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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL AND HUMAN SCIENCES

GEOGRAPHY AND ENVIRONMENT

Doctor of Philosophy (PhD)

Developing a novel method to retrieve high spatial resolution Aerosol

Optical Thickness (AOT) from satellite data

by Robin Wilson

Aerosol Optical Thickness (AOT) data have many important applications including

atmospheric correction of satellite imagery and monitoring of particulate matter air

pollution. Current data products are generally available at a kilometre-scale resolution,

but many applications require far higher resolutions. For example, particulate matter

concentrations vary on the scale of tens of metres, and thus data products at a similar

scale are required to provide accurate assessments of particle densities and allow effective

monitoring of air quality and analysis of local air quality effects on health.

This thesis describes the development of a novel method which retrieves per-pixel AOT

values from high-resolution (30m) satellite data, and this method is the main novel

contribution to scientific knowledge of this PhD. This method is designed to work over

a wide range of land covers including both bright and dark surfaces - and requires only

standard visible bands, making it applicable to a range of data from sensors such as

Landsat, DMC, SPOT and Pleiades. The method is based upon an extension of the Haze

Optimized Transform (HOT), which was originally designed for estimating the haziness

of each pixel in a satellite image, based upon the distance from a ‘Clear Line’ in feature

space. In this research, the HOT method is adapted and used to estimate AOT instead.

Significant extensions include Monte Carlo estimation of the ‘Clear Line’, object-based

correction for land cover, and modelling of the HOT-AOT relationship using radiative

transfer models.

Validation against ground and satellite measurements, as well as simulated data, shows

that 40–50% of the pixels have an error within ±0.1, not much lower than many presently

available low-resolution products, with further work likely to improve the accuracy. Two

example applications show the potential of this method for per-pixel atmospheric correction

and monitoring the spatial pattern of particulate matter pollution. This novel method

will enable many new applications of AOT data that were impossible with low-resolution

data.

http://www.soton.ac.uk
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Chapter 1

Introduction

Aerosol Optical Thickness (AOT) is a measure of the haziness of the atmosphere due to

aerosol particles. AOT measurements are essential for a range of applications including

satellite image atmospheric correction and monitoring of air pollution. Many methods

have been developed to retrieve AOT from satellite data, but there are currently no

methods operationally providing high spatial resolution AOT data (that is, fine-resolution

data with a spatial resolution of 100m or better) even though there is a well-acknowledged

need for these data. This thesis aims to fill this gap in the literature by developing a novel

method to retrieve AOT from satellite data at a high resolution.

1.1 Aerosol Optical Thickness & its applications
Aerosol Optical Thickness (AOT) is a dimensionless measure of the reduction in the

intensity of light passing through the atmosphere caused by scattering and absorption by

particles in the atmosphere (aerosols). These aerosols come from a range of sources, and

include dust, salt and soot, and the aerosol type determines the effect on light: for

example, soot particles absorb light far more than most other aerosols (Kondratyev et al.,

2005). AOT can be measured by observing the effects that aerosols have on light: these

methods are principally based on the scattering effect of aerosols, which has a strong

wavelength dependence, with smaller wavelength light (such as blue light) being scattered

far more than longer wavelength light (such as red or near-infrared light).

Ground measurements of AOT have been acquired for many years, by assessing the

reduction in intensity of the light from the sun between the top of the atmosphere (TOA)

and the ground surface (bottom of atmosphere; BOA). The TOA radiance can be

accurately estimated from solar irradiance models, or measured by satellites, and the

BOA radiance can be measured using a sun photometer (which has a very small field of

view to allow it to measure the intensity of light coming from just the solar disc).

Combining these two measurements, along with some ancillary data such as pressure and

location, allows estimation of AOT with a very high accuracy (Morys et al., 2001). Over

three hundred of these instruments have been deployed into the Aerosol Robotic Network

3
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(AERONET; Holben et al., 1998), which acquire measurements of AOT approximately

every fifteen minutes during daylight hours.

Satellite-based measurements of AOT provide a far greater spatial coverage than

AERONET, and the majority of applications of AOT use satellite measurements due to

the sparsity of AERONET measurement locations. Algorithms for estimating AOT from

satellite data are based on the same theory as sun photometer measurements (that is, the

wavelength-dependent scattering effect of aerosols), but in this case the light passes

through the atmosphere twice (from the sun to the surface, and then reflected from the

surface to the satellite), adding extra complexity. Satellite AOT retrieval algorithms apply

complex methods to attempt to remove the noise caused by the land surface reflectance,

and extract just the scattering signal from the data (for example, Levy et al., 2010; He

et al., 2014). The resulting measurements have a lower accuracy than sun photometric

measurements, but can cover the whole globe at resolutions ranging from 100km to 1km.

As well as affecting the passage of light through the atmosphere, aerosols have significant

effects on human health – primarily through the breathing in of very small particles,

known as PM2.5 (Davidson et al., 2005). These two primary effects are the basis for the

main applications of AOT measurements: satellite image atmospheric correction and air

quality monitoring - although AOT measurements are also used for climate monitoring

(due to the aerosol effect on cloud formation, and thus on the Earth’s energy balance;

Le Treut, 2012), fire monitoring (by mapping smoke plumes; Hsu et al., 1996), monitoring

of volcanic ash distribution (for example, for flight safety; Christopher et al., 2012), and

monitoring of dust emission and transport (Ashpole and Washington, 2012).

Satellite images are affected by various atmospheric constituents including aerosols, water

vapour, ozone and mixed gases – this is why satellite data can be used to estimate AOT

(Petty, 2006). However, when satellite images are used to monitor the Earth’s surface

these atmospheric effects are noise which must be removed through a process of

atmospheric correction – neglecting to remove these effects can lead to significant errors

(Samanta et al., 2010). To perform an atmospheric correction accurately, the

concentrations of each atmospheric constituent must be known, which, in the case of

aerosols, means knowing the AOT over the image. Most current atmospheric correction

algorithms assume a constant AOT across the image, which is unlikely to be true in many

cases: to get accurate results an atmospheric correction must be performed with a

per-pixel parameterisation of atmospheric constituents, so that changes across the image

can be taken into account (discussed further in Chapter 2). To parameterise these

per-pixel atmospheric corrections, AOT must be known across the image, and the only

realistic source for these data is satellite-derived AOT.

Aerosols, particularly those of an anthropogenic origin such as soot particles, are a major

source of pollution with significant impacts on human health (Davidson et al., 2005). The

danger of this particulate matter pollution is related to the size of the particles: smaller

particles can penetrate further into the lungs and thus cause more significant health
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impacts (Seaton et al., 1995). There has been a global focus on so-called PM2.5 pollution,

that is particulate matter with a diameter less than 2.5µm. These tiny particles - around

a fortieth of the diameter of a human hair - cause diseases including lung cancer, asthma

and cardiovascular disease, and were responsible for 3.2 million premature deaths

worldwide in 2010 (Lim et al., 2012). Governments across the world operate networks of

ground stations to monitor PM2.5 levels for compliance with standards, to monitor

sources and sinks, and to allow research on the health effects of PM2.5 . However - like

AERONET sites - these monitoring stations are relatively sparsely distributed and thus it

is impossible to examine the spatial distribution of PM2.5 pollution in detail. As

particulate matter pollution consists, by definition, of aerosols, it is possible to develop

robust relationships between AOT and PM2.5 concentrations (for example, van Donkelaar

et al., 2010), and thus use satellite-derived AOT datasets to produce maps of PM2.5

distribution.

1.2 The gap in the literature
Many methods have been developed to retrieve AOT from data collected from a range of

satellites. AOT retrieval techniques can be categorised by the method through which they

attempt to remove the ‘noise’ of land surface reflectance (as discussed in more detail in

Chapter 3). This is usually implemented as a method to separate the at-sensor radiance

(the light received at the satellite) into two components: the path radiance (caused by

aerosol scattering, and thus the ‘signal’ that must be extracted from the data) and the

ground radiance (caused by the surface reflectance, and considered in this case to be ‘noise’

that must be removed). Many of these methods are based upon one of the following:

• Empirical relationships between bands which are relatively unaffected by aerosols,

such as short-wave infrared (SWIR) bands, and visible bands (such as Remer et al.,

2006)

• The assumption of temporal stability in ground reflectance (such as He et al., 2014),

even though this assumption is nearly always incorrect, as even supposedly invariant

surfaces undergo significant changes in reflectance over a range of timescales

(Anderson and Milton, 2006)

• The use of extra data (such as polarisation or multi-angular measurements;

Mishchenko and Travis, 1997; Lyapustin et al., 2011)

The majority of these algorithms produce data with a kilometer-scale spatial resolution; a

few recent methods provide higher resolution data (although these methods are not yet

providing data operationally). There is a distinct need for high-resolution data from a

variety of application areas: for example, Hoff and Christopher (2009) state that air

quality monitoring requires data at a resolution of 1–100m, and no operational methods

currently provide data at this resolution. Furthermore, most current algorithms have

strict data requirements (for example, the presence of SWIR bands, the availability of

long time series of data, or the availability of a ‘clear’ image to use as a reference),

significantly limiting their application, both in terms of the range of sensors which can be
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used and the areas in the world in which the methods can be applied. Thus, there is a

gap in the literature which can be filled by the development of an algorithm which can

retrieve high-resolution (of 100m or finer) AOT from standard visible and near infra-red

optical satellite imagery (that is, without requiring measurements of short-wave infra-red

light, the polarisation of light, or the acquisition of data at multiple angles). The

development of such an algorithm to fill this gap will be the focus of this thesis.

1.3 Approach
As discussed in Chapter 3, other researchers have attempted the development of a

high-resolution AOT retrieval algorithm, but these algorithms suffer from the problems

listed previously: strict data requirements limiting their applicability and lack of

operational implementation (including broad scale validation). The issues with this

previous work suggests that a change of algorithmic approach may prove fruitful. The

most fundamental change of approach is to remove the focus on separating the at-sensor

radiance into path and ground radiance components: this is at the centre of the majority

of current algorithms, but this does not necessarily need to be the case. Other application

areas within remote sensing, such as haze assessment algorithms, deal with atmospheric

scattering without an explicit radiance separation stage, and there is a potential for these

algorithms to be extended to retrieve AOT.

Haze assessment algorithms were originally developed in the 1970s to automatically

classify hazy areas within satellite images, and to then attempt ‘correction’ of these hazy

areas to make the data within them more usable. After significant work in the 1970s and

1980s, these algorithms were ‘re-discovered’ in the early 2000s and brought up to date in

the Haze Optimized Transform (HOT; Zhang et al., 2002a). This method produces a

single HOT value for each pixel in the image, based upon the distance of the pixel from a

‘Clear Line’ defined in blue-red feature space. This value quantifies the haziness of the

pixel, and can then be used to perform a correction to attempt to remove the haze effects.

The American Meteorological Society Glossary of Meteorology defines haze as “particles

suspended in air, reducing visibility by scattering light” (American Meteorological Society,

2013), which is fundamentally the same as the definition of aerosols, and thus the haziness

of a pixel is fundamentally linked to AOT. The HOT algorithm was not designed to

estimate AOT, but given that haze is just another name given to the visible effect of high

AOT, it seems logical that there may be potential to extend the HOT to estimate AOT.

This will remove the explicit radiance separation step from the algorithm, and the ability

to use spatial context in correcting the HOT should allow reduction of signal-to-noise

issues which have affected previous high-resolution algorithms (as noted by Remer et al.,

2006, 2013).
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1.4 Aims & Objectives
The overall aim of this thesis is to develop a method to retrieve high-resolution AOT from

satellite images. Specifically, the aim is to develop a method to produce a per-pixel AOT

product from Landsat images, based upon an extension of the HOT, producing AOT with

a spatial resolution of 30m. The objectives of this PhD are:

1. To assess the validity of the assumptions behind the Haze Optimized Transform

2. To develop an improved version of the Haze Optimized Transform, focusing

particularly on the correction procedure

3. To develop a method to estimate AOT from the Haze Optimized Transform

4. To assess the accuracy of the resulting AOT values both in terms of absolute

accuracy and ‘spatial coherence’ (the relative accuracy between adjacent pixels)

5. To apply the new method to some potential application areas where high-resolution

AOT data are needed

1.5 Thesis structure
After Chapter 1 (Introduction), the pilot study in Chapter 2 (Scoping the problem)

investigates the spatial variability of the atmosphere over southern England and its effect

on atmospheric correction of satellite imagery. This self-contained study concludes that

performing full spatially-variable atmospheric correction is essential, and that this

requires per-pixel AOT products at high resolution.

Chapter 3 (Literature Review) explores the physical basis of atmospheric radiative

transfer before detailing the established methods for monitoring AOT from both ground

and satellite instruments, haze assessment methods for use with satellite imagery and

potential applications of high-resolution AOT data. The chapter concludes with a

synthesis which identifies a key need for a new algorithm to retrieve high-resolution AOT

from satellite images, and suggests that an approach based upon the extension of haze

assessment methods may prove fruitful.

Chapter 4 (Investigating the Haze Optimized Transform) investigates the conceptual

basis of one of these haze assessment methods and validates the assumptions involved.

This requires the development of specialised datasets, many of which are used throughout

the rest of the thesis, and the methods used for generating these are discussed in detail in

the early part of this chapter. By the end of this chapter, the fundamental basis of the

Haze Optimized Transform has been shown to be correct, and a number of issues have

been investigated in depth.

Chapter 5 (Improving the Haze Optimized Transform) discusses the extension of the

Haze Optimized Transform to allow it to be used in the context of AOT estimation, with

a focus on a new method for estimating the Clear Line and a Object-based Image

Analysis approach to HOT correction. By the end of this chapter the improved HOT

product is ready to be used to estimate AOT.
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This estimation process is dealt with in Chapter 6 (Investigating the HOT-AOT

relationship), in which the actual link between HOT and AOT values is assessed, and then

a method is developed to estimate this relationship for an arbitrary image. Again,

specialised datasets are required, and their development is discussed early in the chapter.

This chapter finishes by putting together all of the work done so far to produce an

algorithm to retrieve high-resolution AOT from Landsat ETM+ images, and closes with

example inputs and outputs.

Chapter 7 (Validation) assess the accuracy of the results from the new algorithm by

comparison with ground-based and satellite-based measurements, as well as further use of

simulated images, and concludes with an estimated AOT uncertainty which should be

applied to all results from the algorithm.

Chapter 8 (Example applications) provides indicative examples to show how the new

high-resolution AOT data could be used for per-pixel atmospheric correction and the

assessment of PM2.5 air pollution. A particular focus is on the novel applications which

the availability of high-resolution data makes possible.

Finally, Chapter 9 (Conclusions & Further Work) summarises the novel contributions

made in this thesis, assesses the advantages and disadvantages of a haze-assessment

approach to AOT estimation and discusses potential future extensions to the algorithm

and its validation.



Chapter 2

Scoping the problem

This chapter consists of a report on a self-contained research project performed at the

beginning of the PhD which used presently-available datasets to assess the spatial

variability of the atmosphere (principally in terms of AOT) and its effects on satellite

image atmospheric correction. Knowledge about the level of spatial variability in AOT is

essential when deciding whether new high-resolution AOT products should be produced:

if AOT has very low spatial variability then there is little need for new high-resolution

products. Similarly, one of the main applications of a high-resolution AOT product is for

atmospheric correction of satellite images: if satellite images can be accurately

atmospherically-corrected by assuming a constant AOT across the image then there is

little need for a new high-resolution AOT product.

The content of this chapter was published in the International Journal of Remote Sensing

as Wilson et al. (2014) with the title Spatial variability of the atmosphere over southern

England, and its effect on scene-based atmospheric corrections. This paper was jointly

published by three authors: EJ Milton and JM Nield provided supervision during the

research process, contributing ideas and assisting with editing of the manuscript, but the

rest of the research and writing (including the development of the original idea, data

acquisition, processing, radiative transfer simulations, development of statistical

approaches and analysis of the reslts) was carried out by RT Wilson alone.

2.1 Introduction and Background
Remotely sensed data are typically used to generate quantitative products which require a

high degree of accuracy, for example, satellite sensor data are applied to estimate the

Global Climate Observing System Essential Climate Variables (GCOS, 2004) such as

snow cover (Hall et al., 1995), sea-surface temperature (Brown et al., 1999), albedo

(Wielicki et al., 2005), water vapour (Gao and Kaufman, 2003) and net primary

productivity (Running et al., 2004). To produce these variables, remotely-sensed data

must undergo atmospheric correction to remove the perturbing effects of the atmosphere

from the data, and thus allow results to be determined accurately in physical units

9
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(a) Overview (b) Study area

Figure 2.1: Location of the NCAVEO Field Campaign

(Slater, 1980). A range of atmospheric correction methods can be used with satellite

sensor data but most methods assume that the atmosphere is spatially-uniform across the

image. However, over large images such as those from Landsat (185km x 185km) or DMC

(a swath width of 650km) the atmosphere is likely to vary and so uniform correction

methods may introduce significant errors in the resulting data products.

This chapter investigates errors associated with uniform atmospheric correction over large

images of southern England. First, the spatial variability of the atmosphere over southern

England on a clear (cloud-free) day is quantified, and then the magnitude and range of

errors associated with uniform atmospheric correction over this area is assessed, both in

terms of radiance and NDVI.

2.1.1 Study area and period

The study used data over southern England (the grey area in Figure 2.4) from the 16th

and 17th June 2006. These were typical mid-latitude clear days during the NCAVEO

Field Campaign (Milton et al., 2011). This unique field campaign was carried out in the

area surrounding Chilbolton, near Andover, Hampshire, UK (Figure 2.1) and collected a

multi-scale, multi-sensor dataset to enable research into the calibration and validation of

earth observation data. The data included large quantities of satellite, airborne and

ground data (Table 2.1), with as much of the data as possible collected on a single day to

allow easy comparison.
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Table 2.1: Summary of the datasets collected by the NCAVEO Field Campaign

Platform Datasets Resolution

Satellite

CHRIS/Proba 34m
UK-DMC 32m
AlSat 32m
Nigeria-Sat 32m
SPOT-5 HRG 10/20m

Airborne

CASI-2 2.5m
CASI-3 1m
AISA Eagle 1m
AIC digital camera 1m
Digital Multispectral Camera 0.6m
LiDAR 1m

Ground

Land cover -
LAI -
Vegetation canopy structure -
Leaf chlorophyll content -
River survey -
AOT and PWC from Cimel/Microtops -
Atmospheric water vapour profile -
Sky spectral irradiance distribution -
Diffuse:Global ratio -
Field spectroscopy of a range of sites -

The meteorological situation changed significantly during these two days, as a

high-pressure system migrated from the southern Atlantic Ocean, over southern England

to Germany. The passage of this weather system caused significantly different wind

directions on the two days (with average directions of 287◦ on the 16th and 192◦ on the

17th). Field observations confirm that conditions during the day on the 17th were more

variable than the 16th (Milton et al., 2011), with an increase in AOT (Figure REF

HERE ) associated with a reduction in sky clarity after 10:30 UTC. On the 16th there

was also an increase in AOT, but this did not occur until late afternoon, by which time all

data collection had been completed.

2.1.2 Background

In the early days of satellite remote sensing, simple scene-based atmospheric correction

techniques such as Dark Object Subtraction were generally used. In the 1990s and 2000s

there was significant development in per-pixel approaches designed for use with

hyperspectral imagery. However, there is a lack of true pixel-based correction methods for

multispectral imagery. Tools such as ATCOR (Richter, 2004) and FLAASH (Cooley et al.,

2002) can be used to perform a pseudo-pixel-based correction of multispectral images, but

the methods that are used for extracting spatially-variable atmospheric information from

multispectral imagery are limited. Thus, the majority of multispectral atmospheric

corrections performed today are scene-based, using constant values of atmospheric
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Figure 2.2: AOT measured at the Chilbolton AERONET site during the NCAVEO
Field Campaign
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parameters across the scene and not taking into account the spatial variability of the

atmosphere over the image.

It is particularly important to quantify errors resulting from these scene-based

atmospheric corrections due to three recent developments within remote sensing. First,

the use of large images with a variety of spatial resolutions in environmental studies is

becoming increasingly common, due both to the increased availability of large images and

the policy-driven need for large area studies, particularly those relating to environmental

change. Typical sensors include MODIS (500m resolution) and the Disaster Monitoring

Constellation (30m resolution), which both produce images that cover very large areas (a

single DMC image can cover approximately half the area of England). Second, with the

incorporation of atmospheric correction tools into image processing software, atmospheric

correction can now be performed by users who may have little knowledge of the possible

uncertainties of the results. Third, data obtained from quantitative analysis of

remotely-sensed images are now in widespread use for a variety of important scientific

projects and errors in this data could have serious consequences. In climate modelling,

significant errors in input data caused by incorrect atmospheric correction could result in

misleading predictions being reported to policy makers. For example, Saleska et al. (2007)

stated that the Amazon rainforest was more resilient to short-term climatic fluctuations

than previously thought (as shown by a significant increase in Enhanced Vegetation

Index), but Samanta et al. (2010) showed that these inferences were due to the use of

cloud- and aerosol-contaminated satellite data in the original study.

2.1.3 Atmospheric parameters of interest

The primary atmospheric constituents which affect remotely-sensed measurements are

mixed gases, ozone, aerosols and water vapour. Concentrations of atmospheric mixed

gases are controlled by atmospheric pressure, and ozone concentrations can be modelled

effectively by latitude and season (van Heuklon, 1979). However, aerosol and water vapour

concentrations vary significantly both spatially and temporally, and thus contemporaneous

data on these must be provided when atmospherically-correcting satellite images.

The Aerosol Optical Thickness (AOT), also known as the Aerosol Optical Depth (AOD),

is a dimensionless measure of the degree to which aerosols restrict the transmission of

light through the atmosphere, defined as the integrated extinction coefficient due to

aerosols through a vertical column of unit area in the atmosphere (Iqbal, 1983).

Water vapour in the atmosphere can be quantified in two ways: Integrated Water Vapour

(IWV), the vertically integrated mass of water per unit area (kg m−2), or Precipitable

Water Content (PWC), the height of an equivalent column of liquid water (mm) (Iqbal,

1983).
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2.1.4 Previous work

Previous studies that have assessed AOT variability have typically used i) low resolution

data or ii) daily, weekly or monthly composites which are relevant for climate-related

studies but not for assessing the spatial variability in AOT at the specific instant of

satellite image acquisition.

González et al. (2003) and Koelemeijer et al. (2006) both examined the spatial variation

of AOT across Europe using MODIS and ATSR-2 data respectively. These data were

averaged to monthly or yearly periods, and so only provide estimates of an average

variability of 0.2–0.5. González et al. (2003) found a wide range in AOT values across

Europe, with values of 0.5–0.6 in industrialised areas of Germany and northern Italy, and

values of 0.1 in rural areas of France, Spain and Norway, which suggests that local

emissions are particularly important in determining AOT values. Koelemeijer et al. (2006)

also found significant local effects, with many cities easily distinguishable as peaks in the

data, and particularly low AOT in mountainous areas. The AOT values in southern

England from the same study reflect this, with high values around London and the

Thames Estuary and generally low values in rural Cornwall. González et al. (2003) also

found that AOTs can increase by up to 300% over distances of around 50–10km (along a

transect from Germany to Belgium), and similar gradients occurred in their data for the

UK (eg. an increase of 275% from east Kent to mid Oxfordshire). AOTs also vary

temporally, both diurnally (Smirnov et al., 2002) and over weekly periods (Bäumer and

Vogel, 2007). These anthropogenic variations, along with the prevailing meteorological

situation, significantly impact the spatial variability of AOT, and thus yearly or monthly

averages do not provide the information required for assessing the effect of uniform

atmospheric correction procedures. For example, Figure 2.3 shows monthly average AOTs

measured at the Chilbolton AERONET site: this shows a pattern of higher AOTs in

spring and lower AOTs in winter, and an overall range of approximately 0.07–0.30, but

does not tell us anything about the spatial variability of AOT at a specific point in time.

2.1.5 Uniformity assumptions in atmospheric correction methods

Very few implementations of atmospheric correction methods take into account the spatial

variability of the atmosphere, even though these methods are conceptually able to work

with a variable atmosphere. Typical relative or empirical methods, such as Dark Object

Subtraction (Chavez, 1975; Moran et al., 1992) and the Empirical Line Method (Smith

and Milton, 1999), use averages of measurements taken across the image, thus ignoring

the data on spatial variability which would be present in these measurements. Physical

correction methods involve running a Radiative Transfer Model (for example, Berk et al.,

1999; Vermote et al., 1997) on each pixel in the image, and thus could easily take into

account spatial variability in atmospheric parameters.

The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS; Masek et al.,

2006) partially accounts for spatial variability by estimating AOT over areas of dense dark

vegetation (DDV) in the image using the Kaufman et al. (1997) method. The AOT data
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Figure 2.3: Monthly average AOT values measured at the Chilbolton AERONET site
between 2008 and 2011 (the longest subset with no significant no data periods)

are then interpolated to 1km resolution and used to parameterise 6S (Vermote et al.,

1997) to perform the atmospheric correction. However, there are several problems with

this method: i) it does not take into account fine-scale variability in AOT; ii) it can only

estimate AOT over areas of DDV thus making it impossible to use over areas without

DDV, such as deserts; and iii) it is only implemented for Landsat images as the AOT

retrieval method requires the use of the Landsat short-wave infra-red bands.

There has been discussion within the community as to whether atmospheric correction is

required in all situations. Song et al. (2001) state that atmospheric correction is not

required for applications which require only a single image and do not need the data to be

in physical units. For example, they argue that performing a maximum likelihood

classification of a single Landsat image using training samples derived from the image

data itself would give exactly the same result with and without atmospheric correction.

This is because a uniform atmospheric correction would simply apply the same correction

to each pixel in each band, thus changing the mean of each land cover class, but not

altering the covariance of the classes. However, if a spatially-variable atmospheric

correction were to be performed the correction applied each pixel would be different

(based upon the atmospheric conditions over that pixel), and thus the covariances of the

classes would change. Similarly, if the image was acquired through a spatially-variable

atmosphere but a uniform atmospheric correction was performed there would be a
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different error for each pixel, which would affect the covariances of the classes. Thus, if

the atmosphere is spatially-variable, a full spatially-variable atmospheric correction is

required even for the uses specified in Song et al. (2001).

2.2 Data Sources & Validations
AOT and PWC can be measured using a variety of ground instruments and satellite

products with a range of spatial and temporal resolutions (Table 2.2). The uncertainty of

these methods depends on the location they are used in, with factors such as land cover

and aerosol type having a large effect, so it is important to perform validation for the

study site.

Validation of satellite measurements against ground measurements is challenging for

several reasons including: i) the lack of exactly coincident measurements, ii) differences in

cloud screening, iii) different measurement variables, and iv) the fundamental difference

between areally integrated measures from satellites and point-based measurements from

ground instruments. The Ichoku et al. (2002) spatio-temporal subset approach for

validation is used here, comparing a spatial subset from the satellite data (5 x 5 pixels)

with a temporal subset from ground measurements (±30 minutes). Ichoku et al. (2002)

justified the size of these subsets based upon an estimate of average aerosol front speed,

the requirement to obtain a statistically-significant sample size, and the observation that

larger window sizes could introduce errors from cloudy pixels and changing topography.

2.2.1 AERONET Sun Photometry

Sun photometers estimate AOT and PWC based upon measurements of solar irradiance

in multiple wavelengths. Here, automatically cloud-screened data (Level 1.5) collected by

the AERONET Cimel CE-318 sun photometer situated at the Chilbolton Facility for

Atmospheric and Radio Research (CFARR) (Holben et al., 1998) are used. A simple

time-for-space substitution was used to obtain an estimate of the spatial variability over

the whole area from this single point measurement, by taking the AERONET

measurements over the entire daylight period and assuming that they are representative

of the AOT across the whole study area.

Sun photometers are used as reference data within this study, as they are currently the

most accurate method for measuring AOT (Wang et al., 2009). Errors are low:

approximately ±0.02 for AOT (Eck et al., 1999), and with an PWC RMSE of 2.9 mm

(Liu et al., 2011).

The time-for-space assumption was examined by modelling the passage of aerosol particles

across the UK during the study period using the Hybrid Single Particle Lagrangian

Integrated Trajectory Model (HYSPLIT; Draxler and Rolph, 2003), using gridded one

degree resolution meteorological data from the NCEP Global Data Assimilation System

archive (Kalnay et al., 1996). The model was parameterised to simulate an ensemble of

possible back-trajectories for a single particle located above the AERONET site at 19:00
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^

16th

17th
0 80 16040 Miles¯
Figure 2.4: Estimates of ‘contributing areas’ for the Chilbolton AERONET site for the
16th and 17th June 2006 in blue and red respectively, with the study area shown in grey.
The black lines show the individual trajectories towards Chilbolton, Hampshire (marked
with a red star) computed by HYSPLIT using the ensemble mode with heights of 500m,

1000m and 1500m above ground level.

UTC back to its starting location at 05:00 UTC (the start and end times of the

AERONET data during the study period). Simulations were run for particles at heights

of 500m, 1000m and 1500m to capture the differing trajectories produced by

height-varying winds. These heights were chosen based upon the finding of Matthias et al.

(2004) that 80–90% of the AOT is produced by aerosols in the planetary boundary layer,

which was found to be at a height of 1204± 481m at the Aberystwyth station, located

approximately 100km outside the study area.

A simple ‘contributing area’ for the AERONET site was then calculated as the concave

hull of the resulting trajectories. These estimated areas for the 16th and 17th June 2006

(Figure 2.4) show that the time-for-space substitution covered 23% and 19% of the study

area on the 16th and 17th respectively. The contributing area for each day was very

different due to contrasting meteorological conditions, and a large proportion of the

contributing area was outside of the study area (62% and 63% respectively).

2.2.2 Met Office Visiometry

AOT was estimated from hourly measurements of horizontal visibility (accurate to ±10%)

acquired by a network of UK Met Office stations across the study area (UK Met Office,

2006) using Koschmieder’s equation (Koschmieder, 1924; Horvath, 1981):
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V =
3.912

τ
(2.1)

where V is the visibility in km and τ is the AOT.

