
Run-time Power Estimation for Mobile and

Embedded Asymmetric Multi-Core CPUs

Mathew J. Walker, Anup K. Das, Geo↵ V. Merrett, Bashir M. Al-Hashimi
School of ECS, University of Southampton, Southampton SO17 1BJ, UK

{mw9g09,a.k.das,gvm,bmah}@ecs.soton.ac.uk

ABSTRACT

Significant energy savings can be made in mobile devices us-
ing intelligent run-time management software (RTM) that
can e↵ectively trade o↵ performance and energy. For the
RTM to make informed decisions, it needs accurate and re-
sponsive run-time knowledge of the power consumption. For
desktop and server systems, hardware performance monitor-
ing counters (PMCs) have been successfully used for run-
time power estimation. However, for mobile devices there
is little research on the topic. This paper presents a PMC-
based power model for mobile devices and the associated
methodology for identifying the best PMCs and their rela-
tionship with power consumption. However, for the majority
of mobile devices experimented with, PMCs were di�cult or
impossible to obtain and so a utilisation-based power model
was proposed as a more practical alternative. Both these
models are validated, respectively, on an ARM Cortex-A8
and an asymmetric ARM big.LITTLE architecture, which
can be found in recent tablets and smartphones, such as
the Samsung Galaxy S5. A key feature of the utilisation-
based model is that it can derive the power consumed per
core and per individual task. Furthermore, the model can
predict the likely power consumption if a task currently ex-
ecuting on a particular core/frequency (e.g. Cortex-A7 at
400 MHz) were to be migrated to a di↵erent core/frequency
(e.g. Cortex-A15 at 1200 MHz). This allows an RTM to
explore the consequences of changing to any frequency/core
combination in advance. By comparing the two models, it
was found that while the PMC model achieves greater accu-
racy (3.2%), the utilisation model still achieves an impressive
accuracy of 5.6% and 7.2% on a Cortex-A7 and Cortex-A15,
respectively. As it has a high accuracy and can be easily im-
plemented on all mobile devices, we propose that the utili-
sation model represents an attractive choice for guiding an
RTM to improved energy e�ciency.

1. INTRODUCTION

There is an ever-increasing demand for greater computa-
tional performance at lower energy costs in modern proces-
sors. Gains in performance and power e�ciency not only
allow applications to run faster while consuming less energy,
but they enable innovative and new applications that may

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

.

not have even been considered beforehand. For example,
playing 3D games, having a desktop-class web-browser, and
recording high-definition video was not possible on mobile
devices 10 years ago.

Historically, processor performance improvement has come
about by increasing the clock rate in each new generation.
However, the increasing heat density has hampered this,
causing the clock rate of processors for desktop and server
systems to stall in the last decade. Mobile processors are
reaching these speeds already, for example, the Samsung
Galaxy S5 has a maximum CPU frequency of 2.5 GHz[15].
Processor designers have been forced to turn to other alter-
natives in order to increase performance, for example mov-
ing towards 64-bit architectures and multi-core processors.
However, e�ciently allocating tasks between cores to achieve
the required performance and energy e�ciency is a di�cult
undertaking that changes with many other factors; such as
the user’s quality of experience (QoS) requirement and the
current battery level. The concept of a run-time manager
(RTM) has been recently proposed for improving the energy
e�ciency of systems. The RTM makes intelligent decisions
based on the current requirements and operating conditions
and controls the energy-saving techniques of the CPU. For
an RTM to be truly e↵ective in finding the optimum trade-
o↵ point between performance and power consumption, it
should have accurate and responsive per-core, and ideally
per-task, power estimations.

A power estimation method for an RTM needs to be light-
weight, accurate, responsive and able to provide data ‘on-
the-fly’. For desktop and server applications there has been
much research published on using hardware performance
monitoring counters (PMCs) to estimate the run-time power
[16, 7, 3, 14, 5, 6]. PMCs are special registers in the CPU
that count the occurrence of certain hardware-related events,
such as L1 cache misses and branch mispredictions. Their
purpose is for performance analysis but, because they pro-
vide detailed usage information on sub-architectural units,
they can also be e↵ective at estimating power. Accessing
and reading PMCs requires very little overhead in contrast
to software profilers which are generally not suitable for real-
time use on a live system. Most methods consist of running
workloads in order to exercise the CPU while measuring
the power and then choosing PMCs that correlate highly to
build multiple linear regression models. Choosing the PMCs
to use based on their correlation with power is not an e↵ec-
tive solution as demonstrated in Section 2.2.

