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Abstract 

 

The nofit polygon is a powerful and effective tool for handling the geometric 

requirements of solution approaches to irregular cutting and packing problems. Although 

the concept was first described in 1966, it was not until the early 90s that the general 

trend of research moved away from direct trigonometry to favour the nofit polygon. Since 

then, the ability to calculate the nofit polygon has practically become a pre-requisite for 

researching irregular packing problems. However, realisation of this concept in the form 

of a robust algorithm is a highly challenging task with few instructive approaches 

published. In this paper, a procedure using the mathematical concept of Minkowski sums 

for the calculation of the nofit polygon is presented. The described procedure is more 

robust than other approaches using Minkowski Sum knowledge and includes details of 

the removal of internal edges to find holes, slits and lock and key positions. The 

procedure is tested on benchmark data sets and gives examples of complicated cases. In 

addition the paper includes a description of how the procedure is modified in order to 

realise the inner-fit polygon.   
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1. INTRODUCTION 

The paper specifically addresses the geometric calculations required for tackling 

cutting and packing problems involving irregular shapes. Such problems are common in 

manufacturing processes and occur whenever a piece of irregular shape is to be cut from 

a sheet of stock material. Examples include dye-cutting in the engineering sector, parts 

nesting for shipbuilding, marker layout in the garment industry, and leather cutting for 

shoes, furniture and other goods. Here we consider that shapes are irregular if they are; 

polygonal, i.e no arcs; simple, i.e. do not self-cross; and non-rectangular. Even when all 

the components are rectangular the problem of finding layouts that minimize waste is 

known to be NP-hard. Where irregular components are involved an extra dimension of 

complexity is generated by the geometry. 

The precise requirements of a good layout will differ from industry to industry and 

this has lead to a variety of algorithmic approaches. In spite of their differences, all the 

methods have a common requirement in which they need to be able to identify whether a 

layout is feasible or not, i.e. do any of the pieces overlap. Early research handled this 

problem in a number of ways. Adamowicz and Albano (1976) chose to nest pieces into 

simpler shapes where the geometry can be more easily calculated. If the shapes are used 

directly then the intersection of pieces can be handled by direct trigonometric approaches 

such as the D function (Mehadavan, 1984; Konopasek, 1981). Alternatively the stock 

sheet and the pieces can be approximated as grid squares, often referred to as the raster 

method. Hence, if a piece occupies, fully or partially, a grid square it is coded as occupied 

(Oliveira and Ferreira, 1993; Babu and Babu, 2001).  
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Although all these approaches have merit, it is widely recognized that the nofit 

polygon (NFP) is more efficient, provided you have a robust and efficient NFP generator, 

and has become the principle approach for handling the geometry in nesting problems. 

Unfortunately, some researchers believe that despite the value of this tool, its introduction 

may have stifled research into this variant of packing problems. Wäscher, Haußner and 

Schumann (2005) reports that there have been only 21 publications in irregular problems 

in the last 10 years. Researchers attribute this to the fact that the realization of the NFP as 

a robust algorithm is, in itself, a highly challenging task. Those considering embarking on 

research into irregular shaped packing may be discouraged by the significant investment 

of time required in first developing an NFP generator. Hence, it is essential that robust 

and easily realizable algorithms are available in order to facilitate new interest into this 

important problem. 

The primary purpose of this paper is to introduce a new procedure for calculating the 

NFP. The method is developed from the theory of Minkowski sums and builds on the 

principles proposed by Ghosh (1993) and by Bennell, Dowsland and Dowsland (2001). 

Further, the paper includes an algorithmic procedure for eliciting the true boundary of the 

NFP, including holes, slits and exact fits. The next section outlines the most commonly 

cited approaches for calculating the NFP and points out their positive features and 

disadvantages. Section 3 reviews in more detail the Minkowski sum approach. This is 

followed by a description of our new procedure based on Minkowski sums. Section 5, 

develops our approach for removing redundant internal points and therefore identifying 

the true boundary. In both cases the full algorithmic steps are provided. Section 6 outlines 
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the modification required in order to determine the inner-fit polygon. Finally, we develop 

some theoretical and empirical analysis of the approach to demonstrate its robustness. 

