
Thermal-aware Adaptive Energy Minimization
of OpenMP Parallel Applications

Rishad A. Shafik, Anup K. Das, Sheng Yang, Geoff V. Merrett & Bashir M. Al-Hashimi
School of ECS, University of Southampton, SO17 1BJ, UK, e-mail: {ras1n09,akd1g13,gvm,sy2u12,bmah}@ecs.soton.ac.uk

Abstract—This paper proposes an adaptive energy minimization
approach that hierarchically applies DVFS, thread-to-core affinity
and dynamic concurrency controls (DCT) to minimize the energy
consumption and improve lifetime reliability through balanced ther-
mal controls, while meeting a specified power budget requirement.
Fundamental to this approach is an iterative learning-based control
algorithm that adapts the VFS and core allocations dynamically based
on the CPU workloads and thermal distributions, guided by the
CPU performance counters at regular intervals. The adaptation is
facilitated through modified OpenMP library-based power budget
annotations. The proposed approach is extensively validated on an
Intel Xeon E5-2630 platform with up to 12 CPUs running NAS
parallel benchmark applications.

Index Terms—Lifetime reliability, voltage/frequency scaling.

I. INTRODUCTION

Modern processors typically exhibit increased power density,
operating temperatures and their variations. Such high power density
and temperatures accelerate the device wearout mechanisms through
electromigration, dielectric breakdown, etc. Hence, thermal-aware
energy minimization is a key design challenge [1].

Parallel programming model is a key contributor to the continuing
performance growth of current and future generations of many-core
applications. OpenMP is one such programming model, considered
as the de facto standard of shared memory multiprocessing [5]. To
achieve OpenMP-based dynamic adaptation between energy and per-
formance trade-offs, dynamic voltage/frequency scaling (DVFS) is
a major runtime control knob [14]. Dynamic concurrency throttling
(DCT) is another effective software knob, which selects the number
of concurrent threads during runtime to trade-off performance for
energy consumption. Over the years, various approaches using
DVFS and DCT separately and also synergestically have been
shown; examples include [1], [3], [9] etc.

Existing OpenMP-based energy minimization approaches for
parallel applications have the following limitations. Firstly, existing
approaches [3], [9], [12] employ DVFS and/or DCT using offline
training to learn the system architecture and control parameters,
thus demonstrating poor scalability. Secondly, these approaches [9],
[12] do not consider control of thermal hotspots and cycling caused
by uneven workloads and operating frequencies of the processing
cores. Other approaches [11] use POSIX thread-based runtime
implementations that require substantial application re-design and
are not feasible for OpenMP parallel applications. This paper
addresses the above limitations through a novel thermal-aware
adaptive energy minimization approach. Section II further details
the approach, Section III validates the effectiveness of the approach
and finally, Section IV concludes the paper.

II. PROPOSED ENERGY MINIMIZATION APPROACH

Fig. 1 shows the proposed adaptive energy minimization approach
organized in three steps, highlighting the interactions between
application, runtime and hardware. In the first step, power budget
annotation is incorporated in the application codes. This annotation,

defined within and compiled by the modified OpenMP library
(libgomp), communicate the overall power budget requirement to
the runtime. The runtime, which consists of the OpenMP library and
OS routines, uses this power budget to guide the online DCT and
power budgeting control step at regular time intervals (we denote
this as ∆TDCT ). This is then followed by the DVFS control step
at smaller regular intervals (we denote this as ∆TDV FS)), guided
by the monitored performance counters. The proposed energy
minimization steps are further detailed in the following.

