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Abstract

Non-intrusive appliance load monitoring is the process of disaggregating a
household’s total electricity consumption into its contributing appliances. In
this paper we propose an unsupervised training method for non-intrusive
monitoring which, unlike existing supervised approaches, does not require
training data to be collected by sub-metering individual appliances, nor does
it require appliances to be manually labelled for the households in which dis-
aggregation is performed. Instead, we propose an approach which combines
a one-off supervised learning process over existing labelled appliance data
sets, with an unsupervised learning method over unlabelled household ag-
gregate data. First, we propose an approach which uses the Tracebase data
set to build probabilistic appliance models which generalise to previously
unseen households, which we empirically evaluate through cross validation.
Second, we use the Reference Energy Disaggregation Data set to evaluate
the accuracy with which these general models can be tuned to the appli-
ances within a specific household using only aggregate data. Our empirical
evaluation demonstrates that general appliance models can be constructed
using data from only a small number of appliances (typically 3-6 appliances),
and furthermore that 28-99% of the remaining behaviour which is specific to
a single household can be learned using only aggregate data from existing
smart meters.
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1. Introduction

With many countries aiming to considerably reduce their annual carbon emis-
sions by 2050, energy conservation has become an issue of national impor-
tance [9]. To this end, ageing electricity infrastructure is undergoing a transi-
tion towards the smart grid, in which a high degree of monitoring will enable
the flow of information between the points of energy generation and con-
sumption [36]. As part of this transition, smart meters are currently being
deployed on national scales [10], and will soon be collecting vast amounts
of domestic electricity consumption data. However, smart meters will only
make information visible regarding a household’s total electricity consump-
tion, while the energy consumption of individual appliances will remain in-
visible to the household’s occupants. Without such personalised feedback,
each household’s occupants will be left to guess which appliances and activ-
ities consume the most energy, which a recent review of the literature has
shown to often be a poor estimation of the true energy breakdown [14]. This
raises a key artificial intelligence challenge, regarding how personalised useful
insight can be produced entirely automatically from millions of households’
smart meter data [34].

To this end, non-intrusive appliance load monitoring (NIALM), or en-
ergy disaggregation, aims to break down a household’s aggregate electric-
ity consumption as collected by a smart meter into individual appliances
[18]. Studies have shown that providing a household’s occupants with a per-
sonalised breakdown of appliance energy consumption allows them to take
steps towards reducing their total energy consumption [8]. A recent review
of appliance-specific feedback literature has indicated that such information
can reduce household energy consumption by 14% on average [12]. Further-
more, even greater reductions can be achieved if the disaggregated appliance
data is used to produce actionable feedback [1]. Although in general smart
meters transmit only 15-30 minute aggregate data to the utility for billing
purposes, many smart meters also transmit 10 second power data over the
home area network (e.g. UK smart meters [11]). Such information can be
consumed by authenticated devices and either processed locally or uploaded
to cloud storage. However, many existing approaches require a sampling rate
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in the order of kHz [17, 4, 5], and therefore are not applicable to such smart
meter data. In summary, NIALM can be formulated as a machine learning
problem, in which 10 second smart meter electricity data is required to be
separated into the contributing appliances.

Recent contributions to this problem fall into three categories. The first
use supervised methods which assume that sub-metered appliance training
data are available from the household in which disaggregation is to be per-
formed. One approach to collect this data is to install individual appliance
sub-meters [5, 13, 26]. However, this assumption dramatically decreases the
scalability of such systems due to the inherent costs and time consuming
nature of installing individual appliance meters, and furthermore this pro-
cess renders NIALM unnecessary since appliance level data is already col-
lected. Hart [18] proposed an alternative approach in which the appliances
are operated sequentially allowing individual appliance signatures to be ex-
tracted from aggregate measurements. Weiss et al. [38] extended this ap-
proach by using smart phones to label each individual appliance’s operation.
However, it is impractical to require the occupants of every household in a
country to carry out such system training in every home.

The second category of existing approaches uses unsupervised disaggrega-
tion methods in which no prior knowledge of the appliances is assumed. Such
approaches have demonstrated how appliance parameters can be learned after
collecting aggregate data for a suitable period, ranging from 1.5 hours [16],
to 5-26 days [40, 22, 2] or even 6 months [20]. However, since these methods
only learn parameters for a set of classes (corresponding to different appli-
ances), they are unable to assign labels (appliance names) to each class. As a
result, only the distinction between appliances is unsupervised, and these ap-
proaches still require a manual labelling process in which each learned class is
matched to an appliance label by a domain expert. Most recently, attempts
have been made to avoid the manual labelling process by automatically en-
coding general appliance information in a Bayesian inference framework [19].
However, this method has only been demonstrated for households containing
up to 5 appliance types, and the large state space introduced by 15-20 appli-
ance types is likely to cause the inference process to be unable to distinguish
between appliances. Therefore, none of these methods scale automatically to
realistic previously unseen homes.

A third category has been suggested which would require the collection
of an exhaustive signature database of multiple signatures for possible ap-
pliances [25, 24]. However, the sheer number of different instances of each
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Figure 1: Comparison of our proposed approach and existing approaches. The dashed box
represents processes which must be repeated for each household in which disaggregation
is performed.

appliance type makes this approach prohibitively expensive and time con-
suming. Furthermore, it is unlikely a classifier would be able to distinguish
between different appliance instances in such a crowded feature space. For
these reasons, the construction of such an appliance database has never been
attempted [35].

In addition to these three categories of approaches which are applicable
to 10 second resolution data, it is also worth considering approaches that
have been applied to other resolutions of data. Kolter et al. [21] applied an
approach based on sparse coding to data at 1 hour resolution. The authors
showed that their approach was able to learn appliance models which gener-
alise between households. However, this approach bases the disaggregation
largely on the energy consumed over a duration of time, and the hour of day
and day of week in which the energy was consumed. As a result, it does not
model the strong dependency between sequential measurements in 10 second
power data. Furthermore, sparse coding would require a large number of di-
mensions to represent such data, and as a result is prone to overfitting when
training data is limited. Therefore, sparse coding is not an ideal approach to
be applied to data collected by smart meters.
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Clearly, none of the discussed approaches present realistic methods which
can operate entirely automatically on 10 second resolution data from a pre-
viously unseen home, and therefore none of these approaches are applicable
to disaggregate smart meter data at national scales. To address this short-
coming, we propose a method for training NIALM systems which uses in-
formation about appliances and generalises to previously unseen households.
Crucially, this means our approach does not require either sub-metered train-
ing data or a manual labelling phase for each household in which disaggre-
gation is performed. Figure 1 shows the distinction between our approach
and existing work, in which the processes which must be repeated for each
new household are highlighted by the dashed box. Such generalisable appli-
ance information is available in appliance monitoring data sets, such as the
Tracebase data set [33]. By modelling appliances as hidden Markov models
(HMMs), we learn a general appliance behavioural model which will gener-
alise to previously unseen households. We then use an unsupervised method
by which these general appliance models can be tuned to the specific appli-
ance instances in a previously unseen household using only aggregate data.
We evaluate our approach using the Reference Energy Disaggregation Data
set (REDD) [23]. Finally, we use our approach to determine energy efficiency
feedback which could be provided to a household’s occupants, although the
tuned appliance models could also be used to allow existing disaggregation
methods to be applied to new households without a manual training phase.
Our contributions can be summarised as follows:

• We propose a hierarchical approach which models multiple appliances
of the same type based on a Bayesian treatment of HMMs [15]. As
such, the parameters of multiple HMMs can be combined to form a
general model of an appliance. We show that only 3-6 examples of
an appliance type are required to sufficiently generalise to a previously
unseen appliance.

