for I S’) = 83mA). The result is a system with large off-resonance errors,
and although this may not be ideal for optimal pulses, it represents a challenging test-

bed for composite pulses which are, after all, designed to be robust against such errors.

Figure 6.3 a shows a basic 180y rotation, or m pulse at an empirically-measured Rabi

frequency of Qe ~ 27 x 360 kHz. Due in-part to the light shift induced splitting, the peak
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Figure 6.3: Resultant population |cy|? as a function of normalised laser detuning for
four different composite inversion pulses, as compared with a basic = 180y rotation: (a)
Basic m pulse; (b) CORPSE; (¢) BB1; (d) Knill; and (d) Waltz. The blue circles are
experimental data and the red curves are numerical simulations using the parameters
given in the table to the right. These data were taken in the o™ —o™ counter-propagating
Raman arrangement. Qo ~ 27 x 360 kHz.

fidelity is limited to Fp = 0.42. Simulations suggest that a system with B, = —267 mG,
and otherwise identical parameters, would yield Fp = 0.66, and as a pre-emptive remark
with the following section in mind, a peak fidelity identical to this is indeed observed in
the 7+ — 7~ arrangement, where Zeeman-degeneracy is uncompromised by high beam
intensities. We find a good approximation to the data with simulations assuming o; =
2.5 xvr (9uK), 09 =9 x vg (120 uK), and a1 /as = 2, which corresponds to an average
temperature of ~ 80 uK. To account for the loss of atoms from the interrogation region

(see section 5.1.3.1), we set the scaling parameter to S = 0.9. As before, to obtain the



Composite Raman pulses 121

Pulse Type Rotation Sequence (total angle) Fp _Ir
Fp(180)
m-pulse 180¢ 0.42 1
CORPSE' 6003001804200 (780°) 0.55 1.31
BB1f 180104.5360313.4180104.51800 (900°) 0.50 1.19
Knillf 1802401802101803001802191802409 (900°)  0.58 1.38
WALTZ* 9091801802709 (540°) 0.69 1.64
90-360-90* 900360120900 (540°) 0.53 1.26
SCROFULOUS!  18060180300180g0 (540°) 040  0.95
Levitt* 909018009090 (360°) 0.63 1.50
90-240-901 9024024033090240 (420°) 0.57 1.36
90-225-315* 9002251803150 (630°) 0.64 1.52

Table 6.1: Summary of composite inversion pulses and their effectiveness in the o™ — o

Raman arrangement, where there exists a significant splitting of the mg sublevels. Fp
values are estimated using the numerical simulation for the set of parameters given in
figure 6.3. Fp can be divided by S = 0.9 to give the true estimated peak fidelity.
fGeneral rotor; *point-to-point pulse.

‘true’ values of |c2|?, one can divide those shown in the figures (and tables) by S.

The CORPSE (Compensation for Off-Resonance with a Pulse SEquence) [86], shown in
figure 6.3 b, is a general rotor composite pulse denoted «gfB180Y9, which in the case of
inversion is equal to 6033001g9420¢. It suppresses off-resonance errors by removing the
O(f?) term [and reducing O(f%)] in the infidelity Z, and its sensitivity to pulse-length
errors is equal to that of a basic 180g pulse; therefore, whilst it should reduce the effect
of Doppler-broadening and Zeeman non-degeneracy, we do not expect it to address the
errors associated with a range of Raman routes. It exhibits a 31% increase in the peak
fidelity Fp compared with the basic m pulse, and a relatively broad profile compared
with the other pulses in figure 6.3. The large width of the CORPSE profile confirms

that it is particularly robust against off-resonance errors.

A popular pulse in NMR, and the second pulse we test, is the general rotor known
as BB1 (Broad-Band 1) [87], shown in figure 6.3 c. The BBI1 constitutes a standalone
correction sequence 180104.5360313.4180104.5, followed by the regular 180 rotation which
can be replaced by one 90y rotation on either side of the correction sequence to make
the pulse time-symmetric. It removes pulse-length infidelity terms O(e?) and O(e?) at
no cost in sensitivity to off-resonance errors. We find in our system that the BB1 is
inferior to the CORPSE except out in the wings, where (6 — 04¢) /Qeg > 5, where there

is a very small gain. On resonance, we observe an increase in peak fidelity of only
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19%. According to the literature the BB1 is the most experimentally effective pulse in
the toolkit for combatting pulse-length errors. This leads us to believe that either (a)
pulse-length errors are a less significant contributor to dephasing; or (b) the pulse-length
errors present in our system are outside the effective range of the BB1. The former would

appear more likely.

The third composite pulse we examine is the sequence 180249180210180300180219180240,
shown in figure 6.3d. This is referred to in literature as the ‘Knill’ pulse [88], after
Emanuel Knill, but its use originates in early work by Tycko and Pines [89]. It is a
five-pulse temporally symmetric general rotor which corrects for both pulse-length and
off-resonance errors such that the O(e?) and O(f?) infidelity terms are removed and the
O(f*) term is reduced. This is the only pulse in the list where we observe significant
disagreement between experiment and simulation around 87, — §4¢ = 0. We expect that
this is because our apparatus is less capable of applying the required phase shifts within
the Knill pulse than the simple 180° shifts within, say, the CORPSE. This is paid more
consideration in section 6.3.3, where we examine the temporal evolution during these
composite pulses. With the (simulated) Knill pulse we achieve a 38% increase in Fp,
but the increase in |cp|? at larger values of detuning is smaller than we observe with the
CORPSE. As a general note, we expect temporally symmetric composite pulses such
as the Knill to behave differently from asymmetric ones such as the CORPSE in the
context of atom interferometry, where unwanted velocity-dependent phase can accrue

during pulses. This is explained in a little more detail later on.

The 9001801502700 sequence, known as ‘Waltz’ [90] (so-named for its ‘123’ structure), is
the fourth and final pulse we test experimentally. This is a point-to-point pulse, shown
in figure 6.3 e, which is by far the most effective composite pulse of the four. It is robust
against a wide range of off-resonance errors (but does not correct for pulse-length errors),
and gives an increase in Fp of 64% compared with a basic 7 pulse. The Waltz is also

the shortest of the composite pulses tested in this work (540°).

For all of the above composite pulses, with the exception of the Knill pulse, we observe
good agreement between experiment and theory. We therefore expect that the model
alone can be used to predict the effectiveness of other composite pulses to a good degree
of accuracy without the need for experimental verification. With this in mind, we

characterise the remainder of the composite pulses using only the numerical simulation.



Composite Raman pulses 123

Like the BB1 pulse, the sequence 909360120909 removes O(€?) and O(e?) terms in Z at
no cost to off-resonance sensitivity. However this one is a point-to-point pulse, designed
for transfer from pole-to-pole on the Bloch sphere. It is 360° ‘shorter’ than the BB1 and
Knill pulses, thus making it of greater interest in experiments where interrogation time
is limited. The 90936012090 is predicted to give a Fp increase of 26%, and to perform

relatively well at larger values of detuning.

We find that the 909918009099 point-to-point pulse, which was the very first composite
pulse, designed by Levitt [29], performs better than all of the general rotor composite
pulses tested experimentally. It affords an increase in peak fidelity of 50%, and only
requires twice the interaction duration of a basic m pulse, making it of potential use
where interrogation time is strictly limited. We find the 1800180309180g9 SCROFU-
LOUS [91] general rotor, which has infidelity in O(e%) but suffers increased sensitivity to
off-resonance errors, to be the least effective composite pulse of those tested here, where
we are characterising the pulses as a function of the detuning (the off-resonance pa-
rameter) only. Another potentially interesting composite pulse, which claims to correct
for off-resonance and pulse-length errors simultaneously, is the relatively short sequence
9024024033090240 [92]. Our simulations suggest that this pulse gives an increase in Fp
of 36%, making it less effective than the Levitt pulse for peak fidelity. Interestingly this
pulse behaves as a general rotor for off-resonance errors, and a point-to-point inversion

for pulse-length errors.

Of the untested composite pulses, we predict the most effective to be the point-to-point
pulse 9002251803150 [93], which gives an increase in Fp of 52%. We conclude therefore
that the largest improvement in peak fidelity in the o™ — o™ Raman arrangement (at
the particular set of parameters given) is achieved with the Waltz pulse. As a general

note, the three most effective composite pulses here are of the point-to-point variety.

The Waltz sequence is presented in the context of atom interferometer augmentation
pulses, which act to increase the interferometric area, in [83] with positive results. It is
interesting to note that for an equal superposition starting-state |¢)) = %(H) +€'|2)),
a single Waltz inversion pulse performs worse than a basic 180y pulse in the presence
of off-resonance errors (a general rotor would work better in this case), but a sequence
of two Waltz pulses gives an efficient 27 rotation. Furthermore, when two sequences

of two Waltz pulses are applied as in the large area interferometer in [83], readout
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Figure 6.4: Simulated resultant population |cz|? as a function of the off-resonance param-
eter f and the pulse-length parameter € for three different composite inversion pulses, as
compared with a basic m 180p rotation: (a) Basic 7 pulse; (b) Knill; (c¢) Levitt; and (d)
Waltz. These simulations were performed in the o™ — o counter-propagating Raman
arrangement. Qe = 27 x 410 kHz, ¢, = 1.22 us. Contours at 0.1,0.2,0.3, ...

contrast is increased. In light of this, future work on composite pulses in our system
will examine the significance of pulse time-symmetry and the effectiveness of general
rotors in contrast with point-to-point pulses, in the more general case where we are not

restricted to inversion pulses.

In the above we have characterised the composite pulse performance only as a function of
the detuning from resonance at a single, fixed, pulse length, whilst focussing on the peak
fidelity as the most important quantity. It is common in the composite pulse literature
to see the pulse fidelity plotted as a function of both the off-resonance parameter f and
the pulse-length parameter €. This allows us to examine and compare the behaviour of
composite pulses at a range of different field strengths, and gives us a more complete
understanding of the overall pulse performance. Although no data was taken for different
pulse lengths, for completeness we show simulations of the composite pulse performance
for a select few pulse types in figure 6.4. The simulated curves in figures 6.3a, d and
e correspond to horizontal slices through plots 6.4a, b and d respectively, at t = 1.4 us

(e = 0.15). In general, a composite pulse which exhibits a broader fidelity profile along
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Figure 6.5: Simulated resultant population |c|? as a function of the off-resonance
parameter f and the pulse-length parameter e for two different composite inversion
pulses, as compared with a basic m 180g rotation, where an artificial Zeeman splitting
of mp x 700 kHz has been applied: (a) Basic 7 pulse; (b) Levitt; and (c) Waltz. These
simulations were performed in the ot — o™ counter-propagating Raman arrangement.
Qer = 2w x 410 kHz, t; = 1.22 us. Contours at 0.05,0.10,0.15,...

the f-axis is more effective at compensating for off-resonance errors, and one which is
broader along the e-axis compensates more effectively for pulse-length errors. Figure
6.4, however, illustrates that fidelity is in general non-linear as a function of f and e,
and that indeed in some cases [see the Knill pulse (figure 6.4 b), for example], the fidelity
is increased as one or both of f and € increases. Furthermore, whilst the Levitt pulse
(figure 6.4 ¢) exhibits the lowest peak fidelity of the three composite pulses shown, its
0.1 and 0.2 contours occur at relatively large values of |f| as compared with the Knill
pulse. Whilst the peak pulse fidelity Fp remains the most important measure of the
pulse effectiveness in our system, for applications where the experimenter is interested
in a greater average fidelity over a large range of errors, a broader fidelity profile is a
more desirable characteristic than a large Fp, and the two are not necessarily correlated

one-to-one.

To end this section?, we present simulations of the composite pulse fidelity where we
apply an artificial Zeeman splitting to the atomic mp sublevels. This represents an
exagerrated form of the light-shift-induced, Zeeman-like splitting which is present in the

T — 77), and allows us to more easily

ot — o7 arrangement at low B, (but not in 7
visualise the effect of Zeeman non-degeneracy on the pulse fidelity. Figure 6.5 shows the
pulse fidelity as a function of f and € for (a) a basic 7 pulse as compared with (b) a Levitt

pulse and (c) a Waltz pulse, where in all cases a Zeeman splitting of mpr x 700 kHz has

2This was added at the request of the PhD examiner.
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been applied. In this case, one can clearly distinguish the five mp sublevels. In figures
6.3 and 6.4, the sublevels are indeed separated in a qualitatively similar manner (by the
light shifts only), but to a quantitatively lesser extent such that it is not clearly visible in
the plots. For the basic 7 pulse, the fidelity |co|? peaks at just below 0.2 for each of the
five sublevels, since the population is divided equally between them, and the difference
in the Raman Rabi frequencies of the five levels is evident in the different peak positions
along the e-axis. Because the Levitt and Waltz composite pulses act to improve the
fidelity at where errors are present, we predict an increase in the peak heights due to the
effective broadening of each sublevel. These plots also clearly illustrate the asymmetry

of the composite pulse fidelity as a function of f and e.

6.3.2 w —7w

We now investigate the 77 — 7~ arrangement, which we expect to exhibit smaller off-
resonance errors due to the nature of the light shifts (see section 5.1.2.2). In this ar-
rangement, the Zeeman levels are degenerate at low B,, hence off-resonance errors due to
sublevel splitting (source 3 in section 5.1.4.2) are absent. As a result, the off-resonance
parameter f at 6, — 04¢ = 0 is broadened only by the Doppler shift. The data are
presented in figure 6.6, where the measured parameters are identical to those in figure
6.3, with the exception of the detuning A = 27 x 8.0 + 0.5 GHz. This gave rise to the

higher-than-previous empirically-measured Rabi frequency Qeg ~ 27 x 420 kHz.

As a result of power broadening, the spectral width of the basic 7 pulse 180 (figure
6.6 a) is much larger than the estimated velocity distribution. For a 7 pulse at Qg ~
27 x 420kHz, the spectral FWHM is approximately 27w x 780 kHz, which is equivalent
to the width of a single-Gaussian velocity distribution with o, = 12vg, or temperature
T =~ 210 uK. Although the spectral width of the transition is broader than the velocity
distribution, this does not represent the regime where Q.g > 2ko,, hence Fp for the
basic 7 pulse is still limited to much less than 0.96. For this pulse, we find good agreement
between experiment and theory, and the peak fidelity accounting for the loss of atoms

is Fp/S = 0.73.

