
 1

A comprehensive and robust procedure for obtaining the nofit polygon
using Minkowski sums

 JULIA A BENNELL

School of Management, University of Southampton, Southampton SO17 1BJ, United

Kingdom, j.bennell@soton.ac.uk

XIANG SONG
School of Management, University of Southampton, Southampton SO17 1BJ, United

Kingdom, x.song@soton.ac.uk

The nofit polygon an important tool in the area of irregular shape stock cutting problems.
It provides efficient handling of the geometric characteristics of the problem. The paper
presents a new algorithmic procedure for deriving this tool.

Submitted: June 2005
Subject classification: cutting stock, geometric, algorithm
Area of review: Optimisation

 2

Abstract

The nofit polygon is a powerful and effective tool for handling the geometric

requirements of solution approaches to irregular cutting and packing problems. Although

the concept was first described in 1966, it was not until the early 90s that the general

trend of research moved away from direct trigonometry to favour the nofit polygon. Since

then, the ability to calculate the nofit polygon has practically become a pre-requisite for

researching irregular packing problems. However, realisation of this concept in the form

of a robust algorithm is a highly challenging task with few instructive approaches

published. In this paper, a procedure using the mathematical concept of Minkowski sums

for the calculation of the nofit polygon is presented. The described procedure is more

robust than other approaches using Minkowski Sum knowledge and includes details of

the removal of internal edges to find holes, slits and lock and key positions. The

procedure is tested on benchmark data sets and gives examples of complicated cases. In

addition the paper includes a description of how the procedure is modified in order to

realise the inner-fit polygon.

 3

1. INTRODUCTION

The paper specifically addresses the geometric calculations required for tackling

cutting and packing problems involving irregular shapes. Such problems are common in

manufacturing processes and occur whenever a piece of irregular shape is to be cut from

a sheet of stock material. Examples include dye-cutting in the engineering sector, parts

nesting for shipbuilding, marker layout in the garment industry, and leather cutting for

shoes, furniture and other goods. Here we consider that shapes are irregular if they are;

polygonal, i.e no arcs; simple, i.e. do not self-cross; and non-rectangular. Even when all

the components are rectangular the problem of finding layouts that minimize waste is

known to be NP-hard. Where irregular components are involved an extra dimension of

complexity is generated by the geometry.

The precise requirements of a good layout will differ from industry to industry and

this has lead to a variety of algorithmic approaches. In spite of their differences, all the

methods have a common requirement in which they need to be able to identify whether a

layout is feasible or not, i.e. do any of the pieces overlap. Early research handled this

problem in a number of ways. Adamowicz and Albano (1976) chose to nest pieces into

simpler shapes where the geometry can be more easily calculated. If the shapes are used

directly then the intersection of pieces can be handled by direct trigonometric approaches

such as the D function (Mehadavan, 1984; Konopasek, 1981). Alternatively the stock

sheet and the pieces can be approximated as grid squares, often referred to as the raster

method. Hence, if a piece occupies, fully or partially, a grid square it is coded as occupied

(Oliveira and Ferreira, 1993; Babu and Babu, 2001).

 4

Although all these approaches have merit, it is widely recognized that the nofit

polygon (NFP) is more efficient, provided you have a robust and efficient NFP generator,

and has become the principle approach for handling the geometry in nesting problems.

Unfortunately, some researchers believe that despite the value of this tool, its introduction

may have stifled research into this variant of packing problems. Wäscher, Haußner and

Schumann (2005) reports that there have been only 21 publications in irregular problems

in the last 10 years. Researchers attribute this to the fact that the realization of the NFP as

a robust algorithm is, in itself, a highly challenging task. Those considering embarking on

research into irregular shaped packing may be discouraged by the significant investment

of time required in first developing an NFP generator. Hence, it is essential that robust

and easily realizable algorithms are available in order to facilitate new interest into this

important problem.

The primary purpose of this paper is to introduce a new procedure for calculating the

NFP. The method is developed from the theory of Minkowski sums and builds on the

principles proposed by Ghosh (1993) and by Bennell, Dowsland and Dowsland (2001).

Further, the paper includes an algorithmic procedure for eliciting the true boundary of the

NFP, including holes, slits and exact fits. The next section outlines the most commonly

cited approaches for calculating the NFP and points out their positive features and

disadvantages. Section 3 reviews in more detail the Minkowski sum approach. This is

followed by a description of our new procedure based on Minkowski sums. Section 5,

develops our approach for removing redundant internal points and therefore identifying

the true boundary. In both cases the full algorithmic steps are provided. Section 6 outlines

 5

the modification required in order to determine the inner-fit polygon. Finally, we develop

some theoretical and empirical analysis of the approach to demonstrate its robustness.

