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Abstract. A hierarchical state machine (HSM) is a finite state machine
where a vertex can either expand to another hierarchical state machine
(box) or be a basic vertex (node). Each node is labeled with atomic
propositions. We study an extension of such model which allows atomic
propositions to label also boxes (SHSM). We show that SHSMs can be
exponentially more succinct than HSMs, and verification is in general
harder by an exponential factor. Also, we show for a subclass of SHSMs
(which can still be exponentially more succinct than HSMs) the same
upper bounds as for HSMs.

1 Introduction

Finite state machines (labeled finite transition systems) are widely used for mod-
eling the flow of control of digital systems and are appealing to formal verification
such as model checking [CE81,CK96]. In model checking, a high-level specifica-
tion is expressed by a formula of a logic and is checked for fulfillment on an
abstract model of the system. Though a typical solution to this problem is lin-
ear in the size of the model, it is computationally hard since the model generally
grows exponentially with the number of variables used to describe the system
(state-space explosion). As a consequence, an important part of the research on
model checking has been concerned with handling this problem.

Hierarchical structures are naturally present in complex systems where simple
modules usually form a hierarchy. Representing such systems as standard tran-
sition graphs introduces some redundancy which can be avoided by modeling
them as hierarchical state machines [AYO01]. A hierarchical finite state machine
is a finite state machine where a vertex can either expand to another hierarchical
state machine (boz) or be a basic vertex (node). Each node is labeled with atomic
propositions (AP) and the outcomes of the model thus generate sequences over
24P Complexity of model-checking is discussed in [AY01] and the succinctness of
the model compared to standard finite state machines is addressed in [AKY99].
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In this paper, we consider a variation of the hierarchical state machines,
where also boxes are labeled with atomic propositions. The intended meaning of
such labeling is that when a box v expands to a machine M, all the vertices of M
inherit the atomic propositions which hold true at v (context), so that different
vertices expanding to M can place M into different contexts. With such more
general labeling, we show that it is possible to obtain models of systems which
are exponentially more succinct than hierarchical state machines. Therefore, we
call them Succinct HSMs (SHSMs). We recall that a restricted version of an
SHSM, denoted CHSM (Context-dependent HSM), is considered in [LNPPO3].
There, an atomic proposition which labels a box b cannot label the vertices of
any of the machines which directly or indirectly expand from b. We also prove
that SHSMs can be exponentially more succinct than CHSMs.

We study the complexity of verification for SHSMs. In particular, we con-
sider basic verification questions such as reachability and cycle detection, and
the model-checking problem against LTL [Pnu77] and CTL [CE81] specifica-
tions. We show that for an SHSM M and a formula ¢: LTL model-checking is
PspACE-complete and can be solved in O(]M|16/#!) time; CTL model-checking
is EXPTIME-complete and can be solved in O(|M|4#1?) time where d is the
maximum number of exit nodes of M. We also show that reachability and cycle
detection are both NP-complete. From the results shown in [AY01] for hierarchi-
cal state machines, we get time complexities increased by an O(2!#!) factor which
is exactly what we gain in succinctness. However, we also show that things im-
prove when we place some restrictions on the SHSM and the formula expressing
the target set in the reachability and cycle detection problems. In particular, we
show that LTL model-checking of CHSMs can be solved in O(| M| 8!#!) time, and
if the target formula conforms with the structure of the SHSM (resp. CHSM),
reachability and cycle detection can be solved in linear time.

There are several papers in the literature that concern with hierarchical state
machines. In [AGM00,AMY02], the verification tool HERMES which is based
on hierarchical state machines is discussed. Hierarchical state machines with
recursive expansions of nodes (recursive state machines) are studied in [ABE+-05]
and a corresponding temporal logic is introduced in [AEMO04]. Recursive state
machines turn out to be equivalent to pushdown automata [ABE+05]. Recursive
calls and context-dependent properties are considered in [LNPP03], where also
CHSMs are introduced as a restriction of the corresponding recursive model and
some complexity results on verification are derived from those obtained on the
recursive model. Here, we revisit such results and compare CHSMs to SHSMs.
The impact of concurrency is studied in [AKY99,LMPO04] for hierarchical state
machines and in [BLPO06] for recursive state machines. Finally, modular control
synthesis for recursive state machines is studied in [ALMO03a,ALMO03b].