With the CORPSE pulse (figure 6.6b) we achieve an increase in Fp of 8%. The sim-

ulation of the CORPSE suggests that periodic structure should be visible within the
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Figure 6.6: Resultant population |cz|? as a function of normalised laser detuning for four
different composite inversion pulses, as compared with a basic 180 rotation: (a) Basic 7
pulse; (b) CORPSE; (¢) BB1; (d) Knill; and (d) Waltz. The blue circles are experimental
data and the red curves are numerical simulations using the parameters given in the
table to the right. These data were taken in the 7™ — 7~ counter-propagating Raman
arrangement. Qg = 27 x 420 kHz.

spectral profile, although this appears washed out in the experiment. On the other
hand, the BB1 (figure 6.6 ¢) exhibits detuning-dependent structure which is clearly vis-
ible in the data. We find that the BB1 performs marginally better than the CORPSE
in this case (a 9% improvement), due to the reduced impact of off-resonance errors.
In theory, the Knill (figure 6.6d) pulse is expected to be the most effective of all the

T

— 7~ composite pulses tested here, owing to the fact that it corrects for both (the
already relatively small) pulse-length and off-resonance errors. Once again, however, we

observe a reduction in experimental fidelity compared with the theory, probably due to
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Pulse Type Rotation Sequence (total angle) Fp _Ir
Fp(180)
m-pulse 180¢ 0.66 1
CORPSE' 6003001504200 (780°) 0.71 1.08
BB1f 180104.5360313.4180104.51800 (900°) 0.72 1.09
Knillf 180240180210180300 180210180540 (900°) 0.80  1.21
WALTZ* 9091801802709 (540°) 0.79 1.20
90-360-90* 900360120900 (540°) 0.74 1.12
SCROFULOUS!  1806018030018060 (540°) 0.65  0.98
Levitt* 909018009090 (360°) 0.77 1.17
90-240-90 9024024033090240 (420°) 0.79  1.20
90-225-315* 9002251803150 (630°) 0.80 1.21

Table 6.2: Summary of composite inversion pulses and their effectiveness in the 77 — 7~
Raman arrangement, where the mp sublevels are degenerate. Fp values are estimated
using the numerical simulation for the set of parameters given in figure 6.6. Fp can be
divided by S = 0.9 to give the true estimated peak fidelity. fGeneral rotor; *point-to-
point pulse.

the nature of the phase shifts in our particular setup. As in the ot — o™

arrangement,
we find the most effective experimentally-tested composite pulse for peak fidelity in an
inversion to be the Waltz pulse (figure 6.6e). We observe good agreement between ex-
periment and theory in the spectral profile, and an increase in Fp compared with the

basic 7 pulse of 20%. The estimated peak fidelity for the Waltz pulse accounting for the
loss of atoms is Fp/S = 0.88.

In interferometers where strings of interleaved inversion pulses are applied to increase the
interferometric area [94], one requires a high peak fidelity to avoid loss of contrast. After
application of 8 resonant basic 7 pulses (required for the ‘N = 2’ interferometer described
in [83]) one expects, for the parameters given in the above, a maximum output fidelity of
0.73% = 0.08. By replacing these with Waltz pulses, we expect this fidelity to increase to
0.88% = 0.36, and assuming there is no detrimental impact on the interferometer phase,

the output contrast should be much improved.

We refer the reader to table 6.2 for the estimated performances of all the un-tested
composite pulses, and state here that of these the greatest improvement in Fp is afforded
by the 90-225-315 pulse, which we predict to be marginally better than the Waltz. Also,

the Waltz is matched for Fp improvement in this arrangement by the 90-240-90 pulse.
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6.3.3 Temporal evolution

By terminating the sequence at various times before completion, we are able to measure
the evolution of the excited state population |c2|? during a resonant composite pulse.
This gives us extra insight into the lower-level behaviour of the system, and allows us to
pin-point particular effects which may be inhibiting the performance of our composite

pulses.

Figure 6.7 shows the temporal evolution of |c2|? in the o — 0 Raman arrangement for
the same four composite pulses we tested in section 6.3. Each point is an average over
16 shots, and the pulse duration ¢ is sampled pseudo-randomly to avoid the effects of
experimental drift. The four scans in this case were not interleaved, due to technical lim-
itations of the Tabor 8024 arbitrary waveform generator’s sequencing function, however
they were taken at short intervals to minimise the effects of drift between experimental
runs. The solid red curves in the figure are numerical simulations assuming the param-
eters given in the table, and these parameters are identical to those used in figure 6.3,
except for small changes in ¢, and the beam intensities. The dashed green curves are
numerical simulations (again with the same set of parameters), performed by Rachel
Gregory on the Iridis supercomputer at the University of Southampton, which take into
account the AOM switching time and non-linear behaviour of the 1&Q modulator (fig-
ures 4.10 & 4.5, respectively). Such simulations require extra computing power because
where intensity ramps are involved, many more points must be calculated and stored.
These simulations, which would take 3-4 hours on a quad-core desktop computer, take

around 2-3 minutes when utilising the many cores available within Iridis.

While it is possible to scan parameter space to find more meticulous fits, these often
require less physically justifiable parameters, and we are in any case satisfied with our
current understanding of the system given the broad experiment-simulation agreement
demonstrated in the figures. Furthermore, there are other sources of discrepancy possibly
at play in the experiment, including for example Raman beam misalignment and non-
circular Raman beam polarisation, both of which would cause the system to behave

differently from the ideal o+ — o+ case considered in the simulations.
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Figure 6.7: Resultant |c2|? population as a function of intra-pulse interaction time ¢ for
four different composite pulses: (a) CORPSE; (b) BBI1; (c) Knill and; (d) Waltz. The
blue circles are experimental data, the solid red curves are numerical simulations based
on the parameters given in the table. The dashed green curves are numerical simulations,
assuming the same parameters, which incorporate otherwise ignored systematic effects,
as described in the text. These data were taken in the ot — o counter-propagating
Raman arrangement, with Qg ~ 27 x 380 kHz.

6.3.4 Predicted temperature-dependent performance

A designer of an atom interferometric sensor might ask whether composite pulses allow
high-contrast interferometry at higher temperatures, such as those easily attainable in a
MOT.? This is essentially addressed by the robustness of a composite pulse in the pres-
ence of off-resonance errors, since hotter atom clouds have larger ranges of off-resonance
error. It is also an interesting line of investigation to consider whether high-fidelity

(Fp > 0.99) pulses are possible with Zeeman-degenerate atoms, since spin-polarisation

3 As a general note, a likely question, put by the skeptic would be “Do composite pulses actually work
in atom interferometry?". This is a question, already answered in the affirmative in [83], which will be
investigated in future work on this experiment.
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Figure 6.8: Predicted fidelity achievable using Waltz (blue) and Knill (green) composite
pulses, compared with a simple 7-pulse (red), for varying Gaussian velocity distribution
widths o, in units of the Raman recoil velocity vg (bottom) and normalised to the
average two-photon Rabi frequency {2eg. Dashed lines show predicted behaviour for
spin-polarised atoms populating only the mpr = 0 state, while solid lines are for an even
distribution across all states mp = —2... 4+ 2.

requires extra experimental complexity and often causes loss of atoms. Broadly speak-
ing, we would like to know how high Fp can be with thermal, non-spin-polarised atoms,

such is the topic of this section.

Figure 6.8 shows the decrease in predicted fidelity with increasing cloud temperature
and the presence of multiple Zeeman levels, for two different composite inversion pulses
as compared with a basic 180y. Dashed lines in the plot show predicted behaviour for
spin-polarised atoms populating only the mprp = 0 state, while solid lines are for an
even distribution across all states mp = —2... + 2. We plot the curves (solid only) as
functions of the parameter 2ko, /Qeg, which is a normalised measure of the ratio of the
velocity width to the effective Rabi frequency. As mentioned previously, the maximum
Fp achievable with a basic 180 pulse (red) in Zeeman-degenerate *°Rb is 0.96. Since
the Waltz pulse (blue) only corrects for off-resonance errors, it does not improve the
maximum achievable fidelity, however it is more effective than the Knill pulse at higher
temperatures, and Fp is predicted to remain above 0.8 up to o, = 8 x vg (95 uK). The
Knill pulse (green), because of its tolerance to pulse-length errors, does improve fidelity

in Zeeman-degenerate pulses. We predict a Zeeman-degenerate fidelity of Fp > 0.99 for
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2ko, /Qet < 1, that is, in our case, where T' < 15 uK — a temperature readily achievable
with optical molasses. Whilst the curves representing spin-polarised atoms (dashed) are
merely shifted upwards by around 0.04 as compared with their corresponding Zeeman-
degenerate curves for the 180y and Waltz pulses, for the Knill pulse we expect a Zeeman-
degenerate fidelity at these low temperatures which is no worse than the spin-polarised
case. The Waltz pulse becomes more effective than the Knill in both the Zeeman-

degenerate and spin-polarised cases at above o, ~ 5 x vg (37 uK).

6.4 An alternative to composite pulses

An alternative method for counteracting systematic errors in quantum control systems
is adiabatic rapid passage (ARP), a particularly good description of which can be found
in James Bateman’s PhD thesis [49]. ARP has been implemented in the context of large

area atom interferometry [31, 95], with success.

When using ARP pulses, during which the intensity and frequency of the optical fields
are swept across resonance, the phase imprinted by the laser on the atoms is difficult
to control, thus reducing interferometer contrast. Given that composite pulses are se-
quences of rotations with known tailored phases, we expect them to behave favourably
over ARP pulses in terms of interferometer phase-shifts and readout contrast, because
one can apply time-symmetric sequences and easily keep track of the phase during a
pulse sequence. Furthermore, ARP requires a higher Rabi-frequency to be most effec-
tive, which is currently beyond the capabilities of our apparatus and would in any case

directly reduce off-resonance errors via power-broadening.

6.5 Conclusion

In this chapter, we have described a model for visualisation of systematic errors in
Raman pulses, demonstrated suppression of Rabi flopping dephasing with rotary spin
echoes, and experimentally tested a range of NMR-style composite inversion pulses for
improving pulse fidelity in the presence of systematic errors. Our relatively simple
numerical model has proved effective in simulating the system, and suggests that the best

composite inversion pulse for peak fidelity increase at thermal atom cloud temperatures
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is the 9091801802709 Waltz pulse, whereas the Knill pulse, since it also addresses pulse-
length errors, is predicted to achieve a peak fidelity of Fp > 0.99 at temperatures below
around 15 pK. In our particular setup, we find that the Knill pulse performs worse than
expected, probably because our apparatus is less capable of imparting the required phase

shifts.

Our results suggest that composite pulses can be used to improve the robustness of atom
interferometric sensors in the presence of systematic errors. We predict that one may
build a high-contrast interferometer which can operate at temperatures achievable in a
standard optical molasses, without the need for spin-polarisation. There is of course a
trade-off between the improved fidelity afforded by a composite pulse and the increased
interrogation time required (the Knill pulse, for example, is five times longer than the

basic 180p), which must be considered in the design process.

Whilst only relatively simple composite (inversion) pulses were examined here, we ex-
pect there to be many more interesting types available. For example, when one can alter
the direction of the driving fields and apply modulation and chirps to their intensities,
frequencies and phases (if the phase imprint during chirps can indeed be controlled), as
in adiabatic transfer [30, 31, 95] experiments, we expect a greater degree of control to be-
come available. Future work on this subject will examine the aforementioned techniques
for developing more robust composite pulses in inhomogeneous, degenerate atomic sys-
tems where large inherent systematic errors are present. A more immediate application
of the composite pulses presented here is within large area atom interferometry, as in
[83], in the context of which we intend to develop more tailored composite pulses for

improving interferometer contrast.






Chapter 7

Interferometric cooling

The concept of interferometric cooling is proposed by Weitz and Hénsch in [28], where
the authors describe a system based on Ramsey interferometry with coherent laser pulses
for cooling the centre-of-mass motion of atoms and molecules. Their scheme, which we
summarise in section 7.6, requires high Rabi frequency pulses with precise control over
timings and phases, and to our knowledge it has not yet been tested experimentally. It is
of particular interest because of its potential use in the cooling of the translational motion
of molecules. Molecules exhibit a complex ro-vibrational energy structure, making them
notoriously difficult to laser cool, yet since the principles behind interferometric cooling
are the same for atoms and molecules, we can use our cold atomic rubidium system as

a test bed for a proof-of-concept of the technique.

We begin this chapter with a description of the proposed scheme for atomic cooling,

which is based on the 7 — 5 Ramsey sequence, where dissipation is induced by spon-
taneous emission. We then present interference fringes resulting from the Ramsey se-
quence, and characterise their dependence on the pulse spacing and phase. Thirdly, we
characterise the depump pulses required to induce spontaneous emission and reset the
atomic populations. We then demonstrate modulation of the atomic velocity distribu-
tion, and subsequently a first demonstration of interferometric cooling is presented. The
chapter ends with a discussion of extensions to the cooling technique, including coherent

enhancement and potential application to molecules.

135
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7.1 Proposed cooling scheme

Just as in Doppler-cooling, where we make absorption of photons more probable within a
given velocity range via traditional spectroscopy, velocity-sensitive Ramsey spectroscopy
provides us with a means to a similar velocity-selective force. The resultant state after a
5 — 5 Ramsey sequence, as described in section 2.3 and illustrated in figure 2.5, is depen-
dent on a combination of the detuning J, the relative pulse phase ¢(Lrel) = ¢(L2) — qﬁ(Ll) (the
difference in laser phase between the two pulses), and the time 7' between the pulses.
Building on the introductory remarks made in section 2.3.1, and applying counter-

propagating beams (kp; ~ —kro = kz), we find that ¢ depends on the z component of

the velocity (v,) according to

6 =649 — 61 + k(2v. + vr), (7.1)

84C is the combined Raman light shift, 7, is the laser detuning from the

where, to recap,
atomic rest-frame resonance, and vy is the two-photon Raman recoil velocity. Setting
61 = 64C gives a detuning

§ = k(2v. + vR), (7.2)

which is dependent only on the velocity of the atom. With a Ramsey sequence, whose
output is described by equation 2.55, we can therefore generate a velocity-selective ex-
citation, whereby the resultant population in the upper hyperfine state is determined
purely by v,. Since atoms excited to the upper hyperfine state by the Ramsey sequence
recieve a 2hk momentum kick, the interferometer imparts a velocity-selective impulse,
whose ‘comb’-like profile can be engineered by changing the parameters of the Ramsey
sequence. As shown in figure 2.5d, the Ramsey fringes can be shifted along the ¢ (v,)
axis by changing the relative phase of the two laser pulses, and the width of the fringes
can be increased simply by decreasing T, as shown in figure 2.5 c. Note that whilst the
velocity distribution of the atoms will be modulated after a Ramsey sequence, the local
phase space density will not have changed, because the excited portion of the atom cloud
will be in a higher-energy electronic state. This is addressed by causing the excited atoms
to relax into the lower hyperfine level (via spontaneous emission) by optical pumping.