Application 
#pragma omp budget(cur_budget)

Runtime

Hardware

Monitor 
Perf. counter

Controls
(DCT+DVFS)

Modified OpenMP runtime 
(libgomp) library

Step 2

Step 3

Online thread profiling

Apply DCT/Affinity for 
concurrent threads/cores

Apply allocation 
algorithm for thread 

budget allocation

Step 1

Predict workload

Apply ILC for DVFS control 
for given power budget

Monitor workload, power 
and adjust errors

Interconnect

Core 0 Core 1 Core 2 Core n

D
C

T 
co

n
tr

o
l i

n
te

rv
al

 
(Δ

T D
C

T)
D

V
FS

 c
o

n
tr

o
l i

n
te

rv
al

 
(Δ

T D
V

FS
 =

 Δ
T D

C
T 

/ 
N

)

Fig. 1. Proposed energy minimization approach

A. Step 1: Power Budget Annotation

The power budget annotation in the application codes is
carried out to enable energy minimization and control ap-
plication performance (Fig. 1). This is done through anno-
tating the beginning of the master thread code (the main
function, not enclosed by any other OpenMP annotations) by
#pragma omp budget(cur_budget). The budget is in-
troduced to pass the current application power budget (Pbudget) of
cur_budget (in mW) to the OpenMP runtime library.

B. Step 2: Online DCT and Thread Budgeting Control

With the specified application power budget, DCT and thread
budget controls are applied in the following three phases:

1) Online Thread Profiling: To enable online thread workload
profiling, an additional timer-based thread is introduced in the
OpenMP runtime library with a period of ∆TDCT . At each ∆TDCT ,
the affinity of each computing thread (i.e. the core that is executing
the thread) is obtained with a reference to the given processor
to prevent any preemption and movement to another processor
using get_cpu(). At this time, three thread and core metrics are
evaluated through the performance counters using LIKWID [10]:
(a) per thread average workload (Wd) as

Wd =
1

N

∆TDCT∑
t=0

Wdt
, d = 0 : D (1)

where Wdt
is the thread workload at each ∆TDV FS interval.

(b) per thread average power consumption (Pd) as

Pd =
1

N

∆TDCT∑
t=0

Pdt
, (2)



where Pdt is the observed power consumption at each ∆TDV FS

interval due to chosen DVFS (see Section II-B3).
(c) per core temperature standard deviation (std(Tempc)) as

std(Tempc) =

√√√√ 1

N

∆TDCT∑
t=0

(
Tempct − Tempc

)2
. (3)

Upon evaluation of these metrics, the timer thread returns the
processor reference back through put_cpu() and relinquishes
the CPU and moves at the back of the thread queue, which allows
for other CPUs to execute. The timer thread is statically assigned
the same affinity as the main master thread.

2) DCT and Thread Affinity Control: With the evaluated metrics,
the DCT control is applied with an aim of improving the system
performance, while meeting the given application power budget.
Moreover, the thread affinity is also managed with an aim of
reducing the thermal cycles caused by uneven workloads and their
DVFS controls.

Algorithm 1 shows the DCT and affinity control algorithm
used to carry out such optimizations. As can be seen, with the
Algorithm 1 Iterative DCT and Affinity control algorithm

Require: Wd, Pd, Tempc and std(Tempc)
1: Calculate total power consumption, P =

∑D
d=1 Pd

2: if P less than Pbudget then
3: Increase number of parallel threads: D=D+1; D ≤ C
4: else if P more than Pbudget then
5: Decrease number of parallel threads: D=D-1; D ≥ 2
6: end if
7: for each core: c=1 to C do
8: Sort the cores in ascending standard deviation
9: end for

10: for each core: c′=1 to C do
11: Swap thread affinity between cores c′ and C − c′

12: end for

observed average power consumption per thread Pd, the total
power consumption (P ) is initially found out (line 1). If P is
less than Pbudget, the number of parallel threads (D) is increased
to improve system performance within the power budget (lines
2-3); otherwise, if P is higher than Pbudget, D is decreased to
reduce power consumption (lines 4-5). Decreasing the number
of parallel threads reduces number of parallel computing cores
and hence cuts down the core leakage power consumptions at the
expense of reduced application speedup. The temperature standard
deviations are then sorted in ascending order (lines 8-10). Within
the sorted list, the thread affinity of the first core is swapped with
the last core, the thread affinity of the second core is swapped
with the second last and so on (lines 10-12). Such affinity control
has the advantage of more even thermal distribution among the
cores. Since the DVFS control and memory bandwidth is affected,
it, however, can affect the parallel application performance with
increased thread synchronization times, which is controlled in the
lower level hierarchy through DVFS controls at smaller intervals
(∆TDV FS = 1

N ∆TDV FS).

