
Verification of Succinct Hierarchical State
Machines ?

Salvatore La Torre1, Margherita Napoli1, Mimmo Parente1, and
Gennaro Parlato1,2

1 Dipartimento di Informatica e Applicazioni
Università degli Studi di Salerno, Italy

2 University of Illinois at Urbana-Champaign, USA

Abstract. A hierarchical state machine (HSM) is a finite state machine
where a vertex can either expand to another hierarchical state machine
(box) or be a basic vertex (node). Each node is labeled with atomic
propositions. We study an extension of such model which allows atomic
propositions to label also boxes (SHSM). We show that SHSMs can be
exponentially more succinct than HSMs, and verification is in general
harder by an exponential factor. Also, we show for a subclass of SHSMs
(which can still be exponentially more succinct than HSMs) the same
upper bounds as for HSMs.

1 Introduction

Finite state machines (labeled finite transition systems) are widely used for mod-
eling the flow of control of digital systems and are appealing to formal verification
such as model checking [CE81,CK96]. In model checking, a high-level specifica-
tion is expressed by a formula of a logic and is checked for fulfillment on an
abstract model of the system. Though a typical solution to this problem is lin-
ear in the size of the model, it is computationally hard since the model generally
grows exponentially with the number of variables used to describe the system
(state-space explosion). As a consequence, an important part of the research on
model checking has been concerned with handling this problem.

Hierarchical structures are naturally present in complex systems where simple
modules usually form a hierarchy. Representing such systems as standard tran-
sition graphs introduces some redundancy which can be avoided by modeling
them as hierarchical state machines [AY01]. A hierarchical finite state machine
is a finite state machine where a vertex can either expand to another hierarchical
state machine (box) or be a basic vertex (node). Each node is labeled with atomic
propositions (AP) and the outcomes of the model thus generate sequences over
2AP . Complexity of model-checking is discussed in [AY01] and the succinctness of
the model compared to standard finite state machines is addressed in [AKY99].

? This research was partially supported by the MIUR grant ex-60% 2005-06, Università
degli Studi di Salerno.

In this paper, we consider a variation of the hierarchical state machines,
where also boxes are labeled with atomic propositions. The intended meaning of
such labeling is that when a box v expands to a machine M , all the vertices of M
inherit the atomic propositions which hold true at v (context), so that different
vertices expanding to M can place M into different contexts. With such more
general labeling, we show that it is possible to obtain models of systems which
are exponentially more succinct than hierarchical state machines. Therefore, we
call them Succinct HSMs (SHSMs). We recall that a restricted version of an
SHSM, denoted CHSM (Context-dependent HSM), is considered in [LNPP03].
There, an atomic proposition which labels a box b cannot label the vertices of
any of the machines which directly or indirectly expand from b. We also prove
that SHSMs can be exponentially more succinct than CHSMs.

We study the complexity of verification for SHSMs. In particular, we con-
sider basic verification questions such as reachability and cycle detection, and
the model-checking problem against Ltl [Pnu77] and Ctl [CE81] specifica-
tions. We show that for an SHSM M and a formula ϕ: Ltl model-checking is
Pspace-complete and can be solved in O(|M| 16|ϕ|) time; Ctl model-checking
is Exptime-complete and can be solved in O(|M| 4|ϕ| d) time where d is the
maximum number of exit nodes of M. We also show that reachability and cycle
detection are both NP-complete. From the results shown in [AY01] for hierarchi-
cal state machines, we get time complexities increased by an O(2|ϕ|) factor which
is exactly what we gain in succinctness. However, we also show that things im-
prove when we place some restrictions on the SHSM and the formula expressing
the target set in the reachability and cycle detection problems. In particular, we
show that Ltl model-checking of CHSMs can be solved in O(|M| 8|ϕ|) time, and
if the target formula conforms with the structure of the SHSM (resp. CHSM),
reachability and cycle detection can be solved in linear time.

There are several papers in the literature that concern with hierarchical state
machines. In [AGM00,AMY02], the verification tool HERMES which is based
on hierarchical state machines is discussed. Hierarchical state machines with
recursive expansions of nodes (recursive state machines) are studied in [ABE+05]
and a corresponding temporal logic is introduced in [AEM04]. Recursive state
machines turn out to be equivalent to pushdown automata [ABE+05]. Recursive
calls and context-dependent properties are considered in [LNPP03], where also
CHSMs are introduced as a restriction of the corresponding recursive model and
some complexity results on verification are derived from those obtained on the
recursive model. Here, we revisit such results and compare CHSMs to SHSMs.
The impact of concurrency is studied in [AKY99,LMP04] for hierarchical state
machines and in [BLP06] for recursive state machines. Finally, modular control
synthesis for recursive state machines is studied in [ALM03a,ALM03b].