Note that in a scheme based on single-photon transitions between fine-structure levels,
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Figure 7.1: Reduction in phase-space density with the Ramsey sequence followed by
depumping. The diagrams are sketches of the total energy (electronic + kinetic) as a
function of the z-axis velocity. (a) Population (thick black line) is initially distributed
across a range of velocities in F' = 2. (b) A Raman Ramsey sequence excites only the
negative-moving atoms, shifting them upwards in velocity by vg. (¢) Pumping from
F =3 — F’' = 3 forces re-population of F' = 2, and the overall width of the velocity
distribution has decreased. The dashed lines indicate spontaneous emission.

spontaneous emission would occur naturally after a short lifetime (typically 10s of ns),

thus imposing an upper limit on duration of the Ramsey sequence.

To engineer a cooling force, we set ¢ Lrel) such that the excitation profile exhibits a
negative slope through zero velocity (and the impulse pushes the atoms towards positive
velocity), and T such that the central fringe spans the width of the velocity distribution.

For illustration purposes, we represent the idealised excitation profile by the step function

1 (v<O
p =t Y (7.3

0 (v>0),

whereby atoms with negative velocity are excited to the upper hyperfine state (and
pushed toward positive velocity), and atoms with positive velocity remain in the lower
(with their velocities unchanged). In reality the excitation profile is sloped through zero
velocity, rather than stepped, but the qualitative effects are similar. Atoms not excited

by the Ramsey sequence are said to be in a ‘dark’ velocity class.

The scheme applied to cool the atomic velocity distribution is illustrated in figure 7.1,
where we sketch the total energy (electronic + kinetic) as a function of the z-axis velocity

at the three stages of the process:
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1. Preparation
The atom cloud, which contains a distribution of velocities as indicated by the thick
black line in figure 7.1a (we consider a flat-top velocity distribution for simplicity),

is initially prepared into the F' = 2 level |1, p).

2. Ramsey excitation
The Ramsey sequence is applied, transferring negative-moving atoms to |2, p+#(kr1—
ko)) (F = 3) with the associated impulse in the positive z direction, as shown in

figure 7.1b.

3. Re-population
To finish, atoms in F' = 3 are optically pumped back into F' = 2 by a laser tuned
to the FF =3 — F’ = 3 transition (the depump laser in our setup) via spontaneous
emission, as shown in figure 7.1c. If the depump laser is arranged retro-reflected,
then this process has a net ensemble average momentum transfer of zero, but will

randomise the velocity distribution to some extent.

As illustrated in the figure, the width of the velocity distribution has reduced without
loss of atoms, hence the phase-space density has increased, and the atom cloud is colder.
Repeated application of this particular sequence will eventually shunt all atoms into
the dark velocity class. One can achieve extra cooling by repeating the above sequence
many times with a decreasing dwell time T, such that the dark velocity class becomes
increasingly narrow. Furthermore, to induce accumulation of population around v, = 0,
rather than causing acceleration of the cloud, one can apply the above sequence with

alternating orientations along the z-axis.

In the idealised illustration above, the maximum reduction in velocity width is vy per-
cycle, and the sequence becomes ineffective for cooling where the initial width is less than
vr. Roughly speaking, for a Gaussian distribution of velocities, this puts a theoretical
limit equal to the Raman recoil temperature T = M 012% /kp = 1.48 uK on this cooling
technique. A technique for enhancing the per-cycle increase in phase-space density is

discussed in section 7.6.

By applying Ramsey sequences with different excitation profiles one can induce different

effects on the velocity distribution. Instead of cooling the atoms, for example, it is
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possible to modulate their velocity distribution by applying a Ramsey sequence whose

excitation profile exhibits a periodic oscillatory structure.

Note that the above scheme requires a spontaneous emission event after each Ram-
sey sequence. One might expect that this, to some extent, precludes its feasibility for
molecular cooling. However, since the cooling scheme is based on short, coherent optical
pulses, there are certain enhancements which can be made to relax this dependence, and
these are discussed in section 7.6. For the preliminary tests performed in this work, we

need not implement them experimentally.

The capture range of the cooling scheme is determined by the width of the central
Ramsey fringe, which can be estimated according to 6 ~ 2kv, = 7/T, where T is the
time between Ramsey pulses (not the temperature), and we can express this in terms of

the recoil velocity as

v T

(U;> = SThon (7.4)
For a cloud of ultracold 8°Rb atoms at a temperature of, say, 100 uK (v, /vg = \/m
8.2) the required dwell time T for capture of the entire velocity distribution (up to 30) is
roughly T' = 7/(12x8.2kvg) ~ 330 ns, which is just within the possibilities of our experi-
mental setup. For a sample of °Rb at, for example 1K (v, /v = 1/1 x 106/1.48 ~ 820),
which is a typical temperature for buffer-gas-cooled particles, the requred dwell time is
T =~ 3ns. Furthermore, for room temperature particles, the required dwell time would
be T = 200 fs. Therefore, whilst we are able to use our cold atom system as a test-bed
for a proof-of-concept of interferometric cooling, a high power, femtosecond-pulse-based
laser system would in fact be required should we wish to extend the scheme to particles
which are not already ultracold. Note that the above numbers are specific to rubidium-
85 (M = 85 amu and A = 780nm), and particles with different masses and transition

wavelengths will exhibit different recoil velocities.

7.2 Ramsey fringes

Before testing the cooling scheme, we characterise the behaviour of the Ramsey se-
quence. By measuring the fringe pattern, or ‘velocity comb’, at the output of a Ramsey

interferometer, we can predict its effect on the atomic velocity distribution. In the
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velocity-insensitive Raman arrangement, one can easily observe Ramsey fringes simply
by applying the § —7 sequence and measuring the output as a function of the laser detun-
ing 7, using the method described in section 3.5.3. In contrast, in the velocity-sensitive
arrangement, fringe contrast is completely washed out because the power broadened Ra-
man pulse is spectrally much wider than the periodic structure of the Ramsey ‘comb’.
We are able to observe fringes, however, if we apply two Ramsey sequences with a rel-
ative laser detuning offset dpg, as illustrated in figure 7.2, and described below. The
effect of this scheme is to remove the dependence of the output state on velocity (see
section 7.2.1), and instead emulate the range of velocities with a range of laser detunings
0. This method, which is an adaptation of the symmetric Ramsey Bordé interferome-
ter [96], has been used to measure the recoil velocity [32, 69] with high precision. For

completeness, before presenting the measurements, we digress into a discussion of atom

interferometer phase.

7.2.1 Light-pulse atom interferometer phase

A particularly good description of light-pulse atom interferometer phase is given by

Bongs et al in [97]. The resultant phase after a series of laser pulses is given by
AD = Adpop + APpager + Ay, (7.5)

where A®p,,, is the phase shift due to propagation along the two separate paths, A®,ger
is the phase ‘imprinted’ on the atom by the laser, and A®g, is the phase shift arising
due to imperfect overlap of the two wavepackets at the output. We ignore this final
term here since it is comparatively small, and refer the reader to [97] for details. The
middle term comprises a combination of the laser detuning 67, and phase ¢: for closed
interferometers whose pulses all have the same laser detuning, d7-dependence dissapears
due to symmetry, but for the Ramsey sequence (as we have already seen) it remains. The
first term is given by the difference in the action S, defined by integral of the Lagrangian

L(r(t),v(t)) along the two classical paths I'y o:

AD ey = @ _ % </F L (ra(t), va(t)) dt —/ L(rl(t),vl(t))dt> o 76)

Iy
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Figure 7.2: The symmetric Ramsey Bordé interferometer used to measure Ramsey
fringes. Bottom: Two Ramsey sequences (pairs of § pulses) are applied, with a laser
detuning offset 67, — 64¢ = dpg applied to the second. Middle: Trajectories of the
atomic wavepackets during the interferometer. The phase accrued along the two ‘closed’
paths is independent of the initial velocity. Red arrows indicate the direction of the
Raman pulse. Top: Sketches of the excitation profiles sketches of the two Ramsey
sequences. The fringe positions in the second are offset from the first by dpg. The
observed output state of the Ramsey-Bordé interferometer is a convolution of these two
patterns.

The Lagrangian contains all classical inertial effects which perturb the phase, including
acceleration due to gravity and rotation. Since our interferometer is arranged horizon-
tally, and rotation and all other effects are comparatively small (once again, we refer
the reader to [97] for details of the differences in magnitude of these effects), we need
only consider the classical kinetic energy Mv?/2 component of the Lagrangian. The

propagation phase therefore becomes

Acbpmp:% va(t)dt — [ v3(t)dt ), (7.7)
Ty I

which, where the paths I'1 2 share common start and end positions, is equal to zero.
This is the reason for the absence of initial velocity dependence in the Ramsey-Bordé

interferometer and all other closed interferometers. If the paths are not closed, as in the
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Ramsey sequence, we calculate the propagation phase, where from the momentum basis

defined in section 2.1, vi = p/M and vy = (p + A(kr1 — kr2))/M, to be

1
ADprop = 5 M (vi-vi)T
7.8
_ (P (ko1 — ko) n h(kri — kro)? T (7.8)
M 2M ’

which is equal to the momentum portion of the 7T term in equation 2.55. Adding

A®dy,50 to this, we regain the full form of the phase for the Ramsey interferometer:

ki1 —kr2) N h(kry — kra)?
M 2M

AD = <—5L L Pl ) T =576 (7.9)

7.2.2 Fringe measurements

For the symmetric Ramsey-Bordé sequence in figure 7.2, there is no phase evolution
during the period T (both paths have the same velocity) and the interferometer is
closed (there is no velocity dependence), so the intereferometer phase A® is simply the

sum of the phases of the two Ramsey sequences, as imprinted on the atom by the laser:

A® =505 T — ¢, (7.10)

where gbgel)

= gb%) — S-Jl) is the difference in phase between the first two pulses. We
can think of this in terms of overlapping fringe patterns: the two spectral profiles shown
at the top of figure 7.2 represent the two Ramsey fringe patterns, or ‘velocity combs’
corresponding to the two Ramsey sequences. When these two combs overlap, that is,
where dps = 0 and qbgel) = 0, atoms are transferred back to the initial state, and we
expect a minimum in |ez2|2. By scanning §pg for given values of (ﬁgel) and T, we can

hence build up a picture of the initial the Ramsey excitation profile.

The results of the Ramsey-Bordé profile measurement experiment are shown in figure

7.3, where we plot the resultant population |c2|? as a function of the offset detuning Jos

for three different inter-pulse dwell-times 7', as indicated in the plots. These data were

taken in the 7 — 7~ arrangement. The scans in 7.3 a, b and ¢ use qﬁgel) =0 and 7.3d
(rel)

uses ¢; ° = 5. The blue circles are experimental data and the red curves are numerical

simulations assuming the parameters given in the table. The measured experimental
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Figure 7.3: Resultant upper state population after application of the Ramsey-Bordé
sequence in figure 7.2 as a function of the offset detuning dpg, for three different dwell

times 7' (given in each plot), in the 77 — 7~ arrangement. In (a), (b) and (c) the relative

laser pulse phase gzﬁgel) = ng(Ll) — ¢(LQ) =0, in (d) gzﬁgel) = 5. The blue circles are exper-

imental data, and the red curves are numerical simulations assuming the parameters
given in the table.

parameters for these data were A = 27 x 9+ 0.5GHz, P12 =40 £5mW, I, = 7T9mA,
and 64¢ = 27 x —100 kHz, and we used a m pulse time of t; = 7/Qeg = 1.8 us. We
infer the remaining parameters o012, aj/az and S by performing manual fitting of the
numerical simulations. Furthermore, we allow small adjustments of the experimentally
measured parameters for use in the numerical model, to give a better fit to the data. The
parameter S in these simulations accounts for two loss mechanisms: the loss of atoms
due to ballistic expansion, as in the previous two chapters (see section 5.1.3.1); and the
loss of atoms into the ‘open’ paths in the interferometer which do not contribute to the

interference signal, as indicated by the stray lines in figure 7.2.
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Figure 7.4: Resultant upper state population after application of the 7+ — 7~ Ramsey-
Bordé sequence as a function of the detuning offset dpg for a dwell time T = 500 ns

(blue circles) for (a) (Lren = 37 (b) (Lrel) = 3, and (c) (LreD = 7, compared with an

estimate of the velocity distribution (d). The blue circles are experimental data, and
the red curves are numerical simulations assuming the parameters given in the table,

with their respective ¢ge1) indicated in the legend.

As expected, we observe an increase in the fringe spacing as T is decreased. We observe
a minimum in |ez|? at dpg = 0 for the scans in which gzﬁgel) = 0, and where d)(Lrel) =7,
the data exhibit a negative slope at dpg = 0. Fringe contrast appears washed out in
figure 7.3 a, possibly due to experimental drift (these scans were taken separately), but
we observe good contrast, and indeed good agreement between data and simulations, in
plots b and c. Plot d exhibits an apparent offset from the expected phase, due probably
to the non-linear behaviour of the 1&(Q modulator (see section 4.3.3), and we observe

a slight loss of contrast compared with the simulation, but broadly speaking the data

show the expected features. These data demonstate that Ramsey fringes are visible
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above experimental noise in our system, and we therefore expect the associated impulse
to result in a detectable effect on the atomic velocity distribution when the cooling

scheme is applied.

For cooling, we require a central fringe which spans the majority of the Doppler width.
Figure 7.4 shows the resultant upper state population after application of the Ramsey-
Bordé sequence, for a pulse spacing 7' = 500 ns and three relative phases: (a) (ﬁ(Lrel) =
—37 (b) (Lrel) = —7%, and (c) (Lrel) = —7. We plot the estimated velocity distribution
(plot d), which we find, as anticipated, to be comparable in width to the central Ramsey
fringe in all three plots. The predicted excitation profiles are represented in the plots by
the dashed red curves. Interestingly, we find that the fringe positions are not consistent
with what is expected at this small pulse spacing, and that the data for all three cases
are more closely matched when we add a phase shift of _5% to the experimentally-
applied qﬁgel) in the simulations (solid red curves). This apparent offset may arise for
small T because of the non-rectangular temporal pulse shape (the two Ramsey pulses
are expected to merge, to some extent, at small 7' — see figure 4.10), or to relative
systematic offsets in the timings of the phase shifts and pulses. It is important to note
that it may be a peculiar characteristic of the Ramsey-Bordé sequence (as applied in
this experiment, not in all Ramsey-Bordé interferometers), and may not be present when

applying a single Ramsey sequence within a cooling scheme.