• We provide a method by which the general appliance models can be
tuned to the appliances within a specific household using only aggregate
data. We show that models tuned using only aggregate data outperform
the general models, and in some cases perform comparably to models
learned using sub-metered data from the test appliance. Furthermore,
we show that our tuning method outperforms the state of the art which
uses factorial HMMs to tune appliance models.
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• We give a number of examples of the personalised feedback which tuned
appliances models can be used to provide. We show that by using only
general appliance models and smart meter data, advice can be given to
household occupants regarding the operating energy efficiency of the
appliances and whether it is cost effective to replace them.

The remainder of this paper is structured as follows. In Section 2 we
describe how appliance models can be learned from reference data sets that
will generalise to previously unseen households. In Section 3 we describe how
these general models can be tuned to specific appliance instances using only
aggregate data from the test house. In Section 4 we describe the additional
benefit tuned appliance models provide beyond their primary application as
the input to a disaggregation system. Finally, we conclude in Section 5.

2. Building Generalisable Appliance Models

We now describe our method for learning general appliance models which will
generalise to previously unseen appliances of the same type. The aim is to
learn distributions over the model parameters for each appliance, such that
both the mean and variance around each appliance parameter is derived from
data. This process is effective as it allows tight distributions to be learned
over appliance parameters which are similar for different appliance instances,
and broad distributions to be learned when parameters vary greatly between
different instances. In general, the most important factor is to ensure that the
learned states align between different appliance instances, which we demon-
strate through the Bayesian framework described in Section 2.1.

Throughout this section, we use a running example of the refrigerator to
provide some intuition into the model choices and role of various parameters.
The remainder of this section is structured as follows. First, we propose
a hierarchical approach to model multiple appliance instances of the same
type. Next, we show how common signatures which capture the general
behaviour of an appliance can be extracted from different appliances’ power
data. Finally, we give an empirical evaluation which demonstrates the benefit
of generalising over multiple appliances of the same type.

We adopt a hierarchical approach to model multiple appliances of the
same type, as shown by Figure 2. In this model, we represent an appliance
type (e.g. refrigerator) as a distribution from which appliance instances (e.g.
Bosch Logixx KSV36AW41G refrigerator) are drawn. As such, the appli-
ance type represents any behaviour which is common to all instances of that
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Figure 2: Hierarchical model of an appliance type Θ

type, while an appliance instance also represents behaviour which is specific
to that single instance and its usage. Furthermore, we observe sequences
of power data from each appliance instance. Therefore, the aim is to in-
fer the parameters of an appliance type, Θ, from sequences of power data,
x(n) = {x1, . . . , xT}, generated by individual appliance instances described
by parameters θ = {θ(1), . . . ,θ(N)}, where n is one of N appliance instance
indices.

In order to learn the appliance type parameters, we first estimate the
parameters of each appliance instance from a sequence of power readings as
described in the following section. We then describe a method for generalising
over these parameters in Section 2.2.

2.1. Appliance Instance Parameter Estimation using Hidden Markov Models

We adopt a hidden Markov model (HMM) representation for household ap-
pliances [15]. A HMM consists of a Markov chain of discrete, latent variables
(representing the operational state of an appliance) and a sequence of contin-
uous, observed variables (representing the power demand of an appliance),
each of which is dependent upon one of the discrete variable’s state. Figure 3
gives the structure of a HMM as a Bayesian network, where the discrete, la-
tent variables are represented by the sequence z1, . . . , zT , and the continuous,
observed variables are represented by the sequence x1, . . . xT , over a time se-
quence of length T . The value of each discrete variable zt corresponds to one
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and shaded circles represent continuous, observed variables.
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Figure 4: Appliance state models

of K states (e.g. on, off) as shown in Figure 4, while each continuous variable
can be either zero or any positive real number (e.g. 100.5 W), since appli-
ances only consume energy. For the sake of clarity, we omit the appliance
instance index (n) throughout Section 2.1.

A hidden Markov model can be completely defined by the following three
parameters. First, the probability of each state, k, of the hidden variable at
t = 1 can be represented by the vector π such that:

πk = p(z1 = k) (1)

In the case of the refrigerator, this corresponds to the probability that the
appliance is either on or off at the start of the data sequence.

Second, the probability of a transition from state i at t− 1 to state j at
t can be represented by the matrix A such that:

Ai,j = p(zt = j|zt−1 = i) (2)

In the case of the refrigerator, this corresponds to the probability that the
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appliance has either turned on, turned off, or remained in the same state
between consecutive power measurements.

Third, the emission probabilities for x are described by a function gov-
erned by parameters φ, which in our case is assumed to be Gaussian dis-
tributed such that:

xt|zt,φ ∼ N (µzt , τzt) (3)

where φk = {µk, τk}, and µk and τk are the mean and precision of state k’s
Gaussian distribution. We use a Gaussian distribution since it has previously
been shown to provide a good fit of appliance power demand [20]. Although
an appliance’s power demand is strictly positive, we found that the Gaussian
distribution’s support for negative power demands is negligible for most ap-
pliances. However, it is worth noting that other distributions could also be
used if a strictly positive (e.g. gamma distribution) or a multi-modal (e.g. a
mixture of Gaussians) distribution were required. In the case of the refrig-
erator, the off state emission distribution will likely be a very high precision
distribution centered around 0 W, while the on state distribution will be a
slightly lower precision distribution centered around approximately 100 W.
Both distributions are expected to be of relatively high precision since this
the precision parameter represents only small fluctuations in the appliance’s
power demand.

Equations 1, 2 and 3 can be used to calculate the joint likelihood of a
hidden Markov model:

p(x, z|θ) = p(z1|π)
T∏
t=2

p(zt|zt−1,A)
T∏
t=1

p(xt|zt,φ) (4)

where the set of model parameters is represented by θ = {π,A,φ}. These
parameters are not known a priori and are learned from data.

We adopt a Bayesian approach to learn the parameters of HMMs in which
prior distributions are placed over the model parameters. A Bayesian ap-
proach is required in this scenario, since it ensures that the states learned for
one instance of an appliance type correspond to the same states learned from
a different instance of the same appliance type. For example, it ensures that
the spin state of washing machine A corresponds to the spin state of wash-
ing machine B, etc. By placing conjugate priors over the model parameters,
we ensure that both the priors and posteriors belong to the same family of
distributions. We now describe the prior and posterior distributions over the
model parameters, which for the sake of clarity, we use a hat to denote the
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hyperparameters of the prior distributions (e.g. α̂), and a tilde to denote the
parameters of the posterior distributions (e.g. α̃).

The initial probabilities follow a categorical distribution, for which the
conjugate prior is the Dirichlet distribution:

π ∼ Dir(K, α̂) (5)

where Dir is the Dirichlet distribution parameterised by the number of cate-
gories, K, and the concentrations parameters, α̂. We denote the parameters
of the posterior distribution as α̃. In the case of the refrigerator, we have
little a priori information regarding the initial distribution, and so a uniform
prior distribution is used.

