VAC - Verifier of Administrative Role-based
Access Control Policies

Anna Lisa Ferrara', P. Madhusudan?, Truc L. Nguyen?®, and Gennaro Parlato®

L University of Bristol, UK
2 University of Illinois, USA
3 University of Southampton, UK

Abstract. In this paper we present VAC, an automatic tool for ver-
ifying security properties of administrative Role-based Access Control
(RBAC). RBAC has become an increasingly popular access control model,
particularly suitable for large organizations, and it is implemented in sev-
eral software. Automatic security analysis of administrative RBAC sys-
tems is recognized as an important problem, as an analysis tool can help
designers check whether their policies meet expected security properties.
VAC converts administrative RBAC policies to imperative programs that
simulate the policies both precisely and abstractly and supports several
automatic verification back-ends to analyze the resulting programs. In
this paper, we describe the architecture of VAC and overview the analysis
techniques that have been implemented in the tool. We also report on
experiments with several benchmarks from the literature.

1 Introduction

Access control models allow to restrict access to shared resources by selectively
assigning permissions to users. Role-based Access Control (RBAC) has become
an increasingly popular access control model [5], it is standardized by NIST and
is implemented in several software, such as Microsoft SQL Servers, Microsoft
Active Directory, SELinux, and Oracle DBMS. RBAC reduces the complex-
ity of user permissions administration by grouping users into roles and assign-
ing permissions to each role. An Administrative RBAC User-Role Assignment
(ARBAC-URA) policy defines a set of administrative roles and rules which
specify how administrators can assign or can revoke roles to users [27].

Automatic security analysis of ARBAC systems is recognized as an impor-
tant problem, as an analysis tool can help designers check whether their policies
meet the expected security properties [25]. This is particularly desirable when-
ever policies need to be correct by design, for instance when accesses are not
mediated by a monitor [6]. Most interesting security properties, such as privi-
lege escalation and separation of duties, can be phrased as the role-reachability
problem (i.e., is there a reachable configuration where some user can eventually
be assigned to a target role?) [19, 7]. The role-reachability problem is known to
be PSPACE-complete and hard to solve on real-world policies having hundreds
of roles and rules and thousands of users [28].

|
: Abstract :Integer Pgm G NO
i | Transformer WYES*
"y
)
Input File 1 M RO > Unknown
| ! CBMC | ves (Counter E T
! | Example rror Trace
Pruning : l e m e
!]
(8] : | ! .Z3 I NO
| ! T
: | Horn Pgm | !
! Precise ‘ ! HSF :YE
i | Transformer | | ! ; EEE—
| - (i)
! ‘ ! | Getafix |
: iBoolean ng: :YES E[‘[‘O[‘
! | : LNO
! \ ' | Moped i
! i L |
: 'NuSMV Pgm YES
l 4‘{1 : NuSMV] vo Error
o
1 : |
: Policy-to-Program 3 No Error

| Translation

Fig. 1. VAC’s Architecture.

In this paper, we present VAC (Verifier of Access Control), an automatic and
scalable tool for solving the role-reachability problem of ARBAC-URA policies.
The main components of VAC are a pruning module that aims at simplifying the
state space by reducing a policy to a smaller one that preserves the reachability
of the target role, and a policy-to-program translation module that converts a
policy to an imperative program that simulates the policy both precisely and
abstractly. VAC supports a plethora of automatic verification back-ends for the
analysis of the resulting programs and has a built-in counterexample generator.

In the rest of the paper, we describe the architecture of VAC and overview
the analysis techniques implemented in the tool. Finally, we present experimen-
tal results showing the effectiveness of VAC on analyzing realistic and complex
benchmarks from the literature.

2 Software Architecture and Verification Approaches

The high-level architecture of VAC is shown in Fig. 1. We first describe the input
format of VAC and then its components. Input Format. We refer to [8] for the
syntax and the semantics of an ARBAC-URA system. To illustrate the input
format of VAC? we use the toy example of an hospital policy shown in Fig. 2.