Koschmieder’s equation relates horizontal visibility and horizontal extinction coefficient

measurements, but is now widely used for calculating vertical extinction coefficients (that

is, AOT) from horizontal visibility. This mixing of horizontal and vertical measurements

relies on many assumptions which are often invalid (Chan, 2009), and there are broader

issues with the choice of coefficients in the equation (Middleton, 1952; Horvath, 1971,

1981). Previous studies comparing AOT and visibility-based estimates of AOT, have

found correlations ranging from 0.38 (So et al., 2005) to 0.89 (Chen et al., 2009). However,

despite these limitations, visibility-based estimates of AOT are still useful due to their

high spatial and temporal resolutions as well as the wide availability of data collected

according to World Meteorological Organisation standards.

2.2.3 MODIS AOT (MOD04)

The MOD04 product from the MODIS sensors on the Terra and Aqua satellites provides

AOT estimates at 10km resolution using an algorithm based on short-wave infra-red

measurements and the use of a Radiative Transfer Model lookup table (Remer et al.,

2006). The official MODIS validation report for the latest version of the algorithm

(Collection 5.1) (Remer et al., 2006) states that 67% of the retrievals were within the

expected uncertainty (±0.05± 0.15τ), which has been confirmed by independent

validations (Levy et al., 2010). Results improve when only pixels with the highest Quality

Assurance Confidence were used, as in this study. Many assessments of MOD04 accuracy

in the literature are based upon previous versions of the algorithm (Collection 4), but the

current algorithm (Collection 5.1) has significantly improved the accuracy. The accuracy

is seasonally-variable (El-Metwally et al., 2010), likely due to the seasonal changes in

aerosol types present over some of the sites used in their study.

Validation for the study area was performed between the MOD04 product and the

AERONET site at Chilbolton using the Ichoku et al. (2002) method (Figure 2.5). The

results on the 16th show that AERONET had a significantly larger range than the

MOD04 product, due to the poor performance of the time-for-space assumption combined

with potential cloud masking issues and the naturally higher variability found in point

measurements as opposed to those averaged over large pixels. Although there were

differences in range, results from t-tests showed that there was no significant difference

between the samples obtained from MODIS and AERONET (p = 0.83 and p = 0.28 for

the 16th and 17th respectively), and thus they are likely to have come from the same

distribution of AOT values.
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(a) 16th June 2006 (b) 17th June 2006

Figure 2.5: Boxplots showing the summary statistics for the validation of the MODIS
AOT product against AERONET

2.2.4 GlobAerosol

The GlobAerosol product is produced by merging AOT products from the ATSR-2,

AATSR, MERIS and SEVIRI sensors (Thomas et al., 2010), at a 10km resolution. Poor

data are excluded based upon various checks, and merging is performed using temporal

interpolation, with observations weighted by their error estimates (Siddans et al., 2007).

The official validation against AERONET measurements found that the AATSR-derived

dataset was most accurate, with a RMSE of 0.07 (Poulsen et al., 2009). Although the

merged product has a lower accuracy (Poulsen et al., 2009), the major advantage is that

the merging process ensures higher spatial coverage of the area.

A comparison between the GlobAerosol merged product and the AERONET site at

Chilbolton (Figure 2.6) show a smaller difference between AERONET and GlobAerosol

measurements on the 16th than on the 17th June. Results from t-tests indicate that there

was a significant difference between the AOT samples from MODIS and AERONET on

the 17th (p = 0.0008), but no significant difference on the 16th (p = 0.20).

2.2.5 MODIS PWC (MOD05)

The MOD05 product provides PWC estimates at 1km resolution, based upon a ratio of

adjacent bands with and without water absorption features. Official validation for the

MODIS water vapour product is limited (Gao and Kaufman, 2003), with a RMSE based

on a microwave radiometer dataset of 1.7mm, corresponding to an approximate 5–15%

error for the PWC range found over southern England (10–40mm). Comparisons of the

MOD05 PWC estimates to radiosonde and GPS-based measurements at Herstmonceux in

southern England (50.889 N, 0.324 E) found a positive bias of 10% and 7% respectively

(Li et al., 2003), and comparisons in the Tibetan Plateau produced a similar result to the

official validation (1.95mm RMSE).
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(a) 16th June 2006 (b) 17th June 2006

Figure 2.6: Boxplots showing the summary statistics for the validation of the GlobAerosol
product against AERONET

(a) 16th June 2006 (b) 17th June 2006

Figure 2.7: Boxplots showing the summary statistics for the validation of the MODIS
Water Vapour product against AERONET

Validation between the satellite data and the AERONET PWC measurements at

Chilbolton (Figure 2.7) indicated similar relationships between the spatial and temporal

subsets on the 16th (p = 0.437), but not on the 17th (p = 0.004, as found with the other

datasets. Again, the satellite data has a larger range, but on both days the AERONET

data were encompassed within this range.

2.2.6 GPS Water Vapour

Measurements of delays in the GPS L-band radio signals passing through the atmosphere

can be used to quantify the water vapour in the atmosphere above the GPS receiver (Bevis

et al., 1992). The British Isles Continuous GNSS Facility (BIGF; Natural Environment

Research Council, 2012) uses these methods to provide estimates of integrated water
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vapour at all BIGF stations on an hourly basis. Previous validations of GPS-derived

water vapour estimates against radiosonde and satellite data have generally produced

errors of 1–2mm (Becker et al., 2003; Wang et al., 2007; Wolfe and Gutman, 2000;

Tregoning et al., 1998). However, all the data used in these validations were processed

from the GPS data by the authors, using models which were specifically parameterised for

the area of study. The BIGF product is a global operational product, and thus uses a

standard parameterisation across all sites, which may be expected to reduce the accuracy.

A BIGF measurement site is co-located with the AERONET site at Chilbolton, and

validation was performed for all days with at least two matching measurements in the

period August 2009–November 2010. This produced an average daily RMSE of 1.5mm,

with a maximum of 6.3mm, and a Pearson correlation coefficient of 0.976, showing a good

agreement between GPS-derived and AERONET-derived estimates.

2.3 Simulation of uniform atmospheric corrections
The 6S radiative transfer model (Vermote et al., 1997) was used to simulate a uniform

atmospheric correction over southern England, using the data on spatial variability

described above. The Py6S (Wilson, 2012, available in Appendix A) interface to 6S was

used to allow hundreds of individual simulations to be run in an automated manner.

Simulations were run in two stages: first to generate a top-of-atmosphere (TOA) radiance

from a representative vegetation spectrum under a given set of atmospheric parameters

(Pup), and second to atmospherically correct the TOA radiance to a ground reflectance

under a different set of atmospheric parameters (Pdown). Pup was set to the 5% or 95%

quantile of the AOT or PWC values and Pdown was set to the mean of the AOT or PWC

values (from Tables 2.3 and 2.4), thus simulating the uniform atmospheric correction of a

pixel measurement which was actually acquired in extreme conditions. Simulations were

performed for Landsat bands 1–4, and 6S parameters other than AOT and PWC were set

to appropriate values for southern England. Results from the simulations were retrieved

as reflectance values. To assess the effect on a standard remote-sensing product, NDVI

was also calculated from these reflectances.

The errors resulting from a uniform atmospheric correction are conceptually the same as

the errors resulting from uncertainty in the atmospheric parameters: both are caused by

differences between the true parameter value and the value used for correction. Thus, a

sensitivity analysis was also performed to assess the effects of the uncertainties of the data

sources (as listed in Table 2.2) on remote sensing products.

2.4 Spatial variability over the study area

2.4.1 Aerosol Optical Thickness

The AOT range over the study area on the 16th and 17th June 2006 was approximately

0.1–0.5 (Table 2.3). This is large, given that these measurements were acquired on days

which had mostly clear skies across the study area, and shows that there is more spatial
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Figure 2.8: Examples of the three satellite data products used in this study. All images
are from the 16th June 2006.

variability in AOT than visual examination of sky conditions suggests.

The overall range in AOT was similar each day, but all data sources have significantly

higher variability on the 17th (Figure 2.9). This is consistent with the more changeable

weather conditions on the 17th, as noted by the records from the NCAVEO Field

Campaign (Milton et al., 2011). Similarly, the median values for each dataset are very

similar on the 16th, but not on the 17th. In all cases the satellite-based datasets (MODIS

and GlobAerosol) have a lower minimum, which is likely to be due to errors in separating

the at-sensor radiance into the ground reflectance and aerosol scattering components.
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Figure 2.9: Boxplots showing the range of AOT values found over southern England
during the study period according to each data source.
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Figure 2.10: Boxplots showing the range of PWC values found over southern England
during the study period according to each data source.
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Table 2.3: Summary statistics showing the range of AOT values across southern England
during the study period for each data source.Q05 and Q95 are the 5% and 95% quantiles

respectively.

(a) 16th June 2006

Source Min Max Mean Q05 Q95

AERONET 0.120 1.130 0.291 0.156 0.464
Met Office 0.156 0.391 0.260 0.156 0.391
GlobAerosol 0.071 0.496 0.287 0.155 0.417
MODIS 0.078 0.460 0.258 0.139 0.398

(b) 17th June 2006

Source Min Max Mean Q05 Q95

AERONET 0.153 0.436 0.216 0.160 0.332
Met Office 0.145 0.559 0.296 0.175 0.489
GlobAerosol 0.050 0.338 0.164 0.082 0.258
MODIS 0.063 0.440 0.223 0.090 0.386

Table 2.4: Summary statistics showing the range of PWC (in cm) across southern
England during the study period for each data source Q05 and Q95 are the 5% and 95%

quantiles respectively.

(a) 16th June 2006

Source Min Max Mean Q95 Q05

AERONET 1.433 2.257 1.859 2.236 1.486
BIGF 1.750 2.820 2.138 2.565 1.813
MODIS 0.212 5.588 2.180 2.772 1.646

(b) 17th June 2006

Source Min Max Mean Q95 Q05

AERONET 1.892 2.724 2.433 2.688 1.975
BIGF 1.820 3.250 2.676 3.190 1.904
MODIS 1.458 6.218 2.763 3.379 1.995

The AOT data obtained from Met Office visibility measurements has a similar range to

the other datasets on the 16th, but over-estimates the AOT on the 17th. This is likely

caused by failure of the assumptions inherent in the visibility to AOT conversion due to

the meteorological conditions. For example, local conditions could reduce horizontal

visibility at ground-level, but not significantly affect the vertical extinction coefficient

measured by AOT.

Generally the AERONET measurements have the lowest inter-quartile range (16th: 0.12,

17th: 0.04) due to the time-for-space substitution not capturing the variability across the

entire study area, but have several high outliers (including a value of 1.13 on the 16th).

These outliers are likely to be due to poor performance of the automated cloud screening

algorithm used for the level 1.5 data, which performs relatively poorly for large areas of
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Table 2.5: Effects of a uniform atmospheric correction performed over an area with the
AOT variability from each data source. Values in the table are the reflectance differences
for [95% perturbation; 5% perturbation], with reflectance values in percent. Note that
increases in AOT (using the 95% percentile of the AOT data from the data source) cause

increases in reflectances for all bands, but a decrease in NDVI.

(a) 16th June 2006

Source ρB ρG ρR ρNIR NDVI

AERONET +1.3; -1.0 +1.1; -0.8 +1.0; -0.8 +0.1; -0.1 -0.026; 0.027
Met Office +1.0; -0.8 +0.8; -0.6 +0.7; -0.6 +0.1; -0.1 -0.017; 0.022
GlobAerosol +1.0; -1.0 +0.8; -0.8 +0.7; -0.7 +0.1; -0.1 -0.018; 0.027
MODIS +1.1; -0.9 +0.9; -0.7 +0.8; -0.7 +0.1; -0.1 -0.019; 0.024

(b) 17th June 2006

Source ρB ρG ρR ρNIR NDVI

AERONET +0.9; -0.4 +0.7; -0.4 +0.6; -0.3 +0.1; -0.1 -0.014; +0.014
Met Office +1.5; -0.9 +1.2; -0.8 +1.1; -0.7 +0.1; -0.1 -0.030; +0.025
GlobAerosol +0.7; -0.6 +0.6; -0.5 +0.5; -0.5 +0.1; -0.2 -0.009; +0.017
MODIS +1.2; -1.0 +1.0; -0.8 +0.9; -0.7 +0.1; -0.2 -0.022; +0.025

Table 2.6: Effects of a uniform atmospheric correction performed over an area with the
PWC variability from each data source. Values in the table are the differences from the
true results for [95% perturbation; 5% perturbation], and reflectance values are in percent.
ρB, ρG, ρR and ρNIR are the reflectances in the Landsat blue, green, red and NIR bands

respectively.

(a) 16th June 2006

Source ρB ρG ρR ρNIR NDVI

AERONET 0.00; 0.00 -0.02; +0.02 -0.02; +0.02 -0.37; +0.40 -0.002; +0.002
BIGF 0.00; 0.00 -0.02; +0.01 -0.02; +0.02 -0.39; +0.32 -0.002; +0.002
MODIS 0.00; 0.00 -0.03; +0.02 -0.03; +0.02 -0.49; +0.44 -0.003; +0.006

(b) 17th June 2006

Source ρB ρG ρR ρNIR NDVI

AERONET 0.00; 0.00 -0.01; +0.02 -0.01; +0.02 -0.22; +0.43 -0.001; +0.002
BIGF 0.00; 0.00 -0.02; +0.04 -0.02; +0.04 -0.41; +0.72 -0.002; +0.004
MODIS 0.00; 0.00 -0.03; +0.03 -0.03; +0.04 -0.49; +0.70 -0.003; +0.007
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Figure 2.11: Sensitivity analysis showing percentage change in NDVI caused by correct-
ing a standard green vegetation spectrum with a erroneous AOT value, for two standard
AOT values (0.2, corresponding to a visibility of around 20km; and 0.4, corresponding to
a visibility of around 10km). The x-axis shows the difference between the true AOT and

the AOT used for correcting, and the y-axis shows the resulting error.

temporally and spatially homogeneous cloud (Smirnov et al., 2000).

2.4.2 Precipitable Water Content

The range agreement between the data sources for PWC is weaker than for the AOT

datasets (Figure 2.10), but an approximate range for PWC, taking into account expected

values (Randel et al., 1996) and obvious outliers on the 16th is approximately 1.5–3.0 cm

on the 16th and around 2.0–3.5 cm on the 17th (Table 2.4). The larger values on the 17th

were likely caused by the southerly/south-westerly winds bringing moist air-masses from

the Atlantic Ocean over the study area. Again, the satellite data had the largest range,

with many outliers for MODIS on the 16th June. High outliers may have been caused by

incorrect cloud-screening (as clouds will have a significantly higher PWC) but the very

low values (a minimum of 0.2 cm for MODIS) may be plausible in certain areas (a

maximum PWC of 3 mm was found in Norway by Mook, 1978). The MODIS PWC

dataset has a significantly higher resolution than the AOT datasets (1 km compared to 10

km) and is likely to record more small-scale variation that would be averaged out in a

lower-resolution dataset, and thus have a larger range. The BIGF data compares well

with the other datasets, with a smaller range than MODIS but similar inter-quartile

ranges, showing the utility of this relatively-new measurement approach.
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Table 2.7: Noise Equivalent Delta Radiance (NE∆L) and Noise Equivalent Delta
Reflectance (NE∆ρ) for the visible and near infra-red Landsat bands under the simulation

conditions.

Blue Green Red NIR

NE∆L 1.11 0.85 0.89 0.61
NE∆ρ 0.056 0.046 0.057 0.058
NE∆ρ/Error 26.6 26.1 19.1 3.4

2.4.3 Summary

All data sources confirm that the AOT and PWC over the study area was not uniform

during the study period. As there were mainly clear skies during this time it is likely that

the measured variability is a ‘best case’ scenario and that AOT variability will be greater

in other situations. Thus, the assumption of atmospheric spatial uniformity made by

atmospheric correction methods is not valid across a large area in southern England, and

probably other mid-latitude areas.

2.5 Effects of uniform atmospheric correction
To estimate the implications of uniform atmospheric correction the 5% and 95% quantiles

of AOT and PWC measured over the study period were used (as they represent the

‘extreme’ values that affect 10% of the pixels in the image) to simulate the effects of a

uniform atmospheric correction for these ‘extreme’ pixels.

2.5.1 Aerosol Optical Thickness

The results of the Radiative Transfer Model simulations show that atmospheric correction

of data acquired under a high AOT and corrected with a lower AOT produces erroneously

high reflectances (Table 2.5). This is due to the increased scattering caused by the

aerosols which was not corrected by the atmospheric correction. The error has a

significant spectral dependence, with higher errors for lower wavelengths (blue) and very

low errors for high wavelengths (NIR), and an overall range of 0.1-1.3 percentage points of

reflectance. In this situation, the NDVI decreased, as the red reflectance increased relative

to the NIR reflectance. The absolute NDVI difference was low, but the percentage error

reached 5% for the Met Office dataset on the 17th June. Even relatively small errors in

NDVI may affect derived products such as estimates of biomass production, for example,

Kaufman (1993) found that a NDVI difference of 0.04 corresponded to biomass

production errors of 11–30%.

To put these errors in context: the Noise Equivalent Delta Radiance (NE∆L) and

equivalent Noise Equivalent Delta Reflectance (NE∆ρ) were calculated for each Landsat

band under the simulation conditions, using the NE∆ρ formula and data in Scaramuzza

et al. (2004) (Table 2.7). The errors due to a uniform atmospheric (Table 2.5) are

significant, at almost thirty times more than the NE∆ρ for bands 1 and 2, approximately

twenty times more for band 3 and three times more for band 4.
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2.5.2 Precipitable Water Content

The reflectance differences caused by PWC perturbations are significantly smaller than

those for AOT perturbations, with a maximum error of 0.5 percentage points in the NIR

and 0.02 percentage points in the visible (Table 2.6). They have the opposite spectral

dependence to the differences due to AOT, with low errors at short wavelengths, but high

errors at longer wavelengths. This is because most multi-spectral satellite bands are

deliberately located away from areas of the spectrum which experience significant water

absorption, but Landsat band 4 (NIR, 0.76–0.90µm) covers a water absorption feature

(Gao and Goetz, 1990). Although there is a differing effect between the NIR and red

bands, it is not as significant as with the AOT perturbations, and thus the NDVI

differences are much lower (with a maximum of 0.007).

2.5.3 Sensitivity Analysis

The sensitivity analysis (Figure 2.11) shows the how errors in AOT propagate to the

resulting NDVI values for a range of errors. Comparing the results to the uncertainties of

each dataset (Table 2.2) shows that there is a serious problem in using these datasets to

provide AOT values for use in atmospheric correction procedures. The NDVI changes

resulting from the official error estimates for each of the AOT data sources (Table 2.8),

generate errors ranging from 2% to 7% for all data sources except AERONET. The effect

of the AERONET error on NDVI is acceptable at less than 1%. This suggests that only

AERONET data should be used for parameterising atmospheric correction models, but

this research has also shown that a fully spatially variable correction is needed, and as

AERONET sites are sparsely distributed this is not possible. The errors shown in this

sensitivity analysis are a result of inaccuracies in the AOT data sources, and have no

relationship to the uniform atmospheric correction issues that our main study focuses on.

Thus, these errors could occur in any atmospheric correction that uses visibility, MODIS

or GlobAerosol data to obtain the AOT input, regardless of whether the atmosphere is

spatially uniform or variable.

2.5.4 Summary

Performing a uniform atmospheric correction for water vapour does not introduce

unacceptable errors in reflectance or NDVI, with a maximum error of 0.7 percentage

points and 0.6% respectively. Further simulations have shown that even in areas with very

high water vapour amounts, such as tropical rainforests, NDVI values are unlikely to be

significantly affected by variability in water vapour unless that variability approaches 80%

of the mean value.

In contrast, performing a uniform atmospheric correction over a spatially-variable AOT

distribution may cause errors in reflectance of up to 1.5 percentage points, and errors of

5% in NDVI values. Overall 5% of the pixels in the image may have a reflectance error >

+1.5 percentage points, and another 5% of the pixels may have an error < -1.0 percentage

points. To put this in context, 10% of the pixels in a Landsat image is approximately 3.8
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million pixels, covering an area of approximately 3,500km2.

Table 2.8: Resulting error in NDVI caused by AOT uncertainties (according to the
official validation) for each data source, for AOTs of 0.2 and 0.4

NDVI Error (%)

Data Source AOT = 0.2 AOT = 0.4

AERONET 0.51 0.70
MetOffice 3.37 7.06
GlobAerosol 3.29 4.08
MODIS 2.13 3.72

2.6 Conclusions
The spatial variability of the atmosphere over southern England was investigated by

acquiring data on the Aerosol Optical Thickness (AOT) and Precipitable Water Content

(PWC) from a wide range of ground- and satellite-based sources on two clear days. All

data sources except the AERONET network of ground-based sun photometers had high

uncertainty, but it was possible to extract a range of AOT and PWC over the study area

for each day of 0.1–0.5 and 1.5–3.0 cm respectively. These ranges show that there is

significant variation in these properties across this area.

The errors which would be caused by performing a uniform atmospheric correction over

the study area were assessed through simulations using Py6S. These showed that ignoring

the spatial variation in AOT when performing atmospheric corrections could cause errors

in reflectance and NDVI of up 1.3 percentage points and 5% respectively, but that

ignoring spatial variation in PWC caused maximum errors of 0.7 percentage points and

0.6% respectively (an acceptable error primarily due to the strategic location of

multispectral sensor bands away from water absorption features).

In conclusion, the results from this study show that there is significant variation in AOT

and PWC across southern England during clear days. The variation in PWC is not

significant in terms of the errors resulting from a uniform atmospheric correction, but

ignoring the variation in AOT by performing a uniform atmospheric correction could

cause significant errors (reflectance errors of over twenty times the NE∆ρ, and NDVI

changes > 0.03). (reflectance errors of over twenty times the NE∆ρ, and NDVI changes

> 0.03). The widespread availability of scene-based atmospheric correction procedures in

modern image processing systems invites users to disregard spatial variability in the

atmosphere and risks introducing significant errors into key derived products.





Chapter 3

Literature Review

This chapter examines the relevant literature regarding AOT measurement, starting with

an introduction to AOT and atmospheric radiative transfer and continuing with

discussion of ground measurement of AOT. The majority of the chapter discusses

methods used for estimating AOT from satellite measurements, and methods used for

haze assessment of satellite imagery. Finally, a range of potential applications of AOT

data - particularly high-resolution data - are discussed.

3.1 Atmospheric aerosols and AOT

3.1.1 What are aerosols?

Aerosols (from the Greek aero (air) solution) are fine solid or liquid particles suspended in

a gas. In terms of atmospheric aerosols, the particles are suspended within the gases

which comprise the atmosphere (primarily nitrogen and oxygen) and are affected by

atmospheric dynamical processes, including diffusion, advection and deposition.

The size of atmospheric aerosol particles can range over four orders of magnitude, from a

few nanometres to around 100 micrometres (Petty, 2006). Compared to many other

atmospheric constituents, aerosols have a short residence time in the atmosphere, and

therefore their concentrations vary significantly both spatially and temporally. Aerosols

are formed by natural or anthropogenic processes from a range of

geographically-distributed sources, undergo movement within the atmosphere, and are

then deposited either through dry deposition (directly onto the Earth’s surface) or wet

deposition (where aerosol particles are incorporated into clouds as cloud condensation

nuclei or washed out of the atmosphere by precipitation).

Aerosols can be classified by their composition, size and source, and atmospheric

concentrations may range up to 107 or 108 particles per cubic centimetre (Kondratyev

et al., 2005). Any volume of atmosphere is likely to contain both fine and coarse particles

(those with a diameter less than and greater than 2.5 µm respectively). Generally these

two categories of particle sizes behave differently and thus undergo different dynamical

33
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processes.

According to Kondratyev et al. (2005), the major natural sources of aerosols are :

• Soil and rock debris, producing dust aerosols (mineral dust)

• Volcanic eruptions, producing ash and dust aerosols

• Sea spray, producing salt aerosols

• Biomass burning, producing carbonaceous soot aerosols

• Reactions between naturally-occurring atmospheric gases, producing sulphate

aerosols

Human activity has contributed significant to the aerosol load, and the major sources of

anthropogenic aerosols are:

• Fuel combustion

• Industrial processes

• Domestic (non-industrial) sources

• Transportation

• Human-induced natural sources (for example, anthropogenically-driven erosion or

intentional biomass burning)

The majority of these anthropogenic sources contribute carbonaceous, soot and sulphur

aerosols to the atmosphere.

3.1.2 What effects do aerosols cause?

The presence of aerosols in the atmosphere causes several effects (Kondratyev et al., 2005):

• Light scattering and absorption: Aerosols in the atmosphere cause increased

scattering or absorption of light. This can have a significant impact on the

planetary radiation balance by causing light to be scattered away from the Earth

before reaching the ground, or by absorbing light and thus heating the atmosphere.

This then has an effect on the Earth’s climate, and uncertainties in modelling of

aerosol effects on climate have driven much of the aerosol research in recent decades

(Le Treut, 2012; IPCC, 2007). The scattering effects of aerosols also cause problems

for satellite imaging, as the light received at the satellite will have been affected by

scattering and absorption in the atmosphere.

• Increased cloudiness: Aerosol particles present in the atmosphere can provide

cloud condensation nuclei (CCN) for the water vapour droplets in clouds to

condense around, thus promoting cloud formation (Twomey, 1974; Albrecht, 1989)

and affecting the Earth’s climate.

• Human health impacts: Depending on their size, aerosols in the atmosphere may

be able to penetrate deep inside the lungs of a human when they breathe and cause

a wide range of health impacts. The most dangerous particles are those smaller

than 2.5 µm, as these can reach the alveoli where oxygen exchange between the

lungs and the blood occurs, and they can cause a range of problems including lung
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cancer, asthma and heart disease (Seaton et al., 1995). Particulate matter pollution

is a serious health problem, particularly in rapidly industrialising countries, causing

over 3.2 million premature deaths worldwide in 2010 (Lim et al., 2012).

The magnitudes of each of these effects vary depending on the type, size and

concentration of the aerosols.

3.1.3 How can we measure atmospheric aerosols?

3.1.3.1 Direct measurement

The most obvious way to obtain information about atmospheric aerosols is to collect a

sample of aerosol particles and analyse them. This can be done at ground level or from

aircraft using a range of different types of detectors which can measure many properties

including total number concentration, cloud condensation nuclei concentration, size

distribution, particle density, particle water content and aerosol chemical composition

(McMurry, 2000).

This method can provide very accurate data, but is time-consuming and expensive,

particularly if we require data over large spatial or temporal scales. It is particularly

difficult to use this method to obtain data on atmospheric aerosol contents over a vertical

path through the whole atmosphere, as this requires airborne measurements at many

heights, ideally simultaneously.

Regular measurements of this type tend to be restricted to networks for measurement of

aerosol properties near ground level, for use in studies about particulate matter pollution

and human health. For example, the London Air Quality Network records a variety of

aerosol data automatically at around fifty sites over the whole Greater London area

(Fuller and Green, 2006), and similar networks exist in many other cities. Short periods of

detailed physical measurements such as these are sometimes collected by field campaigns

such as the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX;

Smirnov et al., 2000), the Southern African Regional Science Initiative (SAFARI-2000;

Swap et al., 2003; Haywood et al., 2003) and the Fennec Saharan dust monitoring

campaign (Ryder et al., 2013).

3.1.3.2 Indirect optical measurements

An alternative way to find out about atmospheric aerosols is to measure some of the

effects discussed earlier. Optical measurements of aerosols use the known effects that

aerosols have on the passage of light through the atmosphere to infer information about

the aerosols present. This can be done either by taking measurements at ground level of

the sunlight transmitted through the atmosphere, or by taking measurements from

satellites of light that has been transmitted through the atmosphere twice: once on the

path from the sun to the ground, and one after it has been reflected from the ground

towards the satellite.

The major effect of the atmosphere on light is to reduce its intensity, to a different extent
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for different wavelengths of light, and this reduction can be used to calculate the Aerosol

Optical Thickness (AOT; also known as Aerosol Optical Depth, or AOD), which is a

measurement of the attenuation of light due to aerosol scattering and absorption. This

can then be used to infer a number of the aerosol properties discussed above.

3.2 Atmospheric radiative transfer

3.2.1 Overview

As light passes through the atmosphere it interacts with atmospheric constituents. These

interactions principally take two forms:

• Absorption: This is a reduction of the intensity of the light, normally caused by a

collision with a molecule. The magnitude of the reduction is usually dependent on

the wavelength, and the principal atmospheric absorbers are the major atmospheric

constituent gases listed in Table 3.1.

• Scattering: This is a change in the direction of the light, which is caused by a

collision with a molecule (such as those of the gases that make up the atmosphere)

or aerosol particle.

3.2.2 Absorption

Absorption occurs when photons collide with molecules in the atmosphere and transfer

some of their energy to the molecule, which absorbs the energy and re-radiates it. This

re-radiated energy can generally be ignored as it is very weak and located in the

microwave or far-infrared regions of the spectrum.

The amount of absorption depends on the type of molecule (for example, water vapour is

more absorbing than nitrogen). Individual collision events are rarely studied when

investigating radiative transfer; instead the collective effect of a large number of molecules

is calculated by relating the absorption to the concentration of absorbing molecules in a

section of the atmosphere.

3.2.3 Scattering

Scattering of light in the atmosphere can be split into two types based on the mathematics

which best model the effects of the scattering: Rayleigh scattering and Mie scattering.

Rayleigh scattering occurs when the diameter of the scattering particle is significantly

Table 3.1: Composition of a dry atmosphere (plus water vapour) by percentage volume

Nitrogen 78%

Oxygen 21%

Argon 0.9%

Carbon Dioxide 0.04%

Other gases 0.06%

Water vapour ∼40%



Chapter 3 : Literature Review 37

smaller than the wavelength of the light. This relationship is calculated based on the

scattering size, x,

x =
2πr

λ
(3.1)

where r is the radius of the particle, λ is the wavelength of the light, and Rayleigh

scattering occurs where x� 1. In the atmosphere, this generally means that Rayleigh

scattering occurs when photons collide with gas molecules. The magnitude of Rayleigh

scattering for a given wavelength is described by the proportionality below

SR ∝
1

λ4
(3.2)

Where SR is the magnitude of Rayleigh scattering and λ is the wavelength of light. Thus,

Rayleigh scattering occurs significantly more at small wavelengths (blue light) than large

wavelengths (red and infrared light).

