The University of Southampton
University of Southampton Institutional Repository

Relation between vibrotactile perception thresholds and reductions in finger blood flow induced by vibration of the hand at frequencies in the range 8–250 Hz

Relation between vibrotactile perception thresholds and reductions in finger blood flow induced by vibration of the hand at frequencies in the range 8–250 Hz
Relation between vibrotactile perception thresholds and reductions in finger blood flow induced by vibration of the hand at frequencies in the range 8–250 Hz
Purpose: this study investigated how the vasoconstriction induced by vibration depends on the frequency of vibration when the vibration magnitude is defined by individual thresholds for perceiving vibration [i.e. sensation levels (SL)].

Methods: fourteen healthy subjects attended the laboratory on seven occasions: for six vibration frequencies (8, 16, 31.5, 63, 125, or 250 Hz) and a static control condition. Finger blood flow (FBF) was measured in the middle fingers of both hands at 30-second intervals during five successive periods: (i) no force or vibration, (ii) 2-N force, no vibration, (iii) 2-N force, vibration, (iv) 2-N force, no vibration, (v) no force or vibration. During period (iii), vibration was applied to the right thenar eminence via a 6-mm diameter probe during ten successive 3-min periods as the vibration magnitude increased in ten steps (?10 to +40 dB SL).

Results: with vibration at 63, 125, and 250 Hz, there was vasoconstriction on both hands when the vibration magnitude reached 10 dB SL. With vibration at 8, 16, and 31.5 Hz, there was no significant vasoconstriction until the vibration reached 25 dB SL. At all frequencies, there was greater vasoconstriction with greater magnitudes of vibration.

Conclusions: it is concluded that at the higher frequencies (63, 125, and 250 Hz), the Pacinian channel mediates vibrotactile sensations near threshold and vasoconstriction occurs when vibration is perceptible. At lower frequencies (8, 16, and 31.5 Hz), the Pacinian channel does not mediate sensations near threshold and vasoconstriction commences at greater magnitudes when the Pacinian channel is activated
vibration-induced white finger, finger blood flow, hand-arm vibration syndrome, hand-transmitted vibration, vibrotactile perception thresholds
1439-6319
1591-1603
Ye, Ying
5cfc9fff-c24f-4e7c-8a97-c78436d79966
Griffin, Michael J.
24112494-9774-40cb-91b7-5b4afe3c41b8
Ye, Ying
5cfc9fff-c24f-4e7c-8a97-c78436d79966
Griffin, Michael J.
24112494-9774-40cb-91b7-5b4afe3c41b8

Ye, Ying and Griffin, Michael J. (2014) Relation between vibrotactile perception thresholds and reductions in finger blood flow induced by vibration of the hand at frequencies in the range 8–250 Hz. European Journal of Applied Physiology, 114 (8), 1591-1603. (doi:10.1007/s00421-014-2885-y). (PMID:24777735)

Record type: Article

Abstract

Purpose: this study investigated how the vasoconstriction induced by vibration depends on the frequency of vibration when the vibration magnitude is defined by individual thresholds for perceiving vibration [i.e. sensation levels (SL)].

Methods: fourteen healthy subjects attended the laboratory on seven occasions: for six vibration frequencies (8, 16, 31.5, 63, 125, or 250 Hz) and a static control condition. Finger blood flow (FBF) was measured in the middle fingers of both hands at 30-second intervals during five successive periods: (i) no force or vibration, (ii) 2-N force, no vibration, (iii) 2-N force, vibration, (iv) 2-N force, no vibration, (v) no force or vibration. During period (iii), vibration was applied to the right thenar eminence via a 6-mm diameter probe during ten successive 3-min periods as the vibration magnitude increased in ten steps (?10 to +40 dB SL).

Results: with vibration at 63, 125, and 250 Hz, there was vasoconstriction on both hands when the vibration magnitude reached 10 dB SL. With vibration at 8, 16, and 31.5 Hz, there was no significant vasoconstriction until the vibration reached 25 dB SL. At all frequencies, there was greater vasoconstriction with greater magnitudes of vibration.

Conclusions: it is concluded that at the higher frequencies (63, 125, and 250 Hz), the Pacinian channel mediates vibrotactile sensations near threshold and vasoconstriction occurs when vibration is perceptible. At lower frequencies (8, 16, and 31.5 Hz), the Pacinian channel does not mediate sensations near threshold and vasoconstriction commences at greater magnitudes when the Pacinian channel is activated

Text
14755 YY-MJG-2014 EJAP-D-13-01044 VPTs_and_FBFs_for_8_to_250_Hz_vibration - with reference.pdf - Accepted Manuscript
Download (746kB)

More information

e-pub ahead of print date: 29 April 2014
Published date: August 2014
Keywords: vibration-induced white finger, finger blood flow, hand-arm vibration syndrome, hand-transmitted vibration, vibrotactile perception thresholds
Organisations: Human Sciences Group

Identifiers

Local EPrints ID: 372111
URI: http://eprints.soton.ac.uk/id/eprint/372111
ISSN: 1439-6319
PURE UUID: 8d6686e8-500f-4a0b-b8f4-f568894e0007
ORCID for Ying Ye: ORCID iD orcid.org/0000-0002-7721-5451
ORCID for Michael J. Griffin: ORCID iD orcid.org/0000-0003-0743-9502

Catalogue record

Date deposited: 28 Nov 2014 12:04
Last modified: 15 Mar 2024 03:30

Export record

Altmetrics

Contributors

Author: Ying Ye ORCID iD
Author: Michael J. Griffin ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×