3) Thread Power Budget Allocation: With the given DCT and
affinity controls, the thread power budgeting is reviewed and
updated at each ∆TDCT interval. For the new threads joining
due to DCT controls in Algorithm 1, the newly allocated power
budget for d′-th thread (Pd′budget

) is initially assigned as

Pd′budget
=

1

D
Pbudget. (4)

However, for the existing threads the power budget is updated based
on the online profiled workloads in Section II-B1. The updated

power budget of the d-th thread (Pdbudget
) is given as

Pdbudget
=

Wd

(
Pbudget −

∑
d′ Pd′budget

)∑D′

d=1 Wd

, (5)

where D′ is the number of profiled threads (D′ <= D) and
Pd′budget

is the power budget of the newly joined thread.

C. Step 3: DVFS Control

With the allocated per thread power budgets, the energy min-
imization is carried out through DVFS based on the predicted
workloads at regular intervals (Fig. 1). To effectively predict the
time-varying workload at each interval, exponentially weighted
moving average (EWMA) is used as the prediction scheme, similar
to [13]. Using this scheme, the predicted workload at the tth

interval, Ŵdt (in CPU cycles), is given by [13] as

Ŵdt
= ωWdt−1

+

E∑
i=1

(1− ω)
i
Wdt−i

, (6)

where Wdt and Wi are the previous observed workloads (in CPU
cycles) at the tth and ith decision epochs, 1 ≤ i ≤ E, ω is the
moving average coefficient and E is the window size (ω and E
are evaluated empirically for higher prediction accuracy). Based
on the predicted workload Ŵdt

in (6) the operating frequency is
determined by the iterative learning control (ILC) function as

fdt
= fdt−1

−∆fkdt
K1; if Edt−1

≈ 0 (7)
fdt

= fdt−1
−∆fK1Edt−1

, otherwise (8)
where fdt−1

is the previous operating frequency, ∆f is the
frequency differential, K1 is ILC constant defining frequency
scaling steps, Edt−1 is the power budget error incurred due to
previous control actions and kdt is given by

kdt
= exp [K2(

Ŵdt

fmax ×∆t
− 1)], (9)

where K2 is a constant, ∆t is the time interval and fmax is the
maximum processor core frequency in the system. The power
budget error (Edt−1 , in %) in (7) is evaluated as

Edt−1
=

1

Pdbudget

t−1∑
i=1

(
Pdi
− Pdbudget

)
, (10)

where Pdi is the observed thread power consumption at the i-th
interval. The ∆f and fmax values can be obtained from the OS
(in the case of Linux, from sysfs variable).

Energy minimization through ILC is implemented as an addi-
tional timer-based thread in the OpenMP runtime library with a
period of ∆t. This thread is statically assigned the same affinity
as the main master thread (i.e. thread 0).

III. EXPERIMENTAL RESULTS

To validate the effectiveness of the proposed approach, a
number of experiments are carried out on an Intel Xeon E5-
2630 [7] platform, which has a total of 12 cores, organized
in two sockets with 6 cores each. Each core operates at a
minimum frequency of 1.2 GHz (at Vdd = 0.98V ) and a maximum
frequency of 2.6 GHz (at Vdd = 1.35V ); there are also thirteen
other intermediate frequencies increasing in 0.1 GHz steps. NAS
application benchmarks of class B (medium) and C (large) are
executed on Linux kernel version 2.6.32. The average performance
and energy consumption are recorded over 100 executions of the
applications using the LIKWID [10]. The lifetime reliability in
mean time to failure (MTTF) is estimated using the model in [8].