Mie scattering occurs when the diameter of the scattering particle is of the same order of

magnitude as the wavelength of the light. In the atmosphere, this means that all

scattering by aerosols is Mie scattering. The mathematics behind Mie scattering is a full

analytical solution of Maxwell’s equations (albeit with many assumptions), which is too

complex to describe in detail here (for more details see Petty, 2006).

3.2.4 Absorption and Scattering combined

Some particles in the atmosphere both absorb and scatter. For example, aerosols are

known mainly for their scattering effect, but certain types of aerosols, such as soot

particles, can be effective absorbers. The balance between scattering and absorption is

represented by the single scattering albedo which is defined as

SSA =
exts

exts + exta
(3.3)

Where SSA is the single scattering albedo, exts is the extinction of light due to scattering

and exta is the extinction of light due to absorption. The single scattering albedo varies

between 0 and 1, with 1 signifying purely scattering, and 0 signifying purely absorption.

3.2.5 Atmospheric transmittance and optical depth

The wavelength-dependence of absorption and scattering processes means that light at

some wavelengths is significantly affected by its passage through the atmosphere, whereas

light at other wavelengths is barely affected at all. This can be quantified by the

atmospheric transmittance, defined as
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Atmospheric transmittance in the VNIR for a clean atmosphere

Figure 3.1: Transmittance through a clean atmosphere (no aerosols) for light in the
visible and near infra-red spectrum. The higher the transmittance value, the more
transparent the atmosphere. Data generated using the Py6S interface to the 6S Radiative

Transfer Model (Wilson, 2012).

Tλ =
Iλ
Iλ,0

(3.4)

where Iλ is the intensity of light at wavelength λ at the Earth’s surface, and Iλ,0 is the

extra-terrestrial (top-of-atmosphere) intensity of light at wavelength λ. Thus, the

transmittance is simply the proportion of the top-of-atmosphere intensity which remains

after passage through the atmosphere (see Figure 3.1 for a graph of transmittance

through a clean atmosphere).

The Beer-Lambert law defines a logarithmic relationship between the transmittance and

the optical thickness, τ , also known as the optical depth,

Tλ = e−τλ (3.5)

Note that τ is dependent on the wavelength, λ, although these subscripts will be left out

of the following equations for clarity. Measurements taken through the atmosphere at

different angles will have different path lengths, and this must be corrected for by use of

the optical air mass, m,

m =
1

cos θ

p

p0
(3.6)



Chapter 3 : Literature Review 39

which calculates the length of the path at angle θ relative to the length of a vertical path

for an atmospheric pressure p, where p0 is the standard atmospheric pressure of 1000 hPa.

The transmittance can be decomposed into separate transmittances caused by different

processes or different substances, for example, the intensity at the Earth’s surface can be

calculated as

Iλ = Iλ,0 Tabs Tmol Taero (3.7)

where each of these transmittances is calculated from an optical depth,

Iλ = Iλ,0 exp(−mτabs −mτmol −mτaero) (3.8)

In these equations the total optical depth was decomposed into optical depths for

absorption, molecular (Rayleigh) scattering and aerosol (Mie) scattering, but they could

be decomposed further into ozone absorption, water absorption and so on. With the

current level of decomposition, however, the equation above defines τaero, the Aerosol

Optical Thickness (AOT) or Aerosol Optical Depth (AOD).

It should be remembered that each of these optical depths are wavelength dependent, and

therefore the AOT will be different for each wavelength. Thus, whenever an AOT value is

stated the wavelength it has been measured at must be stated as well. AOTs measured at

500 nm or 550 nm are often considered standard measurements. The Ångstrom exponent,

α, describes the logarithmic dependency of the AOT on wavelength,

τλ1
τλ2

=
(
λ1
λ2

)−α
(3.9)

α = −
log

τλ1
τλ2

log
λ1
λ2

(3.10)

and has an inverse relationship with the average particle diameter. Thus, the Ångstrom

exponent can be used for two separate purposes:

• To interpolate AOT values at wavelengths where they have not been directly

measured, by calculating the Ångstrom exponent from the wavelengths that have

been measured and using the formulae above for interpolation.

• To estimate the average particle size from measurements at various wavelengths,

and therefore infer the particle size distribution
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3.2.6 Satellite radiance

Light measured by a satellite at the top of the atmosphere is affected by atmospheric

radiative transfer twice: once on its way from the sun to the surface, and again after the

reflection from the surface towards the satellite. The radiance measured at the satellite

sensor can be written as:

Ls(λ, θs, θv, φs, φv) = ρ(λ, θs, θv, φs, φv)Li,λ + f(ω,Θ, τ)Li,λ+

f(ρ(λ, θs, θv, φs, φv), ρ
adj(λ, θs, θv, φs, φv), Li,λ) (3.11)

where λ is the wavelength, θs and θv are the solar and viewing zenith angles, φs and φv

are the solar and viewing azimuth angles, Li is the incident radiation at the top of the

atmosphere, ρ is the reflectance of the ground surface within the pixel, ρadj is the

reflectance of the ground surface adjacent to the pixel and ω, Θ and τ are the aerosol

single scattering albedo, phase function and optical depth respectively.

Taking each term separately and removing the dependencies on wavelength and angles for

clarity, this equation can be written as

Ls = Lg + Lp + La (3.12)

where Lg is the ground radiance, Lp is the path radiance and La is the radiance caused by

the adjacency effect, as shown in Figure 3.2.

3.3 Ground measurement of AOT

3.3.1 Sun photometry

Calculating AOT from measurements of the direct solar irradiance at ground level

involves a straightforward re-arrangement of the definition of AOT given in §3.2.5, based

upon the Beer-Lambert law (Shaw, 1983; Schmid et al., 1997),

τaero =
ln Iλ,0 − ln Iλ

m
− τabs − τmol (3.13)

where Iλ,0 and Iλ are the radiances at the top-of-atmosphere and surface respectively,

both at wavelength λ, m is the path length and τabs and τmol are the optical depths due

to absorption and molecular scattering respectively.

m can be calculated as in equation 3.6, using the solar zenith angle (easily calculated from

time, date and location) as θ, and Iλ,0 can be taken from any one of a number of

top-of-atmosphere solar irradiance tables (for example Wehrli, 1985), ensuring that

correction is performed for the varying Earth-Sun distance. τmol is easily calculated based

on the wavelength under consideration and the atmospheric pressure (Kneizys et al.,

1981). τabs is composed of many components: absorption due to water vapour, oxygen,
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Figure 3.2: Diagram showing the components of the measured at-sensor radiance for a
satellite sensor at the top of the atmosphere.

ozone and others, but by using wavelengths away from major absorption bands (for

example, 0.94 µm for water and 0.76 µm for oxygen) we can ignore all of these except for

ozone, as ozone absorbs radiation across a relatively wide wavelength range. Taking only

Ozone into account, τabs can be calculated from standard ozone transmittance formulae

such as those in Leckner (1978). Thus, calculating AOT from a measurement of Iλ is

simply a matter of substituting these values into the equation above.

3.3.1.1 Instruments

Sun photometers are instruments that can measure Iλ accurately and for a very narrow

wavelength range (ideally as close to monochromatic light as possible). To ensure that

only direct solar radiation is measured the instrument must be pointed directly at the

solar disc: this can be done manually or by an automatic sun-pointing device.

Instruments have developed significantly since the invention of the ‘bolometer’ (an early

type of sun photometer) by Langley in the late 19th century (Langley, 1884). Most

modern instruments use silicon photodiodes to detect the intensity of the light,
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interference filters to restrict the light entering the instrument to a narrow wavelength

range, and baffling and collimators to restrict the field-of-view of the instrument and

ensure that scattered light is not measured. Due to problems with the stability of the

silicon photodiodes, these instruments require regular calibration to ensure that the

derived AOT measurements are accurate. Calibrations usually use the so-called

Langley-method, which uses data collected at a high-altitude field site (such as Mauna

Loa, Hawaii) over a range of different solar angles to compute the calibration constants

(Schmid and Wehrli, 1995).

The two most commonly-used sun photometers are the Microtops II and the Cimel

CE-318. The Microtops II (Morys et al., 2001) is a hand-held instrument, shown in Figure

3.3(a), which measures the radiance in five narrow channels and calculates the AOT as

well as water vapour and ozone absorption. The instrument has been designed to be

portable and easy to use, while also collecting accurate measurements (to within

approximately 1% accuracy under standard conditions). When taking a measurement the

user must point the device directly at the solar disc, using a built-in sighting device: this

allows use anywhere without necessarily using a tripod, but can lead to issues with the

reliability of measurements, as the user must hold the device very still. The Microtops II

instrument costs approximately £10,000.

The Cimel CE-318 instrument, shown in Figure 3.3(b), is designed for automated

operation. It includes an automatic sun-tracking mount, which enables measurements to

be taken without human intervention. Again, the instrument uses silicon photodiodes and

interference filters and produces high-accuracy results. The sun-tracking mount is

designed to very high tolerances, and therefore the pointing accuracy is far higher than

the manual pointing by humans that is required for the Microtops II. According to Eck

et al. (1999) the uncertainty of AOT data from the CE-318 is ±0.02. The CE-318 does

not have a sensor at 500 nm or 550 nm, so the AOT550 value cannot be directly

computed, instead it is interpolated using the Ångstrom exponent calculated from

measurements in two other wavelengths. The Cimel instrument is significantly more

expensive than the Microtops, costing approximately £35,000.

3.3.1.2 AERONET

The Aerosol Robotic Network (AERONET; Holben et al., 1998) is a global network of

Cimel CE-318 sun photometers which automatically acquire measurements of atmospheric

parameters including AOT. There are over 300 stations worldwide from which data are

regularly acquired and made publicly available via the AERONET GSFC website.

Measurements of radiance from the solar disc in multiple wavelengths are taken every 15

minutes during daylight hours in good weather, and these are converted to AOT as

described above. The brightness of the area around the sun (the solar aureole) and its

gradient to about 6 ◦ from the sun angle are dependent on the size distribution of the

aerosol particles. Thus, measurements taken in these areas can be used to obtain

information on the aerosol size distribution, and therefore infer the aerosol composition.
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(a) Microtops II (b) Cimel CE-318

Figure 3.3: Photographs of the two most common commercially-available sun photome-
ters. (Images courtesy of the NERC Field Spectroscopy Facility)

AERONET data are inverted against modelled predictions to produce this data using the

Dubovik and King (2000) method.

All of these data are provided at three levels, with data volume decreasing significantly at

higher levels as more data points are excluded:

• Level 1: Raw data from the instruments

• Level 1.5: As above, with automatic cloud-screening applied

• Level 2: As above, with a manual quality-control check applied

AERONET have also run a series of field campaigns, known as Distributed Regional

Aerosol Gridded Observation Networks (DRAGON) since 2011. These involve the

temporary creation of a relatively dense network of AERONET sites in a particular area

(for example, the Houston Metropolitan Region or South Korea) for a period of a few

months, providing dense, high-quality AOT data.

3.3.1.3 LED-based sun photometers

Within the last decade, there have been developments in creating cheap sun photometers

based upon Light Emitting Diodes (LEDs). The development of these instruments were

motivated by the high cost of competing devices (such as the Microtops and Cimel

instruments described above) and the subsequent issues with setting up widespread AOT

measurement networks. Under the auspices of the Global Learning and Observations to

Benefit the Environment (GLOBE) programme (Finarelli, 1998), Brooks and Mims (2001)

developed a sun photometer which uses LEDs as sensors. Although LEDs are usually used

to produce light by passing a current through them, they can also work in reverse. That
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is, shining light onto them will produce a current, and this means that they can be used

as a simple photodiode (Acharya, 2005).

The light produced by LEDs has a very narrow wavelength range, and this also holds for

the range of wavelengths that they are sensitive to when used as a photodiode. This is the

major benefit of LEDs over standard photodiodes, as this eliminates the need for

interference filters in front of the sensors. These tend to degrade over time, and the

photodiodes themselves can also drift over time, whereas LEDs have been found to be

very stable (Mims, 2003), and thus LED-based instruments are likely to produce more

reliable results with fewer calibration issues. These instruments can be made significantly

more cheaply than standard interference-filter-based instruments, and this has raised

possibilities for the development of more widespread networks of sun photometers.

SkySci is a collaborative project between the academic units of Geography &

Environment and Electronics & Computer Science at the University of Southampton,

based upon an idea developed by the author. The project aims to develop a handheld sun

photometer which would operate in a similar way to the Microtops (see §3.3.1.1).

However, through the use of LEDs as sensors, the SkySci instruments can be produced for

less than £50 each - in comparison to a cost of around £10,000 for a Microtops

instrument. The instruments are designed to be linked to a smartphone, allowing

measurements to be automatically sent to a central server in Southampton and combined

into a detailed AOT dataset - a significant advantage over the GLOBE programme

instruments. A grant obtained from the EPSRC Digital Economy ‘IT as a Utility

Network+’ has been used to develop a prototype instrument (Figure 3.4), and plans are

currently in place to acquire funding to produce a large number of instruments and collect

measurements through a Citizen Science project.

3.3.2 Visibility-AOT relationship

Instead of measuring it directly, AOT can be estimated from horizontal visibility

measurements using Koschmieder’s equation (Koschmieder, 1924; Horvath, 1981)

V =
3.912

τ
(3.14)

where V is the visibility and τ is the AOT.

This is derived from a formula for the visibility of objects in the atmosphere

V =

(
1

τ

)
ln

∣∣∣∣C0

ε

∣∣∣∣ (3.15)

where ε is the liminal contrast and C0 is the inherent contrast of the object. Koschmieder

suggested that under most viewing conditions the liminal contrast is 0.02, and proposed a
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(a) Case and circuit board

(b) Instrument on test in Tenerife

(c) Instrument connected to phone

Figure 3.4: Prototype LED instruments
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theoretical ‘black object’ whose inherent contrast is -1. Substituting these into this

equation gives the final equation above.

This equation has been used extensively for estimating AOT, primarily for correction of

satellite images (Retalis et al., 2010), and could see wider operational use with visibility

data from meteorological station networks. However, there are several issues with the use

of this formula.

The equation was originally intended to relate horizontal visibility and the horizontal

extinction coefficient, but is now widely used for calculating vertical extinction coefficients

from horizontal visibility. This mixing of horizontal and vertical measurements assumes

that

• The horizontal and vertical extinction coefficients are equal

• The relationship between the horizontal visibility and horizontal extinction

coefficient also holds for horizontal visibility and the vertical extinction coefficient

Chan (2009) found that these assumptions did not hold for data collected over Hong Kong

International Airport during winter 2008–9, where they observed several occasions when

the vertical extinction coefficient increased significantly, but the horizontal extinction

coefficient changed very little. Measurements with a ground-based Doppler LiDAR

showed that this was caused by high aerosol concentrations at altitudes of 2–4km. These

increased concentrations were not associated with any atmospheric phenomena that would

be noticeable in a horizontal view such as clouds or dust storms.

Separately from the issues raised above, there are significant assumptions in the

conversion formulae, discussed in more depth by Middleton (1952), and in the

meteorological community Koschmieder’s formula has been widely challenged (Horvath,

1971, 1981), both in terms of his choice of constants and the applicability of his formula to

non-ideal conditions, but no widely-accepted replacement has been proposed.

3.4 Satellite measurement of AOT
Measurement of AOT from satellite sensors is very appealing, as it allows data acquisition

across large areas without requiring large numbers of expensive ground measurement

devices. However, measuring AOT accurately from satellites is challenging.

The formula for the radiance received at a satellite was given in equation 3.11, and the

simplified version in 3.12. This simple formula defines the at-sensor radiance as the sum

of the ground radiance, path radiance and radiance due to the adjacency effect:

Ls = Lg + Lp + La (3.16)

The AOT can be estimated from the path radiance, and the adjacency effect is often

ignored. Thus, to obtain a measurement of the path radiance we need to know the
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ground-leaving radiance, that is, we need to solve the following equation,

Lp = Ls − Lg (3.17)

where Lp is the path radiance, Ls is the at-sensor radiance, and Lg is the ground-leaving

radiance.

All methods for retrieving AOT from satellites have to solve this problem, and they can

be categorised by the methods through which they solve it. These categories are

examined in more detail in §3.4.2

3.4.1 Estimation of AOT from path radiance

The radiance separation step will result in an estimation of the path radiance, which can

be used to estimate AOT. The path radiance is the radiance reaching the satellite sensor

which has been caused by scattering into the light path to the sensor, rather than by

reflectance from the ground surface. A certain amount of path radiance is caused by the

Rayleigh scattering processes which are present even in a perfectly clear atmosphere, but

the majority is caused by the presence of aerosols. Thus,

Lp = Lpr + Lpa (3.18)

where Lp is the path radiance, and Lpr and Lpa are the path radiances caused by

Rayleigh scattering (which is easily calculated from the air mass and surface pressure;

Kaufman, 1993) and aerosol scattering respectively, and

Lpa = Lp − Lpr (3.19)

The path radiance due to aerosols is directly related to the AOT, through the formulae of

radiative transfer. As these formulae are very complex, it is easiest to use a Radiative

Transfer Model to produce a lookup table (LUT) giving the AOT for a range of path

radiance measurements. Such a table can be created using a model such as 6S (Vermote

et al., 1997). Thus, once the path radiance has been calculated, the AOT can be retrieved

by selecting the appropriate cell of this lookup table, interpolating if necessary.

So far, we have not taken into account differing aerosol types. The RTM will have had to

have been parameterised using a specific aerosol model to produce the lookup table, and if

this aerosol model is not a good representation of the real-world conditions for the

measurement location then the resulting AOT will be erroneous. The simplest way to

solve this problem is to have a defined aerosol model for each measurement location (each

pixel, in the case of a satellite image) and use a LUT specific to that aerosol model to

extract the AOT. Many algorithms use this approach, although some attempt to extract
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the aerosol model and the AOT from the satellite data itself. These methods will be

discussed more in §3.4.3.

3.4.2 Radiance separation methods

A range of methods for separating the path radiance and ground radiance components of

the at-sensor radiance are described below, with examples of AOT retrieval algorithms

which use these methods. Many of these methods are concerned with obtaining the

ground reflectance, from which the ground-leaving radiance can be calculated as

Lgλ = ρλLiλ (3.20)

where ρλ and Liλ are the ground reflectance and the irradiance, both at a specific

wavelength, λ. Once Lgλ has been calculated, it can be substituted into equation 3.17,

and the path radiance can be calculated.

3.4.2.1 Assume a known ground reflectance

The simplest way to separate the radiance into that caused by ground reflectance and by

scattering into the light path is to assume a known ground reflectance, for example, a

reflectance of zero. This was the approach that was taken for the first satellite

measurements of AOT over the oceans by Griggs (1975) using ERTS-1 data. This method

was also used for the early algorithms for retrieving AOT from the AVHRR sensor

(Nagaraja Rao et al., 1989), also over water. This is because water is a good absorber of

infra-red radiation, so a legitimate assumption can be made that the reflectance in the

NIR band is zero (or at least almost zero), and therefore the radiance measured at the

satellite is the path radiance, making the solution very simple,

Lp = Ls − 0 (3.21)

This also explains why the accuracy of AOT retrieval using any method is generally

higher over water, as the reflectance is generally low, so any errors in estimating the

reflectance (for example, over areas of the ocean with sun glint) will not have a large

impact. These early measurements provided a good idea of the potential of satellite

measurements for estimating AOT, and provided a good coverage of the globe (as water

covers 71% of the Earth’s surface). However, the lack of coverage over land was a major

problem, particularly for certain applications such as assessing aerosol effects on public

health, monitoring dust emission from deserts and the effects of volcanic dust, and they

precipitated a major programme of work to develop better AOT retrieval techniques from

satellites (Penner et al., 1994).

Water isn’t the only surface for which a certain reflectance can be assumed, there are

certain land surfaces for which the reflectance can be assumed to be stable. Much



Chapter 3 : Literature Review 49

research has shown that Dense Dark Vegetation (DDV) tends to have reflectances of 1–2%

in the red band and 2–3% in the green band (Kaufman and Sendra, 1988), and thus the

radiance over DDV can be calculated, giving a solution of,

Lp = Ls − LDDV (3.22)

Of course, this limits the algorithm to retrievals over DDV, and thus a continuous map of

AOT cannot be acquired over the whole globe - particularly for areas without dense dark

vegetation (such as deserts, urban areas and ice caps). Thus, the AOT retrieval algorithm

must assess whether each pixel contains DDV or not before deciding whether to proceed

with the retrieval. This assessment is usually performed using thresholds for reflectance

and a vegetation index: for example, an NDVI of ≥ 0.75 and a low reflectance

0.01 ≤ ρSWIR ≤ 0.05 as used in Lyapustin et al. (2004). Alternative methods which ensure

that a reasonable number of pixels are selected involves choosing the pixels with the top

x% of the NDVI values in the image, and then selecting the darkest y% of these

(Kaufman and Sendra, 1988).

Early versions of the MERIS algorithm used the DDV approach with an extension to deal

with angular effects on DDV reflectance, which are particularly important for wide-swath

sensors such as MERIS (Santer et al., 1999). AOT data from the POLDER sensor was

used to select MERIS images with negligible aerosol content, and a RTM combined with a

canopy model were used to create a detailed model of the BRDF of DDV surfaces in

various world biomes. The reflectances from these BRDF models were used to calculate

the ground radiance, rather than using the standard 1–2% reflectance values. These

models were also used to generate a specific DDV selection threshold using

Atmospherically Resistant Vegetation Index (ARVI; Kaufman and Tanré, 1996) for all

biomes and viewing angles.

An alternative approach to create a situation where an assumption of a known reflectance

is valid is to use a different set of wavelengths. In the ultraviolet (UV) spectrum

(approximately 10–400 nm) the Earth has a very low ground-leaving radiance, which can

therefore be assumed to be zero. Furthermore, the backscattered ultraviolet radiation

(BUV) measured in the atmosphere is significantly affected by the aerosol content,

principally by aerosol absorption. This effect was first noticed due to its confounding

effect on the retrieval of ozone amounts from early instruments such as the Total Ozone

Mapping Spectrometer (TOMS; Dave, 1978). This effect was then used in the

development of algorithms for the measurement of a uncalibrated ‘aerosol index’ from

TOMS by Hsu et al. (1996). The reason for the delay of almost twenty years between the

original suggestion of these issues and their potential by Dave (1978) and an early

algorithm implementation was due to the computational challenges in producing accurate

radiative transfer models for the UV spectral region (Torres et al., 1998). This is

particularly difficult as multiple scattering effects are very significant in these wavelengths,

and thus models are significantly more computationally intensive.
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Torres et al. (1998) developed two methods to retrieve physically-meaningful aerosol

properties, including AOT, from TOMS measurements. One approach was based on a

standard inversion of radiances at 340 nm and 380 nm, which produced measurements of

AOT and the single-scattering albedo, and was sensitive to all aerosol types. The other

was based on a simulation of the expected radiances in a clean atmosphere (that is, an

atmosphere with no aerosols, and purely Rayleigh scattering and gaseous absorption

taking place) and an inversion of the differences between this and the measured radiances.

Similar approaches (described in detail by Torres et al., 2007) are still used for data from

the Ozone Monitoring Instrument (OMI; the successor to TOMS).

3.4.2.2 Estimate the ground reflectance from another band

The reflectance of the majority of land surfaces cannot be assumed, so if AOT retrievals

are required over surfaces other than water and DDV then they must be calculated using

a different method. Some sensors have a Short-wave Infrared (SWIR) band at around

2.12 µm, and the atmosphere is almost entirely transparent to aerosols in this band due to

the wavelength dependence of aerosol scattering. Thus, the radiance recorded in the

SWIR can be assumed to be the same as the ground-leaving radiance, and is thus a true

picture of the actual situation in the ground, uncontaminated by aerosols. If an empirical

relationship between the SWIR radiance and radiances in other bands can be determined

then radiances in other bands can be determined, and the path radiance in those bands

can be calculated. Thus,

Lp = Ls − f(LSWIR, λ) (3.23)

where LSWIR is the radiance in the SWIR band, and f uses empirical relationships to

determine the radiance in the band for which AOT calculation is being performed. This is

currently the most common approach used by operational AOT retrieval algorithms. The

details of the empirical relationships vary between sensors, and are discussed below for

some important products.

Early versions of the MODIS AOT algorithm (Kaufman et al., 1998) up to Collection 004

assumed that aerosols were entirely transparent in the 2.12 µm wavelength, and then used

two ‘generally applicable’ ratios (Kaufman et al., 1997)

ρ0.47 =
ρ2.12

4
(3.24)

ρ0.66 =
ρ2.12

2
(3.25)

to derive the reflectance in the other two bands (blue and red) from this reflectance.

However, results showed that these ratios performed poorly, as surface reflectance values
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were often over-estimated, leading to errors in retrieved AOTs. For the updated

Collection 005 version of the algorithm (Remer et al., 2006), surface reflectance in all

three visible bands was estimated from the 2.12 µm band as a function of viewing angle

and ‘greenness’ (calculated using a short-wave-infrared-based version of the NDVI). These

give more accurate results for surface reflectance values, and therefore more accurate AOT

retrievals (Levy et al., 2010). However, there are still issues with the estimation methods,

as Jethva et al. (2009) found significant differences between estimated and measured

surface reflectances. The original MODIS algorithm produced results with a 10km spatial

resolution, but Collection 006 has recently been released with an experimental

high-resolution AOT retrieval method producing 3km resolution data (Remer et al., 2013;

Munchak et al., 2013). This uses a very similar algorithm to the 10km data, but produces

data with a higher uncertainty due to signal-to-noise ratio issues.

Once the surface reflectance has been estimated, the ground-leaving radiance can be

calculated and subtracted from the satellite signal to leave the path radiance. This is then

inverted using LUTs derived from the MIEV (Wiscombe, 1980) and RT3 (Evans and

Stephens, 1991) radiative transfer models. For efficiency reasons, the table values were

computed for AOTs of 0.0, 0.25, 0.5, 1.0, 2.0, 3.0 and 5.0, nine solar zenith angles, sixteen

sensor zenith angles and sixteen relative azimuth angles, with interpolation performed

between these values as necessary.

A slightly different approach was taken by later versions of the MERIS AOT retrieval

algorithm, which used a method based upon using ARVI values to estimate ground

reflectance. This is based on work by Santer et al. (2007) who found a strong linear

relationship between ARVI value and the reflectance in the red band which held for DDV

and many other surfaces (for all ARVI values ≥ −0.5). This allows surface reflectance to

be estimated for a wide range of surfaces, thus extending aerosol measurements over areas

with no DDV.

3.4.2.3 Use multi-angular measurements

The fundamental problem with separating the at-sensor radiance into path radiance and

ground-leaving radiance components is that the problem is ill-posed: there are two

unknowns but only one equation. Thus, all previous approaches have used estimates for

one term to make the problem well-posed.

However, instead of reducing the number of unknowns, the number of equations can be

increased. This can be done by taking multiple observations of the ground surface under

slightly different conditions. In this case, multiple observations at different angles are

used. Each of the angular measurements will consist of the path radiance plus the

ground-leaving radiance, and each will also have a different air mass (the length of the

path through the atmosphere that the light takes). If we assume that the ground surface

is Lambertian (that is, it has uniform reflectance in all directions) then the differences in

path radiances at different angles will caused entirely by the air mass, and the
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measurements can then be combined into a system of simultaneous equations which will

be well-posed, and are therefore solvable. For example,

m1Lp = L1
s − Lg (3.26)

m2Lp = L2
s − Lg (3.27)

m3Lp = L3
s − Lg (3.28)

where m1 to m3 are the air masses for each measurement and Lns and Lg are the at-sensor

and ground radiances respectively for angle n.

However, it is well-established that the majority of land surfaces are not Lambertian, so

the bi-directional reflectance distribution function (BRDF) of the ground surface must be

taken into account. Unless we know the shape of the BRDF a priori, which is unlikely as

few surface BRDFs are stable, then there are now more unknowns, and the problem

becomes ill-posed again. Flowerdew and Haigh (1996) solved this problem during the

development of the ATSR-2 aerosol retrieval algorithm by assuming that the shape of the

BRDF function is independent of wavelength (although, of course, the magnitude of the

function varies significantly with wavelength). Thus the BRDF at wavelength λ2 can be

calculated simply as a function of the BRDF at another wavelength, λ1

BRDF(λ2) = k BRDF(λ1) (3.29)

where k is the ratio linking the magnitude of the BRDF function at wavelengths λ1 and

λ2. This is known as the k-approximation, and has been shown to be reasonable for a

variety of surface types (Flowerdew and Haigh, 1995). A very similar algorithm is used for

retrievals from the AATSR sensor.

The ATSR-2 and AATSR sensors acquire measurements at two angles (forward-viewing

and nadir), whereas the MISR sensor acquires measurements at nine angles (nadir, plus

four forward and aft viewing angles). This provides significantly more data, thus making

the problem well-posed, and allowing an accurate estimation of the aerosol optical

thickness along with derivation of a suitable aerosol model. The Diner et al. (2001)

algorithm consists of two separate methods for determining AOT, which are chosen

depending whether DDV areas are available in the image. If they are, then retrieval is

based upon the standard DDV method, with the multi-angle measurements used to derive

the appropriate aerosol model to use. If DDV areas are not available then the algorithm

proceeds similarly to the ATSR-2 algorithm described above. This allows the highest

accuracy retrievals to be performed when DDV is available, with data of a moderate

quality still available in other situations.