2 The Model

Given a set AP of atomic propositions, a Kripke structure over AP is a rooted
directed graph whose vertices are labeled with the atomic propositions holding

true in that vertex. In this paper, we model a system by a hierarchically struc-
tured graph, where vertices can be either simple nodes or placeholders for other
graphs. We formally define such graphs as follows.

Definition 1. A Succinct Hierarchical State Machine (SHSM) over AP is a
tuple M = (M1, . . . , Mk), each Mi = (Ni, ini,outi, truei, expni, Ei) is called
machine and consists of:

– a finite set of vertices Ni, an initial vertex ini ∈ Ni and a set of output
vertices outi ⊆ Ni;

– a labeling function truei : Ni −→ 2AP that maps each vertex with a set of
atomic propositions;

– an expansion mapping expni : Ni −→ {0, 1, . . . , k} such that expni(u) < i,
for every u ∈ Ni, and expni(u) = 0, for every u ∈ {ini} ∪ outi;

– a set of edges Ei where each edge is either a pair (u, v), with u, v ∈ Ni

and expni(u) = 0, or a triple ((u, z), v) with u, v ∈ Ni, expni(u) > 0, and
z ∈ outexpni(u).

We assume that the sets of vertices Ni are pairwise disjoint. The set of
all vertices of M is N =

⋃k
i=1 Ni. The mappings expn : N −→ {0, 1, . . . , k}

and true : N −→ 2AP extend the mappings expni and truei, respectively. If
expn(u) = j > 0, the vertex u expands to the machine Mj and is called box.
When expn(u) = 0, u is called a node. Let us define the closure expn+ : N −→
2{0,1,...,k}, as: h ∈ expn+(u) if either h = expn(u) or there exists u′ ∈ Nexpn(u)

such that h ∈ expn+(u′). We say that a vertex u is an ancestor of v, and v is
a descendant from u, if v ∈ Nh and h ∈ expn+(u). Let us note that contrarily
with what happens in Kripke structures, in this model the atomic propositions
not labeling u are not necessarily to be intended false (in Sect. 3 we define the
function false(u) of the atomic proposition which can be stated false at u).

As an example of an SHSM M see part (a) of Fig. 1, where p1, p2, p3 are
atomic propositions labeling nodes and boxes of M, ei and xi are respectively
entry nodes and exit nodes for i = 1, 2, 3, and expn(bi

j) = j − 1 for i = 0, 1 and
j = 2, 3.

A hierarchical state machine (HSM) is an SHSM where true(u) = ∅, for
every box u [AY01]. A context-dependent HSM (CHSM) M = (M1, . . . , Mk) is
an SHSM where true(u) ∩ true(v) = ∅, for every u, v ∈ N such that u is an
ancestor of v [LNPP03]. Observe that the SHSM of Fig. 1 is also a CHSM but
is not a HSM.

The semantics of an SHSM M is given by defining an equivalent Kripke
structure, denoted MF .
The Kripke structure MF . A sequence of vertices α = uiui+1 · · ·uj , 0 < i ≤
j, is called a well-formed sequence if u`+1 ∈ Nexpn(u`), for every ` = i, . . . , j − 1.
Moreover, α is also complete when ui ∈ Nk and uj is a node.

A state of MF is 〈α〉 where α is a complete well-formed sequence of M.
Note that the length of a complete well-formed sequence is at most k, therefore
the number of states of MF is at most exponential in the number of vertices
of M. The initial state of MF is 〈ink〉, where ink is the initial vertex of Mk.

{p3, p2, p1}

b03, b02, e1

∅∅
e3

∅
b03, e2

{p2, p1} {p2} {p1}

b03, b12, x1 b03, b12, e1 b03, b02, x1

{p3}
b13, e2b03, x2

{p2, p1}

M3

M2

M1

e2
b02 b12

e1

e3
b03 b13

(b)(a)

x3

x2

x1

{p3}

p1}
{p2,

{p3,

p2, p1}

{p1}

{p2} b13, b02, e1

{p3}

b13, b12, x1 b13, b12, e1 b13, b02, x1

{p3, p2, p1} {p3, p2} {p3, p1}

b13, x2 x3

{p3, p2, p1}

Fig. 1. An SHSM M and the Kripke structure obtained by flattening M.

Transitions of MF are obtained by using as templates the edges of M: there is
a transition from a state 〈αβ〉 to a state 〈αβ′〉 if and only if (β, β′) “denotes”
an edge of M. Part (b) of Fig. 1 shows the Kripke structure which is equivalent
to the SHSM from part (a) of the same figure. We give a precise construction of
MF in the following.