 

2. DOCUMENTED APPROACHES FOR GENERATING THE NOFIT 

POLYGON 

The nofit polygon (NFP) is a combination of the properties of two component 

polygons that, as a result, represents all the relative positions of the two polygons in 

which they either touch or overlap. It is well documented that the NFP can reduce the 

complexity of detecting overlap between two pieces from O(nm+n+m), where n and m 

are the number of edges in each polygon, obtained from direct trigonometry, to a simple 

point inclusion test of O(k), where k is the number of edges in the NFP. Full explanations 

of the concept can be found in (Mehadevan, 1984; Ghosh, 1991; Bennell, 1998; Bennell 

Dowsland and Dowsland, 2001), where the most intuitive description is found in 

Cunningham-Green (1989), who describes the motion of one polygon sliding around the 

boundary of the other; often referred to as the orbiting method. Figure 1a and 1b 

illustrates the motion of polygon B, the orbiting polygon, sliding around A, the fixed 

polygon, tracing the locus of a reference point on B. He also notes that when both 

polygons are convex, the NFP is an exact replication of the edges of both polygons, with 

opposite orientation, sorted into their slope order. Figure 1c shows the edges of both 

polygons, where A has counterclockwise orientation and B has clockwise orientation, 

sorted into slope order; these can be directly mapped onto the NFP in figure 1b. Note that 

this role and orientation of polygons A and B will be adopted for the remainder of the 

paper. Cunningham-Green’s (1989) observations underpin two of the most common 
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approaches to generating the NFP; the orbiting method that simulates the sliding motion, 

and Minkowski sums that sort the edges according to the the slope order and edge 

precedence, i.e the sequential order of edges around the polygons. A further approach 

commonly employed is that of decomposition. A brief description of each is provided 

here. 

 

 

 

Figure 1: The locus of the reference point on B traces the NFP as it slides around A. 

This is equivalent to connecting the edges in slope order. 

 

Minkowski sum 

Clearly, when both component polygons are convex the NFP is very simple to 

calculate by sorting the edges into slope order. Further, when one of the polygons is 
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convex and the other is an arbitrary simple polygon, the NFP can still be easily obtained 

from the slope order and the precedence of the edges. In this case, the NFP is obtained by 

forming an edge list that follows the precedence of the simple polygon, assigned as 

polygon A, in a counterclockwise direction, and adding the edges of the convex polygon, 

assigned polygon B, to the list whenever they are encountered in the slope order. Due to 

the concavities in A, the precedence will necessitate a clockwise turn through the slope 

order, if the edges of the convex polygon are encountered in the clockwise direction; they 

are included in the edge list with negative direction. Note that this also retains the 

precedence of the edges of the convex polygon. Unfortunately the resulting polygon 

created from this edge list is complex and further computation is required to remove 

edges or parts of edges that are not part of the boundary of the NFP. Figure 2 illustrates 

the tracking of the precedence order of a simple polygon through the slope order. 

 

 

Figure 2: A simple polygon and respective slope order 

 

It is worth noting that even in the convex-simple case, the NFP may contain holes. 

These represent a non-overlapping placement position within a concavity that cannot be 
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encountered through sliding. Such cases will be discussed later in the paper. When both 

polygons contain concavities, following the precedence of both polygons, 

simultaneously, becomes impossible without further modification to the approach.  Since 

it is these principles that form the basis of the Minkowski sum approaches presented in 

this paper, these issues will be discussed in later sections. 

 

Orbiting method 

An alternative approach is to use the orbiting method (Mahadevan, 1984). This 

approach attempts to simulate the sliding motion of one polygon around the other. When 

both polygons are convex, this is equivalent to sorting the edges in slope order. However, 

when one or both of the polygons have concavities, the full extent of some edges may not 

be available to slide along without generating overlap. Mahadevan’s approach calculates 

the nature of the touching vertices and edges, at a given point, in order to identify the 

next edge to slide along; this is the translation vector. He then projects forward the 

vertices of the orbiting polygon and projects backward the vertices of the fixed polygon 

in order to identify the closest point of intersection. The orbiting polygon is then 

translated along the translation vector to the point of the closest intersection. The key 

criticism of this approach is that it can only identify the external boundary of the NFP and 

any holes that may exist will be missed. Burke et al (2005) have proposed some 

modifications to Mehadevan’s approach that improves the computational efficiency and 

permit the identification of holes. They first find the outer face of the NFP using the 

principles of Mehadevan’s sliding approach, while recording each edge of the polygons 

that have been partially or fully traversed. The edges that are not flagged are then 
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candidates for possible holes. A process of identifying all feasible touching start position 

is performed for the candidate edges. If a feasible start position is found, the sliding 

approach is performed again from that starting point. This continues until all edges not 

flagged have been investigated. 

 

Decomposition 

Given the comparative complexities of the described approaches when one or both 

polygons are simple, decomposing the component polygons into suitable sub-polygons is 

an attractive option. Examples in cutting and packing literature include convex 

decomposition (Watson and Tobias, 1999) and star shaped decomposition (Li and 

Milenkovic, 1995). As previously described, the NFP of two convex polygons is trivial. 