Multi-angle Implementation of Atmospheric Correction (MAIAC; Lyapustin et al., 2011)
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is an algorithm which simultaneously retrieves aerosol information and surface

bidirectional reflectance from MODIS data, thus removing the need for the

k-approximation. The aerosol retrieval part of the algorithm can operate over a range of

surface types and has been used to retrieve AOT at 1km resolution (as opposed to the

standard 10km resolution of the standard MODIS AOT product). The algorithm uses a

time-series of MODIS retrievals, which cover a range of angles due to the changing

MODIS viewing geometry, and operates in a iterative manner where the aerosol retrieval

for a pixel in a particular MODIS scene depends on the BRDF calculated for that pixel

from the previous MODIS image in the time series. The BRDFs are estimated as part of

the aerosol retrieval procedure using a minimisation of the Ross-Thick-Li-Sparse BRDF

model (Wanner et al., 1995), with the multi-angular observations required to fit the

BRDF model provided by the differing observation and illumination geometries between

subsequent MODIS acquisitions, or estimated from the standard MODIS dark target

algorithm for the first image in the time series. Once the BRDF has been retrieved for a

particular MODIS scene, the AOT can be retrieved easily using the equations above, as

due to the BRDF being known these are now well-posed. The cyclical nature of the

algorithm means that the quality of the retrievals improve along the time series as the

definition of the BRDF of each pixel improves, and the overall accuracy is very close to

that of the MODIS 10km AOT product (Emili et al., 2011).

3.4.2.4 Use measurements of polarisation

As well as wavelength, direction and intensity, light can also be described in terms of its

polarisation. This refers to the direction of oscillation of the electric field which is part of

the light wave, and is usually described by the four components of the Stokes vector (I, Q,

U and V ). The polarisation of light can be changed by interactions of the light, which

include reflection by the ground surface and scattering by aerosols. Thus, using

polarisation measurements, as well as measurements of wavelength, direction and

intensity, can help retrieve aerosol contents. Generally, measurements of the polarisation

of the measured light provide more measurements for the system of equations, thus

making the problem better-posed. Furthermore, when a sensor acquires measurements of

polarisation and total irradiance for each band, there are enough parameters to invert the

measurements directly to AOT and aerosol model using a LUT. This removes the

requirement to calculate path radiance and then convert this to AOT. Mishchenko and

Travis (1997) developed a retrieval algorithm which is as straightforward as choosing the

entry from the LUT that satisfies two equations,

Imeas − Icalc
Icalc

≤ 0.04 (3.30)

1

2
(|Qmeas −Qcalc|+ |Umeas − Ucalc|) ≤ 0.002 (3.31)

where the meas and calc subscripts refer to the measured polarisation and the
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polarisation from the lookup table respectively. This method has a theoretical accuracy in

AOT retrieval of ±0.015.

3.4.2.5 Assume temporal stability of ground reflectances

This is another approach that provides more data, and therefore makes the inversion

problem well-posed. In this case, a number of images are acquired over time, and the

differences between the radiance values in them are used to estimated the AOT for each

image, after assuming that the ground reflectance has been stable over all of the image

acquisition times.

The earliest uses of this approach were the contrast-based methods developed by Tanré

et al. (1988) and Holben et al. (1992). These were based upon the observation that as

AOT increased, the visible contrast between pixels with different reflectances decreased,

that is, for two close pixels i and j, which have a difference in reflectance

∆ρij = ρi − ρj (3.32)

the difference in at-sensor radiance

∆Lij = Li − Lj (3.33)

is inversely-related to the atmospheric transmittance

∆Lij ∝
1

T
(3.34)

Thus, given a time-series of images, a knowledge of the real value of ∆ρij and an

assumption that this is stable over time, the change in contrast between the images can

be used to estimate the atmospheric transmittance, and therefore AOT.

There are several limitations to this technique:

• It can only be performed over land surfaces where the reflectance can legitimately

be assumed to be stable over the time period under question. True invariance in

reflectance is almost impossible to find, but several techniques have been developed

for finding pseudo-invariant sites for other procedures such as instrument calibration

and empirical atmospheric correction (Schott et al., 1988; Canty et al., 2004;

de Vries et al., 2007), and these can be applied to select the appropriate pixels to

use with this method.

• The true (ground) value of ∆ρij must be determined accurately: this can either be

done from a clear image (although finding an image with an AOT of zero is almost

impossible) or from ground measurements.
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• Due to issues with reflectance anisotropy, the images used in the time series must be

collected under similar angular conditions or a robust BRDF modelling procedure

must be included in the method.

• The contrast reduction due to AOT is about 40% less for low-resolution imagery

(such as AVHRR or MODIS) when compared to high-resolution images (Holben

et al., 1992). This has made it hard to apply this technique for modern

low-resolution sensors such as MODIS. Data can still be retrieved, but is only useful

when large contrasts in AOT are expected.

Early application of these methods took place largely over arid regions, where the high

reflectance made retrieval with the other methods available at the time (mainly based on

DDV reflectance) impossible. More advanced work has taken place recently, for example

Liu et al. (2002) measured the contrast between pixels in a SPOT image using a

multi-directional structure function and produced a significant improvement in AOT

accuracy.

A newer approach called Synergy of Terra and Aqua MODIS (SYNTAM; Tang et al.,

2005) also makes use of a ground reflectance stability assumption, but is not based upon

contrast differences. Instead, the problem is approached in a similar way to the

multi-angular and polarization retrievals discussed above, as the additional data allows

the ground reflectance to be accurately estimated, and makes the problem well-posed.

The algorithm takes advantage of the two MODIS sensors in orbit, on the Terra and Aqua

satellites, whose overpass times are normally separated by less than three hours. Over this

short time interval the ground reflectance can be assumed not to change (apart from

angular effects due to changing illumination and viewing geometry) and the aerosol type

and properties (such as size distribution) can also be assumed to be stable. Therefore, we

now have two equations, and have fixed some of the unknowns to be the same in both

equations, thus producing a well-posed system of equations.

Lp = L1
s − f(BRDF, Lg) (3.35)

Lp = L2
s − f(BRDF, Lg) (3.36)

(3.37)

However, under real-world conditions, BRDF effects mean that the measured reflectances

cannot be assumed to be equal, as both the solar illumination geometry and the viewing

geometry will have changed between the observations. The SYNTAM algorithm uses the

k-approximation (Flowerdew and Haigh, 1995) as used by the multi-angular observations

from MISR and AATSR above to deal with this issue. As the equations are non-linear

and very difficult to solve, the Newton iteration algorithm is used to search for the best

result. A limited accuracy assessment showed a maximum error of ±0.1, although this

may not be representative of the algorithm performance over a broader area.
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3.4.3 Aerosol model choice

Some of the methods described in §3.4.2, such as those based upon polarised and

multi-angular observations, are able to retrieve more than just AOT: they can retrieve

details about the aerosol type, its size distribution, and other parameters. However, the

majority of methods only calculate the path radiance and thus further details on the

aerosol properties are required to invert this path radiance and estimate AOT. The key

aerosol properties are the size distribution, single scattering albedo and scattering phase

function, and the choice of these properties is known as the aerosol model.

An aerosol model must be provided for each pixel, and these values are normally taken

from an aerosol climatology. Several of these exist, and they generally provide information

on aerosol properties based upon latitude, longitude and season. Originally many

algorithms used the climatology from d’Almeida et al. (1991), which was derived from a

wide range of ground and airborne measurements. However, more recent work has either

used data from AERONET (Holben et al., 2001) or from other satellite sensors (such as

MODIS; Remer et al., 2008). The accuracy of the climatology has been identified as one

of the major causes of uncertainty in satellite-derived measurements of AOT (King et al.,

1999).

3.4.4 Cloud screening

Cloud screening is a very important pre-processing procedure which must take place

before the estimation of AOT. However, it is often difficult to develop an appropriate

cloud-screening algorithm, as both errors of commission and omission can cause serious

problems. Some cloud-masking algorithms may classify strong aerosol emission episodes

(such as a large amount of dust aerosol) as cloud - thus removing this episode from the

resulting AOT dataset - but others may be too liberal, and allow cloud-contaminated

pixels to remain, thus falsely inflating AOT values. This is a particular issue for sensors

with large pixel sizes (such as POLDER or OMI), as there is a greater likelihood of

sub-pixel cloud contamination, which is notoriously difficult to detect but which may still

have a significant impact on the resulting AOT value.

Krijger et al. (2007) analysed the number of cloud-free pixels available at a number of

resolutions and found a log-linear relationship between pixel area and percentage of pixels

that were cloud free. Considering images over the whole globe, only 16% of 10km pixels

are entirely cloud free, significantly limiting the volume of data available for AOT

retrieval. However, extrapolating the data in Krijger et al. (2007) to estimate the

proportion of 30m pixels which are cloud free (in this case, extrapolation seems reasonable

as the data in the paper behaves almost perfectly linearly over five orders of magnitude of

pixel size) produces an estimate of 56% - providing far more data for AOT retrieval.

AOT retrieval algorithms vary as to how they approach cloud screening: some use the

standard cloud mask product for the relevant sensor, but some develop their own cloud

masking algorithms (such as the MODIS AOT product; Martins et al., 2002). Using the
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standard mask has the advantage that these masks have normally been well validated, but

they may not be good enough at picking up sub-pixel clouds for use with AOT retrievals.

3.4.5 High resolution methods

The spatial resolution of the AOT products produced by the methods described above

vary from around 20km to 20m. The majority of operational products are produced at a

resolution of around 10km. Many operational products, such as the MODIS AOT product,

are produced from data at a far higher resolution than 10km, but they then aggregated to

improve the signal to noise ratio. For example, the MODIS signal to noise ratio was

improved from 0.66 to 13 by aggregating 1km pixels to 10km pixels (Remer et al., 2006)

and the lower signal to noise ratio produced when the data were aggregated to 3km pixels

is responsible for the increased error in the 3km product (Remer et al., 2013).

SYNTAM and MAIAC (discussed in §3.4.2.5 and §3.4.2.3 respectively) both retrieve AOT

at 1km resolution from MODIS data, although they are not currently implemented as

operational products. Figure 3.5 shows a comparison between 10km MOD04 and 1km

MAIAC data, displaying the significant increase in the detail - and therefore the utility -

of the data at a higher resolution.

Some of the methods described above have been applied to high-resolution imagery, such

as that from Landsat TM and SPOT, giving AOTs at resolutions of 10–30m; significantly

higher than the kilometer-scale products described above, although none of these products

are operationally produced as yet. However, it is difficult or impossible to use many of the

radiance separation methods described above with high-resolution data. For example, no

instruments currently acquire multi-angular or polarisation data at high resolution, and

many high-resolution sensors do not have the bands required to allow estimation of

ground reflectances from SWIR measurements. Furthermore, most high-resolution sensors,

with the notable exception of the Disaster Monitoring Constellation (DMC), do not have

a short enough revisit time to legitimately assume that the ground reflectances are

temporally stable between images. Thus, most high-resolution retrieval methods are

limited to using DDV or other well-characterised surfaces, thus limiting their applicability

in many environments (including urban areas and deserts).

For example, Liu and Liu (2009) used SPOT data to estimate AOT using the DDV

method, producing a R2 value of 0.76 when compared with AERONET data. However,

this method does not perform a full spatial retrieval of AOT, mainly due to the fact that

not all pixels contain DDV. Thus, the AOT value is retrieved for all DDV pixels and all

other pixels in the image are assigned the AOT value of the DDV pixel nearest to them,

using one of the early methods used by the ATCOR model (Richter, 1996a). Hadjimitsis

and Clayton (2009) use a very similar method to obtain point (as opposed to fully

spatially-distributed) AOT data near major airports in the UK and Cyprus using lakes as

dark targets. Several other methods have been developed which are also based on

retrieval for DDV pixels, but which use a better interpolation method. For example,
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(a) MOD04 data at 10km resolution

(b) MAIAC data at 1km resolution

Figure 3.5: Maps of AOT over southern England on the 17th June 2006. White areas
were cloudy during acquisition. Note how much extra detail is available in the 1km data,

including higher AOT over urban areas, and around much of the coast.
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Zhong (2011) calculate AOT over water and DDV pixels and then linearly interpolate

these AOTs across the image.

A few other authors have claimed to have developed algorithms to retrieve per-pixel AOT

from high-resolution images, but on closer examination the methods have fundamental

issues which mean that the algorithms do not perform a true per-pixel retrieval. For

example, Themistocleous and Hadjimitsis (2013), Chen et al. (2011) and Themistocleous

et al. (2012) retrieve AOT over DDV, or a similarly limited range of land covers, and then

interpolate across the rest of the image. Sifakis and Iossifidis (2014) claim to retrieve

AOT at 30m resolution but actually aggregate pixels, producing AOT at 500m instead.

Approaches which do not involve the separation of the at-sensor radiance into the ground

radiance and path radiance components have proved fruitful for use with high-resolution

imagery. For example, methods based upon the ‘blurring’ effect caused by aerosols have

also been used with Landsat and SPOT imagery, with early work by Tanré et al. (1988)

and Sifakis and Deschamps (1992) using a reference image (acquired under very low AOT

conditions) and then comparing the structure function (which measures the blurring effect

between adjacent pixels) between this image and the image from which AOT is to be

retrieved. More recent work by Liu et al. (2002) has improved this method by taking into

account surface anisotropy, and application to SPOT images has retrieved AOT with a

RMSE of 0.122 and a mean absolute error of 0.09. However, a fundamental limitation of

these approaches is that they require a reference image which has uniform low AOT,

which is difficult as a) there is significant spatial variation in AOT (as examined in

Chapter 2) and b) many areas of the world (such as highly polluted cities) rarely, if ever,

have a low AOT.

The Observation of Shadows for aerosol Inversion over 3D Scenes (OSIS; Thomas et al.,

2011) method estimates AOT from very high-resolution (sub-metre) imagery by observing

the changes in radiance in areas of shadow/non-shadow transition. This is only applicable

in areas with large areas of both deep shadow and bright sun, where a 3D model of

surface features is available, and is thus most suited to urban areas and imagery collected

at large solar angles.

Landsat is one of the few high-resolution sensors to have a SWIR band, and thus aerosol

retrieval using Landsat is not limited to well-characterised areas. Lyapustin et al. (2004)

developed a method based on 3D radiative transfer theory for aerosol retrieval from

Landsat over a wide range of surfaces. Validation showed a high accuracy

(±0.02−−0.03), although the authors admit that this may not be a realistic assessment

of the quality of the method as the volume of validation data was very low, and validation

was only performed over one area where the atmospheric conditions were very stable.

Although the accuracy may be high, the revisit period of Landsat is a minimum of 16

days - and the cloud-free revisit period is likely to be significantly higher than this - which

severely limits the utility of the resulting AOT data. As this method relies on the Landsat

SWIR band it is not applicable to other high-resolution sensors with shorter revisit times
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(such as the DMC sensors, SPOT, or the soon-to-be-launched Sentinel-2).

3.4.6 Interpolation

Many of the methods described above only produce AOT over certain land cover types,

such as DDV or other dark surfaces, therefore producing areas with no data and requiring

the use of interpolation methods to produce an AOT dataset covering the whole of the

study area. This type of dataset is not always required, but it is essential for certain

applications. For example, to use AOT measurements for a spatially-variable satellite

image atmospheric correction a measurement is required for every pixel (Richter, 2004). A

range of approaches have been used, ranging from a simple linear interpolation (Richter,

1996a) through data assimilation procedures such as Optimal Interpolation (Nirala, 2008)

to geostatistical techniques such as kriging (Kanaroglou et al., 2002). Many of these

methods were developed in eras of lower computing power, and thus the interpolation

methods used may have been simplified for computational efficiency (for example, Richter,

1996b), at the expense of statistical validity.

3.4.7 Merged products

An alternative approach to fill in the gaps in AOT measurement left by some sensors -

and also improve their accuracy - is to merge the AOT products from multiple sensors.

Figure 3.6, from Mélin et al. (2007) shows the benefits of merging data from two sensors

(in this case SeaWIFS and MODIS) to increase data availability over an area.

Often merging is performed in conjunction with interpolation, with the aim of producing

an accurate and complete AOT dataset for a certain area, even for pixels in which no

measurements are available. It is important to decide which order to carry out

interpolation and merging: whether all data are interpolated to create a set of no-gaps

datasets and then merged, or whether data are merged and any remaining gaps are filled

(Zubko et al., 2010). The decision should be based on the confidence in the merging and

interpolation procedures used.

All merging algorithms require a way of co-locating measurements from multiple

instruments in both space and time before the data can be merged. This in itself can be

challenging as different satellites have different resolutions, revisit periods and orbital

paths, and is often performed by projecting all of the data into one co-ordinate system

and simply merging data which are overlain (Nirala, 2008), although some algorithms use

more complex methods based upon sensor Point Spread Functions (Gupta et al., 2008).

Once a set of data co-located in time and space have been selected, the merging can be

performed using methods ranging from simple arithmetic averaging (Zubko et al., 2010)

and weighted averaging (for example, by pixel counts) to statistical methods such as

Maximum Likelihood Estimation (Zubko et al., 2010), universal kriging (Chatterjee et al.,

2010) and mutual information (Li et al., 2012) to machine learning techniques such as

neural networks (Xu et al., 2005).
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sun-photometers). The coverage provided by a combination of
the two sensors for that day offers a more complete view of the
basin. In particular, the product derived fromMODIS is affected
by glint, and flagged out, around continental Greece and Crete
(Fig. 10), and is there supplemented by SeaWiFS. Conversely,
LAC SeaWiFS data are not available for that day in the eastern
part of the basin, and a larger coverage is provided by MODIS
in the western part.

Subsequently, monthly averages of the merged data set have
been generated for the year 2003. Fig. 12 shows the comparison
for the example month of May 2003. This is one of the months
for which the MODIS derived τa appears lower than the
SeaWiFS equivalent (see also Fig. 9). This difference, even
though not systematic, is particularly noticeable over the
southern part of the basin, as is the case for other months (not
shown). Moreover, the merged product τa (870) appears closer
to the SeaWiFS derived map. This is due to a lower coverage by
MODIS products of the Mediterranean basin with respect to
those derived from SeaWiFS, as will be described below. As a
consequence, the monthly merged product reflects more
strongly the SeaWiFS distributions.

One benefit of the merging is to provide with a single
consistent data set an increased sampling frequency, as

illustrated by Fig. 8 (for a given location and time scales larger
than one day) and Fig. 11 (at the scale of a basin for a given
day). This advantage can be quantified more systematically by
calculating coverage statistics for the entire year 2003. Fig. 13
shows the number of days (out of 365) for which a satellite
value is available, and highlights the added value of the merged
time series in terms of temporal sampling. It is seen that on the
basis of the merged data set, a large part of the basin can be
characterized in terms of aerosol load more than 150 days per
year. Moreover, it is clear that the temporal sampling afforded
by SeaWiFS is significantly higher than that given by MODIS.
This can be further quantified by calculating the percentage
daily coverage of each satellite product (the ratio between the
number of grid points for which a valid satellite value is
available and the number of grid points covering the entire
Mediterranean marine domain). On average over the year 2003,
36%±18% and 22%±11% of the domain are covered by a valid
τa derived from SeaWiFS and MODIS, respectively. Addition-
ally, 16%±10% of the domain are associated with both satellite
products and 42%±18% with at least one product. The latter
percentage is therefore the average daily coverage frequency of

Fig. 12. Maps of monthly averaged SeaWiFS τa (865) (upper panel), MODIS τa
(869) (middle panel), and merged τa (870) (lower panel) for May 2003.

Fig. 13. Maps of the number of occurrences (in days) of a valid satellite value for
τa derived from SeaWiFS (upper panel), MODIS (middle panel), and from the
merged product (lower panel) for 2003. The color bar is for intervals of 25 days.

447F. Mélin et al. / Remote Sensing of Environment 108 (2007) 436–450

Figure 3.6: Number of days of AOT data available over the Mediterranean Sea. Top:
SeaWIFS, Middle: MODIS, Bottom: Merged. From Mélin et al. (2007), Figure 13.

Many studies have shown increases in accuracy when using merged products (Xu et al.,

2005; Chatterjee et al., 2010) but this is not always the case. For example, the

GlobAerosol project was a Data User Element project run by the European Space Agency

to produce a coherent, gap-filled and accurate merged AOT product for the whole globe

(Thomas et al., 2010). However, validation showed that the merged product had a lower

accuracy than some of its constituents, and suggested that this lower accuracy may have

been caused by one poor constituent dataset, or by the temporal interpolation that was

required in the merging process (Poulsen et al., 2009). Thus, it should be noted that

merging does not always lead to higher quality products.

3.4.8 Overview of satellite approaches

Table 3.2 lists the advantages and disadvantages of each AOT retrieval approach discussed

in the previous sections and Table 3.3 lists each sensor currently providing operational

AOT data, along with the resolutions and accuracies of that data. Note that generally the

methods that provide highest accuracy (such as polarisation-based and multi-angular

retrievals) have the lowest spatial and temporal resolution. Figure 3.7 shows the

development of the AOT retrieval methods described above over time, with operational

products highlighted. The diagram shows how many methods developed with very little

influence from other methods - for example the use of measurements of polarization for

measuring AOT - and how there are operational products based upon all methods except
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those which assume stable reflectances.
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Figure 3.7: Diagram showing the development of satellite imagery AOT retrieval
methods, with arrows showing influences. Time progress downwards from the top (1970s)
to the bottom (2000s). Shaded boxes are papers describing operational algorithms.

(Continues on next page)
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3.5 Haze assessment of satellite imagery
A separate set of literature has developed focusing on the issue of haze in satellite images

and methods to classify haze-contaminated areas of an image and then remove the effects

of the haze. In practice, this normally means producing a ‘haze image’ where each pixel

contains a number representing the haziness of that pixel, and then using this image to

perform some sort of ‘haze correction’ or ‘haze reduction’ operation. Haze is the

noticeable visual effect of a high AOT and is caused by the increase in path radiance.

Therefore the first part of these methods are basically alternative ways to assess the AOT

for each pixel in an image, although they are generally not referred to as such.

Similarly to the standard AOT retrieval algorithms detailed in §3.4, the key issue when

generating these ‘haze images’ is to ensure that the values used to represent the haziness

of a pixel are not affected by the ground reflectance. That is, a change in ground

reflectance with the same haze amount should lead to the same result, making haze

information comparable across pixels with different land covers.

The haze removal methods discussed below, in approximately chronological order, are all

image-based methods: that is, they do not require any data to function apart from that

inherent within the image itself. This is important as it allows use of these methods on a

wide range of images which may not all have ground data associated with them. These

techniques do not perform a full atmospheric correction of the image; they aim to produce

a map of the haze over the image and then use this to normalise the image to ensure a

uniform amount of haze in each pixel (ideally uniformly-clear). Here we will focus on the

methods used to map the spatially-variable haze amounts across the image, rather than

the image normalisation methds, as this is most relevant to our goal of producing a

high-resolution AOT dataset.

3.5.1 Tasselled Cap Transformation

The Tasselled Cap Transformation was developed by Kauth and Thomas (1976) from

observations of the changing spectral response of an agricultural vegetation pixel over the

growing year, as the surface transitions from bare soil, to a full canopy, and back to bare

soil again. They plotted these trajectories in a four-dimensional feature-space consisting

of the Landsat MSS bands, and found that different surface types appeared at different

places on the graph, producing an image that looked like a line drawing of a cap with

tassels on it (see Figure 3.8).

As exploring a four-dimensional space is challenging, they developed the Tasselled Cap

Transformation, which extracted four separate features from measurements in the Landsat

MSS bands. Each of these features were orthogonal to each other, thus allowing

independent examination of the separate components of the spectral response of each

pixel, and were calculated using simple affine transformations of the raw Digital Number

data. These features were,

• Brightness (TC1)
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Figure 3.8: The ‘Tasselled Cap’ in Landsat MSS feature space. Taken from the original
description in Kauth and Thomas (1976), c©1976, 2014 IEEE

• Green-stuff (TC2)

• Yellow-stuff (TC3)

• Nonsuch (TC4)

As these features are orthogonal, the green-stuff feature could be used for assessing the

phenological development of vegetation, without contamination by the overall brightness

of that pixel, which may be affected by atmospheric or geometric conditions (although in

some situations there can be some ‘leakage’ of response from one feature to another). In a

similar way to a principal components analysis, the first few tasselled cap components

contain the majority of the variability of the data (TC1 and TC2 together account for

nearly 95% of the variability according to Crist, 1985) suggesting that certain tasselled

cap components can be ignored when processing data so as to reduce processing time. In

the years after its original development, Tasselled Cap Transformations were developed for

many other sensors including Landsat TM (Crist and Cicone, 1984), SPOT (Silva, 1992)

and MODIS (Lobser and Cohen, 2007).

In the first paper on the Tasselled Cap Transformation (Kauth and Thomas, 1976), there

was a suggestion that one or more of the features may be useful for assessing the hazyness

of each pixel, and this idea was further investigated by several other authors. The original

suggestion was that atmospheric haze would cause a shift of the data points in the

‘yellow-stuff’ and ‘non-such’ directions, and that by measuring the magnitudes of these

shifts some information on the haziness of the atmosphere could be determined (Kauth

and Thomas, 1976), although they did not implement a haze diagnostic based on these

ideas. It is feasible that the ‘yellow-stuff’ feature may contain information on haze, as it

primarily consists of the difference of the first two Landsat MSS bands (blue and green)

which are highly-correlated for standard surface retrievals but affected differently by haze.

Thus, movement away from the high correlation (measured as larger than expected
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differences between the bands) suggest haze contamination.

As part of the development of a full Landsat data pre-processing system a haze diagnosis

and correction method called XSTAR was implemented by Lambeck (1977). This was also

based upon the ‘yellow-stuff’ vector, in this case measuring a noticed translation of the

brightness-greenness hyperplane in the direction of the ‘yellow-stuff’ vector for

haze-contaminated pixels. The translational offset was calculated from a standard

‘yellow-stuff’ value derived from analysis of a range of “average Landsat scenes” (Lambeck,

1977), and a multiplicative transformation was then performed to translate each pixel

back to this average ‘yellow-stuff’ value.

Crist (1985) developed the Tasselled Cap Haze Transformation, also known as TC4,

although it is not simply the fourth of the Tasselled Cap transformed bands. To reduce

confusion we will refer to it here as the TCHT. The development was done using the

Tasselled Cap Transformation for the Landsat TM sensor, which has more bands than

Landsat MSS, and therefore produces more Tasselled Cap bands. The first three Tasselled

Cap bands seem to be strongly related to surface features (‘Brightness’, ‘Greenness’ and

‘Wetness’) and therefore the haze transformation was derived from the rest of the Tasselled

Cap bands. The derivation used a Principal Components Analysis of simulated images

produced under clear and hazy conditions, and produced a haze measure calculated as

TCHT = 0.88TM1 − 0.08TM2 − 0.46TM3 − 0.003TM4 − 0.6TM5 + 0.1TM7 (3.38)

TCHT is conceptually similar to the use of the ‘yellow-stuff’ feature by Lambeck (1977),

as it too primarily consists of the difference between two highly correlated bands. In this

case the blue and red bands are used, as they are very highly correlated but are further

apart on the spectrum than the blue and green bands used by the ‘yellow-stuff feature’,

and therefore the differences in the influence of haze on the bands is larger.

The TCHT has been applied by several researchers to normalise the haze in images. For

example, Lavreau (1991) applied this to normalise spatially-variable haze in Landsat TM

images by relating the haze diagnostic values to the DNs in each band, and applying this

relationship to correct all pixels to an equivalent of a haze diagnostic of zero.

The widely-used ATCOR atmospheric correction tool (Richter, 2004) uses the TCHT as

part of its optional haze-reduction procedure. It is important to note that although the

ATCOR software performs atmospheric correction, the haze-reduction procedure is an

optional pre-processing step in the software, and none of the information about haze is

used in the atmospheric correction procedure itself. The algorithm originally used a

simplification of the TCHT created by reducing it to only the two most significant terms,

that is:

Haze Diagnostic = 0.88TM1 − 0.46TM3 (3.39)
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A threshold for this diagnostic was used to mask hazy regions, and further thresholds

were used to exclude urban areas (which often receive abnormally high haze diagnostic

values) and thick cloud. A histogram matching procedure was then used to produce a

corrected image with significantly less influence from haze (Richter, 1996a).

Since its original development, the algorithm has seen several improvements:

• Richter (1996b) implemented a transition region between hazy and non-hazy areas,

as the previous algorithm resulted in sharp transitions that were very noticeable in

the resulting images. Kriging and other geostatistical techniques for interpolating

haze diagnostic values were not used as they were considered too

computationally-intensive, and instead a simple linear interpolation over a range of

around ten Landsat pixels was implemented, with a separate correction performed

for each ‘contour level’ of the interpolation.

• More recent versions of ATCOR (no exact date when the change occurred is

available) only use the TCHT-derived haze diagnostic for the original masking of

the haze, and instead use the Haze Optimised Transform (HOT; Zhang et al., 2002a,

discussed below) to estimate the haziness of each pixel (Richter, 2012).

An essential quality of any haze assessment procedure is that the haze measure responds

only to haze and not to ground reflectances. Unfortunately all of the Tasselled Cap-based

haze assessment methods described above are sensitive to ground reflectances in certain

situations. Crist (1985) noted that the TCHT measure responded particularly to certain

land covers: for example, roads and water bodies, and thus required some filtering before

use. More concerning is that there appears to be a differential response of the haze

diagnostic over green and senescent vegetation, significantly limiting the application of the

haze diagnostic over areas with a range of vegetation types.

Richter (1996a) dealt with some of these issues by filtering out urban areas and areas of

thick cloud, but did not suggest any solutions for the effects caused by green/senescent

vegetation. Furthermore, Zhang et al. (2002a) found a significant positive relationship

between the TCHT value and the surface reflectance, thus suggesting that an increase in

the ‘haze diagnostic’ could be caused by an increase in ground reflectance rather than

haziness. Indeed, these issues with ground reflectance contamination of the TCHT may

have driven the switch to the Haze Optimised Transform for correction within the

ATCOR software.

3.5.2 Haze Optimised Transform (HOT)

The Haze Optimised Transform (HOT; Zhang et al., 2002a) was designed to address some

of the limitations in Tasseled Cap-based haze assessment. The transform itself is designed

specifically to extract the ‘haze signal’ from an image, without any contamination from

the ground reflectance, and has been developed entirely for this purpose, in contrast to

the Tasselled Cap Transformation for which haze assessment was not the primary aim.
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The HOT is, however, based upon the same fundamental basis as the Tasselled Cap

derived haze measures: the high correlation between visible bands which is disturbed by

haze. The Tasselled Cap approaches calculate the ‘haze’ diagnostic as the difference

between the two bands, whereas the HOT takes a more robust approach based on vectors

in feature space. There has been some criticism of the correlation-based approach, but as

far as the author is aware, no detailed studies have been performed to assess the

correlation between bands in a range of multispectral images. Liu et al. (2011) criticised

the HOT because of its reliance on image correlation, stating that for 23 hazy Landsat

TM images analysed, the correlation coefficients between the visible bands were generally

lower than 0.9, and sometimes lower than 0.8. However, these assessments were performed

on hazy imagery which hadn’t been corrected, and the assumption underlying the HOT is

that haze in an image will reduce the correlation between bands, thus these results are of

no real significance.