2 The Model

Given a set AP of atomic propositions, a Kripke structure over AP is a rooted
directed graph whose vertices are labeled with the atomic propositions holding



true in that vertex. In this paper, we model a system by a hierarchically struc-
tured graph, where vertices can be either simple nodes or placeholders for other
graphs. We formally define such graphs as follows.

Definition 1. A Succinct Hierarchical State Machine (SHSM) over AP is a
tuple M = (My, ..., My), each M; = (N;,in;, OUT;, TRUE;, expn,, F;) is called
machine and consists of:

— a finite set of vertices N;, an initial vertex in; € N; and a set of output
vertices OUT; C N,

— a labeling function TRUE; : N; — 247 that maps each vertex with a set of
atomic propositions;

— an expansion mapping expn, : N; — {0,1,...,k} such that expn,(u) < i,
for every u € Ny, and expn;(u) = 0, for every u € {in;} UOUT;;

— a set of edges E; where each edge is either a pair (u,v), with u,v € N;
and expn;(u) = 0, or a triple ((u,2),v) with u,v € N;, expn;(u) > 0, and
2z € OUT egpn, (u)-

We assume that the sets of vertices N; are pairwise disjoint. The set of
all vertices of M is N = Ule N;. The mappings ezpn : N — {0,1,...,k}
and TRUE : N — 247 extend the mappings expn; and TRUE;, respectively. If
expn(u) = j > 0, the vertex u expands to the machine M; and is called boz.
When ezpn(u) = 0, u is called a node. Let us define the closure ezpn™ : N —
2101k} “as: b € expnT(u) if either h = expn(u) or there exists u/ € Neapn(u)
such that h € expn™(u'). We say that a vertex u is an ancestor of v, and v is
a descendant from u, if v € Ny and h € ezpn™(u). Let us note that contrarily
with what happens in Kripke structures, in this model the atomic propositions
not labeling u are not necessarily to be intended false (in Sect. 3 we define the
function FALSE(u) of the atomic proposition which can be stated false at u).

As an example of an SHSM M see part (a) of Fig. 1, where p1,pa, ps are
atomic propositions labeling nodes and boxes of M, e; and x; are respectively
entry nodes and exit nodes for i = 1,2, 3, and efcpn(bj-) =j—1fori=0,1and
j=23.

A hierarchical state machine (HSM) is an SHSM where TRUE(u) = (), for
every box u [AY01]. A context-dependent HSM (CHSM) M = (My, ..., My) is
an SHSM where TRUE(u) N TRUE(v) = {), for every u,v € N such that u is an
ancestor of v [LNPPO03]. Observe that the SHSM of Fig. 1 is also a CHSM but
is not a HSM.

The semantics of an SHSM M is given by defining an equivalent Kripke
structure, denoted M¥.

The Kripke structure M. A sequence of vertices o = w;u;q1 -+~ uj, 0 <i <
J, is called a well-formed sequence if ug1 € Negpn(u,), for every £=1i,...,j— 1.
Moreover, « is also complete when u; € Nj, and u; is a node.

A state of M is (a) where « is a complete well-formed sequence of M.
Note that the length of a complete well-formed sequence is at most k, therefore
the number of states of M¥ is at most exponential in the number of vertices
of M. The initial state of M¥ is (ins), where iny is the initial vertex of Mj.
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Fig.1. An SHSM M and the Kripke structure obtained by flattening M.