Similarly, each row, i, of the transition matrix also follows a categorical
distribution:

Ai ∼ Dir(K, Ĉi) (6)

where Dir is the Dirichlet distribution parameterised by the number of cat-
egories, K, and a vector of concentrations parameters, Ĉi. We denote the
posterior parameters as C̃i. In the case of the refrigerator, there is a sufficient
amount of training data available in existing appliance data sets, and so a
uniform prior is also a sufficient distribution.

Finally, the emission variables are Gaussian distributed, for which a con-
jugate prior is the Gaussian-gamma distribution [30]:

µk ∼ N (λ̂k, r̂k) (7)

τk ∼ Gamma(β̂k, ŵk) (8)

where N is the Gaussian distribution parameterised by mean, λ̂k, and pre-
cision, r̂k, and Gamma is the gamma distribution parameterised by shape,
β̂k, and scale, ŵk. We denote the respective parameters of each posterior
distribution as λ̃k and r̃k, and β̃k and w̃k.

It is crucial to incorporate domain knowledge via these hyperparame-
ters to ensure the posterior states correspond between different appliance
instances. In the case of the refrigerator, λ̂off would be 0 W and λ̂on would
be 100 W since these represent the expected value of each state’s mean power.
In addition, r̂off and r̂on represent the precision in the mean values between
different appliance instances, and therefore r̂off would be large since all refrig-
erators consume close to 0 W when they are off, while r̂on would be relatively
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low since the mean on power of different refrigerator instances varies between
approximately 80 W and 250 W. Since the precision parameter, τ , varies
greatly for different states and appliance instances, the hyperparameters β̂
and ŵ are used to provide fairly broad prior distribution.

We use this Bayesian approach to parameter estimation in HMMs to in-
dividually learn the parameters, θ(n), of each appliance instance, n, from
sequences of their power data, x(n). Since there is no analytical solution
to parameter estimation in HMMs, we performed inference using variational
message passing [39], full details of which are included in Appendix A.
Variational message passing was used since it provides an efficient and deter-
ministic method of Bayesian parameter estimation for which convergence is
guaranteed [27]. We implemented the model as described in this section and
performed inference using the Infer.NET framework [27]. In the following
section, we describe how these parameters are combined to form a model of
the appliance type which will generalise to previously unseen instances of
this appliance type.

2.2. Generalising Over Multiple Appliance Instances

We now describe a method by which the parameters learned in Section 2.1
can be combined to form a model that represents the whole appliance type,
and therefore generalises to previously unseen instances of that appliance
type. Our method consists of fitting distributions to samples drawn from
the posterior distributions over appliance instance parameters. As a result,
this method averages over our uncertainty around the appliance instance
parameters. We introduce the notation:

Θ = {Θα,ΘC ,Θλ,Θr,Θβ,Θw} (9)

to represent the parameters of the general model of an appliance type as
defined in the following paragraphs. In the case of the refrigerator, Θ rep-
resents a distribution over all possible refrigerator instances. Crucially, this
general model allows the probability to be calculated that an appliance in-
stance belongs to the refrigerator appliance type.

Samples drawn from the posterior distributions over the initial proba-
bilities and transition matrix are in the form of multinomial distributions,
for which the Dirichlet distribution is the conjugate prior. Therefore, we
generalise by fitting Dirichlet distributions to the samples using:

Θα = arg max
α

Dir(π
(1:N)
1:M |K,α) (10)
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Figure 5: Generalising over the parameters

ΘC
z = arg max

Cz

Dir(A
(1:N)
1:M |K,Cz) (11)

where π
(1:N)
1:M ∼ Dir(K, α̃) and A

(1:N)
1:M ∼ Dir(K, C̃) represent sets of 1, . . . ,M

samples, and M samples are drawn from the initial and transition posterior
distributions for each of the appliance instances 1, . . . , N . We use the Fast-
fit MATLAB toolbox to estimate the parameters of the Dirichlet distribu-
tions, which provides a simple and efficient method for parameter estimation
through the generalised Newton method [29, 28].

We also fit a Gaussian distribution to samples drawn from the posterior
distribution over the emission mean parameters:

Θλ
z ,Θ

r
z = arg max

λ,r
N (µ

(1:N)
1:M |λ, r) (12)

where µ
(1:N)
1:M ∼ N (λ̃, r̃) represents sets of 1, . . . ,M samples drawn from the

posterior distribution over 1, . . . , N appliance instances’ mean power.
Similarly, we fit gamma distributions to samples drawn from the poste-

rior distributions over each state’s precision. This results in a distribution
which generalises over each posterior distribution of a given state’s precision.
However, this approach is prone to severe over-fitting when a gamma distri-
bution is fitted to the precisions of the off state. In this case, the posterior
distributions of the off state’s precision are often highly peaked and centred
around similar values, since they generally only represent the measurement
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noise around 0 W. However, it is possible for the power demand to be sam-
pled during a transition between the off and on states for any appliance type.
This results in a sample which would receive near zero probability given the
tight estimates of each state’s precision. In fact, the probability is likely to
be beyond the numerical precision of a double precision floating point num-
ber and therefore cause the inference to fail. To prevent this, we constrain
the gamma distribution for the off state (k = 1) which is fitted to samples
drawn from the posterior distributions such that it follows an exponential
distribution, by holding the shape parameter fixed at 1:

Θβ
z ,Θ

w
z =


arg max

w
Gamma(τ

(1:N)
1:M |1, w}) k = 1

arg max
β,w

Gamma(τ
(1:N)
1:M |β, w}) k > 1

(13)

where τ
(1:N)
1:M ∼ Gamma(λ̃, r̃) represents sets of 1, . . . ,M samples drawn from

the posterior distribution over 1, . . . , N appliance instances’ precision. Fig-
ure 5 shows two examples of posterior distributions of the precision of an off
state as learned from two appliance instances. It can be seen that fitting a
gamma distribution to the samples drawn from posterior distributions would
result in a tight distribution which would assign an extremely low probabil-
ity to any measurement of the power demand sampled during a transition
between states. Figure 5 also shows an exponential distribution fitted to the
samples drawn from the appliance posteriors. It is clear from the long tail
shape of this distribution that it will have non-zero support for data points
sampled during a transition between two states.

We use the approach described in this section to build models of an
appliance type that will generalise to previously unseen instances of that
appliance type. We now go on to describe an empirical evaluation of this
approach using the Tracebase data set.

2.3. Empirical Evaluation of Model Generalisation using Tracebase Data Set

We evaluated the benefit of building generalisable models of appliance types
using the Tracebase data set [33]. This data set is particularly useful for
such an evaluation since it contains data from many instances of appliances
of the same type. The data set consists of samples of appliances’ power
demand at roughly one second intervals. We extracted between 2 and 60
signatures (durations when the appliance was in use) depending on data
availability for each appliance instance in the Tracebase data set. We selected
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Appliance Number of Average signatures
type instances per instance

Refrigerator 11 19
Kettle 9 14

Microwave 8 8
Washing machine 9 6

Dishwasher 8 19

Table 1: Breakdown of signatures in Tracebase repository

the following 5 common appliance types: refrigerator, kettle, microwave,
washing machine and dishwasher. We also extended the Tracebase data set
with data collected from 3 additional dishwasher instances, such that at least
8 instances were available for each appliance type. Table 1 shows a breakdown
of the signatures extracted from the Tracebase data set.