2. DOCUMENTED APPROACHES FOR GENERATING THE NOFIT

POLYGON

The nofit polygon (NFP) is a combination of the properties of two component

polygons that, as a result, represents all the relative positions of the two polygons in

which they either touch or overlap. It is well documented that the NFP can reduce the

complexity of detecting overlap between two pieces from O(nm+n+m), where n and m

are the number of edges in each polygon, obtained from direct trigonometry, to a simple

point inclusion test of O(k), where k is the number of edges in the NFP. Full explanations

of the concept can be found in (Mehadevan, 1984; Ghosh, 1991; Bennell, 1998; Bennell

Dowsland and Dowsland, 2001), where the most intuitive description is found in

Cunningham-Green (1989), who describes the motion of one polygon sliding around the

boundary of the other; often referred to as the orbiting method. Figure 1a and 1b

illustrates the motion of polygon B, the orbiting polygon, sliding around A, the fixed

polygon, tracing the locus of a reference point on B. He also notes that when both

polygons are convex, the NFP is an exact replication of the edges of both polygons, with

opposite orientation, sorted into their slope order. Figure 1c shows the edges of both

polygons, where A has counterclockwise orientation and B has clockwise orientation,

sorted into slope order; these can be directly mapped onto the NFP in figure 1b. Note that

this role and orientation of polygons A and B will be adopted for the remainder of the

paper. Cunningham-Green’s (1989) observations underpin two of the most common

 6

approaches to generating the NFP; the orbiting method that simulates the sliding motion,

and Minkowski sums that sort the edges according to the the slope order and edge

precedence, i.e the sequential order of edges around the polygons. A further approach

commonly employed is that of decomposition. A brief description of each is provided

here.

Figure 1: The locus of the reference point on B traces the NFP as it slides around A.

This is equivalent to connecting the edges in slope order.

Minkowski sum

Clearly, when both component polygons are convex the NFP is very simple to

calculate by sorting the edges into slope order. Further, when one of the polygons is

(b)

(c)

(a)
B

NFPAB

A

= Reference point on B

 7

convex and the other is an arbitrary simple polygon, the NFP can still be easily obtained

from the slope order and the precedence of the edges. In this case, the NFP is obtained by

forming an edge list that follows the precedence of the simple polygon, assigned as

polygon A, in a counterclockwise direction, and adding the edges of the convex polygon,

assigned polygon B, to the list whenever they are encountered in the slope order. Due to

the concavities in A, the precedence will necessitate a clockwise turn through the slope

order, if the edges of the convex polygon are encountered in the clockwise direction; they

are included in the edge list with negative direction. Note that this also retains the

precedence of the edges of the convex polygon. Unfortunately the resulting polygon

created from this edge list is complex and further computation is required to remove

edges or parts of edges that are not part of the boundary of the NFP. Figure 2 illustrates

the tracking of the precedence order of a simple polygon through the slope order.

Figure 2: A simple polygon and respective slope order

It is worth noting that even in the convex-simple case, the NFP may contain holes.

These represent a non-overlapping placement position within a concavity that cannot be

a2

a4

a5

a3
a6

a7

a1

a1

a3
a4

a5

a6

a7

a2

A

polygon slope diagram

 8

encountered through sliding. Such cases will be discussed later in the paper. When both

polygons contain concavities, following the precedence of both polygons,

simultaneously, becomes impossible without further modification to the approach. Since

it is these principles that form the basis of the Minkowski sum approaches presented in

this paper, these issues will be discussed in later sections.

Orbiting method

An alternative approach is to use the orbiting method (Mahadevan, 1984). This

approach attempts to simulate the sliding motion of one polygon around the other. When

both polygons are convex, this is equivalent to sorting the edges in slope order. However,

when one or both of the polygons have concavities, the full extent of some edges may not

be available to slide along without generating overlap. Mahadevan’s approach calculates

the nature of the touching vertices and edges, at a given point, in order to identify the

next edge to slide along; this is the translation vector. He then projects forward the

vertices of the orbiting polygon and projects backward the vertices of the fixed polygon

in order to identify the closest point of intersection. The orbiting polygon is then

translated along the translation vector to the point of the closest intersection. The key

criticism of this approach is that it can only identify the external boundary of the NFP and

any holes that may exist will be missed. Burke et al (2005) have proposed some

modifications to Mehadevan’s approach that improves the computational efficiency and

permit the identification of holes. They first find the outer face of the NFP using the

principles of Mehadevan’s sliding approach, while recording each edge of the polygons

that have been partially or fully traversed. The edges that are not flagged are then

 9

candidates for possible holes. A process of identifying all feasible touching start position

is performed for the candidate edges. If a feasible start position is found, the sliding

approach is performed again from that starting point. This continues until all edges not

flagged have been investigated.

Decomposition

Given the comparative complexities of the described approaches when one or both

polygons are simple, decomposing the component polygons into suitable sub-polygons is

an attractive option. Examples in cutting and packing literature include convex

decomposition (Watson and Tobias, 1999) and star shaped decomposition (Li and

Milenkovic, 1995). As previously described, the NFP of two convex polygons is trivial.

Li and Milenkovic selected star shaped polygons since the NFP of two star shaped

polygons is also star shaped. Hence, in generating the sub-NFP, they need only be

concerned with the outer boundary.