While PMCs are easily obtainable on desktop and server
systems, they are very di�cult or impossible to obtain on
mobile and embedded systems, which explains the lack of
research with PMCs on mobile devices. Two exceptions are
a recent paper by Rethinagiri et al. [13] that developed a
PMC model for ARM cores and is discussed further in Sec-
tion 2 and a paper by Nunez-Yanez et al. [12] that uses



implantation data from the RTL to built an accurate power
model.

This paper presents a PMC power model for an embedded
platform on which it was possible to obtain PMCs and the
methodology, including two successful methods of obtaining
PMCs, is discussed in detail. Unlike other works discussed
previously, this work measures power directly from the CPU,
uses a high sampling frequency and is shown to be responsive
by validating with real-time data.

Unfortunately, the fact that PMCs are very di�cult or
impossible to access on most mobile and embedded plat-
forms makes PMC models undesirable for this purpose. This
raised the question of whether a simpler metric, such as CPU
utilisation, which provides less information but is easily ac-
cessible on many platforms, can be a suitable alternative.
In order to answer this question, a model using CPU utili-
sation to predict the run-time power was built, thoroughly
tested on a variety of workloads and contrasted with the
PMC-based model. While it did not achieve the very high
levels of accuracy of the PMC model, it still achieved a very
low average error of 5.6% and 7.2% on an ARM Cortex-A7
and Cortex-A15, respectively. Unlike the PMC-based mod-
els, it can be implemented easily on any mobile device. The
utilisation model is also able to determine how each running
process and each core contributes towards the total power
consumption and can also predict how much power would
be consumed if it were running at a di↵erent frequency or
a di↵erent core type in a big.LITTLE architecture. This is
further discussed in Section 3.

The key contributions of this work are:

• An embedded PMC-based power model and the as-
sociated methodology (including details of obtaining
PMCs) is presented;

• The problem of implementing PMC models in mobile
and embedded devices is highlighted and utilisation
based models are shown to be an adequate alternative
that can be easily implemented in any device;

• A utilisation-based model of a big.LITTLE architec-
ture is presented that allows the power contribution of
each task or core to be analysed and the power a task
would consume if it were running of a di↵erent core to
be estimated from the current execution profile;

• The models are thoroughly validated on a wide range
of workloads.

2. PMC-BASED POWER MODEL

2.1 Experimental Setup

A PMC power model was first built for an ARM mobile
CPU. The experiments were conducted on a BeagleBoard-
xM [4] open-source single-board computer. It has a Texas
Instruments DM3730 System-on-Chip (SoC) [17] which is
similar to the OMAP35x family of SoCs. The DM3730
contains an ARM Cortex-A8 single-core processor, with a
maximum clock rate of 1 GHz. It has a 32 kB L1 instruc-
tion cache, an 80 kB L1 data cache, a 64 kB L2 instruction
cache and a 32 kB L2 data cache. It also contains an Imag-
ination Technologies SGX GPU and a Texas Instruments
TMS320C64x+ DSP. For this work, only the power con-
sumption of the Cortex-A8 was considered.

Unlike the vast majority of related research, the power to
the individual CPU was measured directly as opposed to the
power of the whole board. This was achieved by lifting an
inductor o↵ of the board and re-routing the signal through

Agilent N6705B
DC Power Analyser

BeagleBoard

Microcontroller

UART to USB

Laptop

Curr. Meas
+ -

Aux Vin
GND+ -

Digital In
1 GND

GND

USB

USB

USB

UART

GND Tx Rx

USB

Power

5V DC In

Figure 1. Experimental setup used for characterising and validating
the PMC-based power model

the same inductor and an Agilent N6705 Power Analyser [1].
The voltage supplied to the Cortex-A8 was also measured
to confirm the DVFS level and to calculate the power con-
sumed. The voltage and current were both recorded every
10 ms. The PMCs were read and stored by custom soft-
ware running on the board itself. This software triggered
the power analyser at the correct time by sending signal to
a microcontroller, which in turn sent a signal to the power
analyser. This microcontroller also allowed the data to be
forwarded to a laptop for storing data and remote moni-
toring of the experiment. Figure 1 shows a simple block
diagram of the experimental setup.