When plotting any two of the blue, green and red reflectances for pixels in feature space a

straight line in a positive direction can be seen, caused by the high correlation between

these bands. This line is defined as the Clear Line, or Clear-sky vector. Increases in AOT

values due to aerosols, thin cloud or other contamination, cause pixels to move away from

this line in a predictable manner. Figure 3.9, taken from the original HOT paper (Zhang

et al., 2002a), shows the relationship between DNs in Landsat TM bands 1 and 3 for a

range of surface types (A–K) under clear conditions (with no aerosols). The small

numbers show how the original points migrate away from the Clear Line as the AOT

increases from 0 to 6.7 (the large maximum here taking into account the optical thickness

of clouds). The original definition of the HOT used Landsat TM bands 1 (blue) and 3

(red), but the authors comment that it should be equally applicable using any visible

bands, as they are all highly correlated.

It is important to note that equally-numbered points for all surface types form a line

almost parallel to the Clear Line: for example, the Clear Line in this graph has a slope of

1.03, and the slope of the line at the highest AOT (labelled 19 in the graph) is 0.98. It

can be seen that the trajectories of each original point are different, but they all result in

a similar displacement perpendicular to the Clear Line for the same increase in AOT,

suggesting that this displacement reflects AOT only and is not affected by surface type.

Thus, the Haze Optimised Transform is defined as the perpendicular distance from the

Clear Line to each point. The formula used by Zhang et al. (2002a) is

HOT = B1 sin Φ−B3 cos Φ (3.40)

where Φ is the slope angle of the Clear Line.

Detailed simulations performed by Zhang et al. (2002a) show that the HOT is

significantly less affected by ground reflectance than the Tasselled Cap based methods,

which was also confirmed using real-world image data. Furthermore, the HOT was shown
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an atmospheric radiation transfer model (Berk et al., 1999).
PROBE-1 samples were averaged to simulate the 30-m
resolution of the TM. Fig. 1 illustrates the position of each
surface class, coded as A–K, in the TM1–TM3 spectral
space. High spectral correlation is apparent, resulting in a
well-defined CL. The correlation coefficient for the clear-
sky points A–K is .993. In this simulation, it was assumed
that the top-of-the-atmosphere (TOA) radiance for a surface
type does not include the radiation scattered by the sur-
roundings, i.e., the so-called ‘adjacency effect’ was ignored.
In a real image, adjacency effects would generate a range in
the pixel radiance within a surface type around the ‘ideal’
value. Therefore, the correlation coefficient for real images
can be expected to be < .99, but still be significantly high.
The direction of the CL can be expressed by its slope angle,
H, and hence HOT, the transformation that quantifies the
perpendicular displacement of a pixel from this line will be
given by (Eq. (1)):

HOT ¼ B1sinH" B3cosH ð1Þ

where B1 and B3 are the pixel’s bands 1 and 3 digital
numbers (DNs), respectively.

In practice, the proposed method can only be applied in a
relative rather than absolute sense since absolute informa-
tion regarding the atmospheric conditions over most scenes
will not be available. Therefore, the angle H must be

estimated from pixels selected from areas of a scene that
visually are deemed to be the clearest, and hence H will
vary somewhat scene-to-scene. HOT will then be employed
to adjust the rest of the scene to the same atmospheric
conditions as these clearest areas, i.e., to undertake a
relative, not absolute intra-scene balancing.

To better understand the effects of atmospheric contam-
ination in the TM1–TM3 spectral space, MODTRAN
version 4 code was employed to estimate apparent TM1
and TM3 radiances for 19 different levels of atmospheric
optical depth. Atmospheric profiles for mid-latitude-summer
conditions and haze contamination arising from thin-layered
stratus cloud were studied. The optical depth of this cloud at
0.55 Am has been varied between 0 and 6.7 in 18 equal
increments. A solar zenith angle of 38j was assumed in
these estimates although the ratio of band radiances, and
hence the CL slope should be independent of this parameter.
Rayleigh scattering and gas absorption of the idealized
standard atmosphere are included in the calculation. The
Landsat-5 sensor gains and offsets were employed during
the conversion from radiances to DNs. The simulated
radiances were calculated for an ideal atmosphere without
the background aerosols since the background aerosol effect
is linearly related to other path scattering effects. If the
scattering effect of the background aerosols were to be
included, the position of the CL would shift but its slope
would not change appreciably.

Fig. 1. Schematic diagram of the TM1–TM3 spectral space illustrating the conceptual components of the HOT. Under clear sky conditions, radiances of

common surface cover types, coded as A–K, exhibit high correlation and define a ‘clear line’ (CL). The effect of haze of increasing optical depth, illustrated by

the numerical sequences 1–18, is to pixels to ‘migrate’ away from the CL. The HOT quantifies the atmospheric contamination level at a pixel location by its

perpendicular distance, in spectral space, from the CL.

Y. Zhang et al. / Remote Sensing of Environment 82 (2002) 173–187 175

Figure 3.9: The fundamental basis of the Haze Optimised Transform, taken from Zhang
et al. (2002a). The graph shows Landsat TM band 1 (Blue) against Landsat TM band 3
(Red), with the Clear-sky Vector (the Clear Line) showing the high correlation between
the two. The numbered points show the DN values as the AOTs increase from 0 to 7.6
(in thirteen equal-sized steps), with a gradual migration away from the Clear Line visible

as the Haze vector.

to be insensitive to aerosol or cloud types, with very similar trajectories away from the

clear line for different types of haze contamination. This has advantages and

disadvantages: it means that the HOT can be used without knowledge of the underlying

aerosol type, but it also means that the HOT can only provide an estimate of the haze of

a pixel but not the aerosol/cloud type.

Wang et al. (2013) found a strong quadratic relationship (R2 = 0.9999) between AOT and

HOT, suggesting that HOT could be used to estimate AOT accurately, which is

unsurprising as the HOT value can be thought of as a proxy for the path radiance. The

HOT-AOT relationship found varied slightly depending on the underlying surface, as

Figure 3.10 shows. Furthermore, as the HOT was developed on a range of AOTs up to 6.7,

it may not be sensitive enough to low AOTs to be used as an AOT mapping technique -

this will need further investigation if this method is to be used to estimate AOT.

Although the HOT is a significant improvement on the Tasselled Cap-based methods,

there are still some effects from ground reflectance. Examining Figure 3.9 in detail shows

that the clear-sky values for three land-cover classes do not lie exactly on the Clear Line:

these are lake water (B), urban 1 (C) and urban 2 (D). As these classes are offset from

the Clear Line in the direction of the haze vector, they will have higher HOT values than
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Figure 5. Variation of HOT with AOT for three typical types of ground cover in the study area.

4.3. Estimation of PM10 from MODIS HOT

After HOT images were produced from the processed MODIS red and blue wavebands
showing apparent reflectance, and the θ angle in winter and spring, they were used to
derive the pixel value of built-up areas (27 pixels), waterbodies (11 pixels), and vegetation
(28 pixels). Statistical analysis revealed that the HOT values of built-up areas, vegetation,
waterbodies, and all covers (e.g. a mixture of all of them) are all positively correlated with
PM10 at coefficients of 0.613, 0.586, 0.599, and 0.601, respectively. Such correlation was
tested to be statistically significant at the 0.01 level. The close similarity in the first three
coefficients suggests once again that ground covers exert little influence on the accuracy of
estimating PM10 from HOT.

In order to estimate PM10 from HOT, it was regressed against the independent variable
of HOT for the three kinds of ground cover (built-up, water, and vegetation) as well as their
mixture separately. The scatterplot between PM10 and HOT suggests that the second-order
polynomial is the most appropriate (Figure 6). Comparison of this model with other linear,
logarithmic, power, and exponential models confirms that it is also the most accurate. Such
regression models have R2 values of 0.3753, 0.3438, 0.3621, and 0.3618, respectively, for
the four types of ground cover. Their corresponding root mean squared errors (RMSEs)
are 0.0258, 0.0264, 0.0261, and 0.0261, respectively. These results indicate that ground
covers exert little influence on the accuracy of estimating PM10 from HOT. Moreover, they
are highly consistent with those results derived using the 6S atmospheric radiative transfer
model presented in Section 4.2.

5. Discussion

MODIS HOT is only loosely correlated with PM10. Their second-order polynomial equa-
tion has an R2 value of about 0.36, much lower than the R2 of 0.99 for that between
simulated HOT and AOT. There are three possible explanations for such a large dispar-
ity. First, HOT manifests mostly the variations in AOT. Thus, simulated HOT bears a close
relationship with AOT (R2 = 0.99). In estimating PM10, the differential meanings of AOT
and PM10 must also degrade the positive correlation between MODIS HOT and PM10. This
is reminiscent of the sometimes loose correlation between AOT and PM10. Secondly, the
same θ angle was applied for the entire season in deriving MODIS HOT. Thirdly, there is a
slight spatiotemporal mismatch between PM10 and MODIS HOT. The former is measured
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Figure 3.10: Relationship between AOT and HOT for three different surface types. All
relationships are quadratic and have a R2 value over 0.99. Taken from Wang et al. (2013)

they should, thus giving the false appearance of more haze over these areas. Similarly,

bare soil (F) is offset from the Clear Line in the opposite direction, thus giving lower than

expected HOT values. Although snow was not shown in Figure 3.9, its extreme brightness

- combined with large variation in reflectance - means that it is likely to also produce

anomalous HOT values.

3.5.3 Extensions of the HOT

Further work on the HOT by the original authors has mainly focused on analysing the

effect that haze reduction based on the HOT has on images (Zhang et al., 2002b; Zhang

and Guindon, 2003). However, several authors have attempted to extend the Haze

Optimised Transform itself to deal with some of its limitations.

3.5.3.1 Haze removal for high-resolution satellite data

Moro and Halounova (2007) applied the HOT to assess the haze in IKONOS images with

a spatial resolution of 4m. They confirmed the results of Zhang et al. (2002a), finding

that both urban areas and water received abnormally-high HOT values, thus causing

errors when applying the haze reduction methodology. Attempts were made to

structurally decompose the image into haze features and ground features using methods

such as wavelet decomposition and image morphological operators, but this was found to

be impossible as haze variation and ground features have similar dimensions and scales of

variability. Smoothing using standard low-pass filters was also attempted, but this was

found to result in a loss of useful information about the small-scale variability of the haze,

although it was noted that smoothing may be an acceptable technique for lower-resolution

imagery.

The final chosen method was to mask water and urban areas from the analysis entirely

(using a simple NIR threshold for water, and a general brightness threshold for urban

areas) and then interpolate HOT values for these areas using either splines or simple

linear interpolation. This was found to give reasonable output maps of haze as well as
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appropriate final images after corrections were applied.

3.5.3.2 Advanced Haze Optimised Transform

The Advanced Haze Optimised Transform (AHOT; He et al., 2010) was designed to deal

with some of the issues with the original HOT procedure. This involved two main changes

to the algorithm:

• An empirically-derived offset was applied to the HOT formula to ensure that the

HOT of areas in the manually-defined clear region were zero.

• A post-processing procedure was applied to remove the effects of land cover on the

HOT values

The post-processing procedure was first attempted based on the method from Liang et al.

(2001, 2002), which involves generating a land cover map using a clustering method on the

infra-red bands and then subtracting the mean HOT for a pixel’s land cover from that

pixel. However, this did not produce acceptable results, and a method based on

thresholding was also found to be unworkable, so a separate procedure was developed

based upon the methods of ‘filling sinks’ and ‘flattening peaks’ often used in Digital

Elevation Model processing. In this case the sinks and peaks were spuriously low and high

HOT values respectively. The sinks were found and filled using the method of Planchon

and Darboux (2002). But, extracting spurious HOT peaks was more difficult as it is

important not to accidentally select genuinely high HOT values. The peak detection

algorithm used here was based upon selecting regions with sharp HOT value transitions at

their edges, as sharp transitions in haze occur rarely in nature, and thus these regions are

likely to have spuriously high values caused by land cover effects. These methods gave

high-quality results, with the resulting mean and standard deviation of HOT similar

across all land cover classes.

3.5.3.3 Background Suppressed Haze Thickness Index

The Background Suppressed Haze Thickness Index (BSHTI; Liu et al., 2011) is an

alternative haze measure which is designed to suppress the background noise (for example,

from land cover changes) as much as possible. Like the Tasselled Cap transformation, it is

a linear combination of bands

BSHTI = k1b1 + k2b2 + k3b3 + k4 (3.41)

where b1, b2 and b3 are the blue, green and red bands respectively and k1 to k4 are a set

of coefficients. These coefficients are chosen so as to maximise the score function

score function =
mTR

σCR
(3.42)

subject to the constraint
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mCR = 0 (3.43)

where TR is a manually delineated thick haze region, CR is a manually delineated clear

region and m and σ are the mean and standard deviation respectively. Thus, the score

function is also the function for the signal-to-noise ratio of the image, and the constraint

ensures that the mean value in the clear region is zero. The coefficient values (k1 to k4)

can be calculated easily using a set of simultaneous equations based upon the covariance

of the bands.

By choosing separate coefficient values for each image, rather than using standard values

like the Tasselled Cap haze diagnostic, BSHTI ensures that the haze measurement has the

best signal to noise ratio possible for the image, but this also means that the resulting

haze measurements are not comparable across different images.

After haze detection has taken place using BSHTI, a ‘haze perfection’ step is performed to

ensure that no effects remain from land cover variations. This step assumes that real haze

varies slowly and continuously across the image, and therefore sudden increases or decrease

in haze values are taken to be evidence of incorrect values which are removed using sink

filling and peak flattening procedures very similar to those used in He et al. (2010).

3.5.4 Alternative methods

3.5.4.1 Normalised Difference Haze Index

The Normalised Difference Haze Index (NDHI; Zha et al., 2012) is similar in design to the

well-known NDVI and was developed using MODIS bands 1 and 4 (red and green

respectively),

NDHI =
M1 −M4

M1 +M4
(3.44)

The denominator of this fraction is higher for pixels covered by haze and the numerator

will normally be negative, and of a larger magnitude for hazy pixels, thus giving a higher

NDHI for these pixels. Zha et al. (2012) found higher correlations between NDHI and

ground-level particulate matter than those found using AOT, but there are some

significant limitations to this method, which make it almost unusable for estimating AOT:

• The NDHI values can be significantly contaminated by the ground reflectance for

pixels which are only covered by thin haze, thus this method is best suited to areas

where the haze is almost opaque. Thus, the method is more suited to finding areas

of thin cloud and thick haze, rather than mapping AOT values.

• The method cannot be used over urban areas as the relationship between NDHI

values and haze is different over urban and non-urban areas: over urban areas high

NDHI values signify less haze, whereas elsewhere high values signify more haze.
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3.5.4.2 Multiple image methods

Several methods have been proposed for assessing haze in an image by comparing a hazy

image to a clear image, for example Du et al. (2002) who use wavelet analysis to compare

the images. The major limitation of these is that they require an entirely clear image,

which is often difficult or impossible to acquire. Furthermore, it may be possible to collect

an image with no obvious haze present within it, but it is impossible to obtain an image

with an AOT of zero across it, as there are always aerosols present in the atmosphere.

Thus, these methods cannot be used to assess AOT, just thicker haze.

3.5.5 Summary of haze-based methods

Figure 3.11 shows a summary of the haze assessment methods discussed in this section,

with influences from previous work shown by arrows. It should be noted how much of the

work is based upon the haze diagnostic of Crist and Cicone (1984).

3.6 Modelling aerosol dynamics
Aerosol concentrations in the atmosphere are not static: they change constantly over time

through three major processes:

• Emission/Formation: The creation of aerosols in the atmosphere results either

from their emission from a source (such as the entrainment of dust from a desert

surface or the emission of soot aerosols from a car exhaust) or their formation

within the atmosphere (for example, as part of a chemical reaction between other

particles in the atmosphere).

• Transport: The movement of aerosol particles both horizontally and vertically,

caused by atmospheric flow processes, primarily driven by pressure gradients.

• Deposition: The removal of aerosols from the atmosphere, normally resulting in

the particles being deposited onto the Earth’s surface. This can be caused by a

range of processes including gravitational deposition (which particularly affects large

particles) and precipitation washout (where aerosols become incorporated into rain

drops and removed from the atmosphere when it rains).

Many models have been developed which incorporate all three of the dynamical processes

above. The Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model

was originally developed to model atmospheric sulphur dynamics (Chin et al., 2000), but

has since been extended to simulate a wide variety of aerosols. Emission is dealt with on a

per-species basis: for example, Ginoux et al. (2001) parameterised dust uplifting into the

atmosphere based upon surface type, wind speed and a threshold velocity, and deposition

(including gravitational settling and precipitation washout) is parameterised based upon

particle size and standard physical formulae. Modelling of the transport of aerosol

particles is based upon meteorological fields of pressure and vertical motion, from which

the x, y and z wind vectors can be determined. The advection (movement) of a particle is

then simulated as a simple addition of these vectors to the initial position of the particle.
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Kauth and Thomas (1976)
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Lambeck (1977)

Use of ‘yellow’ direction trans-
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Crist (1985)

Haze Diagnostic for TM data
based on PCA of TC4-TC6

Lavreau (1991)

Application of haze diagnostic
for correction of Landsat TM

Richter (1996a)

Use of modified haze
diagnostic in ATCOR

Richter (1996b)

Addition of haze-
clear transition region

Richter (2012)

Use of haze diagnostic for
masking haze, and HOT
for magnitude of haze

Zhang et al. (2002b)

Haze Optimised Trans-
form based on perpendic-
ular distance from Clear

Line in feature space

Moro and Halounova (2007)

Improved HOT by
masking water and ur-
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He et al. (2010)

Post-processed HOT
like a DEM: filled sinks
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Wang et al. (2013)

HOT has strong quadratic
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Liu et al. (2011)

BSHTI using image-
derived coefficients

Figure 3.11: Diagram showing the development of haze assessment methods for satellite
imagery, with arrows showing influences. Time progress downwards from the top (1970s)

to the bottom (2010s)
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Several similar models exist, including an extension to the community-driven Weather

Research and Forecasting (WRF) numerical weather prediction model (Skamarock et al.,

2005) called WRF-CHEM (Grell et al., 2005). This extension is fully integrated with the

main WRF meteorological model, thus allowing meteorological processes to affect aerosols

and aerosols to also affect meteorological processes.

Running any numerical weather prediction model is very computationally expensive and

requires significant effort to be put into parameterisation. The Hybrid Single Particle

Lagrangian Integrated Trajectory (HYSPLIT) model (Draxler and Rolph, 2003) is a

simpler model which can be configured to only simulate aerosol transport. Given the

location of a single particle (which can be used to represent a group of particles),

HYSPLIT can calculate a trajectory for that particle forward or backward in time, based

upon forecast or archive data provided by meteorological organisations including the

NCEP Global Data Assimilation System (Rodell et al., 2004). Ensembles of simulations

can also be run to take into account the chaotic nature of the atmosphere and the

uncertainties in the model input data. An example of HYSPLIT output is shown in

Figure 3.12.

Simple trajectory analysis with HYSPLIT has been used by several authors to

characterise aerosol source regions. For example, McGowan and Clark (2008) identified

seasonal dust transport routes from Lake Eyre, Australia by using HYSPLIT model runs

at multiple altitudes, finding that dust emitted over Lake Eyre can be transported

thousands of miles to locations including Borneo and Antarctica. Segura et al. (2013)

developed an procedure for using HYSPLIT to determine the main aerosol type for a

specific location and time. Their method used HYSPLIT to establish back-trajectories

from the location, and then a method to assign aerosol emission types to each point along

the trajectory, defining the aerosol type at the final location as the most common aerosol

type along the trajectories. Wang et al. (2009) developed TrajStat, a GIS-based tool to

analyse multiple HYSPLIT trajectories (from running HYSPLIT in the ensemble mode)

and produce a statistical assessment of the contribution of each possible source area to

the resulting aerosol load at the simulated location.

In a separate mode, HYSPLIT can calculate the dispersion of a pollutant released from an

emission site. The processes driving the emission (such as entrainment of desert dust) are

not simulated; the model is simply parameterised to release a certain amount of pollution

(a ‘puff’) at regular intervals over time. This puff is then advected in the same way as a

single particle, but also undergoes dispersion - that is, the puff gets larger over time. In

this configuration, HYSPLIT can also simulate the deposition of particles through

gravitational settling and precipitation washout. An example of the output of this mode

of HYSPLIT is shown in Figure 3.13. This mode of HYSPLIT has been used to model

diverse atmospheric constituents including particulate mercury pollution (Chand et al.,

2008) and nuclear fallout (Moroz et al., 2010).
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Figure 3.13: Example of the distribution of pollution released at Chilbolton, near
Andover after 12 hours, with the release starting at 10am on the 17th June 2006. Note

the height profile of the pollution.
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3.7 Applications of AOT measurements

3.7.1 Air quality and human health

As outlined previously, particulate matter pollution is a significant issue worldwide,

particularly in urban areas. The 2010 Global Burden of Disease report (Lim et al., 2012)

estimates that ambient particulate matter pollution was responsible for 3.2 million

premature deaths worldwide in 2010, and 76,000 Disability Adjusted Life Years (DALYs;

a measure of the number of years of life lost due to serious illness, disability or death).

This is 3.1% of the total global DALY burden - a significant increase from the figures

estimated in previous risk assessments (Ezzati et al., 2002), due to the use of satellite data

and global atmospheric models to produce a more accurate estimate of global PM2.5

concentrations.

There is significant variation in the ranking of particulate matter pollution as a

contributor of DALYs, ranging from the fourth largest contributor in East Asia (eclipsed

only by high blood pressure, smoking and poor diet) to the 32nd largest contributor in

Oceania. East Asia is an area with particularly high levels of particulate matter pollution

and, with limited ground monitoring networks, satellite measurements are one of the few

sources of data. An extreme pollution episode occurred over Beijing in January 2013, with

Uno et al. (2014) reporting PM2.5 concentrations of over 1000µg/m3 (for comparison the

World Health Organization’s upper limit for PM2.5 concentrations is 35µg/m3), with

significant spatial variability that could not be captured by ground-based instruments

(Tao et al., 2014).

Particulate matter concentrations are usually measured as PM10 or PM2.5 , which

represent the concentrations (usually in µg/m3) of particles with a diameter less than

10µm and 2.5µm respectively. Generally the focus for human health studies is PM2.5 as

these are the only particles that can penetrate deep inside the lungs, and thus cause the

most significant health effects (Davidson et al., 2005), and many regulatory bodies require

monitoring of PM2.5 by local authorities.

Many studies have attempted to derive a relationship between AOT and PM2.5, but this

is challenging as they measure fundamentally different things. AOT is a columnar

measurement, which can be defined as the integral of the vertical extinction coefficient at

all altitudes through the atmosphere, whereas PM is the concentration of particulate

matter in the atmosphere at ground level. Thus, even if we can assume a direct

relationship between concentration of particulate matter and extinction coefficient, the

measurements are still performed over different height ranges. Hoff and Christopher

(2009) define the relationship between AOT and PM2.5 as

AOT = PM2.5HS (3.45)

where H is the height of the well-mixed planetary boundary layer (PBL) and S is the

specific extinction efficiency of the aerosol at the ambient relative humidity. Thus,
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according to this definition the relationship will depend on the planetary boundary layer

height as well as the type and size distribution of the particles, as these control the

extinction efficiency.

Hoff and Christopher (2009) also provide a review of a wide range of attempts to link

AOT and PM, from studies using over a thousand ground measurements of PM over the

continental United States (Engel-Cox et al., 2004), to those based on one measurement

site (Schaap et al., 2009). The majority of these studies are empirical in nature: they

obtain measurements of both AOT and PM2.5 and try to estimate a relationship. The

accuracy (in PM2.5 units) of the relationship is rarely reported; instead, correlation

coefficients are given. Overall, the maximum correlation coefficient reported was 0.98, and

the minimum was 0.4, with an average of 0.69. This suggests a relatively strong

relationship, although some studies perform significantly better than others. These

studies tend to be those which incorporate other variables such as the PBL height and the

humidity into the relationship. For example, Tao et al. (2012) found that including PBL

height and relative humidity in a model relating AOT to PM2.5 increased the R2 from

0.32 to 0.62. Furthermore the variability of aerosol types was shown to be important by

Engel-Cox et al. (2004) found significantly higher correlation coefficients in areas with a

single dominant aerosol type when compared to areas with a wide range of aerosol types,

sizes and compositions.

Recently there have been developments in more robust ways of estimating PM2.5 from

AOT measurements. van Donkelaar et al. (2010) developed a method to calculate a

conversion factor, η, which can be used to estimate PM2.5 as,

PM2.5 = ητ (3.46)

They used a three-dimensional chemical transport model (GEOS-Chem; Bey et al., 2001)

to estimate aerosol properties and planetary boundary layer height, taking into account

meteorological climatologies and aerosol types. The model was used to estimate a

monthly climatology of η at a spatial resolution of 0.1 x 0.1 degrees. The conversion

factor was applied to estimated PM2.5 from global MODIS and MISR AOT retrievals

(filtered to remove retrievals which were likely to have a high error), and comparisons with

ground measurements showed that approximately 67% of the retrievals were within

±1± 15%, with a global population-weighted uncertainty of 6.7 µg/m3) - with the

majority of this uncertainty coming from uncertainty in the satellite AOT measurement

rather than the AOT-PM2.5 relationship. These conversion factors have already been used

by some researchers with currently-available AOT datasets such as those from MODIS

and MISR. For example, Evans et al. (2013) assessed the health effects of PM2.5 pollution

estimated from MODIS AOT using the van Donkelaar et al. (2010) conversion factors,

and found that 7.1% of total global mortality was attributable to

anthropogenically-derived PM2.5 – a higher estimate than that derived through the

Global Burden of Disease report (Lim et al., 2012) – and Dey et al. (2012) assessed the
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spatial variability in particulate matter concentration over the Indian subcontinent,

finding that 51% of the population were routinely exposed to particulate matter pollution

over the World Health Organisation upper limit of 35 µg/m3.

Several researchers using AOT data to monitor PM have raised issues with the low

resolutions of the data available. Hoff and Christopher (2009) state that “Health exposure

needs tend to focus on spatial scales ranging from 1 to 100m...neither surface monitoring

or satellite measurements can deal with that spatial scale”, Martin (2008) lists the

development of higher-spatial resolution products, particularly for use in urban areas, as a

key recommendation for future work, and Gupta et al. (2006) state that their work in

cities was limited by the low resolution of the MODIS data that was available. A higher

resolution of AOT data is required to allow widespread use of satellite-derived air quality

and particulate matter data for human health applications. This is particularly the case

in cities, where very high resolutions are required to monitor the dynamics of the

particulate matter distribution (Loughner et al., 2007)

Higher resolution will bring other benefits as well as the ability to resolve patterns of

pollution in greater detail. Chudnovsky et al. (2013) found that there was a significant

positive relationship between the AOT data resolution and the fit of the linear regression

between AOT and PM2.5, with a R2 of 0.46 with 1km AOT data, compared to 0.18 with

10km AOT data. This was thought to be caused by the lower-resolution data ‘hiding the

variability’ in the AOT data that was captured by the network of ground-based PM

monitoring stations. The highest resolution AOT data used in the study was 1km, but

given the reasoning for the increase in R2 values, it would seem logical to suggest that this

relationship may continue to hold for higher resolutions of AOT data. Furthermore, as

discussed in §3.4.4, there are less problems with cloud contamination for high resolution

data (Henderson and Chylek, 2005), both increasing the coverage (Chudnovsky et al.,

2013, found an increase in data availability of 50–70% due to fewer pixels being masked as

cloud) and reducing the error (due to false negatives in the cloud screening process).

3.7.2 Atmospheric correction of satellite images

The majority of the scientific use of satellite data is now quantitative - that is, it is based

upon the real physical values of light intensity measured by the satellite (usually in units

of W m−2 sr−1 nm−1). However, the light reaching the satellite undergoes atmospheric

radiative transfer twice (on the path from the sun to the ground and again from the

ground to the sensor; see §3.2) and this can significantly affect the values recorded at the

satellite. Atmospheric correction is the process of removing these atmospheric effects from

the data. There are multiple methods for doing this including image-based methods (such

as Dark Object Subtraction; Chavez, 1988) and empirical methods (such as the Empirical

Line Method; Smith and Milton, 1999), but the most popular atmospheric correction

methods use Radiative Transfer Models (RTMs).

RTMs simulate the physics of light passing through the atmosphere to model the
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atmospheric effect on the satellite image, and then remove it. RTMs which are designed

for working with satellite data include 6S (Vermote et al., 1997) and MODTRAN (Berk

et al., 1987), which have been used in end-user-focused atmospheric correction software

such as ATCOR (Richter, 2004). To accurately correct an image the RTM must be

parameterised to represent the atmosphere at the time of image acquisition, and this

requires atmospheric data including AOT, aerosol type and precipitable water vapour

content. Assuming these parameters are accurately specified, the atmospheric correction

performed by RTMs is more accurate than those performed by other methods.

Most current atmospheric correction software assumes a constant value of AOT across the

whole image, but this is unlikely to be true. AOT can vary on very small scales, and thus

significant differences in AOT are likely to be found between pixels in the same image,

particularly if the image contains a variety of land uses (for example, urban/industrial

compared to rural areas). Furthermore, the increases in swath sizes found with modern

sensors (such as MODIS, MERIS and the high-resolution sensors on the satellites within

the Disaster Monitoring Constellation) make it more likely that significant changes in

AOT will be observed across an image, even if land uses do not change significantly. If a

constant AOT cannot be assumed, then an AOT value must be provided separately for

each pixel in the image. This could be produced from any high-resolution AOT dataset,

but ideally should be produced from the image data itself (thus ensuring that the AOTs

used for correction are the AOTs at exactly the time of image acquisition). For example,

the MODIS atmospheric correction algorithm solves this problem by using the AOT data

produced from the same MODIS image using the MODIS AOT algorithm described in

§3.4. However, this approach is impossible to use with images from high-resolution sensors,

as these sensors cannot produce fully spatially-explicit AOT data and therefore the only

AOT data which is available is of a lower resolution than the imagery to be corrected.