Although decomposition simplifies the core NFP operation, it also generates two

further issues; efficient decomposition and robust recombining of the sub-NFPs. Agarwal

Flato and Halperin (2002) investigated these issues for convex decomposition. They

determined that optimal decomposition could significantly reduce the number of sub-

NFPs required, but this benefit did not out weigh the computational cost of the

decomposition process. Recombination provides further challenges, since if edges from

two sub-NFPs coincide or cross in and out of each other, careful analysis must be

performed to detect whether these edges are part of the boundary of the NFP. Agarwal,

 10

Flato and Halperin (2002) found that the recombination operation was the most

computationally expensive and report relatively high computation times.

A recent development in handling the geometric properties of irregular packing

problems, in both two and three dimensions, is that of the Phi-function (Stoyan et al,

2001, 2002). Although phi-functions are not strictly nofit polygons, they are a related

concept and have proved to be both efficient and effective. The Phi-function is able to

determine the distance between two polygons and therefore whether they overlap. Stoyan

et al analytically construct phi-functions for all primary objects; rectangles, circles and

other convex polygons. As a result, arbitrary polygons or parallelepipeds can be handled

by representing them as a finite combination (union, intersection, complement) of

primary objects.

All of the methods described have been somewhat successful. However, all

experience difficulties when; the problem instance becomes complex, for example,

degenerate cases where one or more dimension fits exactly into a concavity;

computational times can be large; and the algorithm proposed difficult to realize. In this

paper we will further develop the Minkowski sum approach and present a robust,

efficient and simple algorithm. Although we do not dismiss the potential of the other

approaches, a clear advantage of this approach is that the basic Minkowski sum can be

obtained through simple rules designed to list the edges according to the precedence of

both polygons while sorting in slope order. For all the described methods, the

identification of holes and degenerate cases is somewhat laborious.

3. APPROCHES TO FINDING THE NOFIT POLYGON USING MINKOWSKI

SUMS

 11

As previously described, generating the NFP of both the convex-convex and simple-

convex case can easily be solved using the slope and precedence order of the edges.

Ghosh (1991, 1993) developed these ideas and proposed the theory of boundary addition,

which can be illustrated through the use of a slope diagram. Figure 3a illustrates two

polygons converted into their respective slope diagrams. Note that the polygons have

opposite orientation, A has counter clockwise orientation; positive, and B has clockwise

orientation; negative. The boundary addition theorem states that the Minkowski sum,

BA −⊕ , which is equivalent to the NFP, can be obtained from merging the slope

diagrams of A and –B and is given by an edge list that follows the slope order and retains

the precedence of the edges of both A and -B through counter clockwise (positive) and

clockwise (negative) turns. The simple-simple case is also comprehensively addressed

by the boundary addition theorem. However, when concavities in the two polygons

interact, it becomes impossible to define one path through the slope diagram that retains

the precedence of both polygons. Ghosh overcame this problem by defining parallel

paths, where the precedence of one or the other polygon would dominate. His approach is

illustrated in figure 3. Unfortunately, when multiple concavities interact, between and

within the polygons, it becomes impossible to define algorithmic rules for robustly

untangling the conflicting areas.

 12

Figure 3 Ghosh (1991) approach to two simple polygons with interacting concavities

Bennell, Dowsland and Dowsland (2001) propose an alternative approach to the

simple-simple case. Their approach exploits the knowledge that the simple-convex case is

trivial and that the Minkowski sum of a simple polygon A with the convex hull of

polygon B, MinkAconv(B) , will contain all the boundary and internal points of the original

simple-simple case, MinkAB. In order to generate conv(B), dummy edges are introduced

that replace the edges that make up the concavities of B. Clearly these dummy edges

 b1

b2

b3

b4

-B

b1

b2
b3

b4

b5

b5

(a)

b3

a4

a5

a3

a2

 a1

b2

-b4

b5

b1-a3

a3
a4a3 a4

-a4

b3
b4

b4

-b3
b3
b4

Path 1 {b2, a3, a4, b3, -a4, -a3, b4, a3, a4, b5}
Path 2 {b2, b3, b4, a3, -b4, -b3, a4, b3, b4, b5}

(b)

a5

a2

a3

a4

a1

a2

a1

a4

a5

a3

a2

a1

a4

a5

a3

A

 13

appear, both positively and negatively, in MinkAconv(B). Hence replacing the dummy edges

in the edge list of MinkAconv(B) by the real edges of B, following the precedence of the

edges and including A edges when they are passed in the slope order, will result in

MinkAB.

While Bennell, Dowsland and Dowsland’s approach works well on the benchmark

data sets (ESICUP), further investigation highlights some ambiguity in the procedure for

replacing dummy edges. This is illustrated through the example in figure 4.

Figure 4(a) illustrates the generation of MinkAconv(B). It is clear that dummy edge bd1

will slide across the vertex between edge a9 and edge a1 . Hence appearing on the slope

diagram on that traversal alone. However, we can observe in figure 4(b) that vertex

(a9,a1) can not slide along the full extent of edge b2 due to a collision between edge b3

and vertex (a6,a7). However, if when replacing the dummy edge in the slope diagram,

only the A edges on the same traversal are considered, this collision will not be included

in the boundary of the NFP. Figure 4(b) illustrates, the resulting MinkAB when only the

current traversal is considered, and the true NFP. The problem can be resolved by

including the additional edges. However, defining rules to determine the instances in

which extra A edges should be included has proved difficult.