We modelled the refrigerator, kettle and microwave using the 2 state
model shown in Figure 4 (a) and we modelled the washing machine and
dishwasher using a 3 state model as shown in Figure 4 (b). We selected the
number of states based upon a trade-off between the minimum number of
electrical components for each appliance type and the ability to generalise
over these states and tune them using aggregate data. For example, refriger-
ators consist of at least an air compressor which can either be on or off and
generate a signature which is clearly visible in the aggregate load, and there-
fore a 2 state model was appropriate. It is worth noting that although many
fridges also contain an interior light, and also fridge-freezers often provide a
defrost cycle, such signatures are hard to generalise and almost impossible to
extract from the aggregate load, and as a result we chose not to model them.
Similarly, a washing machine typically has a water heater and drum motor,
both of which generate significant signatures visible in the aggregate load,
and therefore a 3 state model was appropriate (including the off state). It is
important to note that, although different washing machine cycles are avail-
able, the cycles consist of the operation of the same components in different
orders. As a result, a 3 state model can represent a range of different cycles.
The hyperparameters for each appliance type used are given in Appendix B.

We use hold-one-out cross validation to determine how well a given ap-
pliance model generalises to a previously unseen appliance. This involves
building a generalisable appliance model using between 2 and 7 training ap-
pliance instances, which we show to be sufficient to build a general model
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Approach Description

GT
General appliance model as learned from the Tracebase data
set without any parameter tuning.

NT
Specific appliance model as learned from a single appliance
instance other than the test appliance.

ST
Specific appliance model as learned from the test appliance
instance.

Table 2: Summary of approaches compared using the Tracebase data set.

of each appliance type. We then test these general models against a single
appliance instance that was excluded from the training set. Therefore, a sin-
gle fold of the set of appliance instances corresponds to an ordered list of 7
training appliances and one test appliance. We refold the set of appliance in-
stances 50 times, and for each fold we evaluate how well the appliance model
constructed using between 2 and 7 training appliance instances generalises
to the test instance.

We compare our approach which builds general models of appliance types
(GT) to two bounding benchmarks. The first benchmark uses training data
from a single appliance instance from the training set (NT). This represents a
lower bound, in which no effort is made to generalise over multiple appliance
instances. The second benchmark uses training data from the test appliance
(ST). This represents an upper bound, in which the test appliance is not
regarded as previously unseen. Since ST and NT are dependent only on the
fold of the set of appliance instances, and not on the size of the training set,
both values can only be evaluated once for each fold of data. We present the
mean log-odds for GT, NT and ST over the 50 folds. These approaches are
summarised in Table 2.

We use the model likelihood as a metric for evaluating how well an ap-
pliance model explains the test data, averaged over each fold of the data
set. This metric represents the likelihood of the test data, x, given a gen-
eral appliance model, Θ, with both the appliance states z and parameters θ
integrated out, as given by:

p(x|Θ) =

∫∫
p(x, z|θ)p(θ|Θ) dz dθ (14)

where p(x, z|θ) is calculated using Equation 4 via variational message passing
and the Infer.NET framework. Since this likelihood decreases towards zero
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as the length of the input data sequence increases, we compare the log-
odds rather than the probability. Log-odds, or the logit function, has the
advantage that it maps a probability, p, in the range [0, 1] to the domain
of real numbers, and therefore avoids problems of numerical precision. This
function is defined by:

logit(p) = log

(
p

1− p

)
(15)

Figure 6 shows the cross validation model log-odds for 5 common house-
hold appliances for training set sizes of between 2 and 7 appliance instances.
These are compared with the two benchmarks described above, represent-
ing approaches where sub-metered data is available from the test appliance,
and where data is only available from a single appliance from the training
set. The error bars represent the standard error in the mean. A clear trend
common to all appliance types is that the model log-odds increases towards
an asymptote as the number of appliance instances in the training set in-
creases. This indicates that the majority of the appliance type’s behaviour
can be described by a general model learned from a relatively small num-
ber of appliance instances. As such, we argue that it is not necessary to
build an exhaustive database of all appliance instances as other work has
discussed [25, 24], and instead we propose the use of a database of distribu-
tions over possible appliance behaviour.

In addition, all averages lie above the lower bounding benchmark, reflect-
ing the intuition that an approach is always preferable if it generalises over
multiple appliances rather than uses data from a single instance. Further-
more, all averages lie below the upper bounding benchmark, reflecting that
no general model provides a better explanation of sub-metered data than a
model learned from that sub-metered data.

Figure 7 shows the normalised cross validation average log-odds for the
same 5 appliances. The appliance averages were normalised to lie in the
range [0, 1], such that 0 represents the accuracy of the model trained with a
single non-test appliance and 1 represents the accuracy of the model trained
with the test appliance. This figure enables interesting comparisons between
appliance types. First, it can be seen that some appliance types converge
towards their asymptote more rapidly than others. This trend is most ob-
vious when comparing the kettle to the washing machine, since the kettle
almost converges with a training set of only 3 instances due to its single
heating component, while the the washing machine does not converge until
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Figure 6: Mean cross validation model log-odds for increasing training set sizes. Legend:
GT - generalised training, ST - sub-metered training, NT - non-generalised training. Sub-
plots: (a) Kettle, (b) Refrigerator, (c) Microwave, (d) Washing machine, (e) Dishwasher.
Error bars represent standard error in the mean.
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Figure 7: Normalised cross validation model log-odds for increasing training set sizes.

the training set contains 6 appliance instances as a result of its multiple mo-
tors and heating elements. This indicates that fewer training examples are
required for appliances with fewer electrical components before the optimal
general model is achieved. Furthermore, it can be seen that some appliances
converge to an asymptote that is closer to the benchmark which uses sub-
metered training data. Again, this trend is most obvious when comparing
the kettle to the washing machine, since the kettle converges to an asymp-
tote very close to the benchmark which uses sub-metered training data, while
the washing machine converges to an asymptote noticeably lower than the
corresponding benchmark. This is caused by different degrees of variance
within an appliance type, for example, there is less variance within the kettle
appliance type than the washing machine appliance type.

Now, having introduced a Bayesian method for inferring the behaviour
of appliance instances given a HMM representation, and proposed a novel
method for generalising over the multiple appliance instances, we now go on
to propose a novel method by which these generalisable appliance models can
be tuned to the appliance instances in a new household using only aggregate
data.
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3. Tuning General Models using Aggregate Data

As identified in the introduction, some appliance behaviour is unique to a
particular household and therefore cannot be captured by the general model
of the appliance. Such behaviour can be due to the unique characteristics of
the appliance instances present in a household (e.g. a freezer with a defrost
cycle), and also due to their pattern of usage by the household’s occupants
(e.g. a microwave often used on low power). Therefore, in this section we
propose a method for learning such behaviour that is unique to a single
household, which uses both general appliance models and household aggre-
gate data. More formally, this tuning process directly corresponds to learning
the parameters θ(n) for an appliance instance n in a household, given the ap-
pliance type’s general model Θ and the household’s aggregate data x. Our
approach differs from the training approach used by Kim et al. [20], in which
appliances are detected using a factorial HMM but are also required to be
manually labelled. Similarly, Kolter and Jaakkola [22] proposed a training
approach in which individual appliance motifs are extracted from aggregated
data, but again each motif was also required to be manual labelled with an
appliance name.