A variety of workloads, including many from the MiBench
Benchmark suit [9], video playback and custom workloads
designed to exert specific architectural features were used to
exercise the processor while data was collected.

Accessing the performance counters proved problematic.
While there is clear support for performance counters in
ARM’s IP, some of the signals that enable the operation of
performance counters are dealt with outside of the core it-
self and their settings depend on the implementation (i.e. by
Texas Instruments). To enable User mode access to the Per-
formance Monitor Registers the USEREN had to be written
to from the kernel. To do this, a Loadable Kernel Module
(LKM) was written and it successfully allowed access to the
required registers; the cycle counter could be enabled and
read from without problems. The performance counter reg-
isters could be written to and read from but the values of the
actual counters remained at 0 because the DBGEN register
was not set. Two solutions to this were found and both were
used for this research. The first method exploited the fact
that the DBGEN register is enabled when debugging using
JTAG. A Spectrum Digital XDS100v2 JTAG debugger was
used with a custom-derived method to enable the DBGEN
register when the operating system was running on the CPU.
This method was useful as it worked with any unmodified
version of the Linux kernel that ran on the BeagleBoard.
This method is, however, time consuming, sometimes unre-
liable, and occasionally results in a corrupted SD card. For
this reason, another method was also used where code was
written into the kernel itself that accessed the performance
counters (without DGBEN having to be set as it was be-
ing accessed from code within the kernel) and made them
available to the user space via sysfs (a virtual file system).

2.2 Model Generation and Validation

Only four PMCs on the Cortex-A8 can be monitored simul-
taneously. Therefore the experiment was run multiple times
to capture the majority of the PMCs (including those relat-
ing to the NEON SIMD coprocessor). Once data had been



captured for every performance counter the correlation of
each one with the power consumption was calculated. The
counter with the highest correlation gave the number of op-
erations issued and had a correlation of 0.71. A model was
built with this counter alone as a base model for deriving
the best three accompanying event counters. The workloads
were broken into sections and the best events were identified
by how well they improved this base model across a variety
of workloads. The method chose the additional PMCs with
a low amount of inter-correlation so that information from
the counters would not be repeated and the model is able
to work with a wider variety of workload types. To con-
firm and evaluate this method, an R script was created that
conducted an exhaustive search that tried building models
with every combination of four PMCs. It confirmed the se-
lection of the following events from the BeagleBoard shown
in Figure 1.

• Event 4 (E4), Data causes cache access (correlation:
0.53)

• Event 80 (E80), L1 instruction cache access (correla-
tion: 0.52)

• Event 77 (E77), NEON cacheable access for L1 data
cache (correlation: 0.17)

• Event 85 (E85), Number of operations issued (correla-
tion: 0.71)

It can be clearly seen by these correlation values that the
best performance counters to choose are not necessarily the
ones with the highest correlation with power. For exam-
ple, E77 only occurs when the NEON SIMD processor is
used and therefore has a low overall correlation with power.
However, when the NEON SIMD processor is used, it has
a large energy footprint, resulting in a significant increase
in power consumption. The model presented in [13] does
not consider the NEON processor and therefore will not ac-
curately track the power consumption when workloads use
it.