 14

-Ba2

a3

a5a6

a9

b2

b3
b4

b5

b6

b7
b1

a1

a4

a7
a8

bd2

bd1

bd3A

missing edges from NFP

(a)

(b)

a4

a7

a9

a1

bd2

bd1

bd3

a8

Figure 4 An example when edges may be missed when using Bennell, Dowsland

and Dowsland (2001)

4. A REVISED PROCEDURE FOR OBTAINING THE BOUNDARY OF THE

NOFIT POLYGON

The proposed new approach for finding the NFP is also based on the boundary

addition theorem and inspired by the observation that the simple-convex case is trivial.

Further, the new approach is simple, intuitive and removes ambiguity concerning which

 15

edges should be included in the edge list. The basic idea is to break polygon B into

groups that are in either continuous counter clockwise or clockwise order. Each of the

groups can then be individually merged with the slope diagram of A without conflict.

When combining the merged lists, linking edges need to be included in order to maintain

the precedence of the edges in each polygon. As with Ghosh and Bennell, Dowsland and

Dowsland, the resulting edge list is a complex polygon, where the edges represent all the

boundary edges and some internal points of the Minkowski sum. In order to have

successfully generated the NFP, the edges that are not part of the boundary must be

removed. The approach for finding the Minkowski sum will be first illustrated by an

example and then the algorithmic procedure will be given. Removal of internal edges will

be addressed in the next section.

Consider the example previously given in figure 3. If we follow the precedence of A,

traversing from a2 to a3 we will encounter b4 before b3, yet the previous B edge

encountered had been b2. The equivalent conflict would occur in A if we followed the

precedence of B. However, if we break polygon B at the vertex connecting b3 and b4, and

consider the edges as a list, instead of a cycle, starting from b4, then we have b4, b5, b1,

b2 and b3 in a continuous counter clockwise direction. As a result, all the edge points B

on the slope diagram are in the correct order, and b3, at this time, has no connection to

b4. Having made this break, the procedure can be described as one of searching for the

next B edge on the list through following the precedence path of A. Hence, only the next

B edge is active, all others are dormant. Since the B edges may be visited more than once,

it is first necessary to perform an initial exploratory cycle of the merged slope order,

following the precedence of A and counting the number of times a B edge is traversed.

 16

The approach applied to the example in figure 3 works as follows. Start from the first

B edge, b4, we search for b5. To find this we traverse a3 and a4. From b5 we search for

b1 and traverse a5. From b1 we search for b2 and traverse a1. Finally we search for b3

traversing a2. Since b3 crosses the concavity of A, it will appear three times. This was

established through the initial counting phase. Hence the search continues until all

appearances of b3 have been found. Thus we obtain b4, a3, a4, b5, a5, b1, a1, b2, a2, b3,

a3, -b3, a4, b3. Given that a polygon must be a complete cycle, we must now link the

beginning and the end of the list. Hence from b3 we will look for b4. This requires a

clockwise turn through the slope diagram traversing –a4 and –a3. Thus finally we obtain:

b4, a3, a4, b5, a5, b1, a1, b2, a2, b3, a3, -b3, a4, b3, -a4, -a3.

In summary, the procedure to form the sequence follows the slope diagram of A

positively when the series of B edges are in a counter clockwise direction and follows it

negatively when the series of B edges are in a clockwise direction. With this knowledge,

we consider a more complex case.

In figure 5, there is more than one concave point in polygon A and B. Sorting A and B

into slope order, merging the lists and following the precedence of A, we discover that all

B edges will be traversed three time with the exception of b7 and b11 which will be

traversed five times. Further we know the direction in which they are traversed; positive

or negative. Given the groups will be linked, we wish to finish a group moving forward in

a counter clockwise direction, equivalent to a positive B edge. The edge points of B can

be divided into the following five groups according to their appearance in consecutive

counter clockwise direction or clockwise direction on the slope diagram.

 17

1. b12, b1, b2 (counter clockwise)

2. b3, b4 (counter clockwise)

3. b5, b6, b7 (counter clockwise)

4. b8 (clockwise)

5. b9, b10, b11 (counter clockwise)

For each group we follow the precedence of A searching for the next B edge in the

sequence. For example for group 1, we begin with the first B edge on the list at the

occurrence that follows a1. This ensures we end on a positive B edge, i.e we have not

broken the +,-,+ sequence of b12. The next B edge is b1, hence we traverse b12, a2, a3, -

b12, a4, b12, a5, a6, b1. Note that the admissible B edges that can be included are either –

b12 or b1, if we had encountered other B edges on route to b1, they would have been

ignored. This can be observed in other groups. Next, we search for b2, which is

encountered directly after b1. Although, b12, b1 and b2 have been found, we know we

must traverse each three times, hence the search continues through a7, -b2, a8, -b1, a9,

a10, b1, a11, b2. In order to link each group, some additional A edges need to be added.