Given an SHSMM = (M1, . . . , Mk), note that the tupleMh = (M1, . . . , Mh),
1 ≤ h ≤ k, is an SHSM as well, and Mk = M. We now sketch how to compute
recursively the flat Kripke structures MF

h , and thus MF .
We start with MF

1 which is obtained from machine M1 by simply replacing
each vertex u with a state 〈u〉 labeled with true(〈u〉) = true(u) (recall that
by definition all vertices of M1 are nodes). Thus, for each edge (v, w) ∈ E1 we
add a transition (〈v〉, 〈w〉) in MF

1 .
For h > 1, MF

h is obtained from Mh by simply replacing each box u of Mh

with a copy of the Kripke structure MF
expn(u). More precisely, for each node

u ∈ Nh, 〈u〉 is a state of MF
h which is labeled with true(u). For each box

u ∈ Nh and state 〈α〉 of MF
expn(u), 〈uα〉 is a state of MF

h and is labeled with
true(u) ∪ true(〈α〉). The transitions of MF

expn(u) are all inherited in MF
h ,

that is, there is a transition (〈uα〉, 〈uβ〉) in MF
h for each transition (〈α〉, 〈β〉)

of MF
expn(u). The remaining transitions of MF

h correspond to the edges of Mh:
for each node v ∈ Nh and edge (u, v) ∈ Eh (resp. ((u, z), v) ∈ Eh) there is a
transition from 〈u〉 (resp. 〈uz〉) to 〈v〉; for each box v ∈ Nh and edge (u, v) ∈ Eh

(resp. ((u, z), v) ∈ Eh) there is a transition from 〈u〉 (resp. 〈uz〉) to 〈v inexpn(v)〉.
A vertex u expanding into Mh is a placeholder for MF

h and determines a sub-
graph in MF isomorphic to MF

h . If two distinct vertices u1 and u2 both expand
into the same machine Mh, that is expn(u1) = expn(u2) = h, then the states of

{p1, . . . , pi}

Mh

eh
b0h b1h

ph

ei

b0i b1i

b2i

{pi, . . . , ph}

Mi, i = 2, . . . , h− 1

M1

e1

xh

{p1, . . . , ph}

{p1, ..
.., ph}

x1
i

pi

{p1, . . . , ph}

x0
i

x0
1

p1

x1
1

Fig. 2. An SHSM Mh such that L(Mh, ϕh) = L2
h.

MF
h appear in MF in two different contexts, labeled possibly by different sets of

atomic propositions: in one context this set contains true(u1) and in the other
it contains true(u2).
Succinctness of the model. Observe that being able to represent with a
single machine Mh more than one subgraph of MF , our model in general is
more succinct than a traditional Kripke structure. Box labeling further improve
on this. In fact in a situation as described above, the two ‘copies’ of MF

h in MF ,
though labeled in a different way, can be represented in an SHSM by the single
machine Mh, while they should be represented by two different machines in a
HSM. Before stating this more formally, we need some definitions.

Given a transition graph with states labeled by subsets of atomic propositions
and a state X, a trace is an infinite sequence σ1σ2 . . . σi . . . of labels of states
occurring in a path starting from X. Moreover, given an SHSM M, we define
the language L(M) as the set of the infinite traces of MF starting from its
initial state. Moreover, for a boolean formula ϕ over the atomic propositions
AP , we denote by L(M, ϕ) the set of traces in L(M) containing a label which
fulfills ϕ. In the rest of this section, for h ≥ 0 we fix a set of atomic propositions
Σh = {p1, . . . , ph} and for a subset σ ⊆ Σh, define](σ) =

∑
pi∈σ 2i−1 (in

particular,](∅) = 0).

Proposition 1. CHSMs can be exponentially more succinct than HSMs and
finite state machines.

Proof : Consider the family of languages L1
h of traces σ1 . . . σn . . . over 2Σh such

that: σ1 = ∅; for i < n, σi = σi+1 or](σi+1) =](σi)+1; and](σn) = 2h− 1. Let
ϕh = p1 ∧ · · · ∧ ph. For h = 3, a CHSM M such that L(M, ϕ3) = L1

3 is given
in Fig. 1. It is easy to see that M can be generalized to a CHSM Mh such that
L(Mh, ϕh) = L1

h, and |Mh| = O(h). Since there are 2h different labels that need
to be taken into account, we have that any hierarchical or finite state machine
M′

h such that L(M′
h, ϕh) = L1

h requires at least 2h different nodes. ut
There is an exponential gap also between CHSMs and SHSMs as shown in

the following proposition.

Proposition 2. SHSMs can be exponentially more succinct than CHSMs.