Li and Milenkovic selected star shaped polygons since the NFP of two star shaped 

polygons is also star shaped. Hence, in generating the sub-NFP, they need only be 

concerned with the outer boundary.   

Although decomposition simplifies the core NFP operation, it also generates two 

further issues; efficient decomposition and robust recombining of the sub-NFPs. Agarwal 

Flato and Halperin (2002) investigated these issues for convex decomposition. They 

determined that optimal decomposition could significantly reduce the number of sub-

NFPs required, but this benefit did not out weigh the computational cost of the 

decomposition process. Recombination provides further challenges, since if edges from 

two sub-NFPs coincide or cross in and out of each other, careful analysis must be 

performed to detect whether these edges are part of the boundary of the NFP. Agarwal, 
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Flato and Halperin (2002) found that the recombination operation was the most 

computationally expensive and report relatively high computation times. 

A recent development in handling the geometric properties of irregular packing 

problems, in both two and three dimensions, is that of the Phi-function (Stoyan et al, 

2001, 2002). Although phi-functions are not strictly nofit polygons, they are a related 

concept and have proved to be both efficient and effective. The Phi-function is able to 

determine the distance between two polygons and therefore whether they overlap. Stoyan 

et al analytically construct phi-functions for all primary objects; rectangles, circles and 

other convex polygons. As a result, arbitrary polygons or parallelepipeds can be handled 

by representing them as a finite combination (union, intersection, complement) of 

primary objects. 

All of the methods described have been somewhat successful. However, all 

experience difficulties when; the problem instance becomes complex, for example, 

degenerate cases where one or more dimension fits exactly into a concavity; 

computational times can be large; and the algorithm proposed difficult to realize. In this 

paper we will further develop the Minkowski sum approach and present a robust, 

efficient and simple algorithm. Although we do not dismiss the potential of the other 

approaches, a clear advantage of this approach is that the basic Minkowski sum can be 

obtained through simple rules designed to list the edges according to the precedence of 

both polygons while sorting in slope order. For all the described methods, the 

identification of holes and degenerate cases is somewhat laborious. 

3.  APPROCHES TO FINDING THE NOFIT POLYGON USING MINKOWSKI 

SUMS  
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As previously described, generating the NFP of both the convex-convex and simple-

convex case can easily be solved using the slope and precedence order of the edges. 

Ghosh (1991, 1993) developed these ideas and proposed the theory of boundary addition, 

which can be illustrated through the use of a slope diagram. Figure 3a illustrates two 

polygons converted into their respective slope diagrams. Note that the polygons have 

opposite orientation, A has counter clockwise orientation; positive, and B has clockwise 

orientation; negative.  The boundary addition theorem states that the Minkowski sum, 

BA −⊕ , which is equivalent to the NFP, can be obtained from merging the slope 

diagrams of A and –B and is given by an edge list that follows the slope order and retains 

the precedence of the edges of both A and -B through counter clockwise (positive) and 

clockwise (negative) turns.  The simple-simple case is also comprehensively addressed 

by the boundary addition theorem. However, when concavities in the two polygons 

interact, it becomes impossible to define one path through the slope diagram that retains 

the precedence of both polygons. Ghosh overcame this problem by defining parallel 

paths, where the precedence of one or the other polygon would dominate. His approach is 

illustrated in figure 3. Unfortunately, when multiple concavities interact, between and 

within the polygons, it becomes impossible to define algorithmic rules for robustly 

untangling the conflicting areas.  
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Figure 3 Ghosh (1991) approach to two simple polygons with interacting concavities 

 

Bennell, Dowsland and Dowsland (2001) propose an alternative approach to the 

simple-simple case. Their approach exploits the knowledge that the simple-convex case is 

trivial and that the Minkowski sum of a simple polygon A with the convex hull of 

polygon B, MinkAconv(B) , will contain all the boundary and internal points of the original 

simple-simple case, MinkAB. In order to generate conv(B), dummy edges are introduced 

that replace the edges that make up the concavities of B. Clearly these dummy edges 
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appear, both positively and negatively, in MinkAconv(B). Hence replacing the dummy edges 

in the edge list of MinkAconv(B) by the real edges of B, following the precedence of the 

edges and including A edges when they are passed in the slope order, will result in 

MinkAB.  

While Bennell, Dowsland and Dowsland’s approach works well on the benchmark 

data sets (ESICUP), further investigation highlights some ambiguity in the procedure for 

replacing dummy edges. This is illustrated through the example in figure 4.  