4 Vac’s input format is compatible with that of Mohawk [16].

RoLEs EMPLOYEE DOCTOR MANAGER
PATIENT;

USeERS ANNA LUKE STEVE Lucy;

UA (ANNA, Doctor) (Lucy, MAN-
AGER) (LUKE, DOCTOR) (STEVE, Pa-
TIENT);

CR (DOCTOR,
MANAGERY);
CA (DocTOR, EMPLOYEE & -DOCTOR,
MANAGER) (DOCTOR, TRUE, PATIENT);
ADMIN ANNA LUKE;

PATIENT) (DOCTOR,

RoLES and USERS are keywords used
to list roles and users, respectively. UA
defines the initial user-role assignment,
whereas CR and CA specify the ad-
ministrative rules Can-Revoke and Can-
Assign, respectively. A CR rule is a
pair of roles. For instance, the CR rule
{ DOCTOR, PATIENT) says that any
administrator with role DOCTOR can
revoke the role PATIENT from any user.

A CA rule also contains a precondi-
tion, that is, a Boolean formula writ-
ten as a conjunction of literals over
roles. For instance, the CA rule (Doc-
TOR, EMPLOYEE & -DOCTOR, MANAGER) says that any administrator with
role DOCTOR can assign any user u to the role MANAGER provided that u is
member of EMPLOYEE and not a member of DOCTOR. The keyword ADMIN is
used to list all users that are also administrators®. Finally, the keyword SPEC
is used to specify the role-reachability query, namely the target role. VAC can
also be used to check whether the target role is reachable by a specific user. For
instance, the query SPEC Lucy DocCTOR allows to check whether Lucy can
ever obtain role DOCTOR.

SPEC DOCTOR;

Fig.2. A VAC’s input file.

Pruning Module. This module takes as input a policy, which we refer as the
original policy, and outputs a simplified one (in the same format as the input)
that preserves the reachability of the target role. The module implements the
pruning heuristic from [8] which is crucial for scalability. It eliminates roles, rules
and users with the aim of reducing the state space to explore. This heuristic re-
lies upon a fundamental theorem which states that the role-reachability problem
can be solved by tracking only k+1 users, where k is the number of adminis-
trative roles [8]. Thus, the heuristic exploits sufficient conditions to eliminate
administrative roles that are not relevant for the analysis. The effectiveness of
the above method is amplified by a static pruning algorithm consisting of six
pruning actions: the first three aim at discarding roles that are irrelevant to the
reachability of the target role while the remaining ones identify administrative
rules that can be combined or eliminated. Furthermore, whenever the target role
is reachable within two steps in the intermediate policy, the pruning procedure
terminates immediately returning the counterexample.

Policy-to-Program Translation. This module takes as input a policy and
translates it into a program that simulates the evolution of the system. VAC
provides the following two policy-to-program translations:

Abstract Transformer. This module implements the policy-to-program transla-
tion proposed in [7]. A policy P is translated into an imperative non-deterministic
while-program P’ with an error location. P’ uses only integer variables to capture
the number of users in a subset of role combinations and abstractly simulates the
evolution of the system in such a way that if the error location is not reachable

5 The list of administrators can be obtained from CA and CR rules. However, we
include the keyword ADMIN to be consistent with Mohawk’s input format [16].

then the role reachability problem has a negative answer on P. On the contrary,
if the error location is reachable in P’, this may correspond to a false positive
as P’ over-approximates the behaviour of P. P’ is then analyzed by VAC using
Interproc [18] with the box abstract domain.