Transitions of M¥" are obtained by using as templates the edges of M: there is
a transition from a state (a3) to a state («f’) if and only if (3, 5") “denotes”
an edge of M. Part (b) of Fig. 1 shows the Kripke structure which is equivalent
to the SHSM from part (a) of the same figure. We give a precise construction of
MF in the following.

Given an SHSM M = (M, ..., M), note that the tuple M, = (M, ..., M),
1 < h <k, is an SHSM as well, and M; = M. We now sketch how to compute
recursively the flat Kripke structures MY, and thus MF.

We start with M which is obtained from machine M; by simply replacing
each vertex u with a state (u) labeled with TRUE({u)) = TRUE(u) (recall that
by definition all vertices of M; are nodes). Thus, for each edge (v, w) € E; we
add a transition ((v), (w)) in ME".

For h > 1, MF is obtained from M}, by simply replacing each box u of M),
with a copy of the Kripke structure Mfwn(u). More precisely, for each node
u € Ny, (u) is a state of MF which is labeled with TRUE(u). For each box
u € Np, and state (a) of Mfzpn(u), (uc) is a state of M} and is labeled with
TRUE(u) U TRUE({a)). The transitions of Mfzpn(u
that is, there is a transition ((ua), (uB3)) in ML for each transition ({), (3))
of fopn(u)' The remaining transitions of M correspond to the edges of Mjy:
for each node v € N, and edge (u,v) € Ej, (resp. ((u,2),v) € Ej) there is a
transition from (u) (resp. (uz)) to (v); for each box v € Nj, and edge (u,v) € Ej,
(resp. ((u,2),v) € Ey) there is a transition from (u) (resp. (uz)) to (Vi egpn(v))-
A vertex u expanding into M}, is a placeholder for ./\/lf and determines a sub-
graph in MF isomorphic to Mf . If two distinct vertices u; and us both expand
into the same machine My, that is ezpn(ui) = expn(uz) = h, then the states of

) are all inherited in MF,
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Fig. 2. An SHSM My, such that £L(Mp, @) = L3.

M appear in M¥ in two different contexts, labeled possibly by different sets of
atomic propositions: in one context this set contains TRUE(u;) and in the other
it contains TRUE(uz).

Succinctness of the model. Observe that being able to represent with a
single machine Mj, more than one subgraph of MY, our model in general is
more succinct than a traditional Kripke structure. Box labeling further improve
on this. In fact in a situation as described above, the two ‘copies’ of MF" in M
though labeled in a different way, can be represented in an SHSM by the single
machine M}, while they should be represented by two different machines in a
HSM. Before stating this more formally, we need some definitions.

Given a transition graph with states labeled by subsets of atomic propositions
and a state X, a trace is an infinite sequence o105 ...0; ... of labels of states
occurring in a path starting from X. Moreover, given an SHSM M, we define
the language L£(M) as the set of the infinite traces of M starting from its
initial state. Moreover, for a boolean formula ¢ over the atomic propositions
AP, we denote by L(M, ) the set of traces in L(M) containing a label which
fulfills . In the rest of this section, for h > 0 we fix a set of atomic propositions
Xy = {p1,...,pn} and for a subset o C X}, define (o) = > 271 (in

pi€o
particular, §(f) = 0).

Proposition 1. CHSMs can be exponentially more succinct than HSMs and
finite state machines.

Proof : Consider the family of languages L} of traces oy ... 0, ... over 2** such
that: oy = 0; for i <n, 0; = 0441 or f§(0i+1) = #(0;) +1; and #(0,) = 2" — 1. Let
on =p1 A - App. For h =3, a CHSM M such that £(M, p3) = L} is given
in Fig. 1. It is easy to see that M can be generalized to a CHSM M}, such that
L(My, o) = L}, and [My| = O(h). Since there are 2" different labels that need
to be taken into account, we have that any hierarchical or finite state machine
M, such that L(M),¢n) = L} requires at least 2" different nodes. O

There is an exponential gap also between CHSMs and SHSMs as shown in
the following proposition.