Figure 4(a) illustrates the generation of MinkAconv(B). It is clear that dummy edge bd1 

will slide across the vertex between edge a9 and edge a1 . Hence appearing on the slope 

diagram on that traversal alone. However, we can observe in figure 4(b) that vertex 

(a9,a1) can not slide along the full extent of edge b2 due to a collision between edge b3 

and vertex (a6,a7). However, if when replacing the dummy edge in the slope diagram, 

only the A edges on the same traversal are considered, this collision will not be included 

in the boundary of the NFP. Figure 4(b) illustrates, the resulting MinkAB when only the 

current traversal is considered, and the true NFP. The problem can be resolved by 

including the additional edges. However, defining rules to determine the instances in 

which extra A edges should be included has proved difficult.  
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Figure 4 An example when edges may be missed when using Bennell, Dowsland 

and Dowsland (2001) 

 

4. A REVISED PROCEDURE FOR OBTAINING THE BOUNDARY OF THE 

NOFIT POLYGON 

The proposed new approach for finding the NFP is also based on the boundary 

addition theorem and inspired by the observation that the simple-convex case is trivial. 

Further, the new approach is simple, intuitive and removes ambiguity concerning which 
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edges should be included in the edge list. The basic idea is to break polygon B into 

groups that are in either continuous counter clockwise or clockwise order. Each of the 

groups can then be individually merged with the slope diagram of A without conflict. 

When combining the merged lists, linking edges need to be included in order to maintain 

the precedence of the edges in each polygon. As with Ghosh and Bennell, Dowsland and 

Dowsland, the resulting edge list is a complex polygon, where the edges represent all the 

boundary edges and some internal points of the Minkowski sum. In order to have 

successfully generated the NFP, the edges that are not part of the boundary must be 

removed. The approach for finding the Minkowski sum will be first illustrated by an 

example and then the algorithmic procedure will be given. Removal of internal edges will 

be addressed in the next section. 

Consider the example previously given in figure 3. If we follow the precedence of A, 

traversing from a2 to a3 we will encounter b4 before b3, yet the previous B edge 

encountered had been b2. The equivalent conflict would occur in A if we followed the 

precedence of B. However, if we break polygon B at the vertex connecting b3 and b4, and 

consider the edges as a list, instead of a cycle, starting from b4, then we have b4, b5, b1, 

b2 and b3 in a continuous counter clockwise direction. As a result, all the edge points B 

on the slope diagram are in the correct order, and b3, at this time, has no connection to 

b4. Having made this break, the procedure can be described as one of searching for the 

next B edge on the list through following the precedence path of A. Hence, only the next 

B edge is active, all others are dormant. Since the B edges may be visited more than once, 

it is first necessary to perform an initial exploratory cycle of the merged slope order, 

following the precedence of A and counting the number of times a B edge is traversed. 
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The approach applied to the example in figure 3 works as follows. Start from the first 

B edge, b4, we search for b5. To find this we traverse a3 and a4. From b5 we search for 

b1 and traverse a5. From b1 we search for b2 and traverse a1. Finally we search for b3 

traversing a2. Since b3 crosses the concavity of A, it will appear three times. This was 

established through the initial counting phase. Hence the search continues until all 

appearances of b3 have been found. Thus we obtain b4, a3, a4, b5, a5, b1, a1, b2, a2, b3, 

a3, -b3, a4, b3. Given that a polygon must be a complete cycle, we must now link the 

beginning and the end of the list. Hence from b3 we will look for b4. This requires a 

clockwise turn through the slope diagram traversing –a4 and –a3. Thus finally we obtain: 

b4, a3, a4, b5, a5, b1, a1, b2, a2, b3, a3, -b3, a4, b3, -a4, -a3.  

In summary, the procedure to form the sequence follows the slope diagram of A 

positively when the series of B edges are in a counter clockwise direction and follows it 

negatively when the series of B edges are in a clockwise direction. With this knowledge, 

we consider a more complex case.  

In figure 5, there is more than one concave point in polygon A and B. Sorting A and B 

into slope order, merging the lists and following the precedence of A, we discover that all 

B edges will be traversed three time with the exception of b7 and b11 which will be 

traversed five times. Further we know the direction in which they are traversed; positive 

or negative. Given the groups will be linked, we wish to finish a group moving forward in 

a counter clockwise direction, equivalent to a positive B edge. The edge points of B can 

be divided into the following five groups according to their appearance in consecutive 

counter clockwise direction or clockwise direction on the slope diagram.  
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1. b12, b1, b2 (counter clockwise) 

2. b3, b4 (counter clockwise) 

3. b5, b6, b7 (counter clockwise) 