For group 1 the final A edge is a12 and the first A edge in group 2 is a7, hence we must

return through –a12 to –a7 to retain the precedence order. The full edge list is detailed

below, where the A edge that precedes the starting B edge is included in square brackets

to indicate the starting point, but is not part of the edge list. The linking edges are

underlined.

 18

Figure 5: Complex case of two polygons with more than one concavity in each polygon

1. [a1], b12, a2, a3, -b12, a4, b12, a5, b1, a6, b2, a7, -b2, a8, -b1, a9, a10, b1, a11,

b2, -a11, -a10, -a9, -a7

2. [a6], b3, b4, a7, -b4, a8, -b3, a9, a10, a11, b3, b4, -a11, -a10, -a9, -a7

3. [a6], b5, a7, -b5, a8, a9, a10, a11, b5, a12, b6, a1, b7, a2, -b7, a3, -b6, a4, b6,

a5, b7, a6, a7, a8, a9, -b7, a10, b7, -a10, -a9, -a7, -a6, -a5

4. [-a5], b8, -a4, -b8, -a3, -a2, b8, a2, a3, a4, a5

 a2

a3

a1

a5

a6

a7

a8

a9

a10

a11

a12

a4

b2

b3

b4

b5

b6

b8

b9

b10

b11
b12

b1

b1

b3

b6

b9
b11

a1

a4

a6

a9

a12 a4
a6a9

a12

a1

b7

b3
b6

b11

b9

b1

b5

A

B

 19

5. [a6], b9, a7, -b9, a8, a9, a10, a11, b9, a12, b10, a1, b11, a2, -b11, a3, -b10, a4,

b10, a5, b11, a6, a7, a8, a9, -b11, a10, b11, -a10, -a9, -a7, -a6, -a5, -a4, -a3, -a2

The procedure to find the Minkowski sum of two polygons A and B is given below.

Note that if a group of B edges have continuous counter clockwise order, it is labeled as

positive, otherwise it is labeled as negative. A positive group traverses the slope diagram

of A in counter clockwise order including positive A edges. A negative group follows the

slope diagram in clockwise order including negative A edges. Only the positive procedure

is included here. For efficiency, the procedure in Mink(Q,R,positive) traverses the slope

order list following the precedence of A recording the B edges encountered along the way

to provide list, s. This process allows us to know the number of times each B edge is

encountered and in what direction. Further list s can be used to create the correct

sequence of A and B edges without searching the slope order a second time.

Algorithm 1: Algorithm to generate the Minkowski Sum

Step 1: Replace B by –B, i.e. replace all co-ordinates ()BB yx , of B by ()BB yx −− , .

Step 2: Starting at the lowest point on each polygon. Label the edges in counter clockwise

order.

Calculate the angle ()iθ of each edge, i , from the horizontal in a counter

clockwise direction.

 For each edge i , let () () ()1−−= iii θθα .

 If () 180>iα then () () 360−= ii αα .

 If ()() ()()1−≠ isignisign αα mark i as a turning point.

 20

If any turning points have been detected then polygon is non-convex.

Sort the edges into angle order to form sort_list(P), where P = A or –B.

Step 3: Let ()11 ,,
1 ++ nkk bb � be the set of turning points on the slope diagram of polygon B.

Then polygon B can be divided into groups B1 ()
211

,,, 21 kkk bbb �++= ,

B2 ()
322

,,, 21 kkk bbb �++= ,…, Bn ()
1

,,, 21 kkk bbb
nn

�++= according to them being

consecutive counterclockwise direction or consecutive clockwise direction.

Step 4: For each group Bj, (j =1,…, n), call Mink(A, Bj, positive) or Mink(A, Bj, negative)

according to group Bj being counter clockwise or clockwise respectively. We

obtain Seqj.

Step 6: Link Seq_list(A,B1),…,Seq_list(A,Bn) with additional A edges one by one.

If Seq_list(A,Bj) is positive, insert negative A points to link Seqi with Seqi+1 .

else Seq_list(A,Bj) is negative, insert positive A points to link Seqi with Seqi+1 .

Mink(Q, R, positive).

Step 1 : merge sort_list(Q) and sort_list(R) to form merge_list(Q,R)

Step 2: set i = 1, k = 1, direction = 1, s1 = q1

Step 3: Set i = i + 1

Search merge_list(Q,R) for qi moving forward if direction = 1 and backwards if

direction = -1

if R edge, rj, set k = k + 1, sk = direction � rj

When qi is encountered, if i = 1, go to step 4

Otherwise set k = k + 1, sk = qi

 21

If qi is a turning point in Q, set direction = - direction

Repeat step 3

Step 4: Let starting edge r1 be in position si in sequence

Set j = 1, next = 2, direction = 1, seq1 = si

Step 5: Set i = i + 1, if i > k, set i = 1

If si is from Q, j = j + 1, seqj = si

If si is a turning point in Q, direction = - direction, next = next + direction

If si = direction.rnext, j = j + 1, seqj = si, next = next + direction

If all si edges have been allocated to seqj, return seq1 to seqj as Seq_list(Q,R)

Otherwise, repeat step 5

5. COMPUTING THE BOUNDARY OF THE NFP

The resulting Minkowski sum is a complex (self crossing) polygon where the edges

include all the edges of the nofit polygon and some internal points. In this section we

describe a new method for identifying the true edges of the NFP.