Our training approach exploits periods during which a single appliance
turns on and off without any other appliances changing state. Such behaviour
produces a signature in the aggregate load which is unaffected by all other
appliances apart from the base-load. It is these periods which our algorithm
uses to tune the general appliance models to specific appliance instances. In
the following sections, we first describe how the periods when only a single
appliance is operating can be automatically extracted (Section 3.1). We then
describe how these periods can be used to tune a general appliance model
to the specific appliance within a given a household (Section 3.2). Last,
we provide an evaluation using the REDD data set which demonstrates the
benefit of model tuning from aggregate data (Section 3.3).

3.1. Extracting Appliance Signatures from an Aggregate Load

As discussed above, our proposed approach requires periods during which a
single given appliance is operating to be extracted from an aggregate load.
This is achieved by calculating the likelihood that a period of aggregate data
was generated by a single appliance instance drawn from a given general
appliance model. However, it is important to note that our approach aims to
extract periods during which only the appliance of interest is changing state,
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Appliance type Window length (mins) Sample interval (mins)
Refrigerator 200 5
Microwave 10 1

Washing machine 60 4
Dishwasher 120 4

Table 3: Window length for various appliance types.

and that other appliances might be drawing a constant power during this
period. Therefore, in our approach, the base-load is first subtracted from the
aggregate load before calculating the likelihood:

x̄i:j = xi:j −min(xi:j) (16)

where xi:j is a window of aggregate data xi, . . . ,xj, and x̄i:j is the same
window after the base-load has been subtracted. This ensures that the dis-
tributions over the mean power demand for each state correspond between
different signatures. The approach considers windows of aggregate data,
for which the size of the window is determined by the maximum signature
length encountered in the training data used in Section 2, as shown by Ta-
ble 3. Longer window lengths can be used for appliances for which multiple
sequential signatures can be extracted (e.g. refrigerator), while shorter win-
dow lengths should be assigned to appliances which are likely to be used
once for a short period of time (e.g. microwave). We calculate the likelihood
that a period of aggregate data was generated by a single appliance instance
drawn from a given general appliance model as follows:

accept(x̄i:j) =

{
true if p(x̄i:j|Θ) > D
false otherwise.

(17)

where x̄i:j is a window of aggregate data after the base-load has been sub-
tracted, p(x̄i:j|Θ) is the likelihood of that window of data given the general
appliance model Θ as in Equation 14, and D is an appliance specific likeli-
hood threshold. This threshold is set such that the model will accept windows
of data which can be explained by a set of appliance parameters drawn from
the given appliance type’s general model, and reject any windows of data gen-
erated by other appliance types or combinations of appliances. Therefore,
this process effectively identifies windows of aggregate data during which
only an appliance matching its general model changes state. It is worth
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Figure 8: (a) Household power demand over 24 hour period. (b) Log-odds of window of
aggregate power being generated by only refrigerator.

noting that the data likelihood p(x̄i:j|Θ) is inherently dependent upon the
variance within an appliance type, since it decreases as the variance of the
general appliance model increases. Therefore, we use the sub-metered data
from Section 2 to calculate D for each appliance type as the minimum of
p(x(n)|Θ) for each appliance instance n, and as a result this threshold gen-
eralises to unseen households.

Figure 8 gives an illustrative example of how appliance signatures can be
extracted from an aggregate load in the case of the refrigerator. The figure
shows the power demand of a household over a 24 hour period, and also
the log-odds that each 4 hour window of data was generated by only the
refrigerator. For most windows of data, it is clear that step changes in the
aggregate power demand were generated by a combination of the refrigerator
and a number of other appliances, and therefore received a low log-odds
score. However, between 02:00 and 05:00 only the refrigerator contributed
to changes in the aggregate power, and as a result receives a high log-odds
score. Therefore, this period can be extracted from the aggregate load and
used as an appliance signature with which the general model of refrigerator
can be tuned. We found that a step size equal to the window length to be
sufficient to extract signatures for each of the modelled appliances. However,
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in households where aggregate data is more limited or where overlapping
appliance usage is more common, we would expect that a smaller step size
would allow a greater number of signatures to be extracted.

3.2. Tuning General Appliance Models using Extracted Signatures

Once the signatures of a single appliance instance have been extracted from
aggregate data, the aim is to tune the general model to include the behaviour
of the appliance instance which is unique to the previously unseen household.
Given that both the general model for this appliance type, Θ, and signatures
sampled from the specific appliance instance are available, x̄i:j, Bayesian
integration [15] provides a natural approach to infer the posterior distribution
over such appliance instance parameters with the state sequence marginalised
out:

θ̃ = arg max
θ

∫
p(x̄i:j, z|θ)p(θ|Θ) dz (18)

Therefore, we update the general model again using variational message pass-
ing as described in Appendix A.

In this setting, Bayesian integration provides a desirable trade-off between
parameter tuning and avoiding model over-fitting. For example, when only a
small number of appliance signatures are extracted from the aggregate load,
the parameters are prevented from becoming over-fitted to one or two sig-
natures. However, when many signatures are extracted from the aggregate
load, the parameters are tuned to represent the repeatable behaviour of the
appliance instance specific to that household. Since there is no analytical so-
lution to this integral, we again use variational message passing implemented
using Infer.NET for the same reasons as in Section 2.1.

Figure 9 illustrates the outcome of the tuning process using the mi-
crowave’s on state as an example. It can be seen that the prior distribution,
as learned during the generalisation method described in Section 2, shows a
broad distribution over the mean power of all microwaves. In contrast, the
posterior distribution, as tuned using the method described in this section,
shows a more precise distribution over the mean of this specific microwave
instance. However, it should be noted that the mean power of the on state,
µk, is just one of the set of appliance model parameters, θ, and therefore it
is not expected that appliances will be uniquely distinguishable using only
this parameter.
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Figure 9: Probability density functions of microwave on state mean power prior and
posterior distributions.

3.3. Empirical Evaluation of Model Tuning using REDD Data Set

We evaluated the benefit of tuning general appliance models using the Refer-
ence Energy Disaggregation Data set (REDD) [23]. This data set was chosen
as it is an open data set collected specifically for evaluating NIALM meth-
ods, and contains both household aggregate and circuit-level power demand
measurements. Since many circuits contain only one appliance, these circuits
represent the ground truth power demand for those appliances. As a result,
we were able to evaluate how well a given appliance model explains an ap-
pliance’s actual power demand. However, of the appliances investigated in
Section 2, the kettle is not connected to an individual circuit in the REDD
data set, and therefore could not be evaluated in this section. Furthermore,
due to differences between American and European appliances, it was nec-
essary to artificially increase the mean hyperparameter of the mean power
distribution of the on state, λ̂on, of the general model for the microwave and
washing machine. However, all other general model parameters were exactly
as learned from the Tracebase data set. We evaluated the appliance models
using houses 1-3 from the REDD data set. These homes were selected as
they were the only homes which contained at least 1 week of data for each of
the refrigerator, microwave, washing machine and dishwasher. However, the
washing machine in house 2 was not used throughout period of data collec-
tion and therefore was excluded from our experiments. Both aggregate and
circuit-level data were down-sampled to a frequency lower than that of mod-
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Approach Description

GT
General appliance model as learned from the Tracebase data
set without any parameter tuning.