Proposition 2. SHSMs can be exponentially more succinct than CHSMs.



Proof : Consider the family of languages L? of traces oy ...0y, ... over 2%n such
that: o1 = 0; #(0,) = 2" —1; and for i < n either o; = 041, or #(0441) = #(03)+1,
or for some 1 < j < h, {p1,p2...pj—1} € 04, pj & 0; and o;41 = {p;,...,pn}
Let ¢ = p1 A -+ A pp. An SHSM My, such that £(My, ) = L2 is given in
Fig. 2, where pq,...,p, are atomic propositions labeling nodes and boxes of M,
e; and z] are respectively entry and exit nodes, and ezpn(b!) =i — 1. It is easy
to check that |[My| = O(h).

To complete the proof it suffices to show that any CHSM M), such that
L(M),, o) = L7 has size exponential in h. Fix 01,00 C X, such that p; ¢
o1Uos, {p1,...pj—1} C 01Nog and there is an atomic proposition py, £ > j, such
that p, € o1 and py € 02. Let M), be any CHSM such that £L(M},pp) = L3.
From the definition of L,QL and being o1 # 09, there are three different states
$1, 89,83 of /\/l'hF such that s3 is a successor of s, TRUE(s;) = o; for i = 1,2
and TRUE(s3) = {pj;,...,pn}. For i = 1,2, let s; = (a;b;u;) where u; are nodes,
b; are boxes, and «a; are sequences of boxes. Observe that from the definition
of CHSM if p, labels any of the boxes in a; it cannot label any vertex of the
machines to which either b; or u; belongs. Thus, either by # by or u; # us must
hold otherwise we get the contradiction that also s3 (being a successor of sy in
M’hF) cannot be labeled with p,. Therefore, for each pair of different sets o
and o9 as above, there are two different vertices of M), . Since we can choose oy
and o among 2"~7 many different sets, we can conclude that any CHSM M),
such that £(M},,¢p) = L? must have at least 2" 7 different vertices. Therefore,
if we pick j = 1 we get that such M) must have at least 2"~! different vertices,
and the proposition is proved. ad

It is worth noting that the mentioned succinctness results do not add up to
each other, in the sense that it is not true that SHSMs can be doubly exponen-
tially more succinct than HSMs. In fact, HSMs, CHSMs and SHSMs can all be
translated to equivalent finite state machines with a single exponential blow-up.
From Proposition 1 and the fact that any CHSM is also an SHSM, we have the
following.

Corollary 1. SHSMs can be exponentially more succinct than HSMs and finite
state machines.

3 Reachability and Cycle Detection

In this section we deal with reachability and cycle detection on SHSMs. We start
defining the problems. Then, we show that they are NP-complete and discuss
some conditions which allow us to give an efficient solution.

Given an SHSM M = (My, ..., M) and a propositional boolean formula ¢,
Reach(M,) is the problem of deciding if there exist a state X in M on which
¢ is satisfied and a path in M¥ from (iny) to X. The problem Cycle(M,p) is
the problem of deciding if there exist a state X in M¥ at which ¢ is satisfied,
a path from (ing) to X and a path from X to itself.

NP-completeness. We first show NP-hardness. As stated in the following
lemma, NP-hardness holds even when the formula is very simple.



Lemma 1. Given an SHSM M and a formula ¢ expressed as a conjunction of
literals, the problems Reach(M,p) and Cycle(M,p) are NP-hard.