As discussed in Chapter 2, satellite data are now used to estimate a range of physical

measurements such as Leaf Area Index and albedo, and poor atmospheric correction can

lead to significant errors in such products. For example, Saleska et al. (2007) stated that

the Amazon rainforest was more resilient to short-term climatic fluctuations than

previously thought (as shown by a significant increase in Enhanced Vegetation Index

during a period of drought), but Samanta et al. (2010) showed that these inferences were

due to the use of cloud- and aerosol-contaminated satellite data in the original study, and

therefore were not genuine ground-level effects.

3.7.3 Other applications

Satellite-derived AOT measurements have a wide range of other applications, some of

which are listed below. The discussion focuses on the utility of high-resolution AOT data.

• Climate modelling: As discussed in §3.1.2, the presence of aerosols in the

atmosphere changes the Earth’s energy balance by both direct effects, such as the

scattering and absorption of light by aerosols, and indirect effects such as increased
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cloudiness caused by aerosols promoting the formation of clouds. However, our

understanding of the feedbacks between aerosol content, cloud cover and, ultimately,

the energy balance is limited, and uncertainties surrounding the effect of

atmospheric aerosols are considered to be some of the largest uncertainties in

current climate modelling (Stevens and Boucher, 2012; Lohmann and Feichter, 2005;

Le Treut, 2012). However, improvements in satellite remote sensing of aerosols have

helped reduce this uncertainty: the most recent IPCC report stated “[aerosol]

forcings are now better understood than at the time of the Third Assessment

Report due to improved in situ, satellite and ground-based measurements and more

comprehensive modelling, but remain the dominant uncertainty in radiative forcing.”

(IPCC, 2007). Further improvements in aerosol data from satellites are required to

reduce these uncertainties further, and although Mishchenko et al. (2004) state that

the spatial resolution requirement for aerosol measurements to quantify aerosol

forcing in the climate system is 6km, higher resolution measurements will still be

very useful. For example, higher resolution measurements are less likely to be

contaminated by cloud cover, are easier to validate with ground measurements and

can be aggregated for comparison with lower resolution products.

• Validating aerosol transport models: Many of the aerosol transport models

described in §3.6 are designed to produce raster images showing the distribution of

aerosols at the end of the model run. These models need validating, but validating

spatially-distributed outputs from models against point ground measurements is

difficult; satellite-derived AOT measurements provide a similar dataset allowing

comparison (Chin et al., 2002).

• Fire/Smoke monitoring: Satellite sensors are widely used for monitoring

wildfires on a global basis (Lentile et al., 2006) for a variety of purposes, including

emergency planning and assessment of the impact of biomass burning on climate

change. However, fires do not just damage the land surface local to the fire; they

also produce smoke which can travel significant distances, spreading the impact of

the fire. Smoke consists of many particles (mostly of soot) suspended in the

atmosphere which can be seen in AOT images, and these can be used to monitor

the distribution of smoke. For example, Damoah et al. (2004) monitored the spread

of smoke plumes from forest fires in southeast Russia using MODIS, SeaWIFS and

TOMS data and found that the smoke spread widely across the Northern

hemisphere over a period of around 17 days. High-resolution data allow observation

of smoke plumes from smaller fires which would not be visible on lower-resolution

imagery (see Figure 3.14).

• Volcanic ash distribution monitoring: Several volcanic eruptions recently have

released large volumes of ash into the atmosphere which have become distributed

across wide areas and caused significant problems for air transport, often resulting

in the closure of airspace (Wainwright, 2010). It is important to monitor the

distribution of this ash at a high-resolution to ensure that public safety is ensured

by closing airspace when needed, but that inconvenience is minimised by not closing
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airspace that has insignificant levels of ash within it. Ash transport models are often

used for this purpose, but they require input data regarding current airborne ash

concentrations, and also require validation. AOT measurements from various

satellites including MODIS and MISR have been widely used for these purposes, for

example by the Met Office in the UK (Christopher et al., 2012) as well as by

organisations in Germany (Langmann et al., 2012) and Spain (Toledano et al., 2012).

• Dust monitoring/modelling: Measurements of AOT are of great importance to

those studying dust - both in terms of the general distribution of dust from the

world’s source regions, and for modelling and predicting extreme dust events.

Similarly to the other uses described above, AOT data are used to provide

information on dust events (Kaufman et al., 2005; Prasad and Singh, 2007; Gautam

et al., 2009), validate models (Tegen and Fung, 1994) and examine the effects of

dust in the atmosphere (Zhang and Christopher, 2003; Han et al., 2008). Schepanski

et al. (2007) created a map of dust activation frequency in the Sahara using a

combination of thermal data and AOT data from SEVIRI, but their results were at

a low resolution (one degree). Similarly, Ashpole and Washington (2012) used

SEVIRI data to track dust plumes across the Sahara, to investigate the spatial and

temporal patterns of dust emission and transport High-resolution data will allow the

validation of similarly high-resolution models, and provide greater detail on dust

events - for example, allowing far more detailed examination of dust sources in the

Sahara to be performed, and allowing identification of the part of a salt pan from

which dust is being generated, rather than identifying the salt pan as a whole.

3.8 Synthesis and identification of research gaps
The wide range of uses of AOT data, discussed in §3.7, show its importance in many fields

of research including air quality monitoring, satellite atmospheric correction and climate

change modelling. Currently, AOT data are provided by measurements from sun

photometers (§3.3), and retrievals from a range of satellites (§3.4 and Table 3.3). However,

these measurements are not suitable for a number of potential applications due to their

low spatial resolution. For example, Martin (2008) states that higher resolution AOT data

are needed to allow useful analysis of air quality due to particulate matter pollution,

particularly in urban areas, and Hoff and Christopher (2009) state that AOT

measurements with a spatial resolution of 1–100m are needed to properly characterise the

health effects of particulate matter exposure. Furthermore, high-resolution AOT data are

needed to enable accurate per-pixel atmospheric corrections of the wide range of

high-resolution satellite data which is now widely available from satellites such as Landsat,

SPOT, IKONOS and DMC, as well as data from future satellites such as the Pléiades

constellation and the Sentinel series of satellites.

The data that is currently available cannot fulfil these needs. AERONET has only 300

sites worldwide, and thus cannot provide high-resolution data, and most satellite AOT

retrievals are at a resolution of around 10km. Recently some algorithms have been
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1200 km2 inZambia,Africa. TheTOA image for day 205 shows
dozens of small to large fires. The 1 km resolution of MAIAC
makes it possible to resolve and trace individual fire plumes.
Interestingly, these data also show the wind direction in the
boundary layer. The fire plumes disappear at the coarse 10 km
resolution of MOD04 shown in the inset. The comparison
illustrates that the AOT magnitude and spatial distribution
from MOD04 and MAIAC are similar, although there are
certain differences depending on the surface type and viewing
geometry. This example also demonstrates that the signifi-
cantly higher spatial resolution of MAIAC offers new infor-
mation about aerosol distribution, and possibly the strength of
aerosol sources as well. The AOT gradient at 1 km resolution
is high enough for automated smoke plume detection, so
these data could be used for applications such as air quality
monitoring.
[56] Figures 10a and 10b give an example of MAIAC

aerosol retrievals over southeast Asia and part of the bright
Arabian Peninsula (3000 × 1500 km2). Figure 10a is the
MAIAC RGB NBRF image for this area. Black pixels corre-
spond to either open water or salt pans, where MAIAC is not
applicable. The arrow points to an active dust storm source
region in the Khash desert of southern Afghanistan. One such
storm is traced in the MODIS Terra data through 8–11 August
2004 (Figure 10b). Figure 10b (top) showsMAIACAOT,with

red color indicating optical depths above 1. The MODIS TOA
RGB images at the bottom show the active storm area on 8–9
August, clearly visible in contrast with the background NBRF
image. The storm intensity decreases on 10 August, with
atmospheric dust covering a large area of Pakistan and the
Indian Ocean. The storm largely abates on 11 August, leaving
only two small areas active, as indicated by the arrows. At the
same time, the winds moved the bulk of the remaining atmo-
spheric dust westward. Figure 10b (bottom) shows another
dust storm occurring between 11 and 13 September 2004,
originating in Arabian Peninsula. The AOT image shows the
epicenter and expanse of the storm. The ovals overlaying
the AOT image mark an arm of the storm stretching across the
Persian Gulf. This dust transport is visible in the MODIS RGB
image over the dark water, providing qualitative confirmation
of the MAIAC retrievals. A more detailed validation analysis
of MAIAC results during the United Arab Emirates (UAE)
2004 campaign [Reid et al., 2008] will be given elsewhere,
along with comparison to the MODIS Deep Blue algorithm.

7. Summary

[57] This paper presents the aerosol component of a new
MAIAC algorithm based on a time series analysis and image‐
based processing of MODIS data. MAIAC is a generic algo-

Figure 9. Fires during dry biomass burning season in Zambia, Africa, for day 205 of 2005 (area 1200 ×
1200 km2). (left) The 1 km gridded MODIS TERRA TOA RGB image, (right) MAIAC AOT at 0.47 mm,
and (inset at bottom right) MOD04. The high resolution (1 km) of MAIAC AOT allows detecting indi-
vidual fire plumes.

LYAPUSTIN ET AL.: ALGORITHM MAIAC, 2 D03211D03211

12 of 15

Figure 3.14: Left: MODIS RGB composite over South Africa during the biomass
burning season. Right inset: MOD04 AOT product at 10km resolution, Right main:
MAIAC AOT product at 1km resolution. Note how individual smoke plumes are visible

at 1km resolution but not at 10km resolution. Figure from Lyapustin et al. (2011)

developed to allow higher resolution AOT retrieval (such as SYNAM and MAIAC which

have been used to produce 1km data), but these products are not yet operationally

produced and are time-consuming, computationally-expensive and difficult for end-users

to produce.

Thus, there is a requirement for a high-resolution AOT product, and there is a gap in the

research literature regarding methods which could be used to provide this product. Many

of the methods described in §3.4 cannot be extended to produce high-resolution data as

no satellites currently produce high-resolution multi-angular or polarisation data, and

Landsat is the only high-resolution satellite which acquires measurements in shortwave

infra-red bands. Building and launching high-resolution satellites to acquire these

measurements would probably be feasible, but they are likely to be very expensive and

have other limitations (for example, long revisit periods). Instead, developing a method

which could retrieve AOT by using the visible and near-infrared bands would allow the

method to be used on a wide-range of satellite images, including Landsat, SPOT and

IKONOS, as well future satellites such as the Pléiades constellation and the Sentinel series.

Although the retrieval of high-resolution AOT data was described as a research gap above,

there are several methods which retrieve relative measures of the haziness of the

atmosphere from a wide range of satellite images. These haze assessment methods (§3.5)

are generally used in the pre-processing of satellite images, but the relative measures of

haziness they produce have not yet been linked to absolute measurements such as AOT.
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Thus, there is a opportunity to fill this research gap by developing an algorithm to

produce high-resolution AOT data by linking haze assessment methods (§3.5) with

standard AOT retrieval methods (§3.4). The development and validation of such an

algorithm will be the focus of the rest of this thesis.



Chapter 4

Investigating the Haze Optimized

Transform

4.1 Introduction
In the literature review, a gap in the literature was identified, with an opportunity to fill

this gap by developing an algorithm to produce high-resolution AOT data by linking haze

assessment methods with standard AOT retrieval methods. The first stage in this process

is to perform a detailed investigation of a haze assessment method to test that it performs

as expected, check its assumptions, and identify any major issues.

The literature review showed clearly that the Haze Optimized Transform (HOT; Zhang

et al., 2002a) is the most advanced of the haze assessment methods: it is based on the

same underlying theory as the Tasselled Cap Transformation and the NDHI, but is more

robust to land-cover changes. The HOT was developed for the purpose of identifying,

quantifying and removing haze and thin cloud contamination from satellite images and is

based on the high correlation between the visible bands of satellite sensor data which

defines a ‘clear line’ in feature-space (as shown in Figure 4.1). Pixels that are

contaminated by haze will be offset from this line, and the HOT calculates the distance of

each pixel from the ‘clear line’ and uses this as an estimation of the haziness of this pixel.

A full discussion of the theoretical basis of the HOT, and related techniques, is given in

§3.5.2.

This chapter discusses the datasets required to investigate the HOT, tests the key findings

of Zhang et al. (2002a) and assesses the accuracy of the assumptions underlying the HOT.

4.2 Data

4.2.1 What data do we need?

The spectral points on the graph from the original HOT paper, shown in Figure 4.1, were

generated from 4m-resolution PROBE-1 measurements of representative Canadian land

covers, averaged to a resolution of 30m and passed through the MODTRAN Radiative

89
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an atmospheric radiation transfer model (Berk et al., 1999).
PROBE-1 samples were averaged to simulate the 30-m
resolution of the TM. Fig. 1 illustrates the position of each
surface class, coded as A–K, in the TM1–TM3 spectral
space. High spectral correlation is apparent, resulting in a
well-defined CL. The correlation coefficient for the clear-
sky points A–K is .993. In this simulation, it was assumed
that the top-of-the-atmosphere (TOA) radiance for a surface
type does not include the radiation scattered by the sur-
roundings, i.e., the so-called ‘adjacency effect’ was ignored.
In a real image, adjacency effects would generate a range in
the pixel radiance within a surface type around the ‘ideal’
value. Therefore, the correlation coefficient for real images
can be expected to be < .99, but still be significantly high.
The direction of the CL can be expressed by its slope angle,
H, and hence HOT, the transformation that quantifies the
perpendicular displacement of a pixel from this line will be
given by (Eq. (1)):

HOT ¼ B1sinH" B3cosH ð1Þ

where B1 and B3 are the pixel’s bands 1 and 3 digital
numbers (DNs), respectively.

In practice, the proposed method can only be applied in a
relative rather than absolute sense since absolute informa-
tion regarding the atmospheric conditions over most scenes
will not be available. Therefore, the angle H must be

estimated from pixels selected from areas of a scene that
visually are deemed to be the clearest, and hence H will
vary somewhat scene-to-scene. HOT will then be employed
to adjust the rest of the scene to the same atmospheric
conditions as these clearest areas, i.e., to undertake a
relative, not absolute intra-scene balancing.

To better understand the effects of atmospheric contam-
ination in the TM1–TM3 spectral space, MODTRAN
version 4 code was employed to estimate apparent TM1
and TM3 radiances for 19 different levels of atmospheric
optical depth. Atmospheric profiles for mid-latitude-summer
conditions and haze contamination arising from thin-layered
stratus cloud were studied. The optical depth of this cloud at
0.55 Am has been varied between 0 and 6.7 in 18 equal
increments. A solar zenith angle of 38j was assumed in
these estimates although the ratio of band radiances, and
hence the CL slope should be independent of this parameter.
Rayleigh scattering and gas absorption of the idealized
standard atmosphere are included in the calculation. The
Landsat-5 sensor gains and offsets were employed during
the conversion from radiances to DNs. The simulated
radiances were calculated for an ideal atmosphere without
the background aerosols since the background aerosol effect
is linearly related to other path scattering effects. If the
scattering effect of the background aerosols were to be
included, the position of the CL would shift but its slope
would not change appreciably.

Fig. 1. Schematic diagram of the TM1–TM3 spectral space illustrating the conceptual components of the HOT. Under clear sky conditions, radiances of

common surface cover types, coded as A–K, exhibit high correlation and define a ‘clear line’ (CL). The effect of haze of increasing optical depth, illustrated by

the numerical sequences 1–18, is to pixels to ‘migrate’ away from the CL. The HOT quantifies the atmospheric contamination level at a pixel location by its

perpendicular distance, in spectral space, from the CL.

Y. Zhang et al. / Remote Sensing of Environment 82 (2002) 173–187 175

Figure 4.1: The basis of the Haze Optimized Transform (HOT), from Zhang et al.
(2002a), using Landsat TM bands 1 (Blue) and 3 (Red)

Transfer Model to simulate the top of atmosphere (TOA) radiance in a clean atmosphere.

However, to investigate the HOT in detail we need a set of realistic reflectance

measurements at medium spatial resolution (20–30m) and high spectral resolution, with

no atmospheric effects present. This will allow us to simulate the TOA radiance for a

range of satellite sensors under various atmospheric conditions to test various aspects of

the HOT. It is important to note that the any real-world data used must have been

atmospherically-corrected on a per-pixel basis, or there will be residual atmospheric

effects of varying magnitudes present in the data.

Furthermore, reflectance can be measured in many ways, producing measurements such as

the Hemispherical-Conical Reflectance Factor (HCRF), the Bi-directional Reflectance

Factor (BRF) and the Bi-hemispherical Reflectance Factor (BHRF), depending on the

illumination and measurement geometries (Schaepman-Strub et al., 2006). Almost all

real-world measurements are of the Hemispherical-Conical Reflectance Factor (HCRF) so

these measurements will be assumed throughout the rest of the thesis. It is possible that

differences in the geometry of the conical field of view of the measurement instrument

could cause problems - as these can vary significantly - but the majority of the work in

this thesis uses Landsat which (due to its relatively narrow swath width) has a relatively

constant field of view.

It was found to be impossible to create any dataset that fulfilled all of the requirements

listed above, so three datasets have been created, which are described in the sections

below and compared in Table 4.1.
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4.2.2 Resampled airborne data

A subset of an airborne hyperspectral image acquired by the Airborne Research and

Survey Facility (ARSF) AISA Eagle sensor during the NCAVEO Field Campaign (Milton

et al., 2011) was resampled to a range of spatial resolutions from an initial resolution of

1m to create a simulated Landsat image. This image was chosen due to the range of

coincident ancilliary data acquired during the field campaign, as well as the range of

land-covers present within a small image subset.

The airborne image was atmospherically corrected with ATCOR-4 (Richter, 2004) using a

single parameterisation across the whole image, and thus there will be spatially-variable

residual atmospheric effects in the corrected image. These effects will be present, but

should be of low magnitude as the image subset is very small. The original 1m image and

the resampled 30m image are shown in Figure 4.2. This dataset will be referred to

henceforth as the ARSF dataset.

4.2.3 LEDAPS-corrected Landsat images

The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS; Wolfe et al.,

2004) provides the closest to a per-pixel atmospheric correction of Landsat imagery that is

available at present (August 2014). AOT is estimated above areas of dense dark

vegetation (DDV) in the image, and then interpolated at a 1km resolution to cover the

rest of the image, and each pixel is then corrected using its own interpolated AOT. DDV

is selected based upon a simple threshold of pixels with a top of atmosphere reflectance in

Landsat band 7 (approximately 2.08–2.35 µm) < 0.15 (Kaufman et al., 1997; Ju et al.,

2012). This method relies on the presence of DDV in the image: thus it provides far

better results over the Amazon rainforest than over the Sahara desert.

Assessment of LEDAPS surface reflectance products against similar MODIS products and

field spectrometer measurements, as well as comparisons of LEDAPS DDV-derived AOT

against AERONET measurements, show that LEDAPS does not always produce high

quality corrections (Maiersperger et al., 2013). In general, LEDAPS-estimated AOT were

consistent with AERONET observations (correlation between 0.63 and 0.87), although in

areas with limited DDV the AOT was significantly over-estimated (with errors up to 0.6).

Comparisons between LEDAPS surface reflectance and field spectrometer measurements

showed good results over a vegetation site surrounded by DDV (with errors within ±0.03),

but very poor results in arid regions (with errors up to 0.12). In general, results were

better in the longer wavelengths, where the aerosol effects are less significant.

The use of interpolation to estimate AOT over non-DDV pixels can cause significant

errors in certain situations. For example, there is often limited DDV within urban areas,

so AOT values from DDV in the surrounding countryside are interpolated to produce

values for the urban region, thus producing erroneously high or low values. A simple

examination of this problem was carried out by comparing ground-based and

LEDAPS-derived AOT values at a location outside of the Geography building on
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(a) Original ARSF

(b) ARSF resampled to 30m spatial resolution

Figure 4.2: ARSF images
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Figure 4.3: Example Landsat 7 image (LE72020252014184ASN00) over Southampton,
showing the measurement location (red cross), and the closest areas of DDV (blue crosses),
between which interpolation is performed. DDV was detected using the LEDAPS threshold
described in the text, and the yellow cross shows Southampton Common which, although

it is vegetated, was not detected as DDV.

Highfield Campus at the University of Southampton (50.925◦, -1.414◦) during the Landsat

ETM+ overpass at 10:56 on 3rd July 2014. As shown in Figure 4.3, there are significant

areas of DDV outside the urban area, but none within the city itself. Thus, the LEDAPS

AOT is interpolated, producing an AOT value at the measurement site of 0.147, which is

almost three times the ground-based measurement of 0.0596, taken contemporaneously

with the Landsat overpass using a Microtops sun photometer.

The main advantage of this dataset is that it consists of genuine Landsat images, with a

real-world mixture of spatial variability and spatial structure, and that these images are

available both uncorrected and corrected with LEDAPS. There are significant issues -

including potentially low accuracy over desert areas, urban areas, and other areas lacking

DDV, and higher errors in the wavelengths which are key to this work (blue and red).

However, this is the best spatially-variable atmospherically-corrected Landsat dataset

available, so it will be used with its known issues taken into account.

LEDAPS images, along with the uncorrected original images, were acquired as listed in

Table 4.2, with the aim of covering a broad range of global land cover types. This dataset

will be referred to henceforth as the LEDAPS dataset.
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Table 4.2: Landsat scenes used in this project. Both uncorrected and LEDAPS-corrected
copies of the images were used.

Scene ID Name Land covers

LE72270602001259EDC00 Amazon Forest

LE71720741999285EDC00 Botswana Scrub & Salt Pan

LE72010242000171EDC00 London Urban, Agriculture & Mixed Vegetation

LE72020252002087EDC00 SotonNewForest Urban, Agriculture & Mixed Vegetation

LE72020241999287AGS00 Chilbolton Urban, Agriculture & Mixed Vegetation

LE71790772000097EDC01 Namibia Desert

LE71620462000186SGS00 Saudi Arabia Desert

LE71990461999298EDC00 Sahara Desert

LE70240321999240EDC00 Midwest Agriculture & Urban

4.2.4 Atmospherically-corrected Landsat pixels

It is impossible to atmospherically-correct a whole Landsat image on a per-pixel basis, as

no 30m resolution AOT products currently exist, so this dataset was created from

Landsat pixels directly over many AERONET measurement sites where the atmospheric

conditions are accurately known. The procedure for generating this dataset, known as

LandsatAERONET is shown in Figure 4.4.

Landsat TM acquisitions from 2009 were used, as this was the most recent year during

which the TM sensor had no significant problems, and pixels in a window centred on each

AERONET site location were selected. The atmospheric correction was performed as

accurately as possible, using the 6S Radiative Transfer Model (Vermote et al., 1997)

through the Py6S interface (Wilson, 2012) with AOT and Precipitable Water Content

(PWC) data from AERONET measurements (Holben et al., 1998), the aerosol profile

from AERONET inversions (Dubovik and King, 2000) and ozone contents estimated using

van Heuklon (1979) model.

The most accurately corrected pixel will be the pixel directly over each AERONET site,

but using just these measurements significantly restricts the available data volume. Thus

a configurable n× n window was used to select pixels surrounding the AERONET site,

with n = 9 used as a good compromise between data volume and distance from the

AERONET site (providing 81 pixels, including the central pixel, with a maximum

distance from the site of 150m). The locations of each pixel are kept in the output

dataset, allowing the dataset to be easily reduced to the equivalent dataset at any lower n

value (for example n = 1 for just those pixels directly over each AERONET site).

In 2009 there were 291 AERONET sites operating worldwide, and of these 165 had a

Landsat image over them within 15 minutes of AERONET measurement. Of these, 139

had all of the ancillary data needed for atmospheric correction, and after manual cloud

screening, fully-corrected pixels over 124 separate sites were left (Figure 4.5). Taking into
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Figure 4.4: Flowchart showing the procedure for generating the LandsatAERONET
dataset
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± Selected AERONET sites

Other AERONET sites

Figure 4.5: Locations of AERONET sites: the 127 selected sites are shown in red, other
sites in grey.

account 80 surrounding pixels (for the n = 9 case), this gives a total of 10,044 pixels.

Land cover information was acquired for each of the corrected pixels from two land cover

maps: GLOBCOVER (global at 300m spatial resolution, 127 AERONET sites covered;

Arino et al., 2007) and the US National Land Cover Database (NLCD, USA at 30m

spatial resolution, 30 AERONET sites covered; Fry et al., 2011). The GLOBCOVER data

at 300m resolution was found not to be representative of the 30m subpixel land cover, and

so the NLCD data at 30m resolution was more suitable. However, only 30 sites had

NLCD data: too few to assess the effect of land cover on the HOT. Thus the land cover

over all sites was manually classified using images from Google Earth acquired as close as

possible to the relevant Landsat scenes. The NLCD legend (Table 4.3) was used as the

classes are very well described, and this allows a validation of manually classified land

cover against the NLCD data.

The percentage of NLCD pixels which were classified into the same class by the manual

classification procedure was low, at only 50%. However, it is very difficult to distinguish

some of the NLCD classes: for example, the difference between Developed (Medium

Intensity) and Developed (High Intensity) is difficult to assess by eye, and Deciduous

Forest and Evergreen Forest can be hard to distinguish in certain situations. The pixels

were then classified into four broad land cover classes: Water/Snow/Ice, Bare, Urban and

Vegetation, and 84% of the NLCD pixels were manually classified into the same class, a

significant improvement from the individual NLCD classes.

The full list of data collected for each selected pixel is shown in Table 4.4.

The same process was carried out for Landsat ETM+ data, using data acquired before the

Scan Line Corrector (SLC) failure (1999–2003), and, for AERONET sites located in the

central portion of images, data acquired since the failure (as the central part of the image
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Table 4.3: National Land Cover Database classes, and equivalent broad land cover
classes. Further details, including full class descriptions, are available from Fry et al.

(2011)

NLCD Class Broad Class

Open Water Water, Snow & Ice

Perennial Ice/Snow Water, Snow & Ice

Developed, Open Space Urban

Developed, Low Intensity Urban

Developed, Medium Intensity Urban

Developed, High Intensity Urban

Barren Land (Rock/Sand/Clay) Bare

Deciduous Forest Vegetation

Evergreen Forest Vegetation

Mixed Forest Vegetation

Shrub/Scrub Vegetation

Grassland/Herbaceous Vegetation

Pasture/Hay Vegetation

Cultivated Crops Vegetation

Woody Wetlands Vegetation

Emergent Herbaceous Wetlands Vegetation

is not affected by the SLC failure). These datasets will be referred to henceforth as the

LandsatAERONET TM dataset and LandsatAERONET ETM+ dataset.

4.2.5 Data comparison

TOA radiance data for Landsat TM bands 1 (Blue) and 3 (Red) were simulated in a clean

atmosphere (that is, without aerosols) from the reflectance data in the

Landsat-AERONET TM and resampled ARSF datasets as well as a LEDAPS-corrected

Landsat image. The results (Figure 4.6) show that the data fall into the same region

within the blue-red feature space, suggesting that all of the datasets are representing the

same phenomena - in this case, atmospherically-corrected Landsat pixels. The resampled

ARSF data are contained within the boundaries of the distribution of the

Landsat-AERONET data, and the latter has a significantly larger range in both bands.

This is because the Landsat-AERONET data cover a far wider range of land covers than

the small ARSF image. The LEDAPS image has an even wider range, as each of the 38

million pixels in the LEDAPS image will be a unique mix of subtly different land covers.
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Table 4.4: Data collected for each pixel in the LandsatAERONET dataset

Data

AERONET site name

Latitude

Longitude

Elevation

Landsat WRS-2 Path/Row

Landsat Scene ID

Image acquisition time

Aerosol Optical Thickness at acquisition time

Precipitable Water Content at acquisition time

Ozone amount (estimated from the van Heuklon (1979) model)

Atmospherically-corrected reflectances in bands 1–7 (excluding band 6)

Solar zenith angle

Solar azimuth angle

View zenith angle (calculated according to the procedure in Roy et al., 2011)

View azimuth angle (calculated according to the procedure in Roy et al., 2011)

Land Cover classification from NLCD

Land Cover classified manually

Simulated TOA radiance in a clean atmosphere for bands 1–7 (excluding band 6)

4.3 Validating HOT assumptions

4.3.1 Correlation

One of the main assumptions of the Haze Optimized Transform is that the visible bands

are highly correlated, and thus the pixels in an image will cluster around a line in the

visible feature-space. The strong positive correlation coefficients between the visible bands

in the LandsatAERONET and resampled ARSF datasets (Table 4.5) show that this is the

case.

Liu et al. (2011) state that the assumption of high correlation that underlies the Haze

Optimized Transform method is incorrect, as their test of 23 hazy TM images found that

the majority were < 0.9, a significant number were < 0.8 and some were as low as 0.4.

However, these tests were performed on hazy images and the Haze Optimized Transform

is fundamentally based upon the fact that as pixels become hazy they migrate away from

the Clear Line and thus reduce the correlation. Thus, correlations on hazy images would

be expected to be low, but correlations on atmospherically-corrected images would be

higher. This relationship is shown in Table 4.6, where the majority of the correlations for

LEDAPS-corrected images are higher than their part-corrected counterparts. The lowest

correlations tend to be for images with a mixed land cover including significant amounts
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Figure 4.6: Comparison of Landsat at-sensor radiance simulated from the resampled
ARSF and Landsat-AERONET TM datasets, shown with at-sensor radiance simulated

from a LEDAPS-corrected Landsat image.