Proof : Consider the family of languages L2
h of traces σ1 . . . σn . . . over 2Σh such

that: σ1 = ∅;](σn) = 2h−1; and for i < n either σi = σi+1, or](σi+1) =](σi)+1,
or for some 1 ≤ j ≤ h, {p1, p2 . . . pj−1} ⊆ σi, pj 6∈ σi and σi+1 = {pj , . . . , ph}.
Let ϕh = p1 ∧ · · · ∧ ph. An SHSM Mh such that L(Mh, ϕh) = L2

h is given in
Fig. 2, where p1, . . . , ph are atomic propositions labeling nodes and boxes of M,
ei and xj

i are respectively entry and exit nodes, and expn(bj
i) = i− 1. It is easy

to check that |Mh| = O(h).
To complete the proof it suffices to show that any CHSM M′

h such that
L(M′

h, ϕh) = L2
h has size exponential in h. Fix σ1, σ2 ⊆ Σh such that pj 6∈

σ1∪σ2, {p1, . . . pj−1} ⊆ σ1∩σ2 and there is an atomic proposition p`, ` > j, such
that p` ∈ σ1 and p` 6∈ σ2. Let M′

h be any CHSM such that L(M′
h, ϕh) = L2

h.
From the definition of L2

h and being σ1 6= σ2, there are three different states
s1, s2, s3 of M′

h
F such that s3 is a successor of s2, true(si) = σi for i = 1, 2

and true(s3) = {pj , . . . , ph}. For i = 1, 2, let si = 〈αibiui〉 where ui are nodes,
bi are boxes, and αi are sequences of boxes. Observe that from the definition
of CHSM if p` labels any of the boxes in α1 it cannot label any vertex of the
machines to which either b1 or u1 belongs. Thus, either b1 6= b2 or u1 6= u2 must
hold otherwise we get the contradiction that also s3 (being a successor of s2 in
M′

h
F) cannot be labeled with p`. Therefore, for each pair of different sets σ1

and σ2 as above, there are two different vertices of M′
h. Since we can choose σ1

and σ2 among 2h−j many different sets, we can conclude that any CHSM M′
h

such that L(M′
h, ϕh) = L2

h must have at least 2h−j different vertices. Therefore,
if we pick j = 1 we get that such M′

h must have at least 2h−1 different vertices,
and the proposition is proved. ut

It is worth noting that the mentioned succinctness results do not add up to
each other, in the sense that it is not true that SHSMs can be doubly exponen-
tially more succinct than HSMs. In fact, HSMs, CHSMs and SHSMs can all be
translated to equivalent finite state machines with a single exponential blow-up.
From Proposition 1 and the fact that any CHSM is also an SHSM, we have the
following.

Corollary 1. SHSMs can be exponentially more succinct than HSMs and finite
state machines.

3 Reachability and Cycle Detection

In this section we deal with reachability and cycle detection on SHSMs. We start
defining the problems. Then, we show that they are NP-complete and discuss
some conditions which allow us to give an efficient solution.

Given an SHSM M = (M1, . . . , Mk) and a propositional boolean formula ϕ,
Reach(M,ϕ) is the problem of deciding if there exist a state X in MF on which
ϕ is satisfied and a path in MF from 〈ink〉 to X. The problem Cycle(M,ϕ) is
the problem of deciding if there exist a state X in MF at which ϕ is satisfied,
a path from 〈ink〉 to X and a path from X to itself.
NP-completeness. We first show NP-hardness. As stated in the following
lemma, NP-hardness holds even when the formula is very simple.

Lemma 1. Given an SHSM M and a formula ϕ expressed as a conjunction of
literals, the problems Reach(M,ϕ) and Cycle(M,ϕ) are NP-hard.

Proof : First, we observe that as the intuition suggests, Cycle(M,ϕ) can be
polynomially reduced to Reach(M,ϕ). Thus, to show the lemma we reduce 3-
SAT to the problem Reach(M,ϕ). Let ψ be a 3-SAT formula ψ = C1 ∧ · · · ∧
Cn, over a set of atomic propositions AP ′ = {P1, . . . , Pk}, where each Ci is a
disjunction of three literals. We construct an SHSM M = (M1, . . . , Mk), on the
set of atomic propositions AP = {c1, . . . , cn}, as follows: each Mi, i ≥ 1, has
four vertices forming a line: ini, pi, notpi and outi. The vertex pi is labeled
cj , if Pi occurs in the clause Cj , while the vertex notpi is labeled cj if ¬Pi is
in Cj . For i > 1, pi and notpi are boxes expanding into Mi−1, having edges
((pi, outi−1), notpi) and ((notpi, outi−1), outi). Vertices p1 and notp1 are nodes.
Define ϕ = c1 ∧ · · · ∧ cn. It is not difficult to verify that ψ is satisfiable if and
only if there exists a reachable state of MF at which ϕ is satisfied. ut

To show membership in NP, we introduce the notions of path and cycle on
SHSMs. In the following, given a box u ∈ Nh, out(u) is the set of all vertices
z ∈ outexpn(u) such that ((u, z), v) ∈ Eh, for some v ∈ Nh. Moreover, with
[u, z] we denote a pair such that either u is a node and z = ε or u is a box and
z ∈ out(u).