Proof : First, we observe that as the intuition suggests, Cycle(M,p) can be
polynomially reduced to Reach(M,y). Thus, to show the lemma we reduce 3-
SAT to the problem Reach(M,p). Let ¢ be a 3-SAT formula ¢y = C; A -+ A
Cy, over a set of atomic propositions AP’ = {Py,..., Py}, where each C; is a
disjunction of three literals. We construct an SHSM M = (M, ..., M}), on the
set of atomic propositions AP = {ci,...,c,}, as follows: each M;,i > 1, has
four vertices forming a line: in;, p;, notp; and out;. The vertex p; is labeled
¢j, if P; occurs in the clause Cj, while the vertex notp; is labeled ¢; if —F; is
in Cj. For ¢ > 1, p; and notp; are boxes expanding into M;_;, having edges
((ps, out;—1),notp;) and ((notp;, out;_1), out;). Vertices p; and notp; are nodes.
Define ¢ = ¢y A -+ A c,. It is not difficult to verify that v is satisfiable if and
only if there exists a reachable state of M at which ¢ is satisfied. O

To show membership in NP, we introduce the notions of path and cycle on
SHSMs. In the following, given a box u € Np, oUT(u) is the set of all vertices
Z € OUTggpn(y) such that ((u,z),v) € Ej, for some v € Nj,. Moreover, with
[u, 2] we denote a pair such that either u is a node and z = € or u is a box and

z € OUT(u).
Let M = (M, ..., My) be an SHSM. A H-path from a pair [u1, 21] to a vertex
u, in My, is a sequence of pairs [uq, 21] [ug, 23] . .. [ur—1, 2-—1] such that for every

1<j<r, uj €Ny and one of the following cases occurs: either u; is a node
and (uj,uj41) € Ep, or uj is a box, ((u;,2;),uj4+1) € Ej, and there is a H-path
from [in cupn(u,), €] 10 2 in Mezpp(u,)- In the following, when we refer to a H-path
in M}, we sometimes omit the reference to a machine M}, since it is univocally
determined by the vertices u1,...,u,. Moreover, we say that a vertex u € Ny, is
H-connected if either u = iny, or there is a H-path from [iny, €] to u. Observe that
if a node u € Ny, is H-connected then there exists a path from (in,) to (u) in the
Kripke structure MI", while if a box u is H-connected, a path exists from (in;,)
t0 (Uinezpp(u)). Hence, if a vertex u is H-connected, this in turn means that
there exists a path from (ainy) to either (au) or (auin mpn () in MF | for any
well-formed sequence o = € or & = uy ... u;, with ezpn(u;) = h. On the other
side, note that if there exists a path in M from (in) to a state (uj ... un),
then there are paths from (uy ... u; 1M eapn(u,_,)) 10 (U1 Uj1Uj Negpn(u,))
for j = 1,...,m — 1 and from (u1...Un—1Mempn(u,n_y)) 10 (UL .. Um_1Um).
Therefore, all vertices u; for j = 1,...,m are H-connected. These observations
prove the following proposition.

Proposition 3. Given an SHSM M = (M, ..., M), let X = (ujug ... uy,) be
a state of MY, There is a path from (ing) to X in M¥ if and only if all the
vertices u; are H-connected.

A H-cycle in an SHSM is a H-path from a pair [u, z] to u. Now, we want to
consider the relationship between cycles in M*" and H-cycles in M. Given a pair
[vo, 20] With zg € OUT(vg), a well-formed sequence vgv; ... v, is called connected
to zg if for each ¢ = 1,...,r there exist zy € ouT(ve) U {e}, and a H-path



from [vg, z¢] to zp—1 (note that v, may also be the output node z,._1). This
definition simply captures the property that there is a path of M¥ from a state
(avgvy ... v.0) (with a, 8 possibly empty) to a state (avpz) such that a v is a
common prefix to all the complete well-formed sequences of the visited states.

Proposition 4. Let M be an SHSM and X = (uy ... un) be a reachable state
of ME. X belongs to a cycle in MT if and only if either:

— [tm, €] belongs to a H-cycle or
— there exist 1 <i < m and z €OUT(u;) such that [u;, z] belongs to a H-cycle
and ;. . . Uy, 18 a well-formed sequence connected to z.

The following proposition is crucial in our argument for NP-membership.