Table 4.5: Pearson correlation coefficients calculated between the visible bands

(a) LandsatAERONET

Blue Green Red

Blue 1.00 0.98 0.94
Green 1.00 0.97
Red 1.00

(b) Resampled ARSF

Blue Green Red

Blue 1.00 0.94 0.94
Green 1.00 0.97
Red 1.00

of bare land: for example, the Saudi Arabia and Namibia images have low correlations,

but the Sahara image has a high correlation, as the entire image consists of a single land

cover type. Some of the lower correlations are likely to be due to residual atmospheric

contamination in the LEDAPS images - caused by poor estimation of the AOT by

LEDAPS - which would result in points moving away from the line, and thus a lower

correlation.
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Table 4.6: Blue-Red correlations for all of the Landsat images used in this study, for the
LEDAPS-corrected image and a part-corrected image (corrected for Rayleigh scattering,

ozone and water vapour absorption, but not aerosols)

Image LEDAPS Part-corrected

Amazon 0.853 0.876
Botswana 0.886 0.887
Chilbolton 0.884 0.853
London 0.930 0.923
Midwest 0.903 0.883
Namibia 0.576 0.612
Sahara 0.958 0.948
Saudi Arabia 0.649 0.567
SotonNewForest 0.931 0.802

4.3.2 What is the trajectory of an AOT increase in feature space?

The Haze Optimized Transform is a measure of the distance of a point from the clear line

which represents the correlation between all ‘clear points’. For the HOT to have any

relationship to AOT, the trajectory of a point which is increasing in AOT must have a

different gradient to the clear line.

Figure 4.7 shows how a point (marked in blue) moves in feature space as its AOT is

increased from 0 (no aerosols; the blue point) to 0.1, 0.2, 0.3, 0.4 and 0.5. This is as

expected according to Zhang et al. (2002a), with the points approximately equally spaced

for equal increments in AOT, and the trajectory of the points at a shallower angle than

the clear line. There is a larger gap between the points for an AOT of 0 (a clean

atmosphere) and an AOT of 0.1, as scattering increases significantly when introducing

even a small amount of aerosols into a clean atmosphere.

4.4 Issues with the HOT
The HOT is not a perfect measure of the haziness of a pixel, and its value is affected by

several other perturbing factors. This section examines some of these factors, and then

examines possible methods to reduce the impact of these issues.

4.4.1 Breadth of the point cloud

The breadth of the point cloud of clear pixels in feature space is key to the accuracy and

sensitivity of the Haze Optimized Transform. The breadth, in this case, refers to the

average offset from the clear line, which is a representation of the range of the data in the

axis perpendicular to the major axis of correlation in the data (shown as PC2 in

Figure 4.9). The greater the breadth of the distribution of clear points (that is, points

with no atmospheric contamination) around the clear line, the larger the average HOT

value of a clear point and thus the greater the uncertainty in the AOT estimate from the

HOT value. The majority of the issues discussed below are a problem because they cause

an increase in the breadth of the point cloud.
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Figure 4.7: Trajectory of AOT-perturbed points in feature space. Black crosses show
the n = 1 subset of the LandsatAERONET TM dataset. The selected point is in blue,

and its movement in feature space for AOT increases in steps of 0.1 is shown in red

Table 4.7: Statistics of the HOT values for each of the two datasets, calculated using a
Clear Line calculated from a standard regression of each dataset.

n mean min max

LandsatAERONET 10 000 0.000 -0.136 0.105
LEDAPS 5.83× 107 0.000 -0.087 0.266

HOT values for the LandsatAERONET (n = 9) and Chilbolton LEDAPS image (chosen

as an image with typical mixed urban/rural land cover) were calculated using a linear

regression of all points as the Clear Line. Results are shown in Figure 4.8 and Table 4.7.

Ideally, all of the HOT values should be zero, as these are all clear pixels. However, this is

not the case - with a maximum negative offset of -0.136 and a maximum positive offset of

0.266. The Chilbolton LEDAPS image has significantly larger HOT values than the

LandsatAERONET dataset, and this is likely to be due to LEDAPS over- or under-

estimating the AOT over parts of the image (as with the Southampton example described

in §4.2.3), thus leaving some atmospheric contamination in the images.
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(b) Chilbolton LEDAPS image

Figure 4.8: Histograms showing the distribution of HOT values, calculated using a
Clear Line calculated from a standard regression of each dataset. Note that the y axis of

the LEDAPS histogram shows log values.
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4.4.2 What factors control the location of the points in feature space?

To understand what controls the breadth of the point cloud, the factors that control the

location of these points in feature space must be understood, so that some of these factors

can be controlled to reduce the breadth of the distribution. Due to the range of metadata

available, the LandsatAERONET TM dataset will be used to analyse these possible

factors. Here the simulated top-of-atmosphere radiance in a clean atmosphere is used,

calculated from the atmospherically-corrected reflectance of Landsat pixels directly above

AERONET sites, and thus there should not be any per-pixel atmospheric effects left in

the data.

There are two key dimensions of the location in feature space in this context: not the

primary dimensions of blue and red reflectance, but 1) the location along the clear line

(‘brightness’) and 2) the location perpendicular to this (‘deviation’), as shown in Figure

4.9. Values for each pixel on these two new dimensions were calculated using Principal

Components Analysis. Linear regression analysis was then carried out to assess the

relationship between each principal component and various possible causal factors:

• Land cover according to the manual land cover classification (the variable which, if

it were detailed enough and the atmospheric correction were perfect, should account

for all of the variation in the dataset)

• AOT, PWC and Ozone amount (in case residual atmospheric effects were still

present in the data)

• Solar zenith and azimuth, and view zenith and azimuth (in case of angular effects

from either the atmosphere or anisotropic surface reflectance)

Due to the size of the full LandsatAERONET TM dataset (n = 10044) almost all of these

variables show a significant relationship with the two principal components: with a large

data volume, almost any statistical test will produce a significant p-value. Thus, instead

of using p-values, the analysis below focuses on the proportion of the variance in the

principal components that has been explained by each variable. A threshold has been set,

and variables which explain less than 1% of the observed variance are not discussed below.

The following variables explained > 1% of the observed variance in the first principal

component (‘brightness’), thus affecting the position of a pixel along the clear line:

• Land cover: As expected, this has a significant relationship with the brightness,

explaining 57% of the observed variance in brightness.

• Precipitable Water Content: This explains 2.8% of the variance in pixel

brightness: the lower the precipitable water content, the brighter the pixel.

Although poor atmospheric correction may be the cause of a relationship between

PWC and brightness, it seems that this is actually caused by the relationship

between land cover and climate. The brightest pixels in the LandsatAERONET

dataset are those in desert regions, where there tends to be a low precipitable water

content, and thus this falsely appears as a relationship between precipitable water
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Figure 4.9: Diagram showing the two principal components, and their relationship to
the LandsatAERONET dataset. PC1 represents brightness, and PC2 represents deviation.
Note the directionality of the components, with the arrows pointing in the direction of

increasing principal component values.

content and brightness.

• Solar zenith angle: This explains 1.7% of the variance in the pixel brightness, but

this relationship is entirely dependent on a few outliers, and the relationship loses

significance once the outliers are removed.

The following variables have a significant relationship with the second principal

component (‘deviation’), which - due to the directionality of the PCA transform - can also

be thought of as ‘excessive redishness’. This is the more important of the two principal

components as it is highly correlated with the Haze Optimized Transform values and

controls the breadth of the point cloud:

• Land cover: Again, land cover has a very significant relationship with the

deviation from the clear line, explaining 36% of the variance of the deviation. In

general, this means that some land cover types are located further away from the

line than others, as suggested by Zhang et al. (2002a).

• Solar zenith angle: There is a negative relationship between the solar zenith and

the ‘excessive redishness’ of a point, which explains 8.1% of the observed variance in

the deviation from the clear line. That is, as the sun gets lower in the sky (an

increasing solar zenith) the simulated top-of-atmosphere radiance becomes ‘more

blue’. This seems to be a residual atmospheric effect, as the path length of light in
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the atmosphere becomes longer as the sun gets lower in the sky, and thus the light

undergoes more scattering. This scattering is wavelength dependent, so blue light is

scattered more than red light, and the pixel becomes ‘more blue’. This atmospheric

effect should not still be present in the data, as the atmospheric correction of each

of the original LandsatAERONET pixels took into account the solar and view

angles of the pixel, but it is unlikely to be present in a real-world image as every

pixel will have been acquired at a very similar solar zenith angle.

• Solar azimuth angle: This explains 5.5% of the observed variance in deviations

from the line, and the relationship is almost certainly caused by angular reflectance

effects from the ground surface. For example, vegetation can vary significantly in

reflectance depending on the azimuth angle it is viewed at, and this will affect the

location of the point for that pixel in feature-space. As with the relationship above,

it is unlikely to be present in a real-world image, as the solar azimuth angle for each

pixel is likely to be similar.

• Others: Ozone concentrations and AOT explain 3.7% and 2.5% of the observed

variance respectively, but there does not appear to be any significant relationship

between these variables and deviation from the line: the R2 values result from a few

outliers and the distribution of the data (for example, most AOT values are

relatively low, so the position of a point with high AOT has a significant influence

on the relationship).

4.4.3 How does land cover affect the location of the points in feature

space?

Figure 4.10 shows of the data points from the LandsatAERONET (n = 9) dataset,

coloured according to the manual land cover classification results. As described in §4.2.4,

this dataset consists of atmospherically-corrected Landsat pixels from sites across the

globe. As the data comes from many different images, it will have been collected across a

range of seasons and thus will contain the reflectance of vegetation at a range of

phenological stages.

The graph shows groups of outliers in the plot of LandsatAERONET TM data, and the

majority of these outliers are specific land cover types. The limited number of pixels

covered with snow or ice are significantly brighter than the rest of the data (region H on

the graph), and bright white building roofs (particularly those which are large enough to

cover an entire 30m pixel) and very bright fields (such as oil seed rape) also produce very

bright outliers (regions G and F respectively). These regions are outliers in terms of

brightness, but are also slightly offset from the Clear Line, which would produce spurious

HOT values.

Bare surfaces (region C) and areas of shrub/scrub (region A) are offset from the Clear

Line in the red direction, and would therefore produce spuriously low HOT values, and

water (region B) and some pasture/hay fields (region E) are offset in the blue direction,

and would therefore produce spuriously high HOT values. Region D contains a mix of
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urban data acquired under very polluted conditions (AOT = 1.7), which weren’t fully

corrected by the LandsatAERONET correction routine, and therefore - due to the

relationships that the HOT relies on - the points are offset in the blue direction.

These offsets are very similar to those found by Zhang et al. (2002a) and shown in

Figure 4.1, with water and urban areas producing spuriously high HOT values and

grassland/shrubland and bare surfaces producing spuriously low HOT values. This land

cover effect is the most significant factor affecting the deviation of points from the Clear

Line, and thus some sort of ‘land cover correction’ procedure will be needed to remove

this effect.

4.4.4 How does the breadth of the point cloud change based upon sensor

resolution?

The image resolution is likely to significantly affect the breadth of the point cloud, as the

measurements acquired for large pixels are in essence an average of the range of spectra

present within the pixel. In the terminology of Strahler et al. (1986), an H-res image

would produce a very broad point cloud as each pixel within the image would have the

unique spectrum of an individual part of a separate object, whereas the pixel values in an

L-res image would be averages over a wide range of individual spectra, and thus the point

cloud would be narrower.

Figure 4.11 shows that this is the case, with mean HOT values decreasing rapidly as

resolution increases. The trend for maximum HOT is more complex, with several sharp

jumps followed by plateaus. The jumps are likely to be related to the spatial structure of

the image. For example, averaging a number of pixels over one object, such as a building

roof, is likely to give a fairly similar result to using a single pixel, but as soon as the area

of pixels being averaged extends onto another land cover type then the result will change

significantly.

This suggests a potential method to improve the resulting HOT values: resample the data

to a coarser resolution. This will have the negative effect of removing some of the detail

that we are trying to observe, so it should be not used unless absolutely necessary.

4.5 Conclusion
This chapter has examined, in detail, the fundamental basis and assumptions of the HOT.

It has shown that the assumptions of the HOT, such as a high correlation between visible

bands, are generally valid, and that the analysis of Zhang et al. (2002a) is correct. This is

an essential stage in the development of a new algorithm based upon the HOT: it is now

safe to extend the HOT as the basic method has been shown to be valid.

Issues with the HOT have been examined, and the breadth of the point cloud has been

found to be a significant problem. The majority of this breadth is caused by the variation

in land cover across a real-world image. Correction for these land cover effects would
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Figure 4.11: Maximum and Mean HOT values from the Chilbolton LEDAPS image
resampled to a range of resolutions

significantly improve the resulting HOT data. A coarsening of sensor resolution has been

found to significantly decrease this breadth, although this also removes some of the detail

from the images and so is not a desirable solution.

To perform the ‘validation’ of the original HOT, three data sources were used: an

atmospherically-corrected airborne image, LEDAPS-corrected Landsat images, and an

entirely new dataset consisting of ‘perfectly’ atmospherically-corrected Landsat pixels over

AERONET sites around the world. This latter dataset - which plays a significant role in

the rest of the thesis - is the major novel contribution of this chapter. Although the HOT

has been found to be fundamentally valid, further development will be required to allow it
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to be used to estimate AOT: this is discussed in the next chapter.



Chapter 5

Improving the Haze Optimized

Transform

5.1 Introduction
The previous chapter investigated the original HOT method, and found that its

assumptions were valid and it performed as expected. However, the original Haze

Optimized Transform is not suitable to be used for estimating AOT, due to its focus on

haze as opposed to aerosols. This chapter focuses on developing a version focused on

aerosols, as well as implementing a number of other improvements to the HOT, namely:

1. Use of calibrated satellite sensor data, rather than raw Digital Number values

2. Use of a method to estimate the Clear Line without requiring manual selection of a

clear area of the image

3. Use of an Object-Based Image Analysis (OBIA) approach to perform a robust HOT

correction

These will be discussed in detail in the rest of this chapter.

5.2 Pre-processing satellite sensor data before use
The original HOT used raw digital numbers (DNs) to define the location of the points in

feature-space. The advantage of this approach is that it does not require any

pre-processing of data, but there are significant disadvantages: DNs have no physical

meaning, and are not comparable between different image acquisition conditions or

different sensors.

Two options were investigated: using radiance values, and using partially-corrected

reflectance values.

111
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Figure 5.1: Comparison of the simulated radiances in a clean atmosphere produced
from the n = 1 subset of the LandsatAERONET TM dataset using the spectral response
functions of the Landsat TM and Landsat ETM+ instruments (which are built-in to 6S
Vermote et al., 1997). Both instruments have the same range for each spectral band, but

different response functions.

5.2.1 Radiance

One potential improvement is to convert the raw DN values to radiance, using the scaling

factors provided in the image metadata, before calculating the HOT value. Use of real

physical units (radiance), rather than sensor-specific measurements (DN values) enables

the comparison of HOT values between a range of sensors, making it easier to develop a

method which can be applied to satellite data from a range of sensors.

Although using radiance enables the use of the HOT for a range of different sensors, care

must still be taken as the differing spectral response functions between sensors can cause

significant changes in the location of points within feature space (Steven et al., 2003). For

example, Figure 5.1 shows that there is a significant difference between simulated

radiances of two very similar sensors: Landsat TM and Landsat ETM+. Similarly,

radiance values are not comparable between different image acquisition conditions, as

radiance is a measure of the light intensity reaching the sensor.
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5.2.2 Partially-corrected reflectance

An alternative is to use reflectance, which is a measure of the proportion of light reflected

by an object, defined as the ratio of the reflected light to the incident light. Two main

categories of reflectance values are used in remote sensing:

• Top of Atmosphere (TOA) reflectance is the ratio of the irradiance at the top of

the atmosphere to the radiance received at the satellite, including correction for the

solar angle and Earth-sun distance.

• Bottom of Atmosphere (BOA) reflectance is the ratio of the irradiance at the

ground surface to the ground-leaving radiance. Thus, it includes all corrections

necessary to obtain irradiance at the ground surface and ground-leaving radiance,

such as corrections for solar and viewing angles, Earth-sun distance, mixed gases,

ozone, aerosols and water vapour.

As discussed in the previous chapter, reflectance can be measured through a range of

illumination and observation geometries producing measurements such as the

Hemispherical-Conical Reflectance Factor (HCRF) and the Bi-hemispherical Reflectance

Factor (BHRF). Any measurement of reflectance from a satellite will, by definition, be a

measurement of HCRF. As discussed in the previous chapter, Landsat pixels have a

relatively constant field of view, and thus in this context, HCRF measurements from

Landsat should be comparable.

As part of the development of an improved version of the HOT, an alteration of the BOA

reflectance correction method was devised, which corrects for all atmospheric effects apart

from aerosols: referred to as a ‘pseudo-BOA reflectance’. This was implemented using

Py6S, by configuring the atmospheric conditions based upon the image metadata and

setting the aerosol parameterisation to ‘No Aerosols’ before using the built-in 6S

‘atmospheric correction from radiance’ function (described in detail in the original 6S

paper; Vermote et al., 1997)

In the context of the Haze Optimized Transform, we want to use data which are

comparable between sensors, and which correct as much of the atmospheric variability as

possible, while ensuring aerosol effects are still present in the data. This should make it

easier to apply the AOT estimation procedure to different sensors, and will ensure that

HOT values are only affect by aerosols, not any other atmospheric effects. Therefore, the

correction to ‘pseudo-BOA reflectance’ was chosen, and has been applied to all images

used from this point onwards.

5.2.3 Masking

A key component of all aerosol retrieval algorithms is the cloud masking procedure. Even

very small amounts of thin cloud over a pixel can artificially increase the AOT value

(Kaufman et al., 2005), so the cloud-masking algorithm should be conservative: preferring

false positives to false negatives.
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Several aerosol retrieval algorithms have their own specially-designed cloud masking

procedures (for example Martins et al., 2002). In this case the FMask algorithm (Zhu and

Woodcock, 2012) has been used, as it has a lower false negative rate than other Landsat

cloud masking algorithms such as ACCA (Irish, 2000). FMask is an object-based masking

algorithm which marks each pixel as one of the following:

• Clear land pixel

• Clear water pixel

• Cloud shadow

• Snow

• Cloud

• No observation (fill data)

In this case, any pixels which are not marked as Clear land are masked out. As well as

masking clouds, this removes all other cloud-related phenomena which may affect the

accuracy of the algorithm (shadows, possible clouds and so on), and also pixels containing

snow or water, two landcovers which are likely to have erroneous HOT values. As shown

in Figure 4.10, water pixels have an erroneously high HOT, and snow pixels have an

extremely high brightness. The removal of these two landcovers is unlikely to lead to a

significant reduction in the utility of this algorithm, as there are several existing methods

for AOT retrieval over water, and many areas of remote sensing require special methods

to be used over snow/ice. All pixels which are masked are set to NaN, as this value will

carry through all future calculations, ensuring that masked pixels will stay masked during

all steps of the algorithm.

5.3 Clear Line estimation
The original Haze Optimized Transform method involved estimating the parameters of the

clear line (the gradient, m, and the y-intercept, c) by performing a regression of the blue

and red bands in an area of the image with no haze. However, there is no part of any

satellite image that will have an AOT of zero, so this approach is impossible here: the

regression line must be estimated using some other approach.

Several methods for generating an appropriate regression line were developed and then

compared. A key decision when comparing multiple methods is the criteria for assessing

the quality of each method: how do we decide whether a method is ‘better’ than another

method? This is particularly difficult in this situation, as we don’t have a ‘perfect answer’

to which we can compare the results. The LEDAPS images are the best per-pixel

corrected images that are available, but they have multiple issues (described in §4.2.3), so

we cannot necessarily assume that the regression line that best fits through the LEDAPS

point cloud will be the same as the Clear Line. However, there is no better way to

quantitatively assess the quality of the lines produced by each method, so lines will be

assessed by the sum of the squared residuals from a LEDAPS-corrected image, as well as

a qualitative assessment of the position of the line.
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Figure 5.2: Graphical depiction of the calculation of residuals in standard regression
(grey lines) and ODR (red dotted lines).

5.3.1 Orthogonal Distance Regression

Standard linear regression based upon a least-squares minimisation of the residuals is not

appropriate because residuals in standard linear regression are calculated as the distance

from the line to each point in the y direction; the error in x is not taken into account.

This stems from the common use of linear regression to predict one variable from another

where it is only the error in the predicted variable that is relevant. However, in this case

we are not trying to predict the red reflectances of pixels from their blue reflectances, we

are trying to establish a relationship between these two variables: so both x and y errors

are important. To take this into account, all regressions were carried out using

Orthogonal Distance Regression (ODR; Boggs and Rogers, 1990), which calculates

residuals as the distance to each point along a line perpendicular to the regression line

(Figure 5.2). The Scipy interface to the ODRPACK software (Boggs et al., 1989) was used

to perform ODR, with starting estimates for the parameters given by standard

least-squares linear regression.

A comparison of standard regression and ODR is shown in Figure 5.3 for the Namibia and

SotonNewForest LEDAPS simulated radiance images. In both cases, the ODR regression

line would be a significantly better Clear Line than the standard regression line, as it is

almost parallel to the primary axis of variation in the data (shown by the darkness of the

point cloud), meaning that the residuals (that is, the HOT values) would not be affected

significantly by the brightness of the point. The effect is greater for the Namibia image,
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but is still present in SotonNewForest, and similar results are found for all of the other

LEDAPS images.

5.3.2 Estimation of Clear Line parameters

The parameters of the clear line should be constant for a set of images with constant land

cover, acquired by the same sensor (with no degradation) under the same conditions (for

example, viewing and irradiance angles, solar irradiance and ozone amount), but with

different aerosol amounts (as, by definition, the aerosol content of pixels in the image

should not affect the definition of the clear line). All of these criteria are unlikely to be

met, as even images of the same location will have different conditions depending on the

time and date of image acquisition. However, if we assume that the conditions of image

acquisition do not significantly affect the parameters of the clear line - given the

pseudo-BOA reflectance correction - then the only variable which will significantly affect

the clear line parameters is the land cover.

He et al. (2010) argued that the location of the clear line in most images was primarily

controlled by two landcovers which are present in the majority of images: vegetation and

asphalt. If we assume this is the case for all images we will want to process, then we can

simply use the regression line calculated using all points in the LandsatAERONET

dataset as a regression line for all images.

Some of the points in the LandsatAERONET dataset have unusually high reflectances

which are unlikely to be present in many images, and may have an undue influence upon

the regression line. Thus, the regression line based upon LandsatAERONET points where

both the red and blue reflectances are low - in this case under a threshold of 0.5 - could

prove to be better.

The assumption by He et al. (2010) that the land cover of an image does not affect the

parameters of the Clear Line may not hold for images with very different land covers.

Therefore, an alternative method was developed to take into account the land cover of the

image when estimating the Clear Line parameters. The GlobCover dataset (Arino et al.,

2007) provides 300m land cover data across the whole world, and this was used to

calculate the percentage of pixels in each of the GlobCover classes over the area covered

by the satellite image. These percentages for each class were then mapped to the NLCD

classes which were used for classifying the LandsatAERONET dataset, using the class

correspondences in Table 5.1. A Monte Carlo sampling procedure was then applied,

sampling 5,000 points from the LandsatAERONET dataset with the same proportion of

land cover classes as found in the GlobCover subset. Regression (using the ODR method)

was then carried out on this sample of LandsatAERONET points. This sample is

representative sample of the ground reflectances of pixels within the image, and thus the

regression line calculated from this sample should produce a good Clear Line. This novel

approach can be traced back to the work of Lambeck (1977), who used ‘average Landsat

scene reflectances’ as part of their image processing procedures: here a more advanced,
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(a) Namibia

(b) SotonNewForest

Figure 5.3: Comparison of standard Ordinary Least Squares linear regression with
Orthogonal Distance Regression for two example LEDAPS images. The results for the

other LEDAPS images were very similar.
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Table 5.1: GlobCover to NLCD class mapping, used in the Monte Carlo regression

GlobCover Class NLCD Class

Post-flooding or irrigated croplands (or aquatic) Open Water
Rainfed croplands Cultivated Crops
Mosaic cropland / vegetation Cultivated Crops
Mosaic vegetation / cropland Pasture/Hay
Closed to open broadleaved/evergreen forest Mixed Forest
Closed broadleaved deciduous forest Deciduous Forest
Open broadleaved deciduous forest Deciduous Forest
Closed needleleaved evergreen forest Evergreen Forest
Open needleleaved deciduous or evergreen forest Evergreen Forest
Closed to open mixed forest Mixed Forest
Mosaic forest or shrubland / grassland Shrub/Scrub
Mosaic grassland / forest or shrubland Grassland/Herbaceous
Closed to open shrubland Shrub/Scrub
Closed to open herbaceous vegetation Grassland/Herbaceous
Sparse vegetation Shrub/Scrub
Closed to open broadleaved forest (fresh flooded) Deciduous Forest
Closed broadleaved forest or shrubland (salt flooded) Deciduous Forest
Closed to open grassland (regularly flooded) Grassland/Herbaceous
Artificial surfaces and associated areas Developed, Medium Intensity
Bare areas Barren Land (Rock/Sand/Clay)
Water bodies Open Water
Permanent snow and ice Perennial Ice/Snow
No data (burnt areas, clouds) NaN

and more representative, ‘landcover-weighted’ average is used.

5.3.3 Comparison of methods

The sum of squared HOT values (ΣHOT2; which is equal to the sum of the squared

residuals calculated by the ODR) for each of the LEDAPS images and each of the three

methods described above are shown in Table 5.2. The lower the ΣHOT2, the better the

method fits the LandsatAERONET dataset, and therefore the closer to the assumed ‘best’

Clear Line the estimated line is.

In all but the very bright images (Namibia, Sahara and Saudi Arabia), calculating the

regression using only the LandsatAERONET data points with reflectances < 0.5 improved

the fit significantly, and in approximately half of the images using the LandsatAERONET

Monte Carlo approach reduced the ΣHOT2 significantly - for two images the decrease was

by an order of magnitude. In the other half of the images the LandsatAERONET Monte

Carlo approach has a slightly poorer fit than the LandsatAERONET < 0.5 line, but the

magnitude of the increase in ΣHOT2 is significantly smaller than the magnitude of the

decrease for the other half of the images. The LandsatAERONET Monte Carlo method

also has the lowest standard deviation, showing that it performs more uniformly across a

wide range of images: an important factor in making this method as widely applicable as
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possible. Given these results, it was decided to use the LandsatAERONET Monte Carlo

method, and this has been used to estimate the Clear Line from this point onwards.

Once the position of the Clear Line has been estimated, the HOT image is created by

calculating the orthogonal distance from the clear line for each pixel in the image as

HOT =
B3 − (mB1)− c√

m2 + 1
(5.1)

where B1 is the pixel value in band 1 (blue), B3 is the pixel value in band 3 (red), m is

the gradient of the clear line and c is the y-intercept of the clear line.

5.4 Object-based HOT correction
The main issue with the HOT is that its values are affected by land cover as well as

aerosol concentrations; by attempting to correct for the effect of land cover, the

uncertainty involved in estimating AOT from HOT should be reduced.

Previous work on the Advanced Haze Optimized Transform (AHOT; He et al., 2010) and

the Background Suppressed Haze Thickness Index (BSHTI; Liu et al., 2011) has involved

performing a correction procedure on the raw HOT values to remove this land cover effect.

However, this is difficult as it is not just a signal-noise correction, as land cover is both a

source of signal (as it is a driver of localised change in AOT - for example, the higher

values generally found over urban areas) and of noise (anomalous HOT values caused by

land cover effects). A good HOT correction method will remove anomalous HOT values

caused by land cover effects, while not altering genuine HOT values: a challenging task.

Methods have generally focused on looking for sudden changes in HOT value, as these are

unlikely to occur in genuine HOT data (due to atmospheric mixing causing dispersion of

aerosol particles), but are often caused by sharp borders between different land covers.

The correction method used by AHOT and BSHTI is the same, and involves treating the

HOT image as a Digital Elevation Model (DEM). The correction task then involves ‘filling

sinks’ and ‘flattening peaks’ to remove negative and positive anomalies respectively.

These are implemented using mathematical morphology functions. However, a

mathematical morphology-based approach, although computationally-efficient, is not

flexible enough to allow the ideal correction to be implemented. For example, the peak

flattening routine used by AHOT and BSHTI flattens a peak to a constant value, thus

removing the spatial pattern of HOT values within the anomalous area.

An improved HOT correction method has been developed within the context of

Geographic Object-based Image Analysis (GEOBIA). GEOBIA (Hay and Castilla, 2008;

Blaschke, 2010) is a general approach to image processing which involves segmenting the

image into a number of real-world objects and then processing each of these objects

separately. The formal mathematical definition of segmentation states that every pixel in

the image should be a member of one - and only one - segment: that is, the entire image
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is segmented. In many applications, however, this is inefficient, as the majority of image

objects are not used. For example, previous work by the author developed a method to

only segment areas which had the potential to be Ground Calibration Targets for use in

empirical atmospheric correction (Wilson and Milton, 2010).

In this application, image objects are only created where there are sharp boundaries in

the HOT image, thus extracting a set of objects which have HOT anomalies which are

likely to have been caused by land cover effects. Once the objects are created for each of

the anomalous regions, the correction process can be implemented very flexibly on a

per-region basis, taking into account all of the contextual information which the use of

image objects provides.

The development and testing of the algorithm was carried out using LEDAPS images,

which - theoretically - should have spatially-constant HOT values, due to the LEDAPS

spatially-variable atmospheric correction removing all aerosol effects. Thus, theoretically,

all anomalies seem in these images will be due to land-cover effects which the correction

method should remove. However, issues with the LEDAPS correction mean that this is

not necessarily the case, and that some areas will have genuinely higher or lower HOT

values, due to a poor LEDAPS correction in that area. This will be analysed further when

assessing the quality of the correction, in §5.4.8.

5.4.1 Segmentation algorithm

The segmentation algorithm takes a HOT image and creates image objects over

sharply-defined areas with anomalous values, and consists of three main stages:

1. Edge detection: The Canny algorithm (Canny, 1986) was used to find sharp

edges in the image. The algorithm uses hysteresis thresholding to mark pixels which

have an edge magnitude > Thigh as edges, and then recursively mark any pixels

which have an edge magnitude > Tlow and are connected to a previously-found edge

pixel as edges too. In most Canny implementations, the thresholds are given as

absolute edge magnitude values, but the range of magnitudes can vary significantly

between images. Thus, a wrapper for the Canny algorithm was created which allows

thresholds to be specified as a percentile of the histogram of magnitude values, given

as a fraction between 0–1. Thigh is generally set very high to ensure that only very

strong edges are picked up, but Tlow is set lower to ease the edge completion step.