4. b8  (clockwise) 

5. b9, b10, b11 (counter clockwise) 

For each group we follow the precedence of A searching for the next B edge in the 

sequence. For example for group 1, we begin with the first B edge on the list at the 

occurrence that follows a1. This ensures we end on a positive B edge, i.e we have not 

broken the +,-,+ sequence of b12. The next B edge is b1, hence we traverse b12, a2, a3, -

b12, a4, b12, a5, a6, b1. Note that the admissible B edges that can be included are either –

b12 or b1, if we had encountered other B edges on route to b1, they would have been 

ignored. This can be observed in other groups. Next, we search for b2, which is 

encountered directly after b1. Although, b12, b1 and b2 have been found, we know we 

must traverse each three times, hence the search continues through a7, -b2, a8, -b1, a9, 

a10, b1, a11, b2.  In order to link each group, some additional A edges need to be added. 

For group 1 the final A edge is a12 and the first A edge in group 2 is a7, hence we must 

return through –a12 to –a7 to retain the precedence order. The full edge list is detailed 

below, where the A edge that precedes the starting B edge is included in square brackets 

to indicate the starting point, but is not part of the edge list. The linking edges are 

underlined. 
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Figure 5: Complex case of two polygons with more than one concavity in each polygon 

 

1. [a1], b12, a2, a3, -b12, a4, b12, a5, b1, a6, b2, a7, -b2, a8, -b1, a9, a10, b1, a11, 

b2, -a11, -a10, -a9, -a7 

2. [a6], b3, b4, a7, -b4, a8, -b3, a9, a10, a11, b3, b4, -a11, -a10, -a9, -a7 

3. [a6], b5, a7,  -b5, a8, a9, a10, a11, b5, a12, b6, a1, b7,  a2, -b7, a3, -b6, a4, b6, 

a5, b7, a6, a7, a8, a9, -b7, a10, b7, -a10, -a9, -a7, -a6, -a5 

4. [-a5], b8, -a4, -b8, -a3, -a2, b8, a2, a3, a4, a5 
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5. [a6], b9, a7, -b9, a8, a9, a10, a11, b9, a12, b10, a1, b11, a2, -b11, a3, -b10, a4, 

b10, a5, b11, a6, a7, a8, a9, -b11, a10, b11, -a10, -a9, -a7, -a6, -a5, -a4, -a3, -a2 

 

The procedure to find the Minkowski sum of two polygons A and B is given below. 

Note that if a group of B edges have continuous counter clockwise order, it is labeled as 

positive, otherwise it is labeled as negative. A positive group traverses the slope diagram 

of A in counter clockwise order including positive A edges. A negative group follows the 

slope diagram in clockwise order including negative A edges. Only the positive procedure 

is included here. For efficiency, the procedure in Mink(Q,R,positive) traverses the slope 

order list following the precedence of A recording the B edges encountered along the way 

to provide list, s. This process allows us to know the number of times each B edge is 

encountered and in what direction. Further list s can be used to create the correct 

sequence of A and B edges without searching the slope order a second time. 

 

Algorithm 1: Algorithm to generate the Minkowski Sum 

Step 1: Replace B by –B, i.e. replace all co-ordinates ( )BB yx ,  of B by ( )BB yx −− , . 

Step 2: Starting at the lowest point on each polygon. Label the edges in counter clockwise 

order. 

Calculate the angle ( )iθ  of each edge, i , from the horizontal in a counter 

clockwise direction.  

            For each edge i , let ( ) ( ) ( )1−−= iii θθα . 

            If ( ) 180>iα  then ( ) ( ) 360−= ii αα . 

            If ( )( ) ( )( )1−≠ isignisign αα  mark i  as a turning point. 
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If any turning points have been detected then polygon is non-convex. 

Sort the edges into angle order to form sort_list(P), where P = A or –B.  

Step 3: Let ( )11 ,,
1 ++ nkk bb �  be the set of turning points on the slope diagram of polygon B. 

Then polygon B can be divided into groups B1 ( )
211

,,, 21 kkk bbb �++= , 

B2 ( )
322

,,, 21 kkk bbb �++= ,…, Bn ( )
1

,,, 21 kkk bbb
nn

�++=   according to them being 

consecutive counterclockwise direction or consecutive clockwise direction.   

Step 4:  For each group Bj, (j =1,…, n), call Mink(A, Bj, positive) or Mink(A, Bj, negative)  

according to group Bj  being counter clockwise or clockwise respectively. We 

obtain Seqj.  

Step 6:  Link Seq_list(A,B1),…,Seq_list(A,Bn) with additional A edges one by one. 