Figure 6b illustrates the outcome of the Minkowski sum procedure described in the

previous section, for two simple polygons drawn in 6a. Clearly there are many edges to

untangle. However, using some of the properties we know about the NFP and the

boundary addition method we can quickly remove many of these edges.

Property 1. As detailed earlier in the paper, the NFP can be described as the path of a

reference point on B as it slides around the edges of A. Further, the sliding motion is

always in the same direction (i.e. counter clockwise) and as a result the path mapped by

the reference point on B is also in one direction.

 22

Property 2. The slope diagram representation, used in boundary addition, indicates

that if edge bj appears between edges (ai,ai+1), this corresponds to the physical condition

that edge bj slides along vertex (ai,ai+1). When the direction from ai to ai+1 is counter

clockwise and edge bj is positive, the corresponding sliding condition is that the convex

vertex (ai,ai+1) slides along bj. Otherwise, the negative edge bj corresponds to the

condition that the concave vertex (ai,ai+1) slides along edge bj. Clearly an edge cannot

slide along a concave vertex without creating overlap between the polygons.

It can be deduced from these two properties that any negative edges cannot be part of

the boundary of the NFP and can be removed. Further, the linking edges between

sequences can also be removed since their inclusion is to define the correct starting

position of the next sequence and they do not represent potential sliding between the

polygons. Figure 6c illustrates the Minkowski edge list with the redundant edges

removed. With this understanding, we can develop intuitively a new method to identify

the boundary of the NFP by only considering useful parts of the derived Minkowski sum

edge list.

 23

Figure 6: A large example of the Minkowski sum edge list and track line traces

In order to introduce this method, we recall briefly some terms introduced by

Ramkumar (1996). A state is a pair consisting of a position s in the plane and a direction

s. A move is a set of states with constant direction and position varying along a line

segment parallel to the direction. A turn is a set of states with constant position and

direction varying along an arc of the circle of directions. A polygonal trip consists of a

continuous sequence of moves and turns; the trip is closed if it starts and ends at the same

state. A polygonal tracing is a collection of closed polygonal trips. We think of each loop

Polygon BPolygon A

(a)

(b) (c) Minkowski edge list Minkowski sum after removal
of redundant edges

(d)

 24

of a tracing as being traversed by a car which always faces in the direction of the state it

is currently following.

The first step is to break up the Minkowski sum into polygonal trips according to the

continuous sequence of moves and turns. Those that cannot be part of the boundary of the

NFP, according to the properties described above, are discarded. This is equivalent to

removing the negative and additional A edges.

Figure 7: Procedure for removing internal edges from the Minkowsi sum

The second step of the procedure requires the identification of all the intersection

points between the polygonal trips. Each intersecting point is marked with a ‘-’,

indicating it is entering the trip, or with a ‘+’, indicating it is leaving the trip. Consider

the example in figure 7a, where the current trip is trip 2. Imagine standing at the

beginning of the first edge of trip 2 facing along the edge, then we can consider that trip 1

intersects trip 2 from right to left. Trip 1 is said to enter trip 2 and is marked with ‘-’.

Continuing along trip 2 we eventually meet an intersection with trip 4, where trip 4

intersects from left to right. Trip 4 is leaving trip 2 and marked with ‘+’. Hence, entering

3

2

4

1

-

+

-
+

3

2

4

1

-

+
3

2

4

1

(a) Identify each intersection
as entering or leaving the trip

(b) Truncate each trip retaining
parts between '-' and '+'

(c) Repeat and link parts

 25

a trip means the beginning part of the intersecting edge is on the right side of the trip edge

and leaving corresponds to the beginning part of the intersecting edge is on the left side

of the trip edge. The fragments of trips that span a ‘-’ intersection to a ‘+’ intersection are

kept to form the boundary of the NFP. All other fragments are discarded.

Finally, fragments that share end points are linked. Only those parts, which form a

cycle, can be taken as the boundary of the NFP. In the case where cycles represent holes

in the NFP, we implement a simple direct test of whether the two component polygons

overlap when the reference point of B is located on a vertex of the hole.

The algorithm for finding the boundary of the nofit polygon can be summarized in

Algorithm 2 and 3 as below:

Algorithm 2: Algorithm for breaking Minkowski sums into track line trips:

Step 1: Let 0=i be the index number of Minkowski sums obtained. Let 0=j be the

number of track line trips, jn be the total edges in track line trip j and 0=k be the

index of each track line trip.

 Step 2: Search forward in Minkowski Sum for positive is , which corresponds to a

track line. If is can be found, set ij st
k

= , else go to Step 4.

Step 3: Set 1+= ii and 1+= kk . If is is positive and corresponds to a track line,

repeat step 3,

else set kn j = , 1+= jj and 0=k , repeat Step 2.

Step 4: Return
0j

t to
jnj

t as track line trip jT .

 26

The computational complexity of Algorithm 2 is ()NO , where N is the number of

edges of Minkowski sums.