7.3 Depump pulses

The re-population stage in the proposed cooling scheme (see figure 7.1c) is achieved by
optical pumping into F' = 2 with the depump laser (see section 3.2). Here we charac-
terise the pumping efficiency and required duration of the depump pulse. We initialised
the atom cloud in F' = 3, distributed (assumed approximately evenly) accross all 7
mp states, and measured the fraction of atoms remaining in F' = 3 as a function of
the depump pulse duration tp for three different input polarisation configurations. The
depump beam (diameter 7mm, power 3mW) is retro-reflected to avoid a net pushing ef-
fect, and propagates perpendicular to the quantisation field B,z. The quarter waveplate

(see figure 3.3) is at an angle such that for linear input polarisation, the retro-reflected
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Figure 7.5: Optical pumping from F' = 3 into F' = 2 as a function of the depump laser
interaction time tp, for three different beam polarisations, indicated in the legend. The
quantisation magnetic field lies perpendicular to the k vector of the depump beam.

beam is linearly polarised in the same plane as the input. For circular input polarisa-
tion, the retro-reflected beam is circularly polarised, with opposite handedness to the
input, for any quarter waveplate rotation angle we choose. Figure 7.5 shows the data
for circular input polarisation (red) and linear input polarisation aligned parallel (blue)
and perpendicular (green) to the quantisation axis. We find the most efficient pumping
into F' = 2 with perpendicular linear polarisation, which exhibits a remaining F' = 3
fraction of ~ 0.02 after a tp = 12 us pulse. In the experiments, we apply the depump

laser pulses as such.

With parallel linear polarisation, we observe slower optical pumping due to the presence
of the dark state mp = 0, yet since the resultant fraction in F' = 3 goes below 1/(2F +
1) = 0.14, either the input polarisation (or the quarter waveplate) is imperfectly aligned,
or there is significant coupling occurring to the upper state F/ = 2. We would expect
slightly faster optical pumping into F' = 2 with the depump laser tuned to the |5.5; 2. F =
3) — |5Ps), F' = 2) because (a) from F’ = 2, relaxation to F' = 2 is marginally
favourable over F' = 3 on average across all mp sublevels, and (b) population in this
case (unlike the current) is not pumped into the outer m, = +3 sublevels of F' = 3,
from which relaxation to F' = 3 is around 25% more favourable than to F' = 2. With

the current apparatus this is more difficult to implement experimentally.
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7.4 Modulation of the velocity distribution

In this section we test the scheme described in section 7.1, and characterise its effect
on the atomic velocity distribution for a (67 — o) Ramsey sequence with T" = 500 ns
at range of qﬁ(LreD. Given high-contrast Ramsey fringes and efficient depump pulses, we
expect to observe cooling or heating of the atom cloud dependent on the phase of the
Ramsey fringes. Note that the resolution of our velocimetry does not allow for detection
of small structure on the velocity distribution. We therefore restrict ourselves to the
exploration of small T" schemes which are expected to primarily cool or heat the entire

distribution.

A sample experimental procedure is illustrated in figure 7.6, and described as follows.
The atoms are collected in the MOT, cooled in the molasses for ¢3; = 6 ms, and prepared

= 64%, measured empir-

into [55] 9, F' = 2) as normal. We then apply a resonant (Jr,
ically) Ramsey sequence with a dwell time 7" and a relative phase qb(Lrel), followed by a
tp = 12 pus depump pulse, and repeat this process N times. After this we apply a weak
Raman pulse of duration ¢.ope at the detuning o7, = §4C 4+ Wprobe tO probe the number
of atoms in the corresponding velocity class. We then repeat this entire sequence for
a range of wprobe detunings in order to build a picture of the velocity distribution (see
section 5.2.1). In these experiments we shift the detuning during the probe pulse by
applying the sinusoidal signals I = cos(wprobet) and @ = sin(wprobet) to the respective
channels of the 1&Q modulator (see section 4.3.3). Note that 64 here corresponds to
the central light shift for the (higher intensity) Raman pulses constituting the Ramsey
sequence. As a general note, in this experiment, and all experiments throughout this
thesis, care was taken to characterise and compensate for experimental delays between
the various components of the setup. As one specific example, without a software-
programmed delay, a phase shift induced by the I1&Q modulator would occur before the

respective Raman pulse impinged on the cold atoms, because the AOM driver exhibits

a longer signal delay than the 1&Q modulator.

The un-modulated (blue) and modulated (red) velocimetry profiles for a modulation
experiment with 7" = 500ns at a range of d)(LreD are shown in figure 7.7. Each point
is an average over 16 shots, and the entire scan took around 25 minutes to complete.

Measurements of the modulated and un-modulated distributions were interleaved to give
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Figure 7.6: Timing diagram of an interferometric velocity modulation experiment with
N = 4. Described in the text.

a reliable comparison between the two, and the points were sampled pseudo-randomly to
minimise the effects of drift during the experiment. The solid curves are 8-point moving
averages of the respective data points. These data were taken in the o™ —o™ polarisation
arrangement, and the z axis magnetic field was adjusted in order to counteract the
splitting of the Zeeman sublevels (see section 5.1.2.1) during the probe pulse. This means
that there are significant light shift splittings during the Ramsey pulses, but the resultant
effect of this is simply a reduction in fringe contrast (the fringe positions are unchanged
from the 77 — 7~ case). The measured Rabi frequency was Qg ~ 2 x 250kHz, hence
the duration of the Ramsey 7/2 pulses was t/, = 1us. We applied a probe pulse of

duration tp = 100 us, and measured the probe light shift to be 62¢, ~ —30kHz.

probe ™

In all cases population is pushed towards positive velocities as expected, yet in no case
do we observe a cooling effect. Note that the signature of cooling for these data is
a reduction in the width of the velocity distribution, and the corresponding reduction
in the width of the Raman velocimetry scan. Heating, on the other hand, results in
an increase in width. To aid the analysis of these curves we plot predicted modulated
velocity distributions (red) for a range of gbgel) in figure 7.8. To generate these plots
we use a simple numerical simulation in Python, which moves population along the
v, /vR axis according to the excitation profile (dashed lines) of the T" = 500 ns Ramsey

interferometer, where we assume Ramsey fringes with peak-to-peak amplitudes of 0.4
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(slightly larger than those presented in section 7.2.2). In the simulation we do not include
the directionally random recoils upon spontaneous emission, but their effect is expected
to be a general broadening (heating) of the modulated distributions, as discussed in
section 7.4.2. In each case the initial velocity distribution (blue) is Gaussian, with a

width of o, = 4 X vp.

7.4.1 Analysis of the data

It is important to re-iterate at this stage that the Raman velocimetry profiles in figure
7.7 do not map one-to-one to their corresponding velocity distributions, due to power-
broadening during the probe pulse. Nevertheless, the two are qualitatively similar, and
we can compare and match the curves in figures 7.7 and 7.8 legitimately. There is one
caveat to this: structure observed on the modulated data is not necessarily an artefact of
a change in the velocity distribution, but could instead be due to a detuning-dependent
distribution of population between the hyperfine levels. This could occur, for example,
due to incomplete optical pumping from F = 3 into F' = 2 during the depump pulses,
which would lead to an ‘imprint’, whose prominence would be greater for a less efficient
depump pulse, of the Ramsey excitation profile on the resultant velocimetry profile. One
easily noticable signature of such an effect, since accurate Raman velocimetry relies on all
population being in the lower state, would be an increase in the area under the modulated
curve as compared with the un-modulated one. By integrating the 8 point-moving
averages of the data, we find that the area under the modulated velocimetry curves is
on average only 3.0+0.8 % larger than under the un-modulated curves (the quoted error
is the standard deviation), and that the largest increase is 4.5% (observed for qbgel) =1)
This indicates that some imprint is indeed present, but since the numbers are small we
can be confident that the broad effects observed here occur due to a genuine change
in the velocity distribution. The effect of incomplete optical pumping is highlighted
in [61], where the authors subtract a significant signal from Raman velocimetry data

which is found to exhibit a non-zero (albeit flat, in their case) background after a series

of Raman-pulse-depump cycles.

Figure 7.7 a shows the effect on the velocity distribution of a modulation sequence with

(Lrel) = 0, and this can be compared to the predicted effect shown in figure 7.8 a. Whilst
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Figure 7.7: Results showing interferometric modulation of the velocity distribution with

T = 500ns and N = 4 at a range of gZ)gel) in the o™ — o polarisation arrangement. Each

plot shows the Raman velocimetry profile (a measure of the atomic velocity distribution)
without (blue) and with (red) application of the modulation sequence. The dots are
experimental data, and the solid curves are their 8-point moving averages.

we expect to observe a small cooling effect, the resultant experimental distribution is
actually wider than the initial, indicating that unwanted heating is occurring. The
possible sources of this heating are discussed in section 7.4.2. The profiles of figure
7.7b, to be compared with figure 7.8 b, show a similar general push to the right, and
whilst we do expect heating in this case, the resultant profile is not quite as expected, in
that it does not exhibit a pronounced peak at v,/vg = 5. Profiles 7.7¢ and d (7.8 ¢ and

d) appear to match the expected profiles well, but only in the left and right thirds of the
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Figure 7.8: Predicted velocity distributions for several Ramsey fringe phases. In each
plot, the initial Gaussian velocity distribution (blue) is modulated by N = 4 applications
of a Ramsey sequence with T = 500ns, whose excitation profile is indicated by the
dashed line. We plot the resultant velocity distribution (red) for 8 different relative
phases (given in each plot).

scans. Indeed, it appears as though population in the middle third is ‘left behind’. One
scan which does appear to behave as expected is that with qbgel) = 7 (figures 7.7e and
7.8 e), where since the excitation profile has a minimum at zero velocity, the central peak
position remains largely unchanged, and there is a slight shift of the distribution towards
positive velocity. The sequence which is expected to give the most efficient cooling effect
is that with gbgel) = 3r/2 = —7/2 (figures 7.7f and 7.8 g), since the excitation profile
exhibits a maximal slope (where %|co|? < 0 and %\02\2 = 0) at zero velocity. Once
again, we do not observe a cooling effect, but instead a significant heating effect is

present.

It is possible that these curves do not match their respective predictions due to an offset
in the Ramsey fringe phase where a non-zero relative phase is applied, such as that
illustrated in figure 7.4. However, since we have tested a fairly comprehensive range
of phases, and a simple offset would not lead to cooling-inducing profiles becoming

inaccessible (we would expect to observe cooling in at least one of the plots in figure
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7.7), we instead focus on sources of unwanted heating as the reasons for the absence of

cooling.

7.4.2 Sources of unwanted heating

The most likely source of heating is the randomising effect brought about by the depump
pulses. Averaging over the ensemble, spontaneous emission will exhibit a net momentum
impulse of zero, just as it does in Doppler cooling. With only one spontaneous emission
event per cooling cycle (of which there are V) the effect on the velocity distribution will
be a simple addition of noise and a slight reduction in the cooling effect. However, the
optical pumping of population from F' = 3 into F' = 2 on average requires more than one
spontaneous emission event, since once excited to the upper level F/ = 3 by the depump
laser, relaxation into each of the two lower levels is approximately equally favourable.
Assuming a 50/50 branching ratio, it would take on average four spontaneous emission
cycles to pump over 90% of the F' = 3 population back to F = 2, and indeed 50%
of the population which is shifted by the Ramsey sequence will undergo two or more
spontaneous emission cycles per Ramsey sequence. This is expected to contribute a
considerable amount to the washing out of any cooling effect which might be induced

by the Ramsey sequence.

Similar depumping pulses have been applied in other laser cooling experiments with
success, but there are subtle differences. In [61], the authors report a Raman cooling
scheme for sodium (Na has a similar structure to ®*Rb, except the nuclear spin quantum
number is I = 3/2) in which the depump (referred to as the ‘optical-pumping beam’)
couples the equivalent levels to ours, and a similar scheme for cesium (I = 7/2) is
reported in [60] and [98]. Raman cooling is based on the creation of a dark velocity
class around v, = 0, into which population can spontaneously decay, via sequences
of Raman pulses with tailored durations and detunings (and directions), which all act
to push population towards v, = 0. Once population decays into the dark velocity
class, the probability that it will be excited out of it is ~ 0. We can draw parallels
here with interferometric cooling in that the minima of the Ramsey fringes represent
dark velocity states, but these are not completely dark in our experiments because the

minima of the Ramsey fringes do not correspond to a transfer fraction of |c2|? = 0, due
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to dephasing. Indeed, in the o™ — 0" arrangement where we do not cancel the light
shift induced splitting (as in figure 7.7), the additional dephasing further increases this
minimum |cz|?. This implies that even at the minima of the Ramsey excitation profile,
population will still be excited with some non-negligible probability, and the associated
velocity-randomisation by spontaneous emission will occur after every application of
the Ramsey-depump sequence, across the entire velocity distribution. In light of this, in

section 7.5 we switch to the 77 — 7~ arrangement, where we observe evidence of cooling.

As mentioned previously, in an attempt to reduce heating resulting from spontaneous
emission, we may in future experiments switch the depumping transition to |55 /o, F' =
3) = |5Ps /2, F " = 2), whereby relaxation to F' = 2 is marginally favourable once in
the excited state (see section 7.3), and hence the depumping process requires fewer

spontaneous emission cycles on average.

Another possible cause of heating is misalignment of the depump beams. A deviation
from perfect overlap on the incoming and retro-reflected beam paths would cause a slight
heating along the z-axis of those atoms which are excited by the Ramsey sequence, since
the atomic recoil upon absorption would exhibit a component parallel to the z-axis.
Once again, the above effects will be amplified where more spontaneous emission cycles
take place. Experimentally, the incoming and retro-reflected beams are measured to
overlap to within 20 mrad, hence this effect is expected to be much smaller than the 2hk
imparted by the Ramsey pulses. Further to this, if the depump intensity is imbalanced
between the incoming and retro-reflected paths (which it unavoidably is, due to losses at
the chamber window, quarter waveplate and mirror), there will be a net pushing effect
induced by the depump beams. This effect is again expected to be small compared with
the Ramsey impulse, and furthermore the detectable effect can be minimised by ensuring

that the depump beams are aligned perfectly perpendicular to the Raman beams.

7.5 Preliminary demonstration of cooling

In light of the above findings, we switch in this section to the 77 — 7~ (lin-perp-lin)
Raman arrangement. Here we expect higher contrast Ramsey fringes because the mpg
sublevels are not separated by the light shift (see section 5.1.2.2), thus reducing off-

resonance pulse errors and the associated dephasing.
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The results of a modulation sequence with ¢(Lre1) = —7/2 and N = 4 in the 7" — 7~

arrangement are shown in figure 7.9a. To gather these data, we applied the same
experimental procedure as that described in section 7.4. The effective Rabi frequency
in this case was measured to be Qg ~ 27 x 400kHz (the Ramsey pulse intensities were
higher in this experiment), thus giving rise to broader Raman pulses and, respectively,
higher contrast Ramsey fringes. In the plot, the points are experimental data, which
are again averages over 16 shots, and the dashed curves are 10 point moving averages
of the data. We measured the probe light shift to be 5;34rgbe ~ —27m x 25kHz. The solid
curves are numerically simulated Raman velocimetry profiles (manually fitted to the

data), whose corresponding predicted velocity distributions are plotted in figure 7.9 b

along with their double-Gaussian (see equation 5.6) parameters.