If Seq_list(A,Bj) is positive, insert negative A points to link Seqi with Seqi+1 . 

else Seq_list(A,Bj) is negative, insert positive A points to link Seqi with Seqi+1 . 

 

Mink(Q, R, positive).  

Step 1 : merge sort_list(Q) and sort_list(R) to form merge_list(Q,R) 

Step 2: set i = 1, k = 1, direction = 1, s1 = q1 

Step 3: Set i = i + 1 

Search merge_list(Q,R) for qi moving forward if direction = 1 and backwards if 

direction = -1 

if R edge, rj, set k = k + 1, sk = direction � rj 

When qi is encountered, if i = 1, go to step 4 

Otherwise set k = k + 1, sk = qi 
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If qi is a turning point in Q, set direction = - direction 

Repeat step 3 

Step 4: Let starting edge r1 be in position si in sequence 

Set j = 1, next = 2, direction = 1, seq1 = si 

Step 5: Set i = i + 1, if i > k, set i = 1 

If si is from Q, j = j + 1, seqj = si 

If si is a turning point in Q, direction = - direction, next = next + direction 

If si = direction.rnext, j = j + 1, seqj = si, next = next + direction 

If all si edges have been allocated to seqj, return seq1 to seqj as Seq_list(Q,R) 

Otherwise, repeat step 5 

5. COMPUTING THE BOUNDARY OF THE NFP 

The resulting Minkowski sum is a complex (self crossing) polygon where the edges 

include all the edges of the nofit polygon and some internal points. In this section we 

describe a new method for identifying the true edges of the NFP. 

Figure 6b illustrates the outcome of the Minkowski sum procedure described in the 

previous section, for two simple polygons drawn in 6a. Clearly there are many edges to 

untangle. However, using some of the properties we know about the NFP and the 

boundary addition method we can quickly remove many of these edges. 

Property 1. As detailed earlier in the paper, the NFP can be described as the path of a 

reference point on B as it slides around the edges of A. Further, the sliding motion is 

always in the same direction (i.e. counter clockwise) and as a result the path mapped by 

the reference point on B is also in one direction. 
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Property 2. The slope diagram representation, used in boundary addition, indicates 

that if edge bj appears between edges (ai,ai+1), this corresponds to the physical condition 

that edge bj slides along vertex (ai,ai+1). When the direction from ai to ai+1 is counter 

clockwise and edge bj is positive, the corresponding sliding condition is that the convex 

vertex (ai,ai+1) slides along bj. Otherwise, the negative edge bj corresponds to the 

condition that the concave vertex (ai,ai+1) slides along edge bj. Clearly an edge cannot 

slide along a concave vertex without creating overlap between the polygons. 

It can be deduced from these two properties that any negative edges cannot be part of 

the boundary of the NFP and can be removed. Further, the linking edges between 

sequences can also be removed since their inclusion is to define the correct starting 

position of the next sequence and they do not represent potential sliding between the 

polygons. Figure 6c illustrates the Minkowski edge list with the redundant edges 

removed. With this understanding, we can develop intuitively a new method to identify 

the boundary of the NFP by only considering useful parts of the derived Minkowski sum 

edge list. 
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Figure 6: A large example of the Minkowski sum edge list and track line traces 

In order to introduce this method, we recall briefly some terms introduced by 

Ramkumar (1996). A state is a pair consisting of a position s in the plane and a direction 

s. A move is a set of states with constant direction and position varying along a line 

segment parallel to the direction. A turn is a set of states with constant position and 

direction varying along an arc of the circle of directions. A polygonal trip consists of a 

continuous sequence of moves and turns; the trip is closed if it starts and ends at the same 

state. A polygonal tracing is a collection of closed polygonal trips. We think of each loop 

Polygon BPolygon A

(a)

(b) (c) Minkowski edge list Minkowski sum after removal
of redundant edges

(d)
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of a tracing as being traversed by a car which always faces in the direction of the state it 

is currently following.  

The first step is to break up the Minkowski sum into polygonal trips according to the 

continuous sequence of moves and turns. Those that cannot be part of the boundary of the 

NFP, according to the properties described above, are discarded. This is equivalent to 

removing the negative and additional A edges.  

 

 

Figure 7: Procedure for removing internal edges from the Minkowsi sum 

 

The second step of the procedure requires the identification of all the intersection 

points between the polygonal trips. Each intersecting point is marked with a ‘-’, 

indicating it is entering the trip, or with a ‘+’, indicating it is leaving the trip. Consider 

the example in figure 7a, where the current trip is trip 2. Imagine standing at the 

beginning of the first edge of trip 2 facing along the edge, then we can consider that trip 1 

intersects trip 2 from right to left. Trip 1 is said to enter trip 2 and is marked with ‘-’. 