Algorithm 3: Algorithm for finding the boundary of the NFP from track line trips:

Step 1: Let trip jT , contain
jjnseg segments.

For all i and j where ji ≠ ,

If
jjkseg intersects

iikseg , let
jjrp be the intersection points on jT

If
jjrp crosses right to left set 1−=

jjrsign , else set 1+=
jjrsign .

Step 2: For each jT ,

If 1−=
jjrsign and 11 +=+jjrsign . Store all segments between the intersection

points, { }
jjjj jrmjkjkjr pssp ,,,,1 +− � , into { }

iilikii ffffrag ,,,...,1 �= , where il is

the number of segments in ifrag .

Step 3: For all 0≠ifrag , we

if 1if =
jjlf , { }

ij iljljiji ffffragfragfrag ,,,1 ��=+= , 0=jfrag .

if 1jf =
iilf , { }

ji jlilijii ffffragfragfrag ,,,1 ��=+= , 0=jfrag .

if 1if =
jjlf and 1jf =

iilf then form kcycle and set 0== ji fragfrag

Repeat step 3 until all 0=ifrag .

Step 4: For each kcycle ,

Locate reference point of polygon B on one of the vertexes of kcycle .

 Discard the kcycle if the two polygons overlap

 27

It is important to note that the above algorithm is able to identify the outer face of the

Minkowski sums, holes inside the outer face, a single point that represent an exact fit, and

exact slides represented as a single line. The latter two are often referred to as degenerate

cases.

Degenerate cases

The degenerate cases, in general, refer to combinations of polygons that can fit together

like a jigsaw, resulting in a single point of fit within the NFP, or where one piece can

slide into or within a concavity in one direction only, resulting in a line either extending

from the edge of the NFP or within.

fragjfragi

dcba

(b)

dc
ba

(c)(a)

Figure 8: Coinciding fragments to indicate exact slide in NFP

An exact slide can be identified when two fragments, obtained from Algorithm 3, step

2, coincide. Figure 8a illustrate ifrag and jfrag with start points, a and d, and end

points, b and c respectively. If the start and end points from each fragment coincide, as

shown in figure 8b they can be linked into a cycle (figure 8c) in step 3. The cycle is

validated as part of the boundary of the NFP in step 4.

 28

In the case of a single point, further calculation is required in Algorithm 3, step 1. When

all the intersection points between segments of the trip are calculated, we also identify

special intersection cases as shown in figure 9, where trips iT and jT intersect each other

at point A. It is necessary to test all intersection points of this type to identify if it is an

exact fit. In our experience, intersection points such as A seldom occurred within the

intersection condition.

TjTi

A

Figure 9: Edge intersection to indicate exact nesting point in NFP

6. THE INNER FIT POLYGON

The inner fit polygon represents the feasible placement positions of one polygon, B,

inside another polygon, A. An example of this is given in figure 10. This is useful for

obstacle recognition in robot motion planning and if pieces are being packed inside an

irregular shape, for example, shoe manufacturing from leather hides.

 29

A

B
inner fit
polygon

Figure 10: An inner fit polygon

The described algorithm can be used to calculate the inner-fit polygon with the following

minor amendments.

(i) Reverse the orientation of polygon A so that it has clockwise direction.

(ii) The algorithm should have the positive direction for A as clockwise. However,

clockwise is still the negative direction for B

The rationale for these changes can be demonstrated in figure 11. The inner-fit polygon is

equivalent to B sliding inside a concavity of A. As illustrate in figure 11, the concavity

has clockwise orientation. Further a concavity translates to a clockwise turn in the slope

diagram where the edges of the concavity remain positive, while any edges from the

other polygon encountered during that turn are negative.

 30

A

B

Figure 11: the equivalence between the inner-fit polygon and the NFP inside a concavity

7 EMPICICAL ANALYSIS

In order to evaluate the effectiveness of our new approach, we generated all the nofit

polygons for the benchmark data sets found on the ESICUP (2005) website. All were

generated correctly and the computation times for every combination of each data set are

provided in table 1. The procedure was coded in Visual Studio C++ and the instances

were run on a pc with 512MB, 1.6GHz.

No. CASE No. of piece types Ave no. of edges TIME (s)

1 Albino_hopper 8 7.25 0.07

2 Blaz_topos 7 6.28 0.04

3 Dagli_hopper 10 6.3 0.07

4 Dighe_hopper 10 4.7 0.04

5 Dighe_hopper-1 16 3.8 0.07

6 Fu_hopper 12 3.6 0.04

7 Han_hopper 20 6.95 0.33

8 Jakobs_hopper 25 5.8 0.42

 31

9 Mao_hopper 9 9.2 0.15

10 Marques_hopper 8 7.1 0.07

11 Poly_hopper 75 4.8 2.00

12 Shapes_topos 4 8.7 0.03

13 Shirts_topos 8 6.6 0.06

14 Swim_topos 10 22.8 0.93

15 Trousers_topos 17 5.1 0.10

Table 1: generation times of all NFPs in benchmark data sets

In addition we have extensively tested our approach on new instances designed to

involve characteristics such as, a large number of edges, interlocking positions, exact

sliding, jigsaw type fits, and concavities the turned more than 360 degrees. All NFPs

were successfully generating, none taking more than once second to generate. The results

can be found in the figures 10 - 13.