Proposition 5. Given an SHSM M, the set of H-connected vertices and the
set of pairs belonging to a H-cycle of M can be determined in O(|M]).

Therefore, we have the following theorem.

Theorem 1. The problems Reach(M,p) and Cycle(M,yp) for SHSMs are
NP-complete.

Efficient solutions. Here, we present some conditions on an SHSM M and
a formula ¢ which allow us to give efficient algorithms for both Reach(M,y)
and Cycle(M,y). First we define a partial evaluation of ¢ on a well-formed
sequence and then we give the algorithms for the above two problems.

Given a formula ¢ and two disjoint sets T, F' C AP, let Inst(p, T, F') denote
the formula obtained by instantiating to true the atomic propositions of 7" and
to false those in F. If we are given a state X of M¥ then a propositional formula
¢ can be evaluated in X simply by computing Inst(¢, TRUE(X ), AP\ TRUE(X)).
To solve our problems, we would like to find a state in MT where ¢ is satisfied,
using the SHSM M, without explicitly constructing M*. To this aim we use a
greedy approach to evaluate p: we visit top-down M and at each vertex u we
instantiate as many atomic propositions as possible. The question is: which are
the atomic propositions of ¢ can be instantiated? Surely, we can instantiate to
true all the atomic propositions of TRUE(u), while the atomic propositions which
can be instantiated to false depend on the vertices that may follow u in any
complete well-formed sequence of M. In other terms, an atomic proposition can
be instantiated to false if it labels neither u nor vertices having u as an ancestor,
that is it does not belong to a set TRUE*(u) defined as TRUE*(u) = TRUE(u) U
Upe Nopt (o TRUE(v). Thus, we define the set of atomic propositions of ¢ that

can be instantiated to false at a vertex u € Ny, as FALSE(u) = AP \ TRUE*(u).

Let us remark that the function FALSE can be computed by visiting M just once.
Given an SHSM M, a propositional boolean formula ¢ over AP and a well-

formed sequence a of M, the partial evaluation of ¢ on «, is defined as

PEval(p,€) = ¢
PEval(p, au) = Inst(PEval(p, &), TRUE(u), FALSE(u)).

The following lemma ensures correctness of our approach.



Lemma 2. Given an SHSM M, a formula ¢, and a state X = {(a) of MF:
PEval(p, o) = Inst(p, TRUE(X ), AP \ TRUE(X)).

In what follows w.l.o.g. we assume that the formula returned by a partial
evaluation is simplified according to the following tautologies: (YA true) = 1,
(YA false) = false, (YV false) = 1, (YVirue) = true, (—true) = false, (— false) =
true. We say that ¢ is constant if it is either true or false.

Now, we are ready to define a condition to get polynomial-time algorithms for
the problems Reach(M,y) and Cycle(M,y).

Fix an SHSM M and a boolean formula . We say that the partial evaluations
of ¢ in M are uniquely inherited iff: for every two well-formed sequences au
and v, if expn(u) = expn(v) and both PEval(p, au) and PEval(y, fv) are not
constant, then PEval(yp, au) = PEval(yp, Bv).

Assume w.l.o.g. that all the vertices of M are H-connected (from Proposi-
tion 5, an arbitrary SHSM can be simplified such that this holds using linear
time). Thus from Proposition 3 all states of M are reachable. Hence, using
mainly Lemma 2, it is possible to design an algorithm that looks for a complete
well-formed sequence « for which the function PEval(y, ) gives TRUE. Such al-
gorithm visits top-down the machines of M and evaluates PEval on well-formed
sequences by computing iteratively the function Inst. Note that if the evaluations
of ¢ are uniquely inherited, multiple visits of a machine M}, are not needed, and
thus the overall complexity of the algorithm is linear in |M] and |¢p|.

Theorem 2. Let ¢ be a formula and M be an SHSM such that the partial
evaluations of ¢ in M are uniquely inherited. The problem Reach(M,p) is
decidable in time O(|M] - |¢|).