Precise Transformer. This module translates a policy P into a Boolean program
P’ that precisely simulates the evolution of the system tracking at most k+1
users picked non-deterministically, where k is the number of administrative roles.
The correctness of this approach relies on a fundamental theorem proven in [8].
The program uses k+1 blocks of n Boolean variables, where n is the number
of roles in the policy. Each block tracks the role-membership of a selected user.
The rest of the program consists of an infinite loop in which the administrative
rules are non-deterministically simulated on a non-deterministically chosen user.
The loop contains also an error location that is reachable whenever a tracked
user reaches the target role. The role-reachability problem admits a positive
answer on P if and only if the error location is reachable in P’. The reach-
ability problem for Boolean programs is decidable and VAC supports several
automated tools as back-ends for the analysis of P’. In particular, a complete
analysis can be performed by using either (1) one of the following tools for Horn
clauses: Z3 (uZ) [4, 13], HSF [11, 12], and Eldarica [15, 14], or (2) Moped [20, 29]
and Getafix [23, 24] which are model checkers for Boolean Programs based on
BDDs, or (3) NuSMV a model checker based on BDDs and SAT solvers [2, 3].
VAc uses the C bounded model checker CBMC [21, 22] for under-approximate
analysis, particularly effective to find errors. If CBMC finds an error, it returns a
counterexample showing how the error location can be reached in the program.
Otherwise, VAC reports Unknown.

Counterexample Module. VAC implements an involved built-in counterex-
ample generation module that takes as input the counterexample of the pruned
policy returned by CBMC along with some information collected during the ex-
ecution of the pruning, and outputs a counterexample (attack) of the original
policy.

3 Implementation and Availability

Implementation. VAC is implemented in C and has dependencies with ANTLR
(v3.2 for C), ROXML, and CCL libraries®.

Availability. The source code, a set of benchmarks and static Linux binaries
are available at: http://users.ecs.soton.ac.uk/gp4/VAC.

Usage. The shell command ./vac.sh <InputFile> runs VAC with the default
setting: (1) runs the abstract transformer and Interproc to prove correctness;
(2) if a proof cannot be provided, VAC runs the precise transformer and CBMC
(with unwind set to 2) to find a counterexample; (3) if CBMC does not find an
error, VAC runs pZ for complete analysis. VAC has options to print the translated
programs and the simplified policies, and select the back-end for the analysis.

6 ANTLR, ROXML and CCL are respectively available at http://www.antlr.org/,
http://www.libroxml.net, and https://code.google.com/p/ccl/.

ARBAC Policy I Pruning I Reach |
[name [#roles[#rules[#admin[#users|[#roles[#rules[#admin[#users[Time[[Answer[Time|

Hospitall 13 37 5| 1092 4 5 3 6/0.009s No [0.029s
Hospital2 13 37 5| 1092 4 5 3 6/0.009s No [0.023s
Hospital3 13 37 5 1092 3 2 1 4]0.009s|| Yes [0.103s
Hospital4 13 37 5| 1092 4 4 1 4]0.009s|| Yes [0.110s
University1l 32 449 9 943 6 7 3 13]0.009s No [0.034s
University2 32 449 9 943 6 8 3 13|0.004s|| Yes |0.192s
University3 32 449 9 943 4 5 1 6/0.006s No [0.021s
University4 32 449 9 943 12 37 4 31|0.004s|| Yes |1.571s
Bankl 343| 2225 1 2 3 2 1 2(0.007s|| Yes [0.112s

3 Bank2 683| 4445 1 2 3 2 1 2(0.019s|| Yes |0.139s
Bank3 1023| 6665 1 2 3 2 1 2|0.024s|| Yes |0.167s
Bank4 1363| 8885 1 2 3 2 1 2|0.030s|| Yes |0.168s
Bank5 343| 2225 1 2 3 2 1 2(0.044s|| Yes |0.138s
Bank6 683| 4445 1 2 3 2 1 2(0.155s|| Yes |0.247s
Bank7 1023| 6665 1 2 3 2 1 2|0.300s|| Yes |0.435s
Bank8 1363| 8885 1 2 3 2 1 2|0.522s|| Yes |0.663s
Bank9 531| 5126 1| 2000 2 0 1 2(0.244s No |0.253s
Bank10 531| 5126 1| 2000 2 0 1 2(0.248s No |0.254s
Bankl11 531| 5126 1| 2000 3 2 1 2(0.245s|| Yes |0.396s
Bank12 531| 5126 1| 2000 6 5 1 2|0.066s|| Yes |0.223s

Table 1. VAC’s results on realistic case studies.
4 Experimental Results

We evaluate VAC, using the default setting, on several benchmarks from the
literature. All experiments have been performed on a Linux 64-bit machine with
Intel Core i7-3770 CPU and 16GB of RAM.