LetM = (M1, . . . , Mk) be an SHSM. A H-path from a pair [u1, z1] to a vertex
ur in Mh, is a sequence of pairs [u1, z1] [u2, z2] . . . [ur−1, zr−1] such that for every
1 ≤ j < r, uj ∈ Nh and one of the following cases occurs: either uj is a node
and (uj , uj+1) ∈ Eh, or uj is a box, ((uj , zj), uj+1) ∈ Eh and there is a H-path
from [inexpn(uj), ε] to zj in Mexpn(uj). In the following, when we refer to a H-path
in Mh, we sometimes omit the reference to a machine Mh since it is univocally
determined by the vertices u1, . . . , ur. Moreover, we say that a vertex u ∈ Nh is
H-connected if either u = inh or there is a H-path from [inh, ε] to u. Observe that
if a node u ∈ Nh is H-connected then there exists a path from 〈inh〉 to 〈u〉 in the
Kripke structure MF

h , while if a box u is H-connected, a path exists from 〈inh〉
to 〈u inexpn(u)〉. Hence, if a vertex u is H-connected, this in turn means that
there exists a path from 〈α inh〉 to either 〈αu〉 or 〈αu inexpn(u)〉 in MF , for any
well-formed sequence α = ε or α = u1 . . . uj , with expn(uj) = h. On the other
side, note that if there exists a path in MF from 〈ink〉 to a state 〈u1 . . . um〉,
then there are paths from 〈u1 . . . uj−1 inexpn(uj−1)〉 to 〈u1 . . . uj−1uj inexpn(uj)〉
for j = 1, . . . , m − 1 and from 〈u1 . . . um−1 inexpn(um−1)〉 to 〈u1 . . . um−1um〉.
Therefore, all vertices uj for j = 1, . . . , m are H-connected. These observations
prove the following proposition.

Proposition 3. Given an SHSM M = (M1, . . . ,Mk), let X = 〈u1u2 . . . um〉 be
a state of MF . There is a path from 〈ink〉 to X in MF if and only if all the
vertices ui are H-connected.

A H-cycle in an SHSM is a H-path from a pair [u, z] to u. Now, we want to
consider the relationship between cycles in MF and H-cycles in M. Given a pair
[v0, z0] with z0 ∈ out(v0), a well-formed sequence v0v1 . . . vr is called connected
to z0 if for each ` = 1, . . . , r there exist z` ∈ out(v`) ∪ {ε}, and a H-path

from [v`, z`] to z`−1 (note that vr may also be the output node zr−1). This
definition simply captures the property that there is a path of MF from a state
〈α v0v1 . . . vrβ〉 (with α, β possibly empty) to a state 〈α v0z〉 such that α v0 is a
common prefix to all the complete well-formed sequences of the visited states.

Proposition 4. Let M be an SHSM and X = 〈u1 . . . um〉 be a reachable state
of MF . X belongs to a cycle in MF if and only if either:

– [um, ε] belongs to a H-cycle or
– there exist 1 ≤ i < m and z ∈out(ui) such that [ui, z] belongs to a H-cycle

and ui . . . um is a well-formed sequence connected to z.

The following proposition is crucial in our argument for NP-membership.

Proposition 5. Given an SHSM M, the set of H-connected vertices and the
set of pairs belonging to a H-cycle of M can be determined in O(|M|).

Therefore, we have the following theorem.

Theorem 1. The problems Reach(M,ϕ) and Cycle(M,ϕ) for SHSMs are
NP-complete.

Efficient solutions. Here, we present some conditions on an SHSM M and
a formula ϕ which allow us to give efficient algorithms for both Reach(M,ϕ)
and Cycle(M,ϕ). First we define a partial evaluation of ϕ on a well-formed
sequence and then we give the algorithms for the above two problems.

Given a formula ϕ and two disjoint sets T, F ⊆ AP , let Inst(ϕ, T, F) denote
the formula obtained by instantiating to true the atomic propositions of T and
to false those in F . If we are given a state X ofMF , then a propositional formula
ϕ can be evaluated in X simply by computing Inst(ϕ,true(X), AP \true(X)).
To solve our problems, we would like to find a state in MF where ϕ is satisfied,
using the SHSM M, without explicitly constructing MF . To this aim we use a
greedy approach to evaluate ϕ: we visit top-down M and at each vertex u we
instantiate as many atomic propositions as possible. The question is: which are
the atomic propositions of ϕ can be instantiated? Surely, we can instantiate to
true all the atomic propositions of true(u), while the atomic propositions which
can be instantiated to false depend on the vertices that may follow u in any
complete well-formed sequence of M. In other terms, an atomic proposition can
be instantiated to false if it labels neither u nor vertices having u as an ancestor,
that is it does not belong to a set true∗(u) defined as true∗(u) = true(u) ∪⋃

v∈Nexpn+(u)
true(v). Thus, we define the set of atomic propositions of ϕ that

can be instantiated to false at a vertex u ∈ Nh, as false(u) = AP \ true∗(u).
Let us remark that the function false can be computed by visiting M just once.