FT
General appliance model as learned from the Tracebase data
set tuned via factorial HMM.

AT
General appliance model as learned from the Tracebase data
set tuned using signatures extracted from aggregate data.

ST
General appliance model as learned from the Tracebase data
set tuned using signatures extracted from sub-metered data.

Table 4: Summary of approaches compared using REDD data set.

ern smart meters. To ensure realistic computation times, lower sample rates
were used for appliances with longer window lengths and higher sample rates
were used for appliances with shorter window lengths, as shown by Table 3.

We compare the approach described in this section (AT) to three bench-
marks. The first (GT) uses the general appliance model as learned empir-
ically in Section 2 without any model tuning. This variant represents the
model fit of the general appliance models. The second benchmark (FT) uses
standard Bayesian inference via Gibbs sampling over a factorial HMM when
supplied with aggregate data and general appliance priors. The factorial
HMM was implemented using the pyhsmm library,1 in which 4 chains used
the same prior as GT, while a further 6 chains used broad priors to capture
the behaviour of the unmodelled appliances. This represents the state of the
art for unsupervised learning in NIALM [19]. The third benchmark (ST)
tunes the general models using sub-metered data, through the approach de-
scribed in Section 3.2. This approach represents the model fit in the ideal case
where sub-metered data is available for model tuning. These four approaches
are summarised in Table 4.

As in the previous section, we evaluate the extent to which an appliance
model explains the appliance’s power demand using the logit function applied
to the model likelihood, given by Equation 14 and Equation 15.

Figure 10 shows the model log-odds for 4 common household appliances
averaged over 3 houses, each of which compares the model fit of our proposed
approach against the three described benchmarks. The error bars represent

1https://github.com/mattjj/pyhsmm

24

https://github.com/mattjj/pyhsmm


GT FT AT ST
−200

−180

−160

−140

−120

−100

Model

Lo
g−

od
ds

(a) Refrigerator

GT FT AT ST
−120

−100

−80

−60

−40

−20

Model

Lo
g−

od
ds

(b) Microwave

GT FT AT ST
−160

−140

−120

−100

−80

−60

Model

Lo
g−

od
ds

(c) Washing machine

GT FT AT ST
−220

−200

−180

−160

−140

−120

Model

Lo
g−

od
ds

(d) Dishwasher

Figure 10: Mean model log-odds for different training methods. Legend: GT - general
model, FT - general model tuned using factorial HMM, AT - general model tuned us-
ing extracted signatures, ST - general model tuned using sub-metered data. Error bars
represent standard error in the mean.
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the standard error in the mean. A clear trend is visible in that the model
tuned using signatures extracted from aggregate data (AT) always outper-
forms the untuned general model (GT). In fact, in the case of the refrigera-
tor it even performs comparably to the model tuned using sub-metered data
(ST). This indicates that unsupervised model tuning using aggregate data
is a practical alternative to the more intrusive method of supervised train-
ing through sub-metered data. Furthermore, it can be seen that for 3 out
of 4 appliances, the model tuned using signatures extracted from aggregate
data (AT) outperforms the current state of the art (FT) which uses a facto-
rial HMM to tune appliance parameters. This is due to the factorial HMM
method often being unable to distinguish between appliances given only gen-
eral appliance priors and aggregate data, and as a result learns appliance
posteriors that consist of combinations of difference appliances.

It is also interesting to compare the benefit of model tuning shown in
Figure 10 between appliances. The refrigerator shows the most consistent
increase in model log-odds, which can be attributed to the many clean sig-
natures that could be extracted by the AT method with which the general
model could be tuned. This is in contrast to the dishwasher, for which fewer,
noisier signatures were extracted. As such, there is a smaller increase in
the log-odds of the model tuned using aggregate data relative to the model
tuned using sub-metered data. This indicates that model tuning will be
less effective for appliances often used simultaneously with other appliances.
It is also interesting to compare the performance of FT between different
appliance types. For the microwave, the FT method is able to improve the
general appliance model using only aggregate data, while for the refrigerator,
washing machine and dishwasher the FT tuning method actually produces
an inferior appliance model.

We now investigate the benefit of tuning each individual parameter of
the appliance models. Table 5 shows the Kullback-Leibler (KL) divergence
between the models tuned using sub-metered data (ST) and the three approx-
imations (GT, FT, AT) as DKL(ST||GT), DKL(ST||FT) and DKL(ST||AT)
respectively, for house 1 of the REDD data set. This table allows the informa-
tion lost to be compared when each approach is used to approximate the dis-
tributions learned from sub-metered data. It can be seen that DKL(ST||FT)
is systematically greater than DKL(ST||AT) for both the transition and emis-
sion distributions across all appliances. These high divergence values further
highlight that model tuning via signature extraction is preferable to the cur-
rent state of the art which uses factorial HMMs. It is also interesting to
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Appliance Measure Initial Transition Emission

Refrigerator
DKL(ST||GT) 0.183 0.164 3.735
DKL(ST||FT) 0.369 2.613 26.289
DKL(ST||AT) 0.348 0.525 3.376

Microwave
DKL(ST||GT) 0.072 0.107 1.944
DKL(ST||FT) 0.017 1.441 238.544
DKL(ST||AT) 1.630 0.469 0.963

Washing machine
DKL(ST||GT) 0.185 0.057 2.784
DKL(ST||FT) 0.008 4.451 5.401
DKL(ST||AT) 0.674 0.137 3.599

Dishwasher
DKL(ST||GT) 0.178 0.356 7.209
DKL(ST||FT) 0.599 2.809 9.189
DKL(ST||AT) 0.875 0.990 5.079

Table 5: KL divergence between the model tuned using sub-metered data (ST) and the
three approximations of this model (GT, FT and AT).

note that although DKL(ST||GT) is often slightly less than DKL(ST||AT)
for the transition matrix, DKL(ST||GT) is systematically much greater than
DKL(ST||AT) for the emission distribution. This indicates that the tuning
process is more important for the emission distributions than the transi-
tion matrices. However, it is worth noting that the emission distribution of
DKL(ST||FT) for the microwave received a high divergence score but also ex-
plained the actual appliance data with a reasonable likelihood in Figure 10,
which indicates that ST is not the only model that can explain actual appli-
ance data with a reasonable likelihood.

We now compare the time taken to tune the general models. Table 6
shows the time taken for the two realistic approaches, FT and AT, to produce
the results presented in Figure 10. For the AT method, the vast majority of
the time was required to search for windows of aggregate data which could be
explained by the general appliance models with a relatively high likelihood,
while only a small amount of time was required to update the general models
using the extracted signatures. For the FT method, Gibbs sampling was
used to approximate the posterior appliance models using a single sequence
of aggregate data containing uses of all of the appliances of interest. We
found that using 2500 iterations of the Gibbs sampler down-sampled every
25 samples was sufficient to converge towards stationary distributions over
the appliance parameters. However, it should be noted that the run-time
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House
Time (minutes)
AT FT

1 15.753 32.428
2 10.988 31.788
3 14.946 31.797

Average 13.896 32.005

Table 6: Time taken to tune the general models using periods extracted from aggregate
data (AT) and a factorial hidden Markov model (FT).

of FT increases linearly with the number of iterations of the Gibbs sampler,
and as such the run-time will vary depending on the number of iterations
required.