Table 1 shows the results on three sets of benchmarks based on realistic
case studies. The first two case studies are carried out by Stoller at al. [30] and
represent policies for a university and for an hospital, respectively. The third
case study, conducted by Jayaraman et al. [16], models a bank with several
branches”. While the first eight bank policies are from [16], we have built the last
four from [16] by slightly modifying their policies to add more users and to make
two of them correct. Table 1 reports the number of roles, rules, administrative
roles and users of both the original policy and that after pruning. It also reports
the tool’s answer, the time taken by the pruning, and the overall analysis time.

Table 1 shows that the pruning module significantly reduces the size of these
policies. Furthermore, VAC is extremely efficient in verifying these policies, re-
gardless of whether the target role is reachable or not. More precisely, all bench-
marks with a negative answer can be proved correct in less than a second. Sim-
ilarly, on benchmarks with a reachable target the analysis takes less than 2
seconds including the time to generate the counterexample.

Table 2 shows the results on three sets of complex test suites, synthetically
generated by Jayaraman et al. [16], with the aim of capturing the complexity of
real systems. Each suite consists of ten policies where the number of roles and
rules ranges respectively from 4 to 40k and 10 to 200k. The role-reachability
problem has a positive answer on all these benchmarks. VAC is very effective on
these policies as well. The analysis takes less than 2 seconds on all policies and

7 The number of roles and rules depends on the number of branches considered. For
instance, 343 roles corresponds to 10 branches and 1363 to 40 branches.

VAac

Size Policy First Suite Second Suite Third Suite

#roles| #rules Pruning Verification Pruning Verification Pruning Verification
F£roles|#rules Time F£roles|#rules Time #£roles|#rules Time

4 10 3 1 0.080s 3 1 0.084s 2 1 0.085s
5 25 4 2 0.087s 4 2 0.096s 2 1 0.092s
20 100 3 1 0.099s 3 1 0.089s 3 2 0.087s
40 200 4 2 0.099s 4 2 0.096s 2 1 0.091s
200 1000 2 1 0.101s 2 1 0.088s 2 1 0.096s
500/ 2500 3 1 0.100s 3 1 0.104s 3 2 0.128s
4000(20000 2 1 0.239s 2 1 0.198s 4 3 0.252s
20000| 80000 2 1 0.844s 2 1 0.579s 3 2 0.922s
30000(120000 2 1 1.288s 2 1 0.849s 2 1 1.285s
40000{200000 2 1 1.586s 2 1 1.100s 4 3 1.646s

Table 2. VAC’ s results on complex test suites.

the pruning module reduces the policies to equivalent systems with a handful of
roles and rules.

5 Conclusions

We have presented VAC an automatic and efficient tool for verifying security
properties of administrative role-based access control policies. The main com-
ponents of VAC are a pruning module which is essential for scalability, and a
policy-to-program translation module that reduces the role-reachability prob-
lem to program verification problems. It supports several tools for the analysis,
such as CBMC, Eldarica, Getafix, Interproc, Moped, NuSMV, HSF, and Z3
(1Z). Furthermore, it can provide counterexamples.