Given an SHSM M, a propositional boolean formula ϕ over AP and a well-
formed sequence α of M, the partial evaluation of ϕ on α, is defined as

{
PEval(ϕ, ε) = ϕ
PEval(ϕ, αu) = Inst(PEval(ϕ, α),true(u), false(u)).

The following lemma ensures correctness of our approach.

Lemma 2. Given an SHSM M, a formula ϕ, and a state X = 〈α〉 of MF :
PEval(ϕ, α) = Inst(ϕ,true(X), AP \ true(X)).

In what follows w.l.o.g. we assume that the formula returned by a partial
evaluation is simplified according to the following tautologies: (ψ∧ true) ≡ ψ,
(ψ∧ false) ≡ false, (ψ∨ false) ≡ ψ, (ψ∨true) ≡ true, (¬true) ≡ false, (¬ false) ≡
true. We say that ϕ is constant if it is either true or false.
Now, we are ready to define a condition to get polynomial-time algorithms for
the problems Reach(M,ϕ) and Cycle(M,ϕ).

Fix an SHSMM and a boolean formula ϕ. We say that the partial evaluations
of ϕ in M are uniquely inherited iff: for every two well-formed sequences αu
and βv, if expn(u) = expn(v) and both PEval(ϕ, αu) and PEval(ϕ, βv) are not
constant, then PEval(ϕ, αu) = PEval(ϕ, βv).

Assume w.l.o.g. that all the vertices of M are H-connected (from Proposi-
tion 5, an arbitrary SHSM can be simplified such that this holds using linear
time). Thus from Proposition 3 all states of MF are reachable. Hence, using
mainly Lemma 2, it is possible to design an algorithm that looks for a complete
well-formed sequence α for which the function PEval(ϕ, α) gives TRUE. Such al-
gorithm visits top-down the machines of M and evaluates PEval on well-formed
sequences by computing iteratively the function Inst. Note that if the evaluations
of ϕ are uniquely inherited, multiple visits of a machine Mh are not needed, and
thus the overall complexity of the algorithm is linear in |M| and |ϕ|.
Theorem 2. Let ϕ be a formula and M be an SHSM such that the partial
evaluations of ϕ in M are uniquely inherited. The problem Reach(M,ϕ) is
decidable in time O(|M| · |ϕ|).
The algorithm to solve the problem Cycle(M,ϕ) and its correctness strongly
rely on the following Lemma 3 which is a direct consequence of Proposition 4.

Lemma 3. Let M be an SHSM with all H-connected vertices, ϕ be a boolean
formula and α = u1 . . . uj be a well-formed sequence such that PEval(ϕ, α) =true.
There exists a well-formed sequence β such that 〈αβ〉 is a solution of the problem
Cycle(M,ϕ) if and only if either

a) there exists a H-cycle in Mh, h ∈ expn+(uj) or
b) there exist i ≤ j and z0 ∈ out(ui) such that [ui, z0] is in a H-cycle and

ui . . . uj is a well-formed sequence connected to z0.

Theorem 3. Let ϕ be a formula and M be an SHSM such that the partial
evaluations of ϕ in M are uniquely inherited. The problem Cycle(M,ϕ) is
decidable in time O(|M| · |ϕ|).

Note that for general ϕ and M, the above algorithms can be easily modified
in such a way that each machine Mh can be visited just once for each subformula
of ϕ. Thus the following theorem holds.

Theorem 4. Given an SHSM M and a formula ϕ, the problems Reach(M,ϕ)
and Cycle(M,ϕ) are decidable in O(|M| · 2|ϕ|) time.

Observe that when in M there are no context-properties (true(u) = ∅ for
every box u), then the partial evaluations of every formula ϕ in M are uniquely
inherited and thus Theorems 2 and 3 generalize those in [AY01].

We give a further condition on M and ϕ which let us get efficient algorithms
when M is a CHSM. Let AP(ψ) be the set of atomic propositions of a formula
ψ. We say that ψ is local to M vertices iff for every vertex u of M either
AP (ϕi)∩(true(u)∪false(u)) = ∅ or AP (ϕi)∩(true(u)∪false(u)) = AP (ϕi)
holds. It is possible to show that for a CHSM M, if ϕ is of the form ϕ1∧· · ·∧ϕm

where each ϕi is local to M vertices, then the partial evaluations of ϕ in M are
uniquely inherited.