The algorithm to solve the problem Cycle(M,p) and its correctness strongly
rely on the following Lemma 3 which is a direct consequence of Proposition 4.

Lemma 3. Let M be an SHSM with all H-connected vertices, ¢ be a boolean
formula and o = wy ... uj be a well-formed sequence such that PEval(p, o) =true.

There exists a well-formed sequence (3 such that (af3) is a solution of the problem
Cycle(M,p) if and only if either

a) there exists a H-cycle in My, h € expn™(u;) or
b) there exist i < j and zg € OUT(u;) such that [u;, zo] is in a H-cycle and
U; ... uj is a well-formed sequence connected to zy.

Theorem 3. Let ¢ be a formula and M be an SHSM such that the partial
evaluations of ¢ in M are uniquely inherited. The problem Cycle(M,p) is
decidable in time O(JM| - |¢])-

Note that for general ¢ and M, the above algorithms can be easily modified
in such a way that each machine M}, can be visited just once for each subformula
of . Thus the following theorem holds.

Theorem 4. Given an SHSM M and a formula o, the problems Reach(M )
and Cycle(M,p) are decidable in O(|M| - 2I#) time.



Observe that when in M there are no context-properties (TRUE(u) = () for
every box u), then the partial evaluations of every formula ¢ in M are uniquely
inherited and thus Theorems 2 and 3 generalize those in [AYO01].

We give a further condition on M and ¢ which let us get efficient algorithms
when M is a CHSM. Let AP(¢)) be the set of atomic propositions of a formula
1. We say that ¢ is local to M vertices iff for every vertex u of M either
AP(;)N(TRUE(u) UFALSE(u)) = ) or AP(¢;) N (TRUE(u) UFALSE(u)) = AP(y;)
holds. It is possible to show that for a CHSM M, if ¢ is of the form w1 A--- Ay,
where each ¢, is local to M vertices, then the partial evaluations of ¢ in M are
uniquely inherited.

Corollary 2. Let M be a CHSM and ¢ be a conjunction of formulas which are
local to M wvertices. The problems Reach(M,p) and Cycle(M,p) are decidable
in time O(|IM] - |¢|).

As a final remark, note that from Lemma 1, Reach(M,p) and Cycle(M,p)
are NP-hard for SHSMs even if we restrict to conjunctions of formulas which
are local to the vertices of the considered SHSM.

4 LrL and CTL Model Checking

In this section we consider the verification of requirements expressed by LTL
and CTL formulas. We recall a Biichi automaton A = (Q, g1, 4, L, T) is a Kripke
structure (Q, g1, 4, L) together with a set of accepting states T [Tho90].

Fix an SHSM M = (M, ..., My) and a Biichi automaton A = (@, q1, 4, L, T),
with @ = {q1,...,qm}. We define the graphs M ; p), where 1 < i < K,
1 < j < m, and P is a subset of AP such that P U TRUE(in;) = L(g;).
The vertices of M(; ; py are 4-tuples [u,q,j, P]. The third and fourth compo-
nents are the same for all the vertices in the same graph and are needed only
to distinguish vertices of different graphs. Components u and ¢ are respectively
vertices of M; and A such that: if v is a node, the labeling of ¢ coincides with the
labeling of u augmented with the set P of the atomic propositions that u inherits
from its ancestors; if u is a box, with ezpn(u) = h, the labeling of ¢ contains
also the atomic propositions labeling the initial node inj, of the expansion of w.
Moreover, the edges in M(; ; py are obtained from the edges of M; and A as in
the standard Cartesian product of M; and A.