Related work. Among the state-of-the-art tools for the analysis of ARBAC-
URA systems, VAC is the only tool that simultaneously has the following fea-
tures: (1) complete analysis (2) counterexample generation, and (3) scalable
analysis on large policies. Mohawk [16] performs only under-approximate analy-
sis, though it now considers thresholds for completeness [17]; RBAC-PAT [10] is
unable to handle large policies. They also can only analyze policies with separate
admanistration where administrators cannot change their role-membership; this
is not realistic, but simplifies analysis as only a single user needs to be tracked.

ASASPXL is the latest tool developed by Ranise et al. for the analysis of
ARBAC policies [26]. A previous version (ASASP [1]) was not able to scale on
large policies. ASASPXL is mainly designed to handle large policies and does so
by encoding the instances to MCMT [9] which is a model checker for infinite state
systems based on SMT solvers and backward reachability. In contrast, VAC does
not target any specific kind of instances, and handles large policies by carrying
out an effective pruning that is independent of the verification technique used
for the analysis. VAC and ASASPXL can potentially handle the same kind of
instances though they have different input formats.

All tools above do not generate counterexamples. Furthermore, VAC, on the
policies of Section 4, has either the same performances or outperforms the tools
mentioned above. VAC has also been used for the analysis of temporal RBAC [31].
Acknowledgements: Research was partially supported by ERC Advanced Grant
ERC-2010-AdG-267188-CRIPTO and NSF CCF #1018182.

References

1]
2]
8]
[4]
[5]
[6]
[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

F. Alberti, A. Armando, and S. Ranise. ASASP: Automated Symbolic Analysis
of Security Policies. In N. Bjgrner and V. Sofronie-Stokkermans, editors, CADE,
volume 6803 of Lecture Notes in Computer Science, pages 26-33. Springer, 2011.
A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV: A New Symbolic Model Checker.
http://nusmv.fbk.eu.

A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. In E. Brinksma and K. G. Larsen, editors, CAV, volume 2404
of Lecture Notes in Computer Science, pages 359-364. Springer, 2002.

L. de Moura, J. Berdine, and N. Bjorner. Z3 High-performance Theorem Prover.
http://z3.codeplex.com.

D. Ferraiolo and R. Kuhn. Role-Based Access Control. In 15th NIST-NCSC
National Computer Security Conference, pages 554-563. Springer, 1992.

A. L. Ferrara, G. Fuchsbauer, and B. Warinschi. Cryptographically Enforced
RBAC. In CSF, pages 115-129. IEEE, 2013.

A. L. Ferrara, P. Madhusudan, and G. Parlato. Security Analysis of Role-Based
Access Control through Program Verification. In CSF, pages 113-125, 2012.

A. L. Ferrara, P. Madhusudan, and G. Parlato. Policy Analysis for Self-
administrated Role-Based Access Control. In TACAS, pages 432-447, 2013.

S. Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories. In J. Giesl
and R. Héhnle, editors, IJCAR, volume 6173 of Lecture Notes in Computer Sci-
ence, pages 22-29. Springer, 2010.

M. I. Gofman, R. Luo, A. C. Solomon, Y. Zhang, P. Yang, and S. D. Stoller.
RBAC-PAT: A Policy Analysis Tool for Role Based Access Control. In TACAS,
pages 4649, 2009.

S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Ry-
balchenko. HSF(C): A Software Verifier based on Horn Clauses.
http://www7.in.tum.de/tools/hsf.

S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Rybalchenko.
HSF(C): A Software Verifier Based on Horn Clauses - (Competition Contribu-
tion). In C. Flanagan and B. Konig, editors, TACAS, volume 7214 of Lecture
Notes in Computer Science, pages 549-551. Springer, 2012.

K. Hoder, N. Bjgrner, and L. M. de Moura. pZ - An Efficient Engine for Fixed
Points with Constraints. In G. Gopalakrishnan and S. Qadeer, editors, CAV,
volume 6806 of Lecture Notes in Computer Science, pages 457-462. Springer,
2011.