We find that the initial (blue) velocimetry profile corresponds roughly to a double-
Gaussian velocity distribution with o1 = 4.5 x vg (30 uK), 02 = 11 x vg (179 uK), and
ay/az = 2. The resultant (red) velocimetry profile is well-approximated assuming the
parameters o1 = 3.5 X vg (18 uK), o9 = 11 x vg (179 uK), and ay/as = 2.5, where the
colder peak is centered at v, /vgr = 3.5. This represents a reduction in temperature of the
central portion of the velocity distribution by a factor of 1.7, where the broad background
is left unchanged. Figure 7.9b is expected to approximately represent figure 7.8 g, and
we find that this is broadly correct, although it appears that figure 7.8 h (¢(Lrel) = —7m/4)
more closely matches the observed effect. This may be due to an experimental offset in

the Ramsey fringe phase, such as that observed in figure 7.4.

Once again, we observe an increase in the area under the Raman velocimetry curve due
to incomplete optical pumping. This is more difficult to quantify in this case since the
entire velocity distribution is not visible, but considering the range of data in the plot,
the area under the cooled profile is 7% larger than that under the un-cooled profile. This
accounts for the fact that the simulated profile (solid red line) has a smaller amplitude
than the observed profile (dashed red line), and further to this, we expect a larger
discrepancy (due to the ‘imprint’, see section 7.4.1) at negative velocity, where the

Ramsey excitation profile exhibits a maximum, as is indeed observed.

The above represents the first succesful demonstration of interferometric cooling. These
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Figure 7.9: Preliminary demonstration of interferometric cooling. (a) Raman velocime-
try profiles: blue — initial (un-cooled); red — resultant (cooled); dots — data, dashed
curves — 10-point moving averages of the data; solid curves — numerical simulations.
(b) Empirically fitted velocity distributions corresponding to the curves in (a), with the
associated double-Gaussian parameters inset.

data were taken late on in the PhD project, and a full characterisation (and exploita-
tion) of cooling in the 7+ — 7~ arrangement is yet to be performed. There are some
experimental improvements to be made which we expect will enhance the cooling effect,

as described below.

7.5.1 Immediate future improvements

The scheme presented above employs Raman pulses which impart momentum to the
atom cloud in only the positive direction. As observed, this leads to an acceleration
of the atom cloud along with the reduction in the velocity width. To counteract this
effect, one must simply follow the Ramsey-depump sequence with a corresponding one
in the opposite direction. In our experimental setup this can be achieved by swapping
the direction of the Raman pulses with the Pockels cell (see section 4.11). It can also
be achieved by preparing the atoms into the [55) o, F' = 3) state before the pulses are
applied, instead of 557 5, F' = 2) (making no changes to the Raman beams), although
in this case some atoms would be pumped into the outer mp = +3 sublevels of F' = 3,

which do not interact with the Raman beams.

The effect of cooling, whereby population accumulates in the minima of the excitation
profile, can be enhanced by appling a series of cooling sequences (with alternating direc-

tions) with gradually increasing 7'. This will gradually reduce the width of the Ramsey
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fringes, and therefore of the dark velocity class as population accumulates there, result-

ing in a colder sample.

One general improvement to the experiment would be an increase in the available laser
power. With extra power-broadening, we would achieve higher contrast Ramsey fringes,
and therefore more efficient cooling. Further to this, a reduction in the rise/fall time of
the Raman pulses (see figure 4.10) is desirable, since currently at 7' = 500 ns the Ramsey
pulses overlap in time. This would allow more control over the timings of phase shifts
at small dwell times T', and is expected to improve fringe contrast. It would also allow
for smaller experimental dwell times and the associated increase in the velocity capture

range of the cooling scheme.

7.6 Coherent enhancements in interferometric cooling

In the introduction, and at the beginning of this chapter, we suggested that interfero-
metric cooling is in principle applicable to a large range of species, including molecules.
In this section, we describe extensions to the interferometric cooling scheme, which act
to (a) make cooling within molecular structure possible, and (b) reduce the dependence
of cooling upon spontaneous emission events, thus making molecular interferometric

cooling a possibility.

Molecules exhibit complex ro-vibrational structure. Along with the familiar hyperfine
splittings, electronic energy levels are split into vibrational (~ THz splitting) and ro-
tational (~ GHz splitting) sublevels respectively by the molecule’s vibrational and ro-
tational degrees of freedom. The ease at which population can decay into the myriad
ro-vibrational states within this structure makes traditional laser cooling of molecules
extremely difficult. Despite this, laser cooling of diatomic alkaline earth halides has
been succesfully demonstrated [17-19] by application of multiple repumping frequencies
which address the dark ro-vibrational (and hyperfine) states. Although such techniques
represent a large step forward in molecular cooling, they are only applicable to molecules

with the simplest of structures.
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Figure 7.10: Sketch illustrating transitions between the ground and first electronic ex-
cited state of a simple molecule, where the first five vibrational levels v in each electronic
state are indicated. Broad pulses lead to simultaneous excitation of all vibrational levels
to the upper state.

By applying short (< 1ns) pulses, in conjunction with composite pulses or adiabatic
chirps, one can excite multiple molecular ro-vibronic transitions simultaneously, as il-
lustrated in figure 7.10. If population decays from the upper state back to one of the
lower states addressed by the broad pulses, further transitions can take place, and the
transition is closed. A significant drawback of this broad pulse approach would be the
large proportion of laser power wasted on frequencies that do not drive transitions, how-
ever one could envisage a scheme based on mutually phase-locked beams whose power
is focussed around the required frequencies as an alternative. Such a scheme could
potentially be realised in simple alkali halide molecules. Indeed, femtosecond pulse tech-
niques in molecules have already been developed to great extent in the field of molecular
coherent control [99-101]. Simple interferometric cooling would be ineffective in the ar-
rangement depicted in figure 7.10, however, since there are multiple transitions present
(with vastly different detunings), and for off-resonant pulses there is a contribution to
the Ramsey phase from the laser detuning (that is, where §; # 64¢ in equation 7.1).

This is addressed in the following.

7.6.1 Frequency-independent interferometric cooling

The scheme proposed in [28], which we illustrate in figure 7.11, is based on a coherent

spin echo effect (described in chapter 6 as a type of composite pulse), whereby the
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dependence of the Ramsey phase on the laser detuning is removed. A more detailed
description of the scheme, and a discussion of its potential for molecular cooling, can

be found in the reference, and we merely summarise it here. The scheme is the same as

the Ramsey 5 — 7 sequence reported earlier on in this chapter, except for the addition
of the two inner, counter-propagating m pulses. These pulses are timed such that a
particle spends an equal amount of time in each electronic state (|1) and |2)) within the
interferometer. The second pulse is applied at a time T” after the first, the third 27" after
the second, and the fourth 27" —T" after the third, where 0 < T" < 2T. The result of this
is that the laser detuning terms 7 drop out of the expression for the resultant phase,
and we are left with a purely velocity-dependent excitation, that is, co o % (1 + e*"A‘b)

where for single-photon transitions
O = (v.k+ wr)8T — ¢1 + 202 — 2¢3 + P4, (7.11)

in which wg is the single-photon recoil frequency and ¢, is the phase of the n*" pulse.
The sequence must satisfy the condition 47T < 7, where 7 is the lifetime of the excited
state. It is important to note that for molecular structures (see figure 7.10 for a simplistic
example), the first pulse will induce a superposition between one vibrational state in the
ground electronic state X and all vibrational states in the excited electronic state A, and
the second pulse will then populate multiple vibrational states in X. With the addition
of such superpositions, pulses must be precisely timed to coincide with wavefunction
revivals and the scheme becomes more involved. Nevertheless, numerical simulations
performed by the authors of [28] suggest that interferometric contrast is achievable, and

indeed that experimental studies appear worthwhile.

7.6.2 Coherent amplification of a velocity-selective impulse

In more complex molecular structures, population will inevitably decay into dark states
not addressed even with broad laser pulses. One potential workaround for this is to
reduce the dependence of the cooling scheme on spontaneous emission events. This
could be achieved with the technique known as ‘amplified cooling’, which is analysed
by Freegarde, Daniell and Segal in [102], and earlier, proposed in a similar form, by

Bakos et al in [103]. In amplified cooling, which we illustrate in figure 7.12, an initial
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Figure 7.11: Scheme proposed in [28] for frequency-independent interferometric laser
cooling.

velocity-selective excitation (a Ramsey sequence, for example), is reinforced by several
interleaved 7 pulses before spontaneous emission occurs. The initial excitation acts
to excite negative-moving atoms to the upper state (and shift them towards positive
velocity), and leave positive-moving atoms in the ground state. The first = pulse is
applied counter-propagating to the initial excitation, such that as the populations are
inverted, the impulse acts to overlap their velocity distributions further, and the initial
impulse is reinforced. The second 7 pulse couter-propagates relative to the first, the
third counter-propagates relative to the second, and so on. When spontaneous emission
occurs, and population relaxes into the ground state, the resultant velocity distribution

is narrower.

Where the interferometric cooling schemes presented previously can impart only an hk
(or 2hk for Raman transitions) impulse to the particle per spontaneous emission event,
with amplified cooling we are limited by the number of 7 pulses we can apply before

spontaneous emission occurs.

7.7 Conclusion

In this chapter we have discussed the laser cooling of atoms and molecules with sequences

of coherent laser pulses. We described the proposed scheme for cooling in our cold
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Figure 7.12: Scheme proposed in [102] for coherent amplification of a velocity-selective
impulse.

rubidium system, whereby a Ramsey interferometer provides a velocity-selective impulse
in a manner analogous to conventional Doppler cooling, and dissipation is induced by
spontaneous emission. After characterising the vital components of the experimental
sequence, we demonstrated modulation of the atomic velocity distribution at a range of
system parameters, where the Raman pulses were applied in the o™ — o™ polarisation
arrangement. In this case we did not observe cooling, probably because of a light-
shift-induced washing-out of fringe contrast. In the 7™ — 7~ arrangement, where fringe
contrast is higher, cooling was observed, and numerical simulations manually fitted to
the data indicated a reduction in the temperature of the central velocity peak by a factor

of 1.7, after a series of N = 4 cooling cycles.

The experiments performed here using already-ultracold atoms represent a first exper-
imental step towards the interferometric cooling of molecules. With an improved laser
system, and the addition of the enhancement schemes described here, namely frequency-
independent interferometric cooling, and ‘amplified cooling’, one can envisage future

schemes based on coherent laser pulses for molecular cooling.



Chapter 8

Conclusions

Laser cooling has revolutionised experimental atomic physics since its first demonstra-
tions almost thirty years ago. It has opened up new and exciting branches of study
such as trapped-ion quantum computing, lattice-based quantum simulation and conden-
sate wavefunction dynamics, and pushed the boundaries of precision measurement and

timing with cold atom clocks and interferometric sensors.

In the same way that ultracold atoms inspired groundbreaking research, ultracold molecules
offer the potential for exciting new discoveries, through, for example, ultracold chem-
istry and tests for variations in the fundamental constants. Whilst there exist other
techniques for ultracold molecule production, of which photo-association is perhaps the
most prominent, techniques for the laser cooling of molecules are still in their infancy.
Indeed, the current state-of-the-art is highly species-selective, in that only molecules

(and atoms, for that matter) with the simplest of structure can be laser cooled.

The primary line of investigation of this thesis was the development of atomic and
molecular cooling techniques based on sequences of laser pulses, which can be applied
to a broad range of species. As a test-bed for our pulse schemes, we used ultracold
rubidium-85 atoms in free-fall after release from a magneto-optical trap. We realised
a two-level quantum system in the atoms by inducing stimulated Raman transitions
between ground hyperfine states, whereby the coherent pulses impart momentum to the

atoms. The detailed characterisation of the Raman pulses (chapter 5) gave us a good
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understanding of the system’s behaviour. In particular, studies of the polarisation-
dependent light shift (section 5.1.2) and magnetic fields (section 5.1.1) provided insight

into the dephasing of atomic states during pulses, and how it could be reduced.

Coherent operations intended for precise quantum control of ultracold atoms, such as
quantum gates in QIP, beamsplitters and mirros in atom inteferometry, and our Ra-
man pulses, unavoidably suffer from systematic errors in such system parameters as the
control field intensity and frequency, and these lead to a reduction in the fidelity of the
operations. The second major line of investigation in this thesis was the improvement
of fidelity of coherent operations in our notably inhomogeneous system, by way of com-
posite pulses (chapter 6). Composite pulses, whereby ‘naive’ single pulses are replaced
by sequences of rotations with tailored durations and phases, were found to consider-
ably improve fidelity in our experimental system. Whilst they have not yet been fully
exploited by the cold atom community, the benefits of their application are of growing
interest. Indeed, closer to home, it is expected that such error-resistant techniques as
composite pulses and adiabatic chirps will be necessary in future realisations of inter-
ferometric cooling. We found that where significant ‘off-resonance’ errors were present,
the WALTZ-type composite pulse afforded a 64% increase in the fidelity of a 7 pulse.
Furthermore, with the ‘Knill’ composite pulse, one could potentially induce population
inversion with > 99% efficiency in a Zeeman-degenerate atom cloud (where multiple
coupling strengths are present) at temperatures readily achievable in a magneto-optical

trap.

With the Raman system in place, we began preliminary tests of interferometric cool-
ing (chapter 7), whereby velocity-selective Ramsey interferometry is used to provide a
velocity-selective impulse in a similar fashion to traditional Doppler cooling. In fact,
the demonstration of cooling with this technique is perhaps the most significant result
presented in this thesis. In preliminary tests, we observe a factor of 1.7 reduction in
temperature of the central component of the velocity distribution after N = 4 repeated
applications of the cooling scheme. Coherent pulse-based cooling schemes, by their
nature, are open to fidelity-enhancing techniques, such as composite pulses, adiabatic
chirps and spin echoes. Indeed, the latter provides us with a means for removing the
dependence of the interferometer output on the laser frequency (leaving a purely ve-

locity-selective excitation), and in turn allows for the interferometric cooling of species
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with ro-vibrational structure. Furthermore, one can exploit such techniques as ‘amplified
cooling’ in pulse-based schemes to reduce the dependence of cooling upon spontaneous
emission. With this, we conclude that such laser-pulse-based schemes for molecular

cooling are a promising prospect for the future.