A

B

(a) (b)

Figure 10: a) The nofit polygon contains a hole and an exact slide along the bottom

edge of the concavity. b) The nofit polygon contains an exact slide.

 32

(a) (b)

Figure 11: a) The nofit polygon contains a hole. The concavity in polygon A turns

through more than 360o. b) Nofit polygon contains a hole. Both A and B have concavities

that turn greater than 360o and interlock with each other.

(a) (b)

Figure 10: a) The nofit polygon contains a hole and an exact fit indicated by the

illustrated position of polygon B. b) Polygon B fits exactly in the concavity of polygon A.

 33

(a) (b)

Figure 11: Both nofit polygons contain multiple holes. Polygon A has concavities

within concavities.

6. CONCLUSIONS

In this paper we have described a new approach of finding the nofit polygon.

Empirical analysis demonstrates that computational times are realistic and that the

approach is robust in dealing with known degenerate cases and new difficult cases such

as spiraling concavities. The method is theoretically underpinned by the concept of

Minkowski sums and builds on the work of Ghosh by adapting his boundary addition

theorem into an algorithm procedure. It improves on the work of Bennell, Dowsland and

Dowsland by finding the Minkowski sum in a single procedure and removing any

ambiguity over which edges should be included in the repair procedure. Finally the paper

provides a new, simple and robust procedure for the removal of internal edges and

 34

identification of holes. All approaches are described in detail, illustrated by example and

the summary code is provided.

REFERENCES

Adamowicz M, Albano A., 1976, Nesting two dimensional shapes in rectangular

modules, Computer Aided Design, 8(1), 27-33.

Agarwal, P.K., Flato, E., Halperin, D., 2002, Polygon decomposition for efficient

construction of Minkowski sums, Computational Geometry Theory and Applications, 21,

39-61

Babu, R.A., Babu, R.N., 2001, A genetic approach for nesting of 2-D parts in 2-D sheets

using genetic and heuristic algorithms, Computer-Aided Design, 33, 879-891

Bennell, J.A., Dowsland, K.A., Dowsland, W.B., 2001, The irregular cutting-stock

problem – a new procedure for deriving the nofit polygon, Computers and OR, 28, 271-

287.

Bennell, J.A., 1998, Incorporating problem specific knowledge into a local search

framework for the irregular shape packing problem, Ph.D. dissertation, EBMS,

University of Wales, Swansea, UK

 35

Burke, E.K., Hellier, R.S.R, Kendall, G. and Whitwell, G., 2005, Complete and robust

no-fit polygon generation for the irregular stock cutting problem, working paper, ASAP,

School of Computer Science, University of Nottingham, UK

Cunninghame-Green, R., 1989, Geometry, Shoemaking and the milk tray problem, New

Scientist, 12th August, no. 1677, 50-53.

ESICUP, 2005, European working group on cutting and packing.

http:/www.apdio.pt/sicup.

Ghosh, P.K., 1993, A unified computational framework for Minkowski operations.

Computers and Graphics, 17(4), 357-78.

Ghosh, P.K., 1991, An algebra of polygons through the notion of negative shapes.

CVGIP: Image Understanding, 54(1), 119-44.

Konopasek M. (1981), Mathematical Treatments of Some Apparel Marking and Cutting

Problems, U.S. Department of Commerce Report 99-26-90857-10.

Li, Z., Milenkovic, V.J., Daniels, K., 1995, Compaction and separation algorithms for

non-convex polygons and their applications, European Journal of Operational Research,

84, 539-561.

 36

Mehadevan, A., 1984, Optimization in computer aided pattern packing, Ph.D.

dissertation, North Carolina State University.

Oliveira J. F., and Ferreira J. S., 1993, Algorithms for nesting problems, Applied

Simulated Annealing, R.V.V. Vidal (ed), Lecture Notes in Econ. and Maths Systems 396,

Springer Verlag, 255-274.

Ramkumar, G.D., 1996, An algorithm to compute the Minkowski sum outer face of two

simple polygons, Proceedings of the 12th Annual Symposium on Computational

Geometry, 234-241.

Stoyan, Y., Terno, J., Scheithauer, G., Gil, N., Romanova, T., 2001, Phie functions for

primary 2D-objects, Studia Informatica Universalis, 2, 1, 1-32

Stoyan, Y., Scheithauer, G., Gil, N., Ramanova, T., 2002, Phi-functions for complex 2D-

objects, Technical Report, MATH-NM-2-2002, April 2002, Technische Universitat

Dresden.

Wäscher,G. Haußner H., Schumann, H., 2005, An improved typology of cutting and

packing problems, working paper, Faculty of Economics and Management, Otto von

Guericke University, Magdeburg.

 37

Watson P.D. and Tobias, A.M., 1999, An efficient algorithm for the regular W1 packing

of polygons in the infinite plane, Journal of the Operational Research Society, 50. 1054-

1062.

Acknowledgements

The authors would like to acknowledge the financial support of the Engineering and

Physical Sciences Research Council.