Corollary 2. Let M be a CHSM and ϕ be a conjunction of formulas which are
local to M vertices. The problems Reach(M,ϕ) and Cycle(M,ϕ) are decidable
in time O(|M| · |ϕ|).

As a final remark, note that from Lemma 1, Reach(M,ϕ) and Cycle(M,ϕ)
are NP-hard for SHSMs even if we restrict to conjunctions of formulas which
are local to the vertices of the considered SHSM.

4 Ltl and Ctl Model Checking

In this section we consider the verification of requirements expressed by Ltl
and Ctl formulas. We recall a Büchi automaton A = (Q, q1,∆, L, T) is a Kripke
structure (Q, q1,∆, L) together with a set of accepting states T [Tho90].

Fix an SHSMM = (M1, . . . ,Mk) and a Büchi automaton A = (Q, q1,∆, L, T),
with Q = {q1, . . . , qm}. We define the graphs M(i,j,P), where 1 ≤ i ≤ k,
1 ≤ j ≤ m, and P is a subset of AP such that P ∪ trueM(ini) = L(qj).
The vertices of M(i,j,P) are 4-tuples [u, q, j, P]. The third and fourth compo-
nents are the same for all the vertices in the same graph and are needed only
to distinguish vertices of different graphs. Components u and q are respectively
vertices of Mi and A such that: if u is a node, the labeling of q coincides with the
labeling of u augmented with the set P of the atomic propositions that u inherits
from its ancestors; if u is a box, with expn(u) = h, the labeling of q contains
also the atomic propositions labeling the initial node inh of the expansion of u.
Moreover, the edges in M(i,j,P) are obtained from the edges of Mi and A as in
the standard Cartesian product of Mi and A.

The SHSM M′ = M⊗
A is inductively defined as follows. M(k,1,∅) is the

graph containing the starting node of M′. Let M(i,j,P) be a graph of M′, and
[u, qt, j, P] be a vertex of M(i,j,P). If expnM(u) = 0 then expnM′([u, qt, j, P]) = 0.
If expnM(u) = h > 0, and P ′ = P ∪ trueM(u) then M(h,t,P ′) is a graph of M′

and expnM′([u, qt, j, P]) is the index of M(h,t,P ′). Finally, we use only an atomic
proposition tgt to label vertices: trueM′([u, q, j, P]) is {tgt} iff q ∈ T .
By a counting argument and the observation that for CHSMs the graphs M(i,j,P)

are uniquely determined by the indices i and j, we can show the following lemma.

Lemma 4. Given an SHSMM,M′ = M⊗
A is an SHSM whose size is O(m2·

|M| · |A| · |2AP |). Moreover, if M is a CHSM, then the size of M′ is O(m2 ·
|M| · |A|).

The language L(A) accepted by a Büchi automaton A is the set of all traces
corresponding to paths visiting infinitely often a state of T . The SHSM M⊗

A
can be used to check for emptiness the language given by the intersection of
L(M) and L(A), as shown in the following lemma.

Lemma 5. Emptiness of L(M)∩L(A) can be checked in time linear in the size
of M⊗

A.

Proof : Observe that the set of the traces of M′F is the same as the set of
traces of the Cartesian product of MF and A. Thus L(M) ∩ L(A) 6= ∅ if and
only if Cycle(M′,tgt) is TRUE. Since the simple formula consisting of the sole
atomic proposition tgt has only a partial evaluation, that is tgt itself, from
Theorem 3 this problem can be checked in linear time. ut

As a consequence of the above lemmas, we obtain an algorithm to solving
the Ltl model checking for SHSMs. We construct a Büchi automaton A¬ϕ of
size O(2|ϕ|) accepting the set L(A¬ϕ) of the sequences that do not satisfy ϕ, and
then ϕ is satisfied on all paths of M if and only if L(M) ∩ L(A¬ϕ) is empty.
Therefore, by Lemmas 4 and 5 we have:

Theorem 5. The Ltl model checking on an SHSM M and a formula ϕ can be
solved in O(|M| · 16|ϕ|) time. Moreover, if M is a CHSM then the problem can
be solved in O(|M| · 8|ϕ|) time.