Some suggested experimental improvements

We end with a suggested select few technical changes which can be made to the present
experimental setup to improve its performance. The item at the top of most experimen-
tal atomic physicist’s wishlists is a bigger, more powerful laser system, and this is no
exception. Higher power, which could be gained from a frequency-doubled fibre laser
system such as that described in [104] (~ 43 W at 780nm), would allow for higher Rabi
frequencies, which would in turn lead to less dephasing, higher interferometric contrast,
and broader capture ranges for cooling. As described in section 3.3.2.2, switching off
the MOT coils induces significant eddy currents in the surrounding conductors, leading
to slow field decay. Second on the wishlist for the next experimenter might be a glass
vacuum cell, which by its nature would not conduct eddy currents. More minor improve-
ments might include: calibration of the I&Q modulator channels to remove the present
non-linearities (see section 4.3); stabilisation of the frequency and power of the Raman
laser to prevent drifts in the detuning from single-photon resonance and pulse intensity,
respectively; and focussing of the Raman beams through the pulse AOM to reduce the
rise/fall time of the Raman pulses, thus allowing for greater control via composite pulses

and broader capture ranges in interferometric cooling.
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Appendix A

Theory Supplements

A.1 Two-level atom-laser interaction

A useful tool for describing coherent atomic manipulation is the ‘toy’ two-level atom
model, in which an atom is approximated simply as two stable energy levels, |g) and |e),
which can be coupled by some driving field. Often in atomic physics this driving field
takes the form of a coherent oscillating electric field, or laser beam, which couples the
two states via the dipole interaction. If starting in the lower state, |g), the atom can ab-
sorb a photon from the beam, causing a transition to the upper state |e). When starting
in |e) the atom can be forced to emit a photon into the laser beam, causing a transition
down to |g). These two processes are known as absorption and stimulated emission re-
spectively, and in the absence of any incoherent processes, such as spontaneous emission,
they allow us to drive coherent transitions between |g) and |e). The following gives a
detailed introduction to coherent two-level atom-light interactions. Many of the prin-
ciples introduced below emerge in the three-level treatment given in chapter 2, such as

the rotating wave approximation, the dressed state picture, and the light shift.

A.1.1 The two-level Hamiltonian

The two energy levels |g) and |e) in the two-level atom have energy eigenvalues given by
their atomic frequencies: E, = hw, and E, = hw.. The atom can exist in a superposition

of the two states, determined by the amplitudes c4(t) and c.(t), of the quantum state
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vector

[9(8)) = cq(t)]g) + ce(t)|e) = : (A1)

Our laser, an oscillating electromagnetic field E = Eg cos (wt + ¢), where w and ¢ are
the frequency and phase of the field respectively, interacts with the atom as described

by the Hamiltonian
H = huylg) (9] + heele) (| — d - E. (A.2)

The first two terms represent the internal, ‘bare’ Hamiltonian, and V = —d-E = —er-E
represents the atom-field dipole interaction, where r is the vector defining the position of
the electron relative to the atomic nucleus. We can re-write the Hamiltonian in matrix

form:
R hw, V.
H= L (A.3)
Vge hewe

where we define the element-wise coupling terms' as

(A4)

ctHwt+9) + e~ i(wt+9)
Vge = Vg = (elV]g) = hye cos (wt + ¢) = hdge 5 )

{14¢ in this equation determines the strength of the coupling between the levels, and is

known as the Rabi frequency:

. eld - Eglg
(@zng—uhd>. (A.5)

The atom will evolve according to the time-dependent Schrédinger equation (TDSE)

0 A
ifi 0(6) = HIY(0), (A.6)

which in terms of the time-varying state amplitudes can be written as two coupled

differential equations:

o eylt) = Ry (1) + Vegee(1) (A7)
ihgtce(t) = Tuwece(t) + Vgecy(1). (A.8)

!The dipole interaction does not couple a level to itself, therefore in equation A.3, V,; = Vee = 0.
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These equations exhibit fast oscillations of ¢4(t) and c.(t) at their respective atomic
frequencies w, and w,, alongside relatively slow oscillations, assuming 2. < wy ., due
to interaction with the laser. We can factor out the fast oscillations by making the

substitutions

() = Gy(t)e ! (A.9)

Ce(t) = Co(t)e et (A.10)

which, when applied in equations A.7 and A.8, give

ih%ég(t) = VegCe(t)e™(Wea)t (A.11)
ih%c}(t) = Vyely(t)e™(wae)t (A.12)

where wey = we —wy. At this point we introduce the rotating wave approzimation, which
simplifies the TDSE, as follows. Writing out equation A.12 explicitly via equation A.4

and integrating over an interaction period from tog — t gives

ih6.(t) = i (to) + HQye /

to

) dt’.  (A.13)

t o) cil(W—weg)t'+6) | p—il(wtweg)t'+6))
N 2

Whilst we do not solve the TDSE from this form, by inspection we can see that upon
integration the ¢((“~wes)t ‘resonant’ term will be much larger than the e!((Wt@ea)t “off-
resonant’ term in the case where w and w4 are similar. The rotating wave approximation
acts to drop the off-resonant term from the TDSE. We now define the detuning of the
laser with respect to the atomic resonance as 6 = w — wey, and re-write equations A.11

and A.12 with the rotating wave approximation:

0 h

ihooGy(t) = §Qegae(t)ei<5t+¢> (A.14)
ih%c’;(t) = gQgeag(t)e—i(Md’), (A.15)

and the Hamiltonian is therefore

. B 0 Qeg el (0t+¢)
=" . (A.16)
2 Q:ge_i(5t+¢) 0
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This is a time-dependent Hamiltonian, which includes a rotation around the z-axis at a
rate §. At 0 = 0, the Hamiltonian becomes time-independent and the atom oscillates
between |g) and |e) at the resonant Rabi frequency €2,. We would, however, like to
work with a time-indepentent Hamiltonian in the more general case where § # 0, and
this is possible by transforming to a rotating frame, as follows. We have the freedom to
make the substitution |[¢) = O[¢’), where O is some operator and |¢') is a transformed

state vector. With such a substitution, the TDSE becomes

0 N

ih-(Ol')) = H(O'), (A.17)

and if we apply the product rule to the left hand side, operate with Of from the left,

and re-arrange, we find

010 2y = (omo _ m@fﬁp) '), (A18)

In order to transform to the rotating frame, we choose

) ) ‘ €i6t/2 0
O = R(t) = ¢'7=/2 : (A.19)
0 6—i(5t/2
where o, is the Pauli spin matrix which represents a rotation about the z-axis. Inserting
R(t) into equation A.18 gives the TDSE with a time-independent Hamiltonian:
o R R A ) Qe e
iha—|1//> = Hp|y'), where Hp = — Y . (A.20)
¢ 2\ e -5
In this arrangement, we observe evolution which is purely due to the interaction between

the atom and the laser.

A.1.2 The dressed-state eigenfunctions

The eigenvalues A of this matrix, which we calculate by setting the determinant of

. h
Ml — Hp (where I is the identity matrix) to zero and solving, are Ay = :E§Q, where we
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define the generalised, off-resonant Rabi frequency as

Q= 1 /|Qeq|2 + 02 (A.21)

Taking the approach offered in complement By of Quantum Mechanics by Cohen-

Tannoudji et al, in which the angles © and ® are defined by

2|H Q.
Hyi1 — Hao 0
. a .
e’ = 2 i (A.23)

|Hyo|

and therefore sin® = €.,/ and cos© = 6/ with 0 < © < 7, we can write the

dressed-state eigenvectors of the Hamiltonian H R, as

© : O .
[Ay) = cos §]g>R e'®/? 4 sin 5\6)3 eTi2/2 (A.24)

A_) = sin%|g>ge@/2—cosg|e>Re_i¢’/2. (A.25)

This is found by writing out the Schrodinger equation Hg|A;) = Ay|AL) in terms of the
eigenvector components a and b:
) Qegei‘z’ a A a

— 20 (A.26)
Qe -5 b ) 2 \»

[N~

which, if we divide both sides by de’®, can be re-written (for a real and positive Qeg) in

terms of the angles © and ®:

no
- ' ' = —¢®cosO . (A.27)
2\ e %Ptane —ei® b 2 b

The above equation yields

1 —i® _
a <1 — cos@) e " +btan® =0, (A.28)
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which if we multiply both sides by cos © and apply double-angle formulae to the remain-

ing trigonometric terms, becomes
; ) ; )
— ae""®/2 cos 5 + be'®/? sin 5= 0, (A.29)

and from this we get the normalised eigenvector |Ay) as in equation A.24. We apply the

same procedure to find |A_).

A.1.3 Light shifts

In the case where |§] > 4, we can calculate the shift in the energy of the eigenvalues
caused by the laser beam, known as the AC Stark shift or light shift, by taking the

Maclaurin expansion of A; in powers of Q¢q/0:

h

Qe
)\:t == Z|:§5 g

J

i 1~ + h(s mgg A.30
+ 1= 5 + 15 + ... ]. ( . )

In the case of positive detuning (6 > 0), cos©® ~ 1 and therefore ©® ~ 0, so equations
A.24 and A.25 become |\;) =~ |g)pe’®/? and |A_) ~ |e)pe~“®/2=™) respectively. Con-
sequently, the lower state |g)g is shifted up in energy by AE, ~ —|—hﬂge /40, and the
upper state |e)g is shifted down by AE, ~ —the /49. Conversely, with negative de-
tuning (§ < 0): © ~ 7, and equations A.24 and A.25 become |\;) ~ |e)pe "®/? and
i®/2

[A_) ~ |g)re respectively. In this case |g)g is shifted down in energy, and |e)g is

shifted up.

A.1.4 Solutions to the TDSE

Now that we have a time-independent Hamiltonian, for which we have defined energy
eigenvalues and eigenvectors, we are able to derive the solutions to the time-dependent
Schrodinger equation in the interaction picture, as follows. We begin at time ty with
our atom in the state |¢(tg)) = ¢4(t0)|g) + ce(to)|e). We can transform [¢)(¢)) to the
rotating frame, in which we have defined the eigenvectors |\1), by acting on it with the

operator R~!(tg) = R(to) from equation A.19:

[(t0)) R = & (t0)e™'*/?|g) + ce(to)e ™" *|e) = ¢ (to)|g) r + Ce(to) e} r. (A.31)
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During an interaction with the laser of duration ¢, the atom will evolve according to
the TDSE given in equation A.20, which can be solved in terms of the time-evolution

operator U (to,t):
[ (to + ) r = Ulto, O)|¢(to)) r, where U(ty,t) = e~ Hrlt=to)/h (A.32)

Given that we have a set of eigenvalues Ay and eigenvectors |1 ), which are represented
in the eigenvalue equations Hg|A+) = A+ |\+), a function f(Hg) of the Hamiltonian (an

operator) will obey the equation
FHR)AL) = FOL)Ag). (A.33)

This can be applied to the exponential function U(t,t) in equation A.32 along with the

identity relation in our two-eigenvector basis (|A\+)(Ay| + [A_)(A_| = 1) to give
Ultot) = e HRG=0)/0 (1310, |+ A )M ]) (A.34)
N\ Y (] 4 - E0/hy (3| (4.35)

We can then use R(to + t) to convert back to the basis |g), |e):

[ (to + 1)) = R(to + )|y (to +t))r (A.36)

From this, we obtain the amplitudes éq(to+t) and ¢.(to +¢) after an interaction of time

t with the laser field:

&g(to +1) = €1/ <C~e(t0)€i(5t0+¢°) [—i sin © sin (Qt>}

2
+ &4(to) {COS <%t> + i cos O sin <g;t>] > (A.37)

+ &(tg)eCtotdo) [—z’ sin © sin <S;t>} > .
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A.2 Full Raman Hamiltonian

For simplicity, in the Hamiltonian of expression 2.10, and in the subsequent derivations
in chapter 2 we omitted the couplings indicated by the dashed lines in figure 2.1, namely
the terms €, where a # n. In the following we write out the complete mathematical
expressions. When we consider the coupling of both lower levels by both Raman lasers,

the three-level Hamiltonian is written

W pi(writ—ér1)
2

2
o7 + fwn 0 '
+@212€Z(szt*¢L2)
W22 Li(wpot+dr2)
~ _ 2 €
H= 0 (pthkpa ki) 4 py Qm ' , (A.39)
+%€Z(wmt+¢m)
%e—i(wmt—tﬁm) %e—i(wmt-l-(bm)
2 2 (P+hkL1) + hws
_i_%e*i(wmtﬂﬁm) _‘_h%ie*i(wmﬁr(bm)

which is different from equation 2.10 in that there are two terms in each of the non-zero
off-diagonals, instead of one. If we apply the same mathematical treatment to this as
given in sections 2.1.3 and 2.1.4, we arrive at the effective two-level Hamiltonian of the

form

. Hy H

Hy1  Hao

where the respective components are

2
e S LY | CL T LU PR O s

e (A.4la)
thQll el (waps+o)t+ér] _ h‘Qm‘Q
4A 4Aq1p
H12 — _ thlAQZ2 e’i((st*QSL) _ h22921 7szFSt
21 (A.41D)
_ oY, iogpst _ 028 i aunps o))
4A 491
Hy = — hS290821, e~ i0t=0L) _ hQ?QQw pwHFst
44 4212 (A.4lc)
thQll wHFSt _ M8 184y elwrFs+0)t—oL]
4N 4A19
Hoy = — Az thQ?l el (waps+0)t+oL]
29 =
44 ddx (A.41d)

hQQlQ?? cllwrnrs+6)t—¢L] _ |01 |*
4A 49
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Note that this is equivalent to the two-level Hamiltonian of expression 2.22 if we only
consider the 1st term in each of the above Hamiltonian elements. We can see that all
terms which are not underlined oscillate and quickly average to zero [32, 105], leaving
only the underlined terms. Therefore the only additional terms that emerge in the full
two-level Hamiltonian are the 4th terms in each of Hy; and Hys, and we arrive at the
form given in equation 2.22, where the off-diagonal light shift terms are defined as in

equation 2.23.






Appendix B

Numerical model

B.1 Summary of model parameters

The numerical simulations accompanying the data in chapters 5 through 7 are performed
in Python, by application of equations 2.36. Each plot has an associated table of model

parameters, which we describe in the following.

1. I, I5: The intensities of the two Raman beams. I; is the intensity of the higher-
frequency AOM-shifted ‘pump’ beam, and I3 is that of the lower-frequency, EOM-
shifted ‘Stokes’ beam. P o are measured experimentally using an optical power meter,
and inserted into I1 2 = P172/Z%72, where [; = 1.7mm and [l = 1.4 mm are the side-
lengths of the top-hat Raman beams. We calculate the electric field amplitudes using
Eio= \/m , and insert these into equations 2.36 for the numerical simulations.
There is often (but not always) a discrepancy between the expected (based on the
measured beam powers) and observed Rabi frequencies (see section 5.1.4.1), possibly
due to a systematic offset in the power measurements or the measurements of A. In
light of this, we choose arbitrarily in the simulations to alter I o (rather than A,

although this would be equivalent) such that a better fit to the data is achieved.