Continuing along trip 2 we eventually meet an intersection with trip 4, where trip 4 

intersects from left to right. Trip 4 is leaving trip 2 and marked with ‘+’. Hence, entering 
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(a) Identify each intersection
as entering or leaving the trip

(b) Truncate each trip retaining 
parts between '-' and '+'

(c) Repeat and link parts
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a trip means the beginning part of the intersecting edge is on the right side of the trip edge 

and leaving corresponds to the beginning part of the intersecting edge is on the left side 

of the trip edge. The fragments of trips that span a ‘-’ intersection to a ‘+’ intersection are 

kept to form the boundary of the NFP. All other fragments are discarded.  

Finally, fragments that share end points are linked. Only those parts, which form a 

cycle, can be taken as the boundary of the NFP. In the case where cycles represent holes 

in the NFP, we implement a simple direct test of whether the two component polygons 

overlap when the reference point of B is located on a vertex of the hole. 

The algorithm for finding the boundary of the nofit polygon can be summarized in 

Algorithm 2 and 3 as below: 

Algorithm 2: Algorithm for breaking Minkowski sums into track line trips: 

Step 1:  Let 0=i  be the index number of Minkowski sums obtained. Let 0=j  be the 

number of track line trips, jn  be the total edges in track line trip j  and 0=k  be the 

index of each track line trip. 

 Step 2:  Search forward in Minkowski Sum for positive is , which corresponds to a 

track line. If is  can be found, set ij st
k

= , else go to Step 4. 

Step 3:   Set 1+= ii  and 1+= kk . If is  is positive and corresponds to a track line, 

repeat step 3,  

else set kn j = , 1+= jj  and 0=k , repeat Step 2. 

Step 4:    Return 
0j

t  to 
jnj

t  as track line trip jT . 
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The computational complexity of Algorithm 2 is ( )NO , where N  is the number of 

edges of Minkowski sums. 

 

Algorithm 3: Algorithm for finding the boundary of the NFP from track line trips: 

Step 1:   Let trip jT , contain 
jjnseg segments. 

For all i and j where ji ≠ ,  

If
jjkseg  intersects 

iikseg , let 
jjrp   be the intersection points on jT   

If 
jjrp  crosses right to left set 1−=

jjrsign , else set 1+=
jjrsign .   

Step 2:   For each jT ,  

If 1−=
jjrsign  and 11 +=+jjrsign . Store all segments between the intersection 

points, { }
jjjj jrmjkjkjr pssp ,,,,1 +− � , into { }

iilikii ffffrag ,,,...,1 �= , where il  is 

the number of segments in ifrag . 

Step 3:  For all 0≠ifrag , we  

if 1if =
jjlf , { }

ij iljljiji ffffragfragfrag ,,,1 ��=+= , 0=jfrag .  

if 1jf =
iilf , { }

ji jlilijii ffffragfragfrag ,,,1 ��=+= , 0=jfrag . 

if 1if =
jjlf  and 1jf =

iilf  then form kcycle  and set 0== ji fragfrag   

Repeat step 3 until all 0=ifrag .  

Step 4:   For each kcycle ,  

Locate reference point of polygon B on one of the vertexes of kcycle . 

 Discard the kcycle  if the two polygons overlap  
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It is important to note that the above algorithm is able to identify the outer face of the 

Minkowski sums, holes inside the outer face, a single point that represent an exact fit, and 

exact slides represented as a single line. The latter two are often referred to as degenerate 

cases.  

Degenerate cases 

The degenerate cases, in general, refer to combinations of polygons that can fit together 

like a jigsaw, resulting in a single point of fit within the NFP, or where one piece can 

slide into or within a concavity in one direction only, resulting in a line either extending 

from the edge of the NFP or within.  

fragjfragi

dcba

(b)

dc
ba   

(c)(a)

 

Figure 8: Coinciding fragments to indicate exact slide in NFP 

 

An exact slide can be identified when two fragments, obtained from Algorithm 3, step 

2, coincide. Figure 8a illustrate ifrag  and jfrag  with start points, a and d, and end 

points, b and c respectively. If the start and end points from each fragment coincide, as 

shown in figure 8b they can be linked into a cycle (figure 8c) in step 3. The cycle is 

validated as part of the boundary of the NFP in step 4.   
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In the case of a single point, further calculation is required in Algorithm 3, step 1. When 

all the intersection points between segments of the trip are calculated, we also identify 

special intersection cases as shown in figure 9, where trips iT  and jT  intersect each other 

at point A. It is necessary to test all intersection points of this type to identify if it is an 

exact fit. In our experience, intersection points such as A seldom occurred within the 

intersection condition. 