Once the events to be monitored with PMCs had been
chosen, the experiment was then re-run with that combina-
tion of events and the model parameters were then obtained
by taking the resulting count values and attempting to pre-
dict the measured power with multiple linear regression. A
model for every frequency (300 MHz, 600 MHz, 800 MHz
and 1 GHz) was developed. The model was verified with
real-time data and not simply by comparing the average
power and average modelled power over the whole duration
of the workload, which is the case for the vast majority of
related research, including the paper on mobile PMC mod-
els [13]. This is a fairer method of validation as it not only
tests its accuracy at predicting the average power for a work-
load, but it tests the responsiveness of the model and how
well it can predict small spikes and phase changes. Fig-
ure 2 shows a power trace of the system running several
workloads over a period of 60 seconds and the correspond-
ing estimated power from the model. Notice how even the
small spikes and sub-workload characteristics are accurately
tracked. For a small error value the model must be very reac-
tive; a key requirement for real-world implementation with
a run-time management system. The average error across
every workload and every frequency was less than 1.91% for
the workloads that were used to train the model. Other un-
seen workloads were tested with the model and the workload
that caused the highest error was video decoding which re-
sulted in an average error of 3.2%. Equations 1 to 4 are the
linear power model equations. The PMC events (e.g. E85)

Figure 2. Real-time comparison between the actual power consump-
tion and the PMC-based power model

have the units counts per 10 ms.

Power (300 MHz)=6.178⇥10�2+E4⇥1.152⇥10�8+

E8⇥8.497⇥10�9+E77⇥1.187⇥10�7+E85⇥5.746⇥10�9 (1)

Power (600 MHz)=1.598⇥10�1+E4⇥2.205⇥10�8+

E8⇥1.851⇥10�8+E77⇥2.016⇥10�7+E85⇥7.778⇥10�9 (2)

Power (800 MHz)=2.614⇥10�1+E4⇥2.722⇥10�8+

E8⇥2.314⇥10�8+E77⇥2.500⇥10�7+E85⇥9.873⇥10�9 (3)

Power (1 GHz)=3.238⇥10�1+E4⇥2.644⇥10�8+

E8⇥2.294⇥10�8+E77⇥2.541⇥10�7+E85⇥1.0004⇥10�8 (4)

It has been shown that the PMC model was able to accu-
rately estimate the power consumption of a variety of work-
loads. For the sake of interest, the model was recreated but
using only one PMC which correlated particularly well with
power: E85, the number of operations issued. The purpose
of this was to get an idea of how much the PMC model re-
lied on knowing the type of workload as opposed to just the
intensity of the workload. This single PMC model, which
was built and validated with identical data to the previous
model, achieved an average error of 3.25%; a reduction in ac-
curacy by 59%. This demonstrates that having more PMCs
to give information on the type of workload, rather than just
the number of instructions that are being architecturally ex-
ecuted, can result in a significant improvement in the mod-
els accuracy. However, an average error of just 3.25% from
a model that has no information on the type of workload,
demonstrates that having the extra information that perfor-
mance counters o↵er is not necessary in most cases. This
suggests that a model using CPU utilisation alone, a metric
that correlates with power in a similar fashion to the num-
ber of operations issued, should be tested and analysed for
its suitability in run-time power estimation.

3. UTILISATION-BASED POWER
MODEL

Because PMCs are di�cult or impossible to obtain on most
embedded platforms, and because it was found single event
counter could achieve a high accuracy in a PMC model (Sec-
tion 2), it was decided to investigate the suitability of a
power model that relies on simple CPU utilisation data. The
PMC model could only be implemented on specific hardware
and software that allowed PMCs to be read. For example



the embedded CPU models described in this paper and in
the reviewed literature are implemented on old CPUs as
PMCs were available on them (in [13], published in 2014,
the newest CPU used was an ARM Cortex-A9, which was
announced in 2007[2]).

3.1 Background

CPU Utilisation is a simple metric for understanding how
much time the processor spends performing a task compared
to being idle. It is often presented as a percentage in pro-
grams such as top (Linux), Task Manager (Microsoft Win-
dows) and Activity Monitor (Mac OS X). Care has to be
taken when considering using utilisation statistics for esti-
mating power as it is a loosely defined metric. Usually, if
the processor is executing any useful instruction it is classed
as work and otherwise idle. However, even when executing a
useful instruction, not every piece of hardware in the proces-
sor will be utilised, i.e. the work could be integer operations,
move operations, waiting for IO or floating point operations,
and not all of the parts of the processor responsible for all
these operations will be utilised at the same time. So the
processor will never be fully utilised but the utilisation met-
ric will count the whole processor as being utilised when ex-
ecuting any type of instruction. In multiprocessor systems
the utilisation value becomes more confusing because some
hardware (e.g. the L3 cache) will be shared between several
cores and the e↵ect of these shared resources on the per-
formance is dependent on the workload. This investigation
was conducted to see if these factors caused unacceptable er-
rors in the estimation results and whether an accurate power
model could be built.