2. A: The single-photon detuning, as defined in equation 2.17. This is measured ex-
perimentally with the Advantest wavemeter, and inserted directly into the numerical
simulations. The resolution of the wavemeter, and experimental drift (the Tiger laser

is not frequency-locked) imposes an uncertainty of 27 x 0.5 GHz on the measurement.

177
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As mentioned above, there may be a systematic offset in the measurements of A be-
cause both Raman beams (~ 3 GHz apart, relative amplitudes unknown at this point)

are channelled into the wavemeter.

3. dr: The two-photon laser detuning from the hyperfine splitting: d; = (w1 — wa) —
(wp1 — wr2). The experimentally-applied 07, which we can control with 1 Hz resolu-

tion, is inserted directly into the numerical simulation.

4. d4c: The empirically-measured combined AC stark shift. This is taken as the central

resonance point in a scan of the laser detuning Jy,.

5. B,: The z-axis magnetic field. This is inferred from the current I, passed through
the z-axis shim coil pair, according to a gradient of 3.43mG/mA, as calculated in
section 5.1.1. We estimate the zero-point of B, to occur at I, = 86 + 5mA (see
section 5.1.2.1). The large error on this value is a result of drifts and realignments of
the MOT optics, and changing lab magnetic fields (some chamber components, such

as the bolts, can become magnetised).
6. 7: The experimentally-applied pulse-length. ¢ is the measured duration of a 7 pulse.

7. 01,09: The inferred standard deviations of the two estimated overlapping Gaussian
velocity distributions (see section 5.2.1), often given in units of the Raman recoil
velocity vg. The velocity distribution parameters are inferred by manually fitting

the numerical simulation to the data.

8. aj/ay: The inferred ratio of the amplitudes of the two Gaussian estimated velocity
distributions. The form of the velocity density distribution is given in equation 5.6

in section 5.2.1

9. S: The scaling parameter, which reflects the maximum achievable experimental fi-
delity. The physical source of this is the loss of atoms from the interrogation region
(see section 5.1.3.1). For single-pulse experiments, the upper bound on S is 1, and
the lower bound we find to be 0.65 (see figure 5.7). In the figures, the red curves are

the ‘output’ simulated populations, multiplied by this scaling factor: |c2|? x S.

B.2 Sample code
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Sanpl eCode. py Page 1
# #
# Python code for simulating the spectral profile of a Raman CORPSE pulse  #

# A. Dunning, Jan 2014 #

# #

# Note: c_{1,2} notation is replaced by c_{g,e} in this code and #

# the equations of motion (eqns 2.36 in the text) are replaced in this code #

# with (the equivalent) egns 51 and 52 from Young et al, ref 35 #

# #
from numpy import *

from pylab  import *

#define some standard quantities

m= 85*1.66e-27 ;h=  6.63e-34 ; hbar = h/( 2*pi); i= 1lj;e0= 8.85e-12 ;c= 2.99e8
#set THETA to O for sigma+ transitions, pi for sigma- or pi/2 for lin—perp-lin

THETA = 0*pi/ 2.

#hyperfine frequencies and Raman wavenumber

omega_2 = 2*pi*( 384.230406373el2 - 1.264888e9 )

omega_1= 2*pi*( 384.230406373el12 + 1.770843e9 )

omega_eg = omega_1 — omega_2; k_eff = (omega_1l+omega_2)/( 3e8)

Nz=5 #number of Zeeman states to consider (5 is all of them)

RME = 3.58e-29 #reduced dipole matrix element (see Steck)

#simga+ transition dipole matrix elements (see Steck)

# (DMeValsAB indicates transition FROM F=A TO F'=B)

DMeVals33 = array([sqrt( 25./216),sqrt( 5./36),sqrt( 5./36),sqrt( 25./216),sqrt( 5./72)])
DMeVals23 = array([sqrt( 2.1135),sqrt( 2./45),sqrt( 4./45),sgrt( 4. /27),sqrt( 2. /9)])
DMeVals32 = array([sqrt( 10. /189),sqrt( 2./63),sqrt( 1./63),sqrt( 1./189), 0.])
DMeVals22 = array([sqrt( 7.154)sqrt(  7./36),sqrt( 7./36),sqrt( 7./54), 0.])
DMeVals21 = array([sqrt( 3./10),sqrt(  3./20),sqrt( 1./20), 0.,0.]

DMeVals34 = array([sqrt( 3./56),sqrt( 3./28),sqrt( 5./28)sqrt( 15./56),sqrt( 3./8)])
DMeValsPlus = RME*array(((DMeVals33),(DMeVals23),(DMeVals32),(DMeVals22),(DMeVals34)
,(DMeVals21)))

#sigma- transition dipole matrix elements (see Steck)

DMeVals33 = array([—sqrt( 5./172),-sqrt( 25./216),-sqrt( 5./36),-sgrt( 5./36),-sqrt( 25./2
16)])

DMeVals23 = array([sqrt( 2.19),sqrt(  4./27),sqrt( 4. /45),sqrt( 2. /45),sqrt(  2./135)])

DMeVals32 = array([ 0.,sqrt(  1./189),sqrt( 1./63),sqrt( 2./63),sqrt( 10./189)])
DMeVals22 = array([ 0. ,-sgrt( 7./54),-sqrt( 7./36),-sqrt( 7./36),-sqrt( 7./54)])
DMeVals21 = array([ 0.,0.,sgrt( 1./20),sqrt( 3./20),sqrt( 3./10))])

DMeVals34 = array([sqrt( 3./8),sqrt( 15./56),sqrt( 5./28),sqrt( 3./28),sqrt( 3./56)])
DMeValsMinus = RME*array(((DMeVals33),(DMeVals23),(DMeVals32),(DMeVals22),(DMeVals34
),(DMeVals21)))

n: sqart( 2*1/(c*e0)) #electric field for a given intensity
# PULSE TIMING PARAMETERS
ntimes= 50 #number of timesteps per pi time
pi_time = 1.2e-6 #duration of a pi pulse
tvals=linspace( 0,pi_time*  13./3, (ntimes* 13. / 3)) #array of times
tstep=pi_time/ntimes #interval between sampled times
#indices corresponding to the separate sections of the composite pulse
indl= 0; ind2= (ntimes* 1./ 3); ind3= (ntimes*  2.); ind4= (ntimes* 13./3)
# EXPERIMENTAL PARAMETERS
#zshift is the Zeeman shift in 2\pi\times Hz, relating to the B-field
I_1= 14e3;1 2= 21e3; Delta = 2*pi* 8.0e9 ; zshift = - 10* 2*pi* 1e3
ndeltas= 100 #number of sampled laser detunings
deltas=linspace(- 3.0, 3.0 ,ndeltas)*  2*pi* 1le6 #array of laser detunings \delta_L
# MOMENTUM DISTRIBUTION PARAMETERS
Nps = 50 #number of momenta to sample
sigma_1= 2.5 *hbar*k_eff; sigma_2 = 9.0 *hbar*k_eff #widths of the two Gaussians
al= 2;a 2= 1 #amplitudes of the two Gaussians
p_max = 35*hbar*k_eff; p_min = - 35*hbar*k_eff
p_vals = linspace(p_min,p_max,Nps) #momentum values array

#momentum distribution
p_dist=a_l1*e**(- 0.5 *(p_vals/sigma_1)** 2) + a_2%e** (- 0.5 *(p_vals/sigma_2)** 2)
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p_dist /= (p_dist) #normalise (this makes no difference to the result)

#empty arrays for amplitudes
c_el=zeros(((ndeltas,Nz,Nps)),dtype=complex64)
c_gl=zeros(((ndeltas,Nz,Nps)),dtype=complex64)
c_e2=zeros(((ndeltas,Nz,Nps)),dtype=complex64)
c_g2=zeros(((ndeltas,Nz,Nps)),dtype=complex64)
c_e3=zeros(((ndeltas,Nz,Nps)),dtype=complex64)
c_g3=zeros(((ndeltas,Nz,Nps)),dtype=complex64)
pop_e=zeros((ndeltas,Nz,Nps))
pop_g=zeros((ndeltas,Nz,Nps))
state_e=zeros((ndeltas,Nz))
state_g=zeros((ndeltas,Nz))
tot_e=zeros((ndeltas))

# NUMBER CRUNCHING
#calculate amplitudes for each laser detuning \delta_L, at all momenta, in all
#Zeeman sublevels

d (ndeltas): #d index of the laser detuning
n (Nps):  #n index of the momentum class
z (Nz):  #z index of the Zeeman sublevel

#sigma- dipole matrix elements for Zeeman sublevel n

DMelM=DMeValsMinus[ 0,z]
DMe2M=DMeValsMinus| 1,7]
DMe3M=DMeValsMinus[ 2,z]
DMe4M=DMeValsMinus| 3,7]
DMe5M=DMeValsMinus| 4,7]
DMe6M=DMeValsMinus[ 5,7]
#sigma+ dipole matrix elements for Zeeman sublevel n
DMelP=DMeValsPlus| 0,z]
DMe2P=DMeValsPlus| 1,7]
DMe3P=DMeValsPlus| 2,z]
DMe4P=DMeValsPlus| 3,7]
DMe5P=DMeValsPlus| 4,7]
DMe6P=DMeValsPlus| 5,7]
# SINGLE PHOTON RABI FREQUENCIES
#M/P indicates sigma—/+ and 1/2 indicates beam 1/2)
Omega_eM2 = —(sqrt(DMelM** 2+DMe3M**2+DMe5M**2)/hbar)*E(I_2)
Omega_gM1 = —(sqrt(DMe2M** 2+DMe4M**2+DMe6M**2)/hbar)*E(l_1)
Omega_eM1 = —(sgrt(DMelM** 2+DMe3M**2+DMe5M**2)/hbar)*E(I_1)
Omega_gM2 = —(sgrt(DMe2M** 2+DMe4M**2+DMe6M**2)/hbar)*E(l_2)
Omega_eP2 = —(sqrt(DMelP** 2+DMe3P**2+DMe5P** 2)/hbar)*E(l_2)
Omega_gP1 = —(sqrt(DMe2P** 2+DMe4P**2+DMe6P**2)/hbar)*E(I_1)
Omega_eP1 = —(sqrt(DMelP** 2+DMe3P**2+DMe5P** 2)/hbar)*E(l_1)
Omega_gP2 = —(sqrt(DMe2P** 2+DMe4P**2+DMe6P**2)/hbar)*E(l_2)
# RESONANT RAMAN RABI FREQUENCY (Omega_R)
Omega_R = (—( ((DMelM*DMe2M)+(DMe3M*DMe4M))/hbar)*E(l_1))*
(= 1. /nbar)*E(I_2)/( 2*Delta)*cos(THETA)** 2+ (—( ((DMel1P*DMe2P)+(DMe3P*DMe4P))/hbar
YE(_1))*(— 1. /hbar)*E(I_2)/( 2*Delta)*sin(THETA)** 2
# LIGHT SHIFTS
#light shifts due to sigma- components (of both beams)
Omega_e_ACM = Omega_eM2** 2/( 4*Delta) + Omega_eM1** 2/( 4*(Delt
a-omega_eg))
Omega_g_ACM = Omega_gM1** 2/( 4*Delta) + Omega_gM2** 2/( 4*(Delt

a+omega_eg))

#light shifts due to sigma+ components (of both beams)
Omega_e_ACP = Omega_eP2** 2/( 4*Delta) + Omega_eP1** 2/( 4*(Delt
a-omega_eg))
Omega_g_ACP = Omega_gP1** 2/( 4*Delta) + Omega_gP2** 2/( 4*(Delt
a+omega_eg))

#total light shifts of each hyperfine level
Omega_e_AC = Omega_e_ACP*sin(THETA)** 2 + Omega_e_ACM*cos(THE
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TA** 2

Omega_g_AC = Omega_g_ACP*sin(THETA)** 2 + Omega_g_ACM*cos(THE
TA** 2

#Relative light shift \delta®{AC}
delta_ AC = Omega_g_AC - Omega_e_AC

#Raman detuning \delta
delta_12 = deltas[d] — (p_vals[n]*k_eff/m + hbar*k_eff** 2/1( 2
*m)) + (z— 2.0 )*zshift

#generalised Rabi frequency (\tilde{\Omega} R in text)
Omega_r = sqrt(Omega_R** 2 + (delta_12 - delta_ AC)** 2)

#angles from equations 2.31
stheta = Omega_eff/Omega_r
ctheta = —(delta_12 - delta_AC)/Omega_r

# CALCULATING THE STATE AMPLITUDES

#applying equations 2.36 to obtain the state amplitudes at the end of each part of
#the pulse (initial phase is 0.5*pi)

c_el[d,z,n] = exp(-i*(Omega_e_AC + Omega_g_AC)*ind2*tstep* 0.
5)*exp(-i*delta_12*ind2*tstep* 0.5 )*( 0*(cos(Omega_r*ind2*tstep* 0.5 ) - i*ctheta*sin(Om
)ega_r*indz*tstep* 05)+ 1 *exp(-i*( 0.5 *pi))*(-i*stheta*sin(Omega_r*ind2*tstep* 0.5))

c_gl[d,z,n] = exp(-i*(Omega_e_AC + Omega_g_AC)*ind2*tstep* 0.
5)*exp(i*delta_12*ind2*tstep* 0.5 )*( 1. *(cos(Omega_r*ind2*tstep* 0.5 ) + i*ctheta*sin(Om
ega_r*ind2*tstep* 0.5))+ O*exp(i* 0.5 *pi)*(—i*stheta*sin(Omega_r*ind2*tstep* 0.5)))

#notice the addition of pi to the phase here during the second part of the corpse

c_e2[d,z,n] = exp(-i*(Omega_e_AC + Omega_g_AC)*(ind3-ind2)*t

step* 0.5 )*exp(-i*delta_12*(ind3-ind2)*tstep* 0.5 )*(c_el[d,z,n]*(cos(Omega_r*(ind3-ind
2)*tstep* 0.5 ) — i*ctheta*sin(Omega_r*(ind3-ind2)*tstep* 0.5)) + c_gl[d,z,n]*exp(-i*( 1
.5 *pi+delta_12*ind2*tstep))*(-i*stheta*sin(Omega_r*(ind3—-ind2)*tstep* 0.5))

c_g2[d,z,n] = exp(-i*(Omega_e_AC + Omega_g_AC)*(ind3-ind2)*t
step* 0.5 )*exp(l*delta 12*(ind3-ind2)*tstep* 0.5 )*(c_g1]d,z,n]*(cos(Omega_r*(ind3-ind2
)*tstep* 0.5 ) + i*ctheta*sin(Omega_r*(ind3-ind2)*tstep* 0.5)) + c_el[d,z,n]*exp(i*( 1.5
*pi+delta_12*ind2*tstep))*(-i*stheta*sin(Omega_r*(ind3-ind2)*tstep* 0.5)))

#and back to 0.5*pi
c_e3[d,z,n] = exp(-i*(Omega_e_AC + Omega_g_AC)*(ind4-ind3)*t

step* 0.5 )*exp(-i*delta_12*(ind4-ind3)*tstep* 0.5 )*(c_e2[d,z,n]*(cos(Omega_r*(ind4-ind
3)*tstep* 0.5 ) — i*ctheta*sin(Omega_r*(ind4-ind3)*tstep* 0.5)) + c_g2[d,z,n]*exp(=i*( 0
.5 *pi+delta_12*ind3*tstep))*(-i*stheta*sin(Omega_r*(ind4-ind3)*tstep* 0.5)))

c_g3[d,z,n] = exp(-i*(Omega_e_AC + Omega_g_AC)*(ind4-ind3)*t
step* 0.5 )*exp(l*delta 12*(ind4-ind3)*tstep* 0.5 )*(c_g2[d,z,n]*(cos(Omega_r*(ind4-ind3
)*tstep* 0.5 ) + i*ctheta*sin(Omega_r*(ind4-ind3)*tstep* 0.5)) + c_e2[d,z,n]*exp(i*( 0.5
*pi+delta_12*ind3*tstep))*(-i*stheta*sin(Omega_r*(ind4-ind3)*tstep* 0.5)))

#calculate the populations

pop_el[d,z,n] = (c_e3[d,z,n])** 2*p_dist[n]
pop_g[d,z,n] = (c_g3[d,z,n])** 2*p_dist[n]
# AVERAGING AND NORMALISATION
#average and normalise across the momentum values
z (N2):
(ndeltas):
4z2.D) state_e[d,z]= (pop_e[d,z,:)/( (pop_e[d,z,:])+ (pop_g[
2y
state_g[d,z]= (pop_g[d.z,:])/( (pop_e[d,z,:])+ (pop_g[
d,z,:])
#average and normalise across the Zeeman sublevels
d (ndeltas):
tot_e[d] = (state_e[d,:]/( (state_e[d,:])+ (state_g[d,:]))

#we can then plot tot_e*S on the y axis and delta on the x.