The SHSM M’ = M @ A is inductively defined as follows. My ; gy is the
graph containing the starting node of M’. Let M(; ; py be a graph of M’, and
[u, g1, j, P] be a vertex of M(; ; py. If expn pq(u) = 0 then expn v ([u, g¢, j, P]) = 0.
If expn,(u) = h >0, and P’ = P UTRUEA(u) then My, ¢ pry is a graph of M’
and expn pq ([u, q¢, j, P]) is the index of My, ; pry. Finally, we use only an atomic
proposition TGT to label vertices: TRUE ¢ ([u, ¢, j, P]) is {TaT} iff ¢ € T.

By a counting argument and the observation that for CHSMs the graphs M(; ; p)
are uniquely determined by the indices ¢ and j, we can show the following lemma.

Lemma 4. Given an SHSM M, M’ = M@ A is an SHSM whose size is O(m?-
|IM| - |A] - |24F]). Moreover, if M is a CHSM, then the size of M’ is O(m? -
|M] - [A]).



The language L£(A) accepted by a Biichi automaton A is the set of all traces
corresponding to paths visiting infinitely often a state of 7. The SHSM M &) A
can be used to check for emptiness the language given by the intersection of
L(M) and L(A), as shown in the following lemma.

Lemma 5. Emptiness of L(M)NL(A) can be checked in time linear in the size
of MK A.

Proof : Observe that the set of the traces of MY is the same as the set of
traces of the Cartesian product of M and A. Thus £(M) N L(A) # 0 if and
only if Cycle(M’,TGT) is TRUE. Since the simple formula consisting of the sole
atomic proposition TGT has only a partial evaluation, that is TGT itself, from
Theorem 3 this problem can be checked in linear time. a

As a consequence of the above lemmas, we obtain an algorithm to solving
the LTL model checking for SHSMs. We construct a Biichi automaton A-, of
size O(2!#1) accepting the set £(A-,) of the sequences that do not satisfy ¢, and
then ¢ is satisfied on all paths of M if and only if L(M) N L(A-,) is empty.
Therefore, by Lemmas 4 and 5 we have:

Theorem 5. The LTL model checking on an SHSM M and a formula ¢ can be
solved in O(|M| - 169l time. Moreover, if M is a CHSM then the problem can
be solved in O(|M| - 81¥l) time.

Now we consider CTL for expressing branching-time properties and sketch
an algorithm to solve CTL model checking. We fix an SHSM M = (M, ..., My)
and a temporal logic formula ¢. Let P, be the set of atomic propositions that
appear in ¢. The first step of our algorithm consists of constructing a hier-
archical state machine M, such that ./\/lg is isomorphic to M. Let index :
[1,k] x 2P — [1,k2IP]] be a bijection such that index(i, P;) < index(j, P;)
whenever ¢ < j. Clearly, index maps the pairs (i, P;) into a strictly increas-
ing sequence of consecutive naturals starting from 1. For a machine M; =
(N;,in;, OUT;, TRUE;, expn;, B;), 1 < i < k and P C P,, define M as the
machine (Nf,inf’ OUTE , TRUEY, expn? | EF) where:

— Nf = {uf |ue N;}, and OUTF = {u® |u € OUT;};

— TRUEY (uf) = TRUE; (u) U P if u is a node and TRUE? (u”) = ), otherwise;

— expn!’ (u) = 0 if u is a node and expn! (u) = index(expn,(u), P U TRUE;(u)),
otherwise;

— EF = {(uF,0) | (u,) € B} U{((uF, 2PITRVE) o) | ((u, 2),0) € Ey}.
We define M., by the tuple of machines (M7, ..., M],) such that for j =1,..., K/,
M]’ = MY where j = indez (i, P). From the definition of M} it is simple to verify
that M., is a HSM and |[M,| is O(|M| 2171y = O(|M|2/#!). Moreover, ./\/lf; and
M are identical up to a renaming of states. Therefore, by the results on HSMs
from [AY01], we get the following theorem (where M is an SHSM, ¢ is a formula
and d is the maximum number of exit nodes of a machine of M).

Theorem 6.
The CTL model checking of SHSMs can be solved in O(|M|41¥14) time.
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