A relatively recent innovation to further improve the power
e�ciency of mobile processors is the concept of a asym-
metric multi-core system, such as the big.LITTLE architec-
ture from ARM. A big.LITTLE architecture incorporates
two di↵erent core types with the same instruction-set ar-
chitecture (ISA): a high performance, out-of-order super-
scalar ‘big’ core and a more power-e�cient in-order ‘little’
core. Older implementations of the big.LITTLE architec-
ture only allowed either all ‘little’ cores to be used or all
‘big’ cores to be used; di↵erent combinations of big and lit-
tle cores could not be employed. Newer implementations of
the big.LITTLE architecture have a feature called Global
Task Scheduling (GTS) where the operating system can see
both the big and little cores simultaneously and schedule
tasks to any of them as required.

There has been little research using utilisation on desktop
and server application, largely due to the fact that PMCs
provide more information and are easily accessible. How-
ever, Dargie et al. [8] used the CPU utilisation to build a
power model for servers and discussed other work where the
CPU utilisation is used to give a prediction of the server’s
power consumption. There is work related to power con-
sumption and CPU utilisation on smartphones, for example,
Zhang et al. [18] built a battery behaviour model for smart-
phones and used processor utilisation to give an indication of
the current power consumption of the CPU. For this model,
the overall power consumption of the whole smartphone is
measured, without the power of the individual components,
such as the CPU, being measured directly. Kim et al. [11]
also proposed scheduling schemes for the ARM big.LITTLE
architecture but uses information from CPU utilisation in-
stead of PMCs to improve load balancing. The proposed
method results in an energy improvement of 11.35% with lit-
tle impact on performance. Only the utilisation is used, per-
formance counters do not have to be obtained. This makes
the method able to work on any big.LITTLE development
board where performance counters are not available. In this

Figure 3. Performance and power trade-o↵ at various frequencies on
a big.LITTLE architecture

work, the run-time management is able to predict the impact
of switching to another core type in advance.

Figure 3 shows data collected as part of this research and
shows characteristics of the big.LITTLE architecture. It can
be seen that running a task at a higher frequency or on the
‘bigger’ core results in a significant increase in power with
a proportionally lower performance increase. For example,
the maximum frequency (1600 MHz) on the ‘big’ Cortex-
A15 consumes 28⇥ more power on average, across all of the
workloads, than the ‘little’ Cortex-A7 running at the lowest
frequency (250 MHz). The performance increase between
these two points is 4⇥, which means that the energy used
for a task of finite length is 5⇥ greater. In other words,
an average task will always consume 5⇥ more energy when
running at the maximum frequency on the ‘big’ Cortex-A15
core instead of the lowest frequency on the ‘little’ Cortex-A7.
As expected, it is always more energy e�cient to run tasks
on the ‘little’ A7 cores at low frequencies. The only reason
to use higher frequencies or switch to the ‘big’ Cortex-A15
cores is to achieve a higher performance and meet deadlines.
Interestingly, the very lowest frequency is not the most en-
ergy e�cient while running the test workloads; the most en-
ergy e�cient frequency was found to be 350 MHz which is
slightly more e�cient than the lowest frequency of 250 MHz.

This shows how the big.LITTLE concept gives the op-
erating system more opportunities to trade-o↵ power and
performance and find the optimum hardware configuration
for the currently running task, the current conditions and
the user’s requirements. However, to get the maximum po-
tential out of this, the RTM needs to be more complex, have
reliable and accurate run-time information and know, in ad-
vance, the impact of changing the run-time configuration
(i.e. changing frequency or migrating from a ‘little’ core to
a ‘big’ core).