 

TjTi

A

 

Figure 9: Edge intersection to indicate exact nesting point in NFP 

 

6. THE INNER FIT POLYGON 

The inner fit polygon represents the feasible placement positions of one polygon, B, 

inside another polygon, A. An example of this is given in figure 10. This is useful for 

obstacle recognition in robot motion planning and if pieces are being packed inside an 

irregular shape, for example, shoe manufacturing from leather hides. 
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A

B
inner fit
polygon

 

 

Figure 10: An inner fit polygon 

The described algorithm can be used to calculate the inner-fit polygon with the following 

minor amendments.  

(i) Reverse the orientation of polygon A so that it has clockwise direction. 

(ii) The algorithm should have the positive direction for A as clockwise. However, 

clockwise is still the negative direction for B 

The rationale for these changes can be demonstrated in figure 11. The inner-fit polygon is 

equivalent to B sliding inside a concavity of A. As illustrate in figure 11, the concavity 

has clockwise orientation. Further a concavity translates to a clockwise turn in the slope 

diagram where the edges of the concavity remain positive, while any edges from the 

other polygon encountered during that turn are negative. 
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A

B

 

Figure 11: the equivalence between the inner-fit polygon and the NFP inside a concavity 

 

7 EMPICICAL ANALYSIS 

In order to evaluate the effectiveness of our new approach, we generated all the nofit 

polygons for the benchmark data sets found on the ESICUP (2005) website. All were 

generated correctly and the computation times for every combination of each data set are 

provided in table 1. The procedure was coded in Visual Studio C++ and the instances 

were run on a pc with 512MB, 1.6GHz.  

 

No. CASE No. of piece types Ave no. of edges TIME (s) 

1 Albino_hopper 8 7.25 0.07 

2 Blaz_topos 7 6.28 0.04 

3 Dagli_hopper 10 6.3 0.07 

4 Dighe_hopper 10 4.7 0.04 

5 Dighe_hopper-1 16 3.8 0.07 

6 Fu_hopper 12 3.6 0.04 

7 Han_hopper 20 6.95 0.33 

8 Jakobs_hopper 25 5.8 0.42 
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9 Mao_hopper 9 9.2 0.15 

10 Marques_hopper 8 7.1 0.07 

11 Poly_hopper 75 4.8 2.00 

12 Shapes_topos 4 8.7 0.03 

13 Shirts_topos 8 6.6 0.06 

14 Swim_topos 10 22.8 0.93 

15 Trousers_topos 17 5.1 0.10 

 

Table 1: generation times of all NFPs in benchmark data sets 

 

In addition we have extensively tested our approach on new instances designed to 

involve characteristics such as, a large number of edges, interlocking positions, exact 

sliding, jigsaw type fits, and concavities the turned more than 360 degrees. All NFPs 

were successfully generating, none taking more than once second to generate. The results 

can be found in the figures 10 - 13.  

  

  

A

B

(a) (b)  

Figure 10: a) The nofit polygon contains a hole and an exact slide along the bottom 

edge of the concavity. b) The nofit polygon contains an exact slide. 
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(a) (b)

  

  

 

 

Figure 11: a) The nofit polygon contains a hole. The concavity in polygon A turns 

through more than 360o. b) Nofit polygon contains a hole. Both A and B have concavities 

that turn greater than 360o and interlock with each other. 

  

 

 

(a) (b)  

 

Figure 10: a) The nofit polygon contains a hole and an exact fit indicated by the 

illustrated position of polygon B. b) Polygon B fits exactly in the concavity of polygon A. 
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(a) (b)
  

  

 

 

Figure 11: Both nofit polygons contain multiple holes. Polygon A has concavities 

within concavities. 

 

6. CONCLUSIONS 

In this paper we have described a new approach of finding the nofit polygon. 

Empirical analysis demonstrates that computational times are realistic and that the 

approach is robust in dealing with known degenerate cases and new difficult cases such 

as spiraling concavities. The method is theoretically underpinned by the concept of 

Minkowski sums and builds on the work of Ghosh by adapting his boundary addition 

theorem into an algorithm procedure. It improves on the work of Bennell, Dowsland and 

Dowsland by finding the Minkowski sum in a single procedure and removing any 

ambiguity over which edges should be included in the repair procedure. Finally the paper 

provides a new, simple and robust procedure for the removal of internal edges and 
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identification of holes. All approaches are described in detail, illustrated by example and 

the summary code is provided. 
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