Having introduced a method by which general appliance models could be
tuned to the specific appliances in a household given only aggregate data,
and evaluated its performance using the REDD data set, we showed that the
tuning process provides an improvement over using general appliance models
and the current state-of-the-art tuning method. We now go on to describe the
additional benefits that tuned appliance models provide, and give examples
of the user feedback that could be produced.

4. Using Tuned Appliance Models to Infer Energy Efficiency

The primary aim of tuning an appliance model is to learn the parameters
required to disaggregate that appliance from the household aggregate load.
However, such tuned appliance models also provide the required information
to derive the specific appliance instance’s energy efficiency. For example, the
tuned appliance model could be used to calculate the average daily energy
consumption of a refrigerator, or the average energy consumption of a wash-
ing machine per cycle. These figures can then be converted to compelling
feedback that can be provided to the household occupants. Some examples
of such feedback are given below:

• Energy efficiency rating - An appliance’s average energy consump-
tion per day or per use can be mapped to a standard labelling scheme,
such as the European Union energy label [7]. This provides the house-
hold occupants with an intuitive measure of how their appliance’s en-
ergy efficiency compares to other similar appliances. Furthermore, it
can be compared with the rating quoted by the appliance manufacturer
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to determine whether the appliance is operating at its expected level
of efficiency.

• Financial cost - Annual energy consumption or energy consumption
per use can be trivially converted to financial cost using the local cost
per kWh of electricity. This provides the occupants with a quantita-
tive measure which can be compared with the cost of other appliances
within the household or even a total household bill.

• Benefit of replacement - The financial cost of an appliance can also
be compared to market leading energy efficient appliances. For con-
tinuously operating appliances, such as refrigerators and freezers, the
yearly savings can be calculated should the appliance be replaced with
a new one. For manually operated appliances, such as washing ma-
chines and dishwashers, the per usage savings can be calculated for the
replacement appliance. This provides the household occupants with
actionable feedback which can be used to decide whether such energy
saving actions are worthwhile.

We now give an example of such feedback using the refrigerator from
house 1 of the REDD data set. The following calculations are specific to
refrigerators and freezers, although this approach could also be adapted to
appliances such as washing machines and dishwashers through per usage
estimates rather than annual estimates. The tuned refrigerator model can be
used to infer the appliance’s annual energy consumption (kWh) by weighting
each state’s mean power demand by the expected time in each state:

AC =
24× 365

1000

K∑
k=1

µk
Ak,k

trace(A)
(19)

where trace(A) is a function which returns the sum of diagonal elements of
matrix A. The European Union energy efficiency index, I, for this refriger-
ator can then be calculated by comparing the energy consumption against
the energy consumption of a standard fridge-freezer of average dimensions,
SC:

I =
AC

SC
× 100 (20)

For this refrigerator, I = 63.1, and therefore can be classed as a B band
appliance, following the European Union energy efficiency scale [6]. Since this
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is the same band as the general model as learned from the Tracebase data
set, the household occupants can infer that their refrigerator is of average
energy efficiency.

The annual cost of running the refrigerator, CA, can also be calculated
by multiplying the annual consumption by the cost per kWh, CU :

CA = AC.CU (21)

The annual cost of running this appliance would be £58.08, assuming CU =
£0.15. The household occupants could use this measure to understand the
proportional cost of this appliance in comparison to their annual electricity
bill.

Last, the benefit of replacing the refrigerator with a highly energy efficient
appliance can be calculated. The annual cost of the current refrigerator, CA,
can be compared to that of the market leading energy efficient appliance,
C∗A. Furthermore, the time, TR, until the annual savings have offset the cost
of replacement, CR, can also be calculated:

TR =
CR

CA − C∗A
(22)

In the case of the REDD house 1 refrigerator, it would take 12 years for
a replacement to offset the cost of purchase, assuming C∗A = £28.82 and
CR = £349. Since this is roughly equal to the average working life of a
refrigerator, the household occupants can be advised against replacement.
However, if the system were to run continuously the system could alert the
household occupants if the energy efficiency decreases such that replacing
the appliance is financially viable. Furthermore, in the case that an older F
rated refrigerator consuming 920 kWh per year had been in use, the cost of
replacement would be offset after only 3 years, and therefore the occupants
could be advised to replace the appliance.

5. Conclusions and Future Work

In this paper, we described an unsupervised training method for energy dis-
aggregation systems which tunes general appliance models using only house-
hold aggregate data. Unlike existing work, it does not require sub-metered
training data from the houses in which disaggregation is performed, nor does
it require a manual labelling phase or an exhaustive appliance database. In-
stead, our approach learns general models of appliance types which generalise
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to new appliances, and uses aggregate data as obtained from a smart meter
to further learn the characteristics unique to a specific appliance instance.

The proposed generalisation method uses the existing Tracebase appli-
ance data set to learn a HMM for a number of instances of the same appliance
type. It then fits distributions to the HMM parameters of each appliance in-
stance to build a general model for each appliance type. Through a cross
validation evaluation, we showed that only a small number of instances of
each type are required for simple appliances, such as the kettle. However, we
also showed that the number of instances required to sufficiently generalise
over an appliance type increases for more complex appliances, such as the
washing machine.

We also developed a method by which general appliance models can be
tuned to the specific appliance instances in a household given only aggregate
data as would be collected by a smart meter. The method uses these gen-
eral models to identify and extract power signatures of individual appliances
from the aggregate load, which are subsequently used to tune the general
appliance models. We showed that appliance models built using this tun-
ing method explain sub-metered data with a higher likelihood than had the
general models been used, and in cases where sufficient signatures can be
extracted, such tuned models perform comparably to had sub-metered data
been used to tune the models. Furthermore, we showed that our approach
outperforms the state of the art, which uses a factorial HMM to tune the
appliance parameters using only aggregate data.

The primary motivation for proposing an unsupervised training method
for energy disaggregation is to enable existing HMM-based disaggregation
methods [20, 22] to be applied automatically to previously unseen house-
holds. In addition, we also described the direct benefits which tuned appli-
ance models can provide, such as advice regarding appliance energy efficiency
and annual costs.

Future work will focus on a large-scale deployment of the technology pre-
sented in this work integrated with AgentSwitch; an agent-based platform de-
signed to help household occupants manage their electricity consumption [32].
We aim to use the general models as constructed from the Tracebase data
set, in combination with household aggregate data, to provide intuitive and
actionable energy saving advice to household occupants. The accuracy of
inferred energy efficiency will be evaluated using limited individual appli-
ance sub-meters, and the operating energy efficiency of appliances will be
compared with that quoted by the appliance manufacturer. Furthermore,
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we will also use such appliance sub-meters to measure whether the energy
saving advice has resulted in energy and financial savings.

In such a deployment, it might be necessary to construct more extensive
general appliance models as larger sub-metered data sets become available.
However, the use of longer power sequences will increase the time required
to build such general models, and therefore more efficient inference algo-
rithms would be required. One possibility would be to exploit the structure
of HMMs through a structured variational inference algorithm. Such an ap-
proach would iterate between exact inference over HMM states using the
Viterbi algorithm [37], and a variational approximation for the HMM pa-
rameters.