3.2 Experimental Setup

The experiments were carried out on an ODROID-XU+E
development board by Hardkernel [10]. It has an Exynos 5
Octa 5410 SoC that contains an ARM big.LITTLE architec-
ture with four Cortex-A15 ‘big’ out-of-order cores and four
Cortex-A7 ‘little’ in-order cores. This SoC also contains an
Imagination Technologies PowerVR SGX544MP3 GPU. It is
used in the Samsung Galaxy S4 and a variation of this SoC,



which has the same CPU but with Global Task Scheduling
enabled, is used in the Samsung Galaxy S5, Chromebook
2 and Samsung Galaxy Note 3, all three of which were re-
leased in 2014 .The board was running a Linaro Ubuntu
distribution with kernel version 3.4.75.

The ODROID-XU+E board contains voltage and current
sensors for each cluster; the total power of the four Cortex-
A7 cores and the total power of the four Cortex-A15 cores
can be determined. A program was written that calculates
the CPU utilisation from the /proc/stat virtual file and the
power from the sensors while workloads are being executed.
The sensor and utilisation values were sampled every 50 ms;
note that this is not an instantaneous reading but an aver-
age utilisation over the preceding 50 ms. The program could
then calculate the average utilisation of each core for a par-
ticular workload, as well as the average power consumption
and execution time.

The MiBench embedded benchmark suite was used to
work the processor while the experiments were running. It
is aimed towards mobile and embedded systems, as opposed
to high performance computers and was chosen because it
has a large number of workloads with a high variation in dif-
ferent types of operations (e.g. memory operations, control
operations etc.). The workloads were tested at every fre-
quency on both the Cortex-A7 and Cortex-A15 cores. Dif-
ferent workloads were also run simultaneously on di↵erent
cores to establish the relationship between power and utili-
sation when di↵erent cores were experiencing vastly di↵erent
loads. Once utilisation and power data had been captured,
regression analysis was used to build the models.

3.3 Model Generation and Validation

It was found that the contribution of each core to the overall
power consumption of the CPU was linear. For example,
Core 1 being 20% utilised and Core 2 being 30% utilised
uses the same amount of power as just Core 1 being 50%
utilised. Therefore the models were built using the average
utilisation of all the cores and the individual core power can
be derived from the fraction of the overall utilisation that
they make up.

Utilisation models were built for both the ‘little’ Cortex-
A7 cores and the ‘big’ Cortex-A15 cores at every frequency.
From the results it could be seen that there was a very
slight in curve at higher frequencies for both core types.
It was found that a second-order linear regression model
optimally fit the trend. However, the curve is very slight
and there is only a small increase in average error when a
first-order linear regression model is used (Figure 4). Equa-
tion 5 shows the form of the model, where u is the utili-
sation value. The parameters for di↵erent frequencies are
given in Table 3.3. The models were validated on 40 ‘un-
seen’ workloads that each involve running many di↵erent
tasks on di↵erent cores simultaneously. Figure 5 shows how
the model accuracy changes with di↵erent types of work-
load. The bar labelled 40 unseen is the average of all of
the unseen workloads and has a relatively high power value
due to the fact that di↵erent numbers of cores were being
exercised by di↵erent amounts, as opposed to just one core
being exercised. The first-order model achieved an aver-
age error across all workloads and frequencies of 7.43% and
8.6% for the Cortex-A7 and Cortex-A15, respectively, while
the second-order model achieved an average error of 5.6%
and 7.2% for the Cortex-A7 and Cortex-A15, respectively.
The accuracy of the ‘little’ Cortex-A7 is slighter better than
that of the Cortex-A15 due to its simpler in-order architec-
ture, making its power more predicable with a wide range
of workload types. This second-order model is best suited
for real-time run-time management. In such a scenario, the

Freq (MHz) p0 p1 p2

250 0.010162804 0.001572937 -1.63E-06
300 0.009521533 0.001955864 -2.80E-06
350 0.010338362 0.002260855 -3.27E-06
400 0.012404617 0.002786165 -4.16E-06
450 0.014982476 0.003470516 -5.15E-06
500 0.019350116 0.004348964 -6.59E-06
550 0.023879147 0.005364183 -8.19E-06
600 0.029694786 0.006573153 -1.04E-05
800 0.036437558 0.015975673 -2.45E-05
900 0.043569437 0.018618245 -2.36E-05
1000 0.05151296 0.022298895 -2.31E-05
1100 0.06267777 0.026027083 -1.69E-05
1200 0.071779829 0.029651724 -9.56E-06
1300 0.082334714 0.03450953 8.47E-06
1400 0.092116725 0.046563344 -9.22E-05
1500 0.100661815 0.060414109 -0.000231806
1600 0.113207437 0.071046296 -0.000356278