Fig. 2.(a) and (b) show the the execution times and energy
consumption of the applications for a given power budget of 30W
for four different approaches: the proposed approach, Linux’s



0

50

100

150

200

250

300

350

400

E
xe

cu
tio

n 
tim

es
 (

se
co

nd
s)

(a)

bt
.B

bt
.C

cg
.B

cg
.C

dc
.B

ep
.B

ep
.C ft.
B

ft.
C

is
.B

is
.C

lu
.B

lu
.C

m
g.

B
m

g.
C

sp
.B

sp
.C

ua
.B

ua
.C

 

 

Proposed
Linux Ondemand
Matthew et al.
Cochran et al.

0

2000

4000

6000

8000

10000

12000

14000

E
ne

rg
y 

(J
ou

le
s)

(b)

bt
.B

bt
.C

cg
.B

cg
.C

dc
.B

ep
.B

ep
.C ft.
B

ft.
C

is
.B

is
.C

lu
.B

lu
.C

m
g.

B
m

g.
C

sp
.B

sp
.C

ua
.B

ua
.C

 

 

Proposed
Linux Ondemand
Matthew et al.
Cochran et al.

0

1

2

3

4

5

6

7

8

9

10

E
st

im
at

ed
 M

T
T

F
 (

ye
ar

s)

(c)

bt
.B

bt
.C

cg
.B

cg
.C

dc
.B

ep
.B

ep
.C ft.
B

ft.
C

is
.B

is
.C

lu
.B

lu
.C

m
g.

B
m

g.
C

sp
.B

sp
.C

ua
.B

ua
.C

 

 

Proposed
Linux Ondemand
Matthew et al.
Cochran et al.

Fig. 2. Comparative (a) performance (seconds), (b) energy consumption (Joules), and (c) lifetime reliability (MTTF in years)

50

55

60

65

70

75

80

85

90

95

100

T
em

pe
ra

tu
re

, d
eg

 C

(a)

bt
.B

bt
.C

cg
.B

cg
.C

dc
.B

ep
.B

ep
.C ft.
B

ft.
C

is
.B

is
.C

lu
.B

lu
.C

m
g.

B
m

g.
C

sp
.B

sp
.C

ua
.B

ua
.C

Proposed

50

55

60

65

70

75

80

85

90

95

100

T
em

pe
ra

tu
re

, d
eg

 C

(b)

bt
.B

bt
.C

cg
.B

cg
.C

dc
.B

ep
.B

ep
.C ft.
B

ft.
C

is
.B

is
.C

lu
.B

lu
.C

m
g.

B
m

g.
C

sp
.B

sp
.C

ua
.B

ua
.C

Ondemand

50

55

60

65

70

75

80

85

90

95

100

T
em

pe
ra

tu
re

, d
eg

 C

(c)

bt
.B

bt
.C

cg
.B

cg
.C

dc
.B

ep
.B

ep
.C ft.
B

ft.
C

is
.B

is
.C

lu
.B

lu
.C

m
g.

B
m

g.
C

sp
.B

sp
.C

ua
.B

ua
.C

Matthew et al.

50

55

60

65

70

75

80

85

90

95

100

T
em

pe
ra

tu
re

, d
eg

 C

(d)

bt
.B

bt
.C

cg
.B

cg
.C

dc
.B

ep
.B

ep
.C ft.
B

ft.
C

is
.B

is
.C

lu
.B

lu
.C

m
g.

B
m

g.
C

sp
.B

sp
.C

ua
.B

ua
.C

Cochran et al.