Now we consider Ctl for expressing branching-time properties and sketch
an algorithm to solve Ctl model checking. We fix an SHSM M = (M1, . . . , Mk)
and a temporal logic formula ϕ. Let Pϕ be the set of atomic propositions that
appear in ϕ. The first step of our algorithm consists of constructing a hier-
archical state machine Mϕ such that MF

ϕ is isomorphic to MF . Let index :
[1, k] × 2Pϕ → [1, k 2|Pϕ|] be a bijection such that index (i, Pi) < index (j, Pj)
whenever i < j. Clearly, index maps the pairs (i, Pi) into a strictly increas-
ing sequence of consecutive naturals starting from 1. For a machine Mi =
(Ni, ini, OUTi,truei, expni, Ei), 1 ≤ i ≤ k and P ⊆ Pϕ, define MP

i as the
machine (NP

i , inP
i , OUTP

i ,trueP
i , expnP

i , EP
i) where:

− NP
i = {uP |u ∈ Ni}, and OUTP

i = {uP |u ∈ OUTi};
− trueP

i (uP) = truei(u) ∪ P if u is a node and trueP
i (uP) = ∅, otherwise;

− expnP
i (u) = 0 if u is a node and expnP

i (u) = index (expni(u), P ∪ truei(u)),
otherwise;
− EP

i = {(uP , vP) | (u, v) ∈ Ei} ∪ {((uP , zP∪truei(u)), vP) | ((u, z), v) ∈ Ei}.
We defineMϕ by the tuple of machines (M ′

1, . . . , M
′
k′) such that for j = 1, . . . , k′,

M ′
j = MP

i where j = index (i, P). From the definition of MP
i it is simple to verify

that Mϕ is a HSM and |Mϕ| is O(|M| 2|Pϕ|) = O(|M| 2|ϕ|). Moreover, MF
ϕ and

MF are identical up to a renaming of states. Therefore, by the results on HSMs
from [AY01], we get the following theorem (where M is an SHSM, ϕ is a formula
and d is the maximum number of exit nodes of a machine of M).

Theorem 6.
The Ctl model checking of SHSMs can be solved in O(|M| 4|ϕ| d) time.

References

[ABE+05] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yan-
nakakis. Analysis of recursive state machines. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 27(4): 786–818, 2005.

[AEM04] R. Alur, K. Etessami, and P. Madhusudan. A Temporal Logic of Nested
Calls and Returns. In Proc. 10th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’04, LNCS
2988, pp. 467–481, 2004.

[AGM00] R. Alur, R. Grosu, and M. McDougall. Efficient reachability analysis of
hierarchical reactive machines. In Proc. 12th International Conference on
Computer Aided Verification, CAV’00, LNCS 1855, pages 280–295. Springer,
2000.

[AKY99] R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical state
machines. In Proc. 26th International Conference on Automata, Languages
and Programming, ICALP’99, LNCS 1644, pp. 169–178, 1999.

[ALM03a] R. Alur, S. La Torre, and P. Madhusudan. Modular Strategies for Re-
cursive Game Graphs. In Proc. 9th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’03, LNCS
2619, pp. 363-378, 2003.

[ALM03b] R. Alur, S. La Torre, and P. Madhusudan. Modular Strategies for Infinite
Games on Recursive Graphs. In Proc. 15th International Conference on
Computer Aided Verification, CAV’03, LNCS 2725, pp. 67-79, 2003.

[AMY02] R. Alur, M. McDougall, and Z. Yang. Exploiting Behavioral Hierarchy for
Efficient Model Checking. In Proc. 14th International Conference on Com-
puter Aided Verification, CAV’02, LNCS 2404, pp. 338–342, 2002.

[AY01] R. Alur and M. Yannakakis. Model checking of hierarchical state machines.
ACM Transactions on Programming Languages and Systems (TOPLAS),
23(3):273 – 303, 2001.

[BLP06] L. Bozzelli, S. La Torre, and A. Peron. Verification of well-formed Commu-
nicating Recursive State Machines. In Proc. 7th International Conference
on Verification, Model Checking, and Abstract Interpretation, VMCAI’06,
LNCS 3855, pp. 412–426, 2006.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proc. of Workshop on
Logic of Programs, LNCS 131, pages 52 – 71. Springer-Verlag, 1981.

[CK96] E.M. Clarke and R.P. Kurshan. Computer-aided verification. IEEE Spec-
trum, 33(6):61 – 67, 1996.

[LNPP03] S. La Torre, M. Napoli, M. Parente, G. Parlato. Hierarchical and Recursive
State Machines with Context-Dependent Properties. In Proc. 30th Interna-
tional Conference on Automata, Languages and Programming, ICALP’03,
LNCS 2719, pp. 776–789, 2003.

[LMP04] R. Lanotte, A. Maggiolo, and A. Peron, Structural Model Checking for Com-
municating Hierarchical Machines. In Proc. 31st International Symposium
on Mathematical Foundations of Computer Science, MFCS’04, LNCS 3153,
pp. 525–536, 2004.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symposium
on Foundations of Computer Science, FOCS’77, pages 46 – 77, 1977.

[Tho90] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B, pages 133 – 191. Elsevier
Science Publishers, 1990.