Table 1. Second order parameters for utilisation-based power model

Figure 4. First-order linear regression model at 1300 MHz. Note:
100% refers to all four Cortex-A15 cores being fully utilised

model would be swapped when the operating system changes
the system frequency or core type.

Power (W) = p0 + up1 + u

2
p2 (5)

To test the strength of the relationship between voltage,
frequency and the power consumption, a single model was
built that would predict the power at any frequency. This
simplifies the model and allows the hypothetical power at
other frequencies, which are not in the voltage frequency
table, to be estimated. For example, the maximum fre-
quency of the ODROID-XU is 1600 MHz, but what might
the power consumption be if it could run at 1800 MHz? If
the big.LITTLE processor is set to a frequency of 600 MHz,
it uses the ‘little’ Cortex-A7 core, but if the Cortex-A15
could be clocked to 600 MHz, how would the energy ef-
ficiency compare? To accomplish this, the model is bro-
ken up into two parts: Firstly, the parameters of the model
are themselves calculated from a first-order linear regression
model, with frequency as the input (Equation 6). Once the
parameters for that particular frequency have been derived,
the power can be calculated as before with the utilisation
value (Equation 7). This model achieved an accuracy of



idle cstm int cstm fp basicmath bitcount qsort susan typeset dijkstra patricia ispell adpcm FFT h264 hq h264 lq mpeg4 hq mpeg4 lq 40 unseen
Workloads

0.00

0.05

0.10

0.15

0.20

Po
w

er
(W

)

1.56%

6.66% 7.25%
7.18%

1.57%
6.85%

1.95% 7.09% 4.45%
2.66% 3.30%

1.17%
2.86% 2.57% 3.26%

4.37% 4.01%

5.05%

The numbers above each bar indicate the percentage error

Measured
Estimated

Figure 5. Estimated and measured power for each workload and corresponding average error, at 500 MHz

10.4% and 8.5% for the Cortex-A7 and Cortex-A15, respec-
tively.

p0 = x00 + fx01

p1 = x10 + fx11 (6)

p2 + x10 + fx21

Power (W) = p0 + up1 + u

2
p2 (7)

Both the per core and per task (by PID) power can be
estimated by the utilisation model. Such information is
tremendously useful to a run-time management system and
can allow it to make well-informed decisions, leading to bet-
ter energy e�ciency. Furthermore, a model to estimate how
much utilisation a task would consume if it were running
at a di↵erent frequency or on a di↵erent core type was im-
plemented. From the vast amount of data gathered from
running the training workloads, a lookup table was built
that allows the conversion from one frequency to another
frequency and between the Cortex-A7 and Cortex-A15. Im-
portantly, as before, the model was verified using a wide va-
riety of unseen workloads, instead of using the same training
workloads that were used to build the model, as is the case in
many similar papers. Every switching combination between
one frequency to another (which includes switching between
core types) was tested and an average power estimation er-
ror of 10.3% was achieved, which includes both the error in
the power models (the second-order fixed models were used)
and the error in estimating the utilisation when running on
a di↵erent core or at a di↵erent frequency.

4. CONCLUSION

A PMC-based and a utilisation-based power model is pre-
sented in this paper. The models were simple but accurate,
allowing a run-time manager to estimate power consump-
tion with a low overhead. The utilisation-based power model
has several practical advantages over the PMC-based model,
for example, it can be implemented on virtually any mobile
device. We demonstrate the accuracy of the model in pre-
dicting the power consumption per core, per task, and also
across cores of an asymmetric big.LITTLE architecture.

5. ACKNOWLEDGMENTS

This work was supported by the Engineering and Physical
Sciences Research Council Programme Grant, EP/K034448/1.
See www.prime-project.org for more information about the
PRiME programme.