Fig. 3. Comparative average temperatures and their deviations

ondemand governor [14], and the approaches proposed in [9]
and [1]. From the figures two observations can be made. Firstly,
depending on the nature of the computation of the application,
the execution times and energy consumptions vary dynamically.
The applications bt (class C) and sp (class C) exhibit the highest
execution times and corresponding energy consumptions, while mg
and is show the lowest execution times and energy consumptions.
Secondly, due to power budget constrained energy minimization the
proposed approach outperforms the other approaches in terms of
the energy consumptions (by up to 15%). The ondemand governor
and the approach proposed in [9] consisently outperforms and
consumes more energy than the proposed approach due to power
budget unaware energy minimizations. Although the approach
proposed in [1] is power budget aware but it depends largely on
offline training driven look up table for online adaptation, which
can scale poorly due to variable thread synchronization times [12].
The proposed approach achieves energy minimization by up to 6%
due to online DCT and power budget adaptation (Section II).

Fig. 2.(c) shows the lifetime reliability comparisons of the
approaches. As can be seen, the proposed approach offers better
lifetime reliabilities based on the average, peak and thermal cycle
based model proposed in [8]. The lifetime reliability improvements
can be explained by the average temperatures and their deviations
shown in Fig. 3. As can be seen, the proposed approach offers
better control on the average temperatures and the thermal cycles
due to adpaptive DCT and DVFS controls (Section II).

IV. CONCLUSIONS

An adaptive energy minimization approach for parallel applica-
tions is proposed. The adaptation is facilitated through OpenMP-
based power budget annotations in the applications, defined in
the modified OpenMP runtime library. Using the power budget

annotations, the proposed approach achives thermal-aware energy
minimization through hierarchical controls using DCT, thread
affinity and DVFS to minimize energy consumption for the given
power budget considering the thermal distributions among processor
cores. The proposed approach is validated on a many-core platform
running various benchmark applications, showing up to 15%
reduced energy compared to the existing approaches.

REFERENCES

[1] R. Cochran et al.. Pack & Cap: Adaptive DVFS and thread packing under
power caps. 44th MICRO, pp.175–185. ACM, 2011.

[2] M. Etinski et al.. Understanding the future of energy-performance trade-off
via DVFS in HPC environments. in JPDC, 72(4), pp.579–590, 2012.
7

[3] A.K. Porterfield et al.. Power Measurement and Concurrency Throttling for
Energy Reduction in OpenMP Programs. in PDPS, pp.884–891. 2013.

[4] D. Brodowski and N. Golde. Linux CPUFreq–CPUFreq governors. Linux
Kernel.

[5] OpenMP. [Online]: http://www.openmp.org/
[6] NAS Parallel Benchmarks. [Online]: www.nas.nasa.gov
[7] Intel Xeon E5-2630. Intel R© Xeon R© Processor E5-2630 Family (15M Cache,

2.3GHz) [Online]: http://ark.intel.com/products/64593/
[8] J. Srinivasan et al.. The Case for Lifetime Reliability-Aware Microprocessors.

In SIGARCH Comput. Archit. News, 32(2), pp.276–281, March, 2004.
[9] C-M. Matthew et al.. Prediction models for multi-dimensional power-

performance optimization on many cores. ICPAC, 2008.
[10] J. Treibig et al.. LIKWID: Lightweight Performance Tools. Ch. in Competence

in High Performance Computing, pp.165–175. Springer, 2012.
[11] A.K. Das et al. Reinforcement learning-based inter-and intra-application

thermal optimization for lifetime improvement of multicore systems. in DAC,
pp.1–6, June, 2014.

[12] Y. Hwang, and K. Chung. Dynamic power management technique for multicore
based embedded mobile devices. in IEEE TII, 9(3), pp.1601–1612, 2013.

[13] S. Sinha, J. Suh, B. Bakkaloglu and Y. Cao. Workload-Aware Neuromorphic
Design of the Power Controller. in IEEE JESTCS, 1(3), pp.381–390, 2011.

[14] V. Pallipadi and A. Starikovskiy. The ondemand governor. Proceedings of
the Linux Symposium, pp. 215–229, 2006.