Appendix C

An introduction to atom

interferometry

As proposed by de Broglie in 1924 and confirmed soon after by Thomson, particles of

matter exhibit wave-like behaviour, with a characteristic de Broglie wavelength
h
Adb = —, (C.1)
p

where p is the particle’s momentum. We can utilise this ‘wave-particle duality’ to build
a matter-wave interferometer, in which a particle’s centre-of-mass wavepacket is physi-
cally split and recombined, analogous to splitting and recombining a laser beam in an
optical interferometer. Upon recombination, the wavepackets interfere to give an in-
terference pattern which is dependent upon the phase-difference accrued between the
interferometer paths. Unlike light-waves in an optical interferometer, matter-waves in-
teract strongly with external (electric, magnetic, gravitational etc.) potentials. These
interactions are manifested in phase-shifts of the de Broglie waves, which are mapped
onto the interference pattern at the output of the interferometer. Matter-wave interfer-
ometry therefore enables precise measurements of such physical potentials, along with

measurements of fundamental properties of the matter itself.

The main obstacle to overcome towards useful matter-wave interferometry is the design

of suitable optics for splitting (beamsplitters), redirecting (mirrors), and recombining
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(again, beamsplitters) the matter-wave, since the structure of such optics must be of sim-
ilar order to the de Broglie wavelength. Early matter-wave interferometry experiments
utilised magnet-guided electron beams ([106], 1954), where beamsplitting and recombin-
ing was achieved by diffraction from thin crystals (for an electron at 1eV, \qg = 1.2nm).
Some years later, the neutron interferometer was demonstrated ([107], 1962), in which
a neutron beam (for a typical ‘cold’ neutron at 0.02eV, A\gg = 200 pm) was split by
single-slit diffraction and recombined with a biprism, and in 1974 a more robust kind of
neutron interferometer was developed by Rauch [108], in which the optics were formed
by diffraction from silicon crystals whose lattice structure was matched to the neutron
de Broglie wavelength. This allowed for larger wavepacket separations within the in-
terferometer (around 2cm, as compared with 100 pgm in [107]), and therefore greater

phase-sensitivity to external potentials.

Atom interferometry was largely held back by the capabilities of technology until the
early 1990s. An atomic beam of sodium, for example, with a speed of 1000ms~—' has
a de Broglie wavelength Agg = 17 pm, which is far smaller than those of previous elec-
tron and neutron experiments, and since atoms do not penetrate crystal structure in
the same way as electrons and neutrons, an alternative kind of grating was required.
To this end, phase-coherent nanofabricated thin grid-like structures with periodicity
100 — 200 nm were developed in the early 90s, and put to use in three-grating atom (and
molecule) interferometer geometries [109, 110]. Use of similar grating structures contin-
ues in more recent experiments, such as large molecule interferometry [111]. Material
grating atom optics have their drawbacks, however. For phase coherence they require
precision nanofabrication and subsequent delicate handling. Also, by their nature they
only transmit a fraction of the impinging particles (many simply hit the ‘bars’ of the
structure), thus putting constraints on signal-to-noise. Most modern precision atom
interferometers bypass these problems, and instead utilise light waves for their atom

optical elements, as discussed in the following.

Unlike electrons and neutrons, atoms offer a rich internal structure, which can be ex-
ploited for the purposes of interferometry. We can induce coherent transitions between
internal states of an atom (see section 2.1) by absorption and emission of photons, and
since photons carry momentum, such transitions cause coupling of the internal (elec-

tronic) and external (momentum) states. With this we can build an atom interferometer
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with light-wave-based atom optics. Laser-based beamsplitters and mirrors can take the

form of, for example:

1. Single-photon transitions: A continuous-wave near-resonant laser beam induces
transitions between some ground internal state and an excited state, with some prob-
ability p based on the interaction time, intensity and frequency, by absorption or
emission of a photon. See, for example [112]. In this case, a momentum hk is trans-

ferred to the atom;

2. Bragg diffraction: A standing-wave, off-resonant laser beam induces Bragg diffrac-
tion, whereby the atom remains in the ground state but is diffracted into one of
several momentum states separated by 2hk, where k is the wavevector of the laser

beam. For example [113], and more recently [114];

3. Raman transitions: Two counter-propagating laser beams, separated by some
(typically microwave) frequency interval, induce Raman transitions between two in-
ternal hyperfine states and impart fi(ky; — ka) to the atom. See, as a milestone

example [12].

One particular advantage of the Raman technique over Bragg diffraction, whereby atoms
can be lost to multiple diffraction orders, is that in principle, beamsplitters which in-
duce coherent equal superpositions between only two states, and mirrors which induce
complete inversion, are achievable, i.e. all of the atoms in an atomic beam can con-
tribute to the interferometer signal. Raman transitions are preferred over single-photon
transitions firstly because single-photon optical excitation often involves an unstable,
radiative upper state (although species such as Strontium [115] is a promising candidate
for alleviating this problem), and secondly because the Raman transition offers twice

the momentum transfer.

Since the invention and development of laser cooling and trapping (section ?7?) it has
been possible to perform atom interferometry on a sub-millikelvin (and in some cases sub-
microkelvin) sample of atoms confined to a small region of space. In this regime, atom
interferometry is performed in the temporal domain on a cold, ballistically expanding
cloud of atoms. In this case the beamsplitters and mirrors are timed pulses of light, as
opposed to the always-on arrays of laser beams through which an atomic beam passes in

the spatial domain. Experiments such as that in [12] use timed, vertically-aligned Raman
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pulses in an atomic fountain configuration, where the atoms are projected upwards and
allowed to fall under gravity. This arrangement allows for increased interferometer area,
and therefore increased phase-sensitivity to the gravitational potential, since the time

between pulses can be large.



Appendix D

Publications, talks and posters

D.1 Publications

At the time of submission of this thesis, I have not (as a lead-author) published its

findings. Publications are, however, in the pipeline:

e [ have a paper which presents the composite pulse results of chapter 6, namely

[116] in the final stages of preparation.

e Further experiments on interferometric cooling will be performed immediately after

submission of this thesis, towards a publication on the results.

e The results given in section 5.1.2 regarding the light shifts of the individual Zeeman
sublevels in the Raman system may also constitute a publication, since such a

characterisation is absent in the literature.

I have co-authored two publications (both of which were lead-authored by Nathan

Cooper) regarding the experimental techniques for Raman beam generation:

e In [63] we describe polarisation-filtering methods for removing the carrier from a

phase-modulated spectrum (see section 4.4).

e In [66] we describe the stabilised Mach-Zehnder arrangement for filtering the car-
rier from a phase-modulated spectrum (see section 4.5, where we employ this setup

for sideband removal).
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188 Publications, talks and posters

D.2 Talks

Just one on this list:

e “Broadband atom interferometry with composite pulses: Towards interferometric
cooling ”— 19th August 2013, AMO seminar, UCLA Physics and Astronomy, Los
Angeles, CA

D.3 posters

I have presented posters regarding this work at the following conferences and schools:

e International Conference on Quantum, Atomic, Molecular and Plasma Physics

(QuAMP), September 2013, Swansea University, Swansea, UK (See opposite).

e International School of Physics ‘Enrico Fermi’, Summer Course on Atom Interfer-

ometry, July 2013, Varenna, Italy.

e International Conference on Laser Spectroscopy (ICOLS), June 2013, University
of California, Berkeley, Berkeley, CA.

e International Conference on Quantum Optics, Feb 2012, Obergurgl, Austria.

e [’Ecole de Physique, des Houches, Summer course on Cold gases with Long Range

Interactions, September 2011, Les Houches, France.

e Young Atom Opticians Conference (YAO), February 2011, Hannover, Germany.
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Cooling of atomic motion with broadband

composite light-pulse atom interferometry

Alex Dunning, Rachel Gregors

Introduction

We are investigating the use of light-pulse interferometry techniques for
cooling atomic motion. Interferometer sequences where the output phase
is dependent on the initial atomic velocity can be tailored to give cooling
forces, and have potential for use in molecular cooling.

As a test bed, we work on a Doppler-broadened, Zeeman-degenerate
sample of Rubidium-85 atoms after release from a MOT, where stimulated
Raman pulses form the interferometer beamsplitters and mirrors. These
pulses are subject to large amounts of dephasing, which we counteract by
adapting NMR-type spin echo and composite pulse techniques.

Composite Raman Pulses

Stimulated Raman pulses in 107 Zeeman-degenerate Rubidium-85 atoms
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Spin Echoes

off-resonance errors

We counteract dephasing in Rabi flopping by applying rotary spin echoes [1]

« Reverse the state vector rotation axis by shifting
the Raman beam phase by 7 every Rabi cycle
« This reconverges divergent spin vectors to give a
spin echo every cycle

n phase flip

One Rabi cycle (error) Next cycle (reversed)
4 8

« Greatly increased dephasing time in Rabi
flopping
[Fig 2. Measured |e) state population as a function of
interaction time ¢ with the Raman beams. (a) Rabi flopping -
notice the rapid dephasing; (b) Rabi flopping with rotary spin
echo rephasing Blue circles: data; red line: simulation.]

‘We adapt NMR-style composite rotation techniques to improve pulse fidelity [2,3]

« Basic square pulses are rotation from |g) to |e)
replaced with multiple

tailored , @ rotations

* TPV - -
« Example: 'CORPSE'

*60,320,3,420, CORPSE 1

« Replacing beamsplitter and mirror pulses in
interferometers [5] with composite pulses can
improve contrast [4]. Many composite pulses exist
[2, 3, 6, 7]; choice is determined by need to balance
error tolerance with length of correction sequence

[

0
8/
[Fig 3. |¢) state populations as a function of laser

g 0 g detuning for four different composite x pulses: basic
velocity distribution 7/ vrecql pulse (filled circles) and composite pulse (open circles).
An improvementin peak fidelity and width is
clear in all cases. Red lines: simulation.
(a) CORPSE 60,320,5,420,; (b) Knill
1801,1804418051180,,,1804455 (¢) BB
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[Fig 4. Predicted peak pulse fidelity achievable using a
WALTZ 904180,5,270, K1l 180,180 201805,18040180:c5
and basic 7 180,. Solid lines: atoms all in m ashed:

atoms evenly distributed across mF=-2,...,+2] ]
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Experimental Setup

Our Raman beams are derived from a single diode
laser, where the 3.036 GHz splitting is provided by
acousto- and electro-optical modulators. The beams
are amplified and shaped to give a high intensity,
homogeneous profile.
[Fig 5. Experimental setup

for generation of Raman

pulses]
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[Fig 6. Left: lasers and
level coupling, right:
experiment geometry]
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« Raman pulses are applied to ~107 atoms
after release from MOT at 20pK.
« Magnetic fields are nulled with 3
orthogonal sets of shims.
« Atoms are pumped into F=2 before
Raman pulses (no mg spin-polarisation)

Beam shapir

« Raman beams focussed to
~1mm top hat [15] by refractive
beam shaper (right).

« Rabi frequency
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Interferometri

Cooling

Ramsey interferometry to manipulate & cool an atomic velocity distribution

[Figs 8. Left: Ramsey interferometer
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The output state is dependent
on the initial atomic velocity.
This is a v-dependent force,

which can be engineered to
give a damping force

Output state: |c,|? « |1-€™®|?

output phase:® = 8T + (K oV + 0 peco) T + @r.

First demonstration

‘We have demonstrated atomic cooling with the Ramsey interferometer sequence

« We follow the Ramsey interferometer with a 'depump’
pulse to force spontaneous emission. This resets' atoms to
|g) and allows for a reduction in phase-space density

« The Ramsey - depump sequence is repeated N times
[Fig 9. Demonstration of
interferometric cooling. Red -
Initial velocity distribution of the
atom cloud; Blue - Velocity
distribution of the atom cloud
after 4 applications of the
T=500ns Ramsey i

« With N=4 we observe a
factor of 2 reduction in
the central temperature
of the atom cloud. The mean
velocity is shifted up

T = 25K
T = 13uK

« Alternating the sequence
direction will give cooling

followed by re-thermalisation by
spontaneous emission]

= 0 10
atomic velocity v/vpecoil

Incorporating a spin echo into the Ramsey sequence makes @ purely dependent on v

« Adding two timed n pulses makes the atom spend equal
times in g and e, causing a spin echo

« Output phase is only dependent on the velocity

output phase: @ = (KeV + @peeop) 8T + @

« This has applications in trans] 1 cooling of
[10] if broad (fs) interferometer pulses can be achieved

[Fig 10. Ramsey interferometer
augmented with two x pulses,
which remove the output state
dependence o the laser detuning
5, allowing for a purely velocity-
dependent force]

« This can be combined with

coherent force amplification

schemes [11,16] to reduce the
dependence on spontaneous

emission events
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