References
[1] Agilent Technologies. Agilent n6700 modu-

lar power system family [data sheet]. http:

//www.home.agilent.com/en/pd-1842303-pn-N6705B/

dc-power-analyzer-modular-600-w-4-slots, June 2012.
[2] ARM Holdings. ARM Unveils Cortex-A9 Processors For Scalable

Performance and Low-Power Designs. http://www.techradar.

com/news/, October 2007. [Online; accessed 17-November-2014].
[3] R. Basmadjian and H. De Meer. Evaluating and modeling power

consumption of multi-core processors. In Future Energy Sys-
tems: Where Energy, Computing and Communication Meet
(e-Energy), 2012 Third International Conference on, pages 1–
10, May 2012.

[4] BeagleBoard. What is BeagleBoard-xM? http://beagleboard.

org/beagleboard-xm, June 2014. [Online; accessed 20-July-2014].
[5] R. Bertran, M. Gonzelez, X. Martorell, N. Navarro, and

E. Ayguade. A systematic methodology to generate decompos-
able and responsive power models for cmps. Computers, IEEE
Transactions on, 62(7):1289–1302, July 2013.

[6] W. Bircher and L. John. Complete system power estimation:
A trickle-down approach based on performance events. In Per-
formance Analysis of Systems Software, 2007. ISPASS 2007.
IEEE International Symposium on, pages 158–168, April 2007.

[7] G. Da Costa and H. Hlavacs. Methodology of measurement
for energy consumption of applications. In Grid Computing
(GRID), 2010 11th IEEE/ACM International Conference on,
pages 290–297, Oct 2010.

[8] W. Dargie and J. Wen. A probabilistic model for estimating the
power consumption of processors and network interface cards. In
Trust, Security and Privacy in Computing and Communica-
tions (TrustCom), 2013 12th IEEE International Conference
on, pages 845–852, July 2013.

[9] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown. Mibench: A free, commercially representative em-
bedded benchmark suite. In Workload Characterization, 2001.
WWC-4. 2001 IEEE International Workshop on, pages 3–14,
Dec 2001.

[10] Hardkernel. Odroid-xu. http://www.hardkernel.com/, 2013. [On-
line; accessed 20-July-2014].

[11] M. Kim, K. Kim, J. Geraci, and S. Hong. Utilization-aware load
balancing for the energy e�cient operation of the big.little pro-
cessor. In Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2014, pages 1–4, March 2014.

[12] J. Nunez-Yanez and G. Lore. Enabling accurate modeling of
power and energy consumption in an arm-based system-on-chip.
Microprocessors and Microsystems, 37(3):319 – 332, 2013.

[13] S. K. Rethinagiri, O. Palomar, R. Ben Atitallah, S. Niar, O. Un-
sal, and A. C. Kestelman. System-level power estimation tool for
embedded processor based platforms. In Proceedings of the 6th
Workshop on Rapid Simulation and Performance Evaluation:
Methods and Tools, RAPIDO ’14, pages 5:1–5:8, New York, NY,
USA, 2014. ACM.

[14] R. Rodrigues, A. Annamalai, I. Koren, and S. Kundu. A study
on the use of performance counters to estimate power in mi-
croprocessors. Circuits and Systems II: Express Briefs, IEEE
Transactions on, 60(12):882–886, Dec 2013.

[15] Samsung. Specs. http://www.techradar.com/news/, April 2014.
[Online; accessed 17-November-2014].

[16] K. Singh, M. Bhadauria, and S. A. McKee. Real time power
estimation and thread scheduling via performance counters.
SIGARCH Comput. Archit. News, 37(2):46–55, July 2009.

[17] Texas Instruments. Dm3730, dm3725 digital media processors
[data sheet]. http://www.ti.com/product/dm3730, July 2011.

[18] L. Zhang, B. Tiwana, R. Dick, Z. Qian, Z. Mao, Z. Wang, and
L. Yang. Accurate online power estimation and automatic bat-
tery behaviour based power model generation for smartphones.
In CODES+ISSS IEEE/ACM/IFIP, pages 105–114, Oct 2010.