In most cases, it is trivial to determine the number of states for an ap-
pliance type given some examples of power data. However, for more unusual
appliances, this might not be the case, and as a result an automated ap-
proach will be required to determine the number of states. We believe the
infinite hidden Markov model [3] provides a natural representation of appli-
ances in which the number of states is unbounded, and is free to grow as
more data is observed. However, new methods will be required to generalise
over these models, since an infinite HMM will likely learn a slightly different
set of states when applied to multiple appliance instances of the same type.

Another interesting challenge for extending this work would be to apply
our proposed training methods to appliance models other than those based
on HMMs. We have shown HMMs to be a good model for appliances with
discrete set of states (e.g. refrigerator or dishwasher), however HMMs are
likely to fail for appliances with a continuously variable power demand (e.g.
plasma television). In such cases, different graphical models might repre-
sent such continuously variable appliances more appropriately. We believe
that the approach proposed in this work, which constructs general appliance
models and tunes such models using aggregate data, is general and will be
applicable to new graphical models.

Although the majority of UK households contain a combined refrigerator
and freezer [41], some households instead contain a separate refrigerator and
freezer. In such cases, there might always be at least two appliances which
have recently changed state, and therefore it might not be possible to extract
individual appliance signatures in order to tune model parameters. As a
result, alternative techniques are required which can tune a small number
of appliances simultaneously, while still using the generic models to identify
such signature periods.
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Appendix A. Approximate Bayesian Inference in hidden Markov
models via Variational Message Passing

This appendix first provides a brief overview of variational message passing
(VMP), along with the requirements it places upon the Bayesian network
structure. We then describe how it can be applied to hidden Markov models,
and show how such models fulfil the requirements of VMP. Last, we give an
example of the messages that would be passed for a given variable in the
Bayesian HMM. Further details of the generality VMP can be found in [39].

VMP is a generalisation of variational inference, which allows variational
inference to be applied to arbitrary Bayesian networks. The core advan-
tage of VMP over variational inference is that VMP does not require update
equations to be derived manually for each variable in the network. Instead,
closed form update equations for each variable can be obtained via the mes-
sage passing scheme. Messages are passed between variables along the edges
of the Bayesian network, and variables are updated upon receiving messages
from all variables within its Markov blanket.

However, in order to ensure that closed form update equations can be
derived for each node, VMP places the following two restrictions upon the
Bayesian network:

1. Exponential family distributions: Each variable in the Bayesian
network must follow a distribution belonging to the exponential family.

2. Conjugate priors: All links in the network must ensure conjugacy
along links of conditional dependence.

The Bayesian network we consider in Section 2 and Section 3 consists of a
hidden Markov model in which prior distributions are placed over the model
parameters. VMP considers both the model parameters and states of the
HMM as latent variables, as shown in Figure A.11. In the figure, discrete
variables are represented by squares, continuous variables are represented by
circles, and fixed hyperparameters are in neither squares nor circles.

In our HMM, the variables follow either Dirichlet, multinomial, Gaussian
or gamma distributions. Since all these distributions belong to the expo-
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Figure A.11: Bayesian hidden Markov model.

nential family, VMP Requirement 1 is satisfied. Furthermore, the distribu-
tions over the model parameters consist of Dirichlet priors over multinomial
variables, and Gaussian-gamma priors over Gaussian variables. Since these
distributions all represent conjugate prior distributions, VMP Requirement 2
is also satisfied.

Having shown that the graphical structure of Bayesian HMMs respects the
requirements of VMP, we now describe how VMP can be used to find local
optima in the approximate joint likelihood. We first describe the general
message passing algorithm and variable update equations, followed by an
example of their application to Bayesian HMMs.

The variational message passing algorithm is defined as follows. First,
the variational distribution of each variable is initialised. Next, each variable
receives messages from each of its parents and children, before updating its
variational distribution. Once all variables have updated their variational
distribution, the lower bound on the model likelihood is calculated and the
number of iterations is incremented. This process is repeated until either
the increase in the lower bound is less than some threshold or the maxi-
mum number of iterations has been reached. The algorithm is formalised in
Algorithm 1.

We now describe the messages that are passed between variables, and
how these messages are used to update each variable’s variational distribu-
tion. Variational message passing generalises variational inference methods
by expressing all distributions over variables in the common form of expo-
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Algorithm 1: Variational message passing.

initialise variational distribution of all variables;
while increase in lower bound is greater than threshold and number of
iterations is less than maximum do

for each variable do
retrieve messages from all variable’s parents and children;
update variable’s variational distribution;

end
compute lower bound on joint likelihood;
increment number of iterations;

end

nential family distributions:

P (X|Y) = exp[φ(Y)Tu(X) + f(X) + g(Y)] (A.1)

where the variable Y is a parent of variable X, φ(Y) is the natural parameter
vector, u(X) is the natural statistic vector, and f(X) and g(Y) are other
functions specific to the variable’s distribution. The messages passed from
parents to children are specified by:

mY→X = 〈uY 〉 (A.2)

where 〈uY 〉 is the expectation of variable Y ’s natural statistic vector. The
messages passed from children to parents are specified by:

mX→Y = φ̃XY (〈uX〉, {mi→X}i∈cp(Y )) (A.3)

where the function cp(Y ) returns the co-parents of variable Y , and φ̃ is a
reparameterisation of φ in terms of the expectation over the natural statistic
vector.

Once messages are received from all parents and children of a variable,
the variational distribution over that variable can be updated. The natural
parameter vector can be updated by:

φ∗Y = φ̃Y ({mi→X}i∈pa(Y )) +
∑

j∈ch(Y )

mj→Y (A.4)
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where the function pa(Y ) returns the parents of variable Y and ch(Y ) returns
the children of variable Y . The natural statistic vector can then be updated
by:

〈uY 〉P (X|φ) = −dg̃(φ)

dφ
(A.5)

where g̃ is a reparameterisation of g in terms of φ. With each iteration of the
VMP algorithm, all variables will update their natural parameter vector via
Equation A.4 and natural statistic vector via Equation A.5, and therefore
each iteration provides an increase of the lower bound on the model’s joint
likelihood.

Having provided a general definition of the variational message passing
algorithm, we now give an example of the messages that would be received
by variable z2 within the Bayesian HMM in Figure A.11. In order to update
variable z2’s variational distribution, it must first receive messages from its
parents, z1 and A, and its children, z3 and x2. However, its children will first
require messages to be received from its co-parents with x2, which correspond
to variables A and φ, before they can send their respective messages to z2.
Once z2 has received messages from all its parents and children, it can then
update its variational distribution using Equation A.4 and Equation A.5.

Appendix B. Prior Distributions of Appliance Model Parameters

This section provides the hyperparameter values used for the experiments in
Section 2. We used uninformative uniform priors for both Dirichlet distri-
butions over the initial multinomial distribution and transition matrix. We
also used rough hyperparameters for the Gaussian-gamma distribution over
the emission function, as stated in Table B.7.
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ŵ 0.0088 0.01

Washing machine

λ̂ 0 150 1350
r̂ 10−2 10−3 10−5

β̂ 0.2285 4 4
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