H. Hojjat, F. Konecny, F. Garnier, R. losif, V. Kuncak, and P. Rimmer. A
Verification Toolkit for Numerical Transition Systems - Tool Paper. In D. Gian-
nakopoulou and D. Méry, editors, FM, volume 7436 of Lecture Notes in Computer
Science, pages 247-251. Springer, 2012.

H. Hojjat, P. Riimmer, and F. Konecny. A Predicate Abstraction Engine.
http://lara.epfl.ch/w/eldarica.

K. Jayaraman, V. Ganesh, M. V. Tripunitara, M. C. Rinard, and S. J. Chapin.
Automatic Error Finding in Access-Control Policies. In CCS, pages 163-174,
2011.

K. Jayaraman, M. V. Tripunitara, V. Ganesh, M. C. Rinard, and S. J. Chapin. Mo-
hawk: Abstraction-Refinement and Bound-Estimation for Verifying Access Con-
trol Policies. ACM Trans. Inf. Syst. Secur., 15(4):18, 2013.

[18]

[19]

[20]
[21]

[22]

[23]

24]

[25]

[26]

27]

28]

29]

[30]

[31]

B. Jeannet, G. Lalire, and M. Argoud. The Interproc Analyzer. http://pop-
art.inrialpes.fr/interproc/interprocweb.cgi.

S. Jha, N. Li, M. Tripunitara, Q. Wang, and W. Winsborough. Towards For-
mal Verification of Role-Based Access Control Policies. IEEE Transactions on
Dependable and Secure Computing, 5(4):242-255, 2008.

S. Kiefer, S. Schwoon, and D. Suwimonteerabuth. A Model Checker for Pushdown
Systems. http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped.

D. Kroening and E. Clarke. CBMC - Bounded Model Checking for ANSI-C.
http://www.cprover.org/cbmc.

D. Kroening and M. Tautschnig. CBMC - C Bounded Model Checker - (Compe-
tition Contribution). In E. Abrahém and K. Havelund, editors, TACAS, volume
8413 of Lecture Notes in Computer Science, pages 389-391. Springer, 2014.

S. La Torre, P. Madhusudan, and G. Parlato. Getafix: A Symbolic Model-checker
for Recursive Programs. http://www.cs.uiuc.edu/~madhu/getafix.

S. La Torre, P. Madhusudan, and G. Parlato. Analyzing Recursive Programs
using a Fixed-point Calculus. In M. Hind and A. Diwan, editors, PLDI, pages
211-222. ACM, 2009.

N. Li and M. V. Tripunitara. Security Analysis in Role-Based Access Control.
ACM Trans. Inf. Syst. Secur., 9(4):391-420, Nov. 2006.

S. Ranise, A. Truong, and A. Armando. Boosting Model Checking to Anal-
yse Large ARBAC Policies. In A. Jgsang, P. Samarati, and M. Petrocchi, ed-
itors, STM, volume 7783 of Lecture Notes in Computer Science, pages 273—288.
Springer, 2012.

R. S. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 Model for Role-
Based Administration of Roles. ACM Trans. Inf. Syst. Secur., 2(1):105-135, 1999.
A. Sasturkar, P. Yang, S. D. Stoller, and C. Ramakrishnan. Policy analysis
for Administrative Role-Based Access Control. Theoretical Computer Science,
412(44):6208 — 6234, 2011.

S. Schwoon. Model-Checking Pushdown Systems. Ph.D. Thesis, Technische Uni-
versitdt Miinchen, June 2002.

S. D. Stoller, P. Yang, C. R. Ramakrishnan, and M. I. Gofman. Efficient Policy
Analysis for Administrative Role Based Access Control. In CCS, pages 445-455,
2007.

E. Uzun, V. Atluri, S. Sural, J. Vaidya, G. Parlato, A. L. Ferrara, and P. Madhusu-
dan. Analyzing temporal role based access control models. In V. Atluri, J. Vaidya,
A. Kern, and M. Kantarcioglu, editors, SACMAT, pages 177-186. ACM, 2012.