2. Edge Completion: The output from edge detection often has gaps in the borders

of objects, and these require filling in an intelligent manner. The Shih and Cheng

(2004) algorithm for adaptive morphological edge linking, which fills gaps in edges

using locally-aligned ellipsoidal morphological dilation, was implemented to do this.

This method sometimes produces isolated small edges which are not linked to any

other edges: these are automatically removed in the next step.

3. Filling and labelling edges: Now that the edges have been completed so that

each object has a fully-defined border, the edges were filled to create image objects,
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and each object was given a unique integer label. Small edges that have not been

used in this process (for example, if they never got fully linked into a polygon) were

then removed.

Full details of the segmentation process, and the relevant parameters used, are shown in

Figure 5.4, and example images at each stage of the process are shown in Figure 5.5.

5.4.2 Correction algorithm

Through the use of a object-based approach, each anomaly will be represented by a

separate image object, thus allowing correction algorithm to perform individual

corrections for each anomaly, rather than performing a uniform correction across the

whole image, as in previous methods (such as He et al., 2010). The basic correction

method, upon which several extensions have been implemented, is fast to execute and

does not restrict the corrected values inside an object to be constant, as is the case with

the AHOT and BSHTI approaches.

The algorithm is conceptually simple (although it is implemented in a somewhat more

complex manner to obtain the best computational efficiency): the difference between the

mean HOT value of the pixels within an positive HOT anomaly image object and those

bordering it is subtracted from all of the pixels within the image object. This preserves

the spatial pattern of HOT values within the object, but reduces the magnitude of the

values to make them closer to the other pixels in the local area, thus removing the large

HOT anomaly. The same method is implemented for negative HOT anomaly objects, but

the difference is added rather than subtracted. Full details are provided in Figure 5.6.

5.4.3 Improvement of the segmentation algorithm

The results of this segmentation process were examined across all of the test LEDAPS

images, and the final segmentation was observed to be poor in some situations, with both

missing segments where they should have been present (under-segmentation), and

segments in areas that did not have sharp boundaries (over-segmentation). This then led

to a lack of correction, or over-correction, in these areas. Several refinements were made

to the segmentation algorithm to take these into account. Whether a particular change

improved the results was determined visually, based on both the generated segments

image and the removal of sharp-boundaried anomalies in the LEDAPS images corrected

using these segments.

• Segmentation around regions with no data: As discussed in §5.2.3, various

regions in the input images were masked out, and the values set to NaN. However,

the edge detection ignores all masked pixels and therefore the edges of objects that

bordered masked areas were not being detected. This was resolved by performing

two separate Canny edge detection procedures which were then combined using a

binary OR operation: one to detect the standard edges in the image, and one in

which a binary image consisting of NaN/non-NaN values was used to detect the
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Figure 5.4: Flowchart showing the segmentation procedure, along with the parameters
used.
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(a) RGB composite (b) HOT image

(c) Raw edges (d) Completed edges

(e) Segmented areas (f) HOT image with segmented areas overlayed

Figure 5.5: Example outputs at each stage of the segmentation process of a subset of
the London Landsat image over Redhill, Surrey.
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Figure 5.6: Flowchart showing the base HOT correction procedure.

(a) Before (b) After

Figure 5.7: Example of the improvement in segmentation around regions with no data.
This extract from the SotonNewForest image shows the westernmost part of the Isle of
Wight. In (a), correction artefacts around the coast are clearly noticeable. These are
caused by segments not being created in areas adjoining masked areas - in this case, the
sea. In (b) the correction is improved by the extension of the edge detection process to
deal with masked areas, thus allowing segments to be created next to masked areas. The
colour scale is the same for both images, with high HOT values shown in white, and low

values in black.
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edges of NaN regions. The improvement in the correction of part of the Isle of

Wight coast is shown in Figure 5.7.

• Perform full adaptive iteration for edge completion: The Shih and Cheng

(2004) algorithm can be run in a single step or as an iterative process with pruning

of ‘dangling’ edges between each iteration. The former was originally used as it is

quicker, but it was found that implementing the full adaptive iteration procedure

reduced over-segmentation as ‘dangling’ edges were removed by the pruning

procedure and thus did not form their own spurious objects.

• Allow sub-segments: Due to the mode of operation of the standard region

labelling approach, the original segmentation algorithm simply filled inside the edges

produced by the edge completion procedure. This means that if an object with a

sharp boundary had another sharp-boundaried object within it, for example, a lake

in the middle of an area of woodland, the whole area was segmented as one object.

This effect was most noticeable in London which has relatively a sharp boundary

around the main urban area, but also has various sharp-boundaried objects within it

which have significantly different land cover, such as Hyde Park and other areas of

green space. In the original version of the algorithm the whole of London was

segmented as one object, leaving sharp boundaried objects inside the main urban

area uncorrected (Figure 5.8(a)).

The ability to create sub-objects was implemented by replacing the simple filling

and labelling step in the segmentation algorithm by the following:

1. Filling the completed edges to create the large objects (as in the previous

version)

2. Masking these filled objects with the completed edges, thus separating

sub-objects with a line of blank pixels

3. Labelling the result, which will result in separate labels for each sub-object due

to the blank pixel separation

Adding the creation of sub-objects using this method improved the correction of areas in

central London (Figure 5.8(b)), and elsewhere.

5.4.4 Improvement of the correction algorithm

Even with an improved segmentation, the correction procedure produced poor results in

some circumstances. An iterative process of testing possible changes led to the following

improvements in the algorithm. Whether a particular change improved the results was

determined visually, based on the removal of sharp-boundaried anomalies in the LEDAPS

images.

• Offset borders: The bordering pixels used to calculate the average HOT value

around the image object are offset by one pixel, so rather than covering the

immediate border of the object, there is one pixel gap first (see Figure 5.9). This

reduces the effect of an erroneous segmentation of the object, and deals with

adjacency effects in the HOT image, resulting in a reduction in correction artefacts
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(a) Before (b) After

Figure 5.8: Example of the effect of allowing sub-segments to be created during the
segmentation process. This extract from the London image shows Hyde Park, London
and the surrounding area. In (a) the park - which is a significantly different land cover to
the surrounding area, and has a sharp boundary - is not corrected at all, as it has not
been individually segmented. In (b) it has been extracted as a sub-segment and is well
corrected. The colour scale is the same for both images, with high HOT values shown in

white, and low values in black.

Figure 5.9: The two borders used by the correction algorithm. The black pixels are the
image object, red pixels show the standard border, and blue pixels show the offset border.

around the edges of objects (Figure 5.10).

• Correcting for edge effects: The HOT values of pixels around the edge of dark

objects are often brighter than the rest of the dark pixels (due to mixed pixels

occurring here), and thus if they are corrected in the same way as the dark pixels

they will be ‘over-corrected’ and appear as bright edges around the object

(Figure 5.11). These edge effects are removed by selectively correcting the pixels

surrounding the object, so that those which are of a similar magnitude to the object

are corrected, but those which are significantly brighter do not have their values

changed. The threshold used to decide which pixels to include is chosen using the

Otsu (1975) algorithm, which finds the optimal threshold for separating two classes

(in this case dark pixels and the brighter pixels at the edge of the dark object) based

on an analysis of the histogram of values (Figure 5.12). The effect is a reduction in

the magnitude - and in many cases the removal - of edge effects around bright and

dark objects, particularly in areas with multiple objects close to each other. For

example, Figure 5.13 shows a small landscaped business park next to a major road.
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(a) Before (b) After

Figure 5.10: Example of the effect of offsetting the borders of the image objects when
calculating statistics, taken from the SotonNewForest image, and showing the reduction
in correction artefacts in (b) compared to (a). The colour scale is the same for both

images, with high HOT values shown in white, and low values in black.

Figure 5.11: Example of the edge effects produced by the HOT correction algorithm
when correcting a small area of dark forest pixels. The bright edge effects cover 1–2 30m

pixels.

Correcting the multiple segments created for the various sharply-defined land covers

within the business park (vegetation, buildings and roads) originally caused edge

effects, which are removed when using the Otsu threshold.

• Using more robust statistics to characterise the object-border

difference: Over- or under-correction of objects in the HOT image was observed in

some situations. After investigation it was found that these were caused by
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Figure 5.12: Example of the histogram of HOT values within a dark object. The
histogram is noticeably bi-modal, and the Otsu algorithm chooses the threshold, shown
by the red line, which best separates these two separate data distributions: the normal

dark pixels (left) and the brighter edge pixels (right).

(a) Before (b) After

Figure 5.13: Example of the effect of correcting for edge effects by using the Otsu
threshold, taken from the SotonNewForest image, and showing the reduction in correction
artefacts in (b) compared to (a). The colour scale is the same for both images, with high

HOT values shown in white, and low values in black.
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(a) Mean (b) Median

Figure 5.14: Example of the effect of calculating the image object and border statistics
using the median (b) instead of the mean (a), showing the improvement in the correction
from using the median. The colour scale is the same for both images, with high HOT

values shown in white, and low values in black.

anomalous values in the object or border which were affecting the mean value used

to calculate the correction. The mean is particularly sensitive to extreme values,

and several more robust, but more complex, methods based upon the histograms of

each object were tested. However, the best results were found by simply replacing

the mean with the median, which is far less sensitive to extreme values. For

example, Figure 5.14 shows the improvement in the correction of anomalies caused

by vegetation in a rural area of the SotonNewForest image when the median is used.

5.4.5 Iteration

With the alterations described above, the combined segmentation and correction

procedure removed a large number of the anomalies present in the original HOT images,

and produced far better results than the previous version. However, there were still areas

where it performed poorly - particularly in urban areas where a range of complex, mixed

land covers gives rise to many small, but significant, HOT anomalies.

The best way to correct these was found to be by iterating the segmentation-correction

process, using the corrected HOT image from the previous iteration as the input to the

next segmentation and correction steps. Even over only a few iterations, the quality of the

correction over urban areas improved (Figure 5.15).

Tests were performed to select the best method for deciding when to stop iterating: either

1) after a fixed number of iterations, or 2) based upon some sort of convergence in the

correction process. Statistics were extracted to look for convergence, each calculated

between two consecutive iterations: the number of pixels changed, the maximum pixel
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(a) Original (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

Figure 5.15: Example outputs over Southampton for the first three iterations of the
segmentation-correction procedure, from the SotonNewForest image. The colour scale is
the same for all images, with high HOT values shown in white, and low values in black.

difference, the sum of all pixel differences, and the mean pixel difference (calculated with

the number of pixels changed as the denominator to make the measure more robust).

Plots of these statistics over twenty iterations for several test images (Figure 5.16) showed

that both the number of pixels corrected and the maximum pixel difference were very

noisy (often oscillating between high and low values) and did not converge at all, even

after forty iterations. The latter is due to later iterations finding a few extreme anomalies

hidden within other objects, such as a bright building within a large area of green space,

thus increasing the maximum pixel difference. In contrast, both the total pixel difference

and the mean pixel difference showed an approximately exponential decline, gradually

converging on a relatively constant value after a varying number of iterations, depending

on the image, but always within twenty iterations.

The mean pixel difference was chosen to be used as the threshold, as normalising by the
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(c) Midwest

Figure 5.16: Statistics (number of pixels changed, mean pixel difference, maximum pixel
difference and sum of pixel differences) calculated over 20 iterations of the segmentation-

correction cycle.
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Figure 5.17: Average pixel difference calculated over 20 iterations of the segmentation-
correction cycle, with the termination iteration, according to the 10% threshold, marked

in red.

total number of pixels changed to calculate the mean is likely to provide a more robust

measure than using a simple sum. As the magnitude of this statistic varies between

images a fixed threshold could not be used, so an individual threshold was chosen for each

image, based upon the mean pixel difference between the original HOT image and the

result of the first iteration. After experimentation, the threshold was set at 10% of this

value, and the termination iterations are shown in Figure 5.17 as a red line.

This approach to terminating the iterative process does not always perform well. In some

situations it can lead to an ‘over-iteration’, which can exacerbate problems with the
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correction (see §5.4.8). Conversely, ‘under-correction’ can leave HOT anomalies in the

image, but this seems to be very rare: the current configuration of termination conditions

tends towards ‘over-correction’.

5.4.6 Parameterisation

The segmentation/correction algorithm has two configurable parameters: Thigh and Tlow,

the high and low thresholds for the Canny edge-detection method. These must be chosen

by the user at the start of the algorithm run - normally after examining the results of

segmentation with a range of parameters (Figure 5.18) - and the rest of the algorithm can

be run without user intervention. During development, many other parameters were

altered - such configuration for the edge-linking and pruning steps - but constant values

producing good results for all images were discovered.

The segmentation parameters should be chosen so that segments cover all HOT anomalies,

but are not created where HOT anomalies do not exist. Choosing appropriate

segmentation parameters is important, as under-segmentation will cause uncorrected HOT

anomalies to be present in the final result, and over-segmentation will have a broader

smoothing effect on the image, potentially removing or adjusting genuine HOT differences.

The exact choice of parameters can be difficult, as subtle changes in parameters can have

large effects. For example, the parameters for Figure 5.18(a) and 5.18(b) are very similar

(0.98, 0.20 and 0.95, 0.20), but 5.18(b) has significantly more segments. Conversely, there

is a big difference in the parameters for 5.18(c) and 5.18(d) (0.85, 0.75 and 0.85, 0.50),

but there is very little difference in the segmentations - as they both produce segments

across the whole image. In the context of this example, parameters of 0.98 and 0.20

(Figure 5.18(b)) were chosen, as this segmentation picks up some of the HOT anomalies

that are missed with a stricter parameterisation, but avoids over-segmentation.

After testing various choices of parameters, the parameters shown in Table 5.3 were

chosen for each of the LEDAPS images, and these have been used from here onwards.

5.4.7 Cross-sensor applicability

The segmentation and correction algorithms were tested on both Landsat TM and ETM+

data, with the original HOT images created from a clear line based upon the

LandsatAERONET TM and ETM+ datasets respectively. The development of the

segmentation and correction procedure was performed using Landsat ETM+ images, and

when the procedure was tested on Landsat TM images it was found to perform very

poorly (Figure 5.19).

A range of potential reasons for this were investigated, principally focusing on the

differences between the TM and ETM+ sensors, in terms of radiometric and geometric

quality. A large Point Spread Function (PSF) effectively reduces the resolution of the

image, smoothes the pixel data and, in the terminology of Strahler et al. (1986), makes

the image ‘more L-res’. Segmentation algorithms are known to perform more poorly with
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(a) 0.98, 0.20 (b) 0.95, 0.20

(c) 0.85, 0.75 (d) 0.85, 0.50

Figure 5.18: Example segmentations of a mixed urban/rural region within the Soton-
NewForest image, with a range of segmentation parameters. The parameterisation shown

in (b) was chosen for this image.

Table 5.3: Segmentation parameters for each of the test images

Image Thigh Tlow

Amazon 0.98 0.95

Botswana 0.85 0.75

Chilbolton 0.85 0.70

London 0.85 0.70

Midwest 0.85 0.70

Namibia 0.87 0.70

Sahara 0.98 0.2

SaudiArabia 0.85 0.70

SotonNewForest 0.95 0.2
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(a) Landsat TM (b) Landsat ETM+

Figure 5.19: Example of correction results over an area in Dorset, from the SotonNew-
Forest image, based on Landsat TM and Landsat ETM+ LEDAPS images. The colour
scale is the same for both images, with high HOT values shown in white, and low values

in black.

L-res data (Blaschke et al., 2004). However, the TM and ETM+ sensors have very similar

PSFs, with full-width half-maximum values of 36m and 34m respectively (Storey, 2001;

Markham, 1985). Furthermore, the segmentation procedure seemed to perform relatively

well on Landsat TM images, suggesting that it is the correction procedure which was

performing poorly with these images.

Issues with noise in Landsat TM images are well-reported in the literature, particularly

periodic noise such as banding, caused by differences in the optical quality between

consecutive mirror scans in different directions (Masek et al., 2001; Nichol and Vohora,

2004). This is visible in Figure 5.20, showing linearly-stretched RGB composites taken

from an area of the English Channel in the SotonNewForest image. Applying the

Maximum Noise Fraction transform (MNF; Green et al., 1988) to the image emphasises

the noise (Figure 5.21), showing significant banding with a period of 16-rows.

This type of coherent, periodic noise is likely to significantly affect the quality of the

correction procedure. By perturbing the values of the pixels within and around the

borders of the objects, it results in a significant increase in edge effects, as visible in

Figure 5.19(a). Appendix B shows an example of this on a very small image, allowing

manual calculation and explanation of the issue.

In modern terms, both Landsat TM and Landsat ETM+ are very old sensors, originally

designed in the early 1980s and early 1990s respectively. There was a significant

improvement in data quality between TM and ETM+, and that improvement has

continued with the Operational Land Imager (OLI) instrument launched on Landsat 8 in

February 2013, which has a better radiometric resolution (12-bit as opposed to 8-bit) and
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(a) Landsat TM (b) Landsat ETM+

Figure 5.20: Linearly-stretched RGB composites from Landsat TM and Landsat ETM+
over part of the English Channel, showing the banding present in Landsat TM data.

(a) Landsat TM (b) Landsat ETM+

Figure 5.21: The fifth Maximum Noise Fraction band from MNF transforms performed
on TM and ETM+ images of the English Channel. The MNF transforms were calculated

from a uniform area of deep water in the images.

a significantly improved signal-to-noise ratio (Irons et al., 2012). Most other modern

optical sensors, including the High-Resolution Visible (HRV) instrument on the SPOT

series of satellites, and the instruments planned for Sentinel-2, produce data of similarly

high quality.

At the beginning of this research (2011) only Landsat 5 and 7 were operational, but

Landsat 8 was launched in February 2013. The algorithm development was not extended

to work with Landsat 8 at this stage due to limited availability of data in the early stages

of the mission, the lack of a Landsat 8 LEDAPS product which was needed to create the

simulated images, and the potential issues that increasing the scope of the project could

have on timely completion of the research.
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Landsat 8 has now been fully operational for over 18 months and is producing

high-quality data. LEDAPS products are still unavailable for Landsat 8 (as of September

2014 they were estimated to be released in January 2015; personal communication, USGS

Customer Support Team), but as the first version of the algorithm has now been

developed there is less of a need to produce simulated images from LEDAPS products.

Landsat 8 has many advantages which make it likely that the algorithm will perform

better on Landsat 8 imagery than that from Landsat 7:

• Signal-to-Noise ratio: Landsat 8 has a significantly improved signal-to-noise

ratio (SNR) when compared to Landsat 7 and previous sensors. For example, the

SNR of the Landsat 7 blue band is 40, the requirement for Landsat 8 is 130, and the

actual performance is 350 - over eight times better (Irons et al., 2012). This will

reduce the presence of noise in images, and thus limit the potential for noise

(particularly in the blue band) to be interpreted as changes in AOT, and thus

improve the accuracy of the AOT retrieval.

• Radiometric resolution: Landsat 7 used 8-bit quantisation, providing only 256

different levels of brightness for each pixel in a scene. Landsat 8 improves this to

12-bit, allowing 4096 brightness levels (Irons et al., 2012). This will allow more

accurate capture of subtle differences in brightness between pixels, thus improving

the accuracy of the AOT retrieval.

• ‘Deep Blue’ band: Landsat 8 adds two extra bands, one of which is a ‘Deep Blue’

band at the shorter-wavelength end of the blue region of the spectrum

(approximately 430–450nm). The HOT is based upon both the wavelength

dependence of aerosol scattering and the high correlation between blue and red

reflectance. Using blue and red bands, but increasing the wavelength difference

between them - as would be the case when using the ‘Deep Blue’ band - should

increase the magnitude of the aerosol scattering effects, and thus improve the

accuracy of AOT retrievals.

Given these improvements, it is very unlikely that the poor correction seen with Landsat

TM data will be found with Landsat 8 data - or any other modern data - and the method

should be able to be adapted to new sensors as they are developed and launched. The

sensor requirements for the new algorithm are far less restrictive than most AOT retrieval

algorithms, and the algorithm simply requires:

• A blue band (with wavelengths ≈ 400–500nm, with lower wavelengths likely to

perform better)

• A red band (with wavelengths ≈ 600–700nm)

• Sufficient past data to produce a comprehensive version of the LandsatAERONET

dataset for the new sensor (the original LandsatAERONET datasets were generated

from a year of data, but more data may be needed for satellites with long revisit

periods)

• A known Spectral Response Function to use for Py6S simulations
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These requirements are met by a wide range of sensors with a variety of resolutions: here

the focus is on high-resolution sensors, as a wide range of methods already exist to

retrieve AOT estimates from lower resolution sensors such as MODIS and MISR.

Potential sensors are listed in Table 5.4: their resolutions range from 2m to 30m and

revisit periods from 1 day to 16 days. Although the algorithm could conceptually work

with very high resolution data (for example, Pleiades data at 2m resolution) it would

probably have significantly higher error (as shown in §4.4.4, where the resolution

significantly affects the spread of points around the Clear Line). Furthermore, it is

unlikely that AOT measurements need to be produced at such a high resolution, so work

should focus on coarser resolution data such as that from Landsat 8, SPOT and

Sentinel-2. Both Landsat 8 and Sentinel-2 have an extra blue band centred at a lower

wavelength which is designed for aerosol remote sensing: using this band in place of the

standard blue band should improve the results of the algorithm. Sentinel-2 also provides

freely-available data with only a five day revisit period, thus allowing retrieval of AOT

with both high spatial and high temporal resolution.

Table 5.4: Details on potential sensors with which the new algorithm could be developed
to work. Data from ITC (2014); Drusch et al. (2012); Powell et al. (2007).

Sensor Spatial Resolution
(m)

Revisit
period

Data freely
available?

Landsat 8 30 16 days Yes
ALI 30 16 days Yes
SPOT-5 10 2–3 days No
SPOT-6 & 7 6 1 day No
Pleiades 2 1 day No
RapidEye 5 1 day No
Sentinel-2 10 5 days Yes

To extend the algorithm to work with a new sensor, the following work must be carried

out:

1. Develop a new sensor version of the LandsatAERONET dataset: This

requires repeating the process described in §4.2.4 for the new sensor, including

acquiring a wide range of images, extracting pixels over AERONET sites,

atmospherically-correcting them, collecting metadata and checking for any

remaining atmospheric contamination. The manual land-cover classification from

Google Earth imagery cannot be automated and will be the most time-consuming

part of the process, but the majority of the rest of the process is automated and can

be easily altered to work with any sensor.

2. Implement an automated cloud-screening process: Cloud screening is an

essential part of the pre-processing (see §3.4.4), but the FMask algorithm used in

the new algorithm will only work with Landsat data. A broad range of other cloud

screening algorithms exist (Irish, 2000), and a suitable algorithm must be

implemented for the new sensor. Alternatively, manual cloud-screening can be
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performed, but this is both time-consuming and generally of lower accuracy.

3. Configure Py6S simulations for new bands: Py6S simulations are used in

various stages of the AOT retrieval process, and these simulations must be

performed with the Spectral Response Function (SRF) for each of the bands used.

A wide range of SRFs are built-in to the underlying 6S model, or have been added

to Py6S, and it is easy to add further SRFs if necessary.

4. Test the rest of the algorithm, altering where necessary: Depending on the

differences between Landsat ETM+ and the new sensor, changes may be necessary

in the rest of the algorithm. This is likely to be limited to changes in the internal

parameterisation of the various stages (such as changes in the parameters for edge

linking or the Monte Carlo Regression), but for radically different sensors it could

involve the addition of extra processing stages.

5.4.8 Evaluation of corrected HOT images

The examples images in Figure 5.22, and the profiles in Figure 5.23 show that the

correction significantly improves the land-cover issues within the HOT image, but that

the corrected images still have some individual pixel anomalies. These are remnants of

objects which were not entirely identified or corrected by the algorithm. These single

pixels anomalies cannot be corrected by the algorithm, as they will not be detected by the

edge-detection procedure. A simple median smoothing function applied using a 3x3 pixel

moving window removes these small anomalies, improving the correction, and so this has

been added to the correction procedure as a final post-processing step.

He et al. (2010) produced boxplots showing the variability of HOT values over a wide

range of different land covers (classified from the image using an unsupervised

classification algorithm) to show the effectiveness of their HOT correction procedure. This

is less appropriate to apply here as the average HOT value for any land cover should not

be zero (as every pixel in an image will have some aerosols over it) and the average HOT

should not be the same for each land cover (as it is likely that different land covers will

have different amounts of pollution above them, and thus the HOT values should be

different). Thus, we would not expect to see a large difference between pre-correction and

post-correction boxplots, resulting in an almost ‘flat’ series of boxplots, as found by He

et al. (2010, figures 4 and 10 respectively). However, the HOT correction procedure should

result in a small amount of ‘flattening’ of the series of boxplots, and a reduction in the

variance of the HOT over each land cover. This is shown to be the case in Figure 5.24.

The correction algorithm is a significant improvement on previous efforts to correct

land-cover issues in the HOT, but its performance depends on the situation in which it is

applied. Figure 5.25 shows examples of the original HOT and the corrected HOT for some

situations where the correction method performs well. Even though these are the

correction results from LEDAPS images, they do not have an entirely uniform HOT value

after correction. This does not necessarily mean that the algorithm has not performed

well: it is likely that the LEDAPS per-pixel atmospheric correction did not remove all of



Chapter 5 : Improving the Haze Optimized Transform 141

(a) RGB composite (b) Original HOT image

(c) Corrected HOT (d) Corrected HOT with 3x3 median smoothing

Figure 5.22: Example outputs of the HOT correction process on a subset of the
SotonNewForest LEDAPS image covering the western side of Southampton. The colour
scale is the same for all HOT images, with high HOT values shown in white, and low

values in black

the spatially-variable atmospheric effects. For example, higher HOT values around central

Southampton are visible in Figure 5.25(b), but this is not due to poor correction of land

cover anomalies - comparing with Figure 5.25(a) shows that all of these have been

removed - it is due to a genuine higher AOT over central Southampton which was not

corrected for by LEDAPS, probably due to the lack of DDV over this area. Similar effects

are visible in the other examples in Figure 5.25, most of which are likely to be due to

uncorrected atmospheric effects, rather than poor correction. Taking these genuine AOT

effects in to consideration, the correction procedure does well at removing all obvious

land-cover effects, particularly in the SotonNewForest example (Figure 5.25(b)). The

correction complex urban-rural mosaic in Figure 5.25(d) is corrected relatively well, with
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Figure 5.24: Boxplots showing HOT values for 35 different land-cover classes within
the SotonNewForest image, shown for (a) the original HOT and (b) the corrected HOT.
Note the reduction in range, and alignment of all classes around a central value in (b),

when compared to (a).

some residual effects visible from negative HOT anomalies over fields. It is difficult to

assess the correction of Central London (Figure 5.25(f)) as there are likely to be

significant changes in AOT over small spatial scales (the ‘urban canyon’ effect Vardoulakis

et al., 2003), which LEDAPS is unlikely to have corrected well for, due to a lack of DDV.

However, obvious HOT anomalies such as Hyde Park have been corrected well, suggesting

that the correction is performing well overall.

Figure 5.26 shows examples of issues with the HOT correction, caused by limitations in

the current implementation of the algorithm. The majority of these can be improved in

future versions of the algorithm. The original HOT images have not been shown here:

when the correction is poor, the issue is normally easily noticeable from the corrected

image.

Figures 5.26(a) and 5.26(b) show corrections that show contamination by edge-effects.
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(a) Southampton, with surrounding rural area, from the
SotonNewForest image (Original)

(b) Southampton, with surrounding rural area, from the
SotonNewForest image (Corrected)

(c) Complex urban-rural area from the Chilbolton image
(Original)

(d) Complex urban-rural area from the Chilbolton image
(Corrected)

(e) Central London, from the London image (Original) (f) Central London, from the London image (Corrected)

Figure 5.25: Examples of good HOT image corrections. In all images, high HOT values
are shown in white, with low values in black.
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(a) Part of the New Forest in the SotonNewForest image (b) Urban/Rural fringe in the London image

(c) Agricultural area in the Midwest image (d) Linear dunes in the Sahara image

(e) The island of Alderney, with the French mainland
(inset), from the SotonNewForest image

(f) A zoomed-in section of the Chilbolton image

Figure 5.26: Examples of issues with the HOT image correction In all images, high
HOT values are shown in white, with low values in black.
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This is particularly noticeable in Figure 5.26(b), where the edges of some of the objects

used in the correction can be seen. In Figure 5.26(a) the effect is less noticeable, but

relatively sharp borders between the darker and lighter areas of the corrected image can

be seen, suggesting edge effects that have been removed by the median smoothing

procedure. A further issue which can be seen in this example is the ‘contamination’ of

parts of the corrected image by dark HOT anomalies. That is, most of the dark areas do

not result from genuinely lower HOT values, but from the correction of a cluster of

negative HOT anomalies. As the correction process uses border pixels to calculate the

magnitude of correction to apply, a large group of anomalies bordering each other can

start a feedback loop, where dark border values mean that the area is never fully

corrected. During the iteration process it is possible - though rare - for this larger

anomaly to spread to cover a broader area of the image.

Figures 5.26(c) and 5.26(d) show poor corrections caused by poor segmentation. In

Figure 5.26(c) the segmentation did not detect the edges of all of the fields which caused

negative HOT anomalies, and thus they weren’t corrected. A similar issue occurred in

Figure 5.26(d) which had no self-contained objects that could be extracted by the

segmentation method. The linear dunes in the image had different HOT values due to the

angular and surface differences between the stoss and lee side of the dunes, and as the

segmentation algorithm does not extract these as self-contained objects, they can’t be

corrected, and so remain in the image. The broader-scale brighter and darker areas of the

image are due to changes in the geology of the sand, but as these vary gradually - as one

type of sand mixes gradually with another - they are not detected as objects by the

algorithm, and so are not corrected.

The issues shown in Figures 5.26(e) and 5.26(f) have the same root cause: no data areas.

Figure 5.26(e) shows that the island of Alderney has been corrected to have far higher

values than the French mainland. The tiny island of Burhou nearby has been corrected to

an even higher value. As water is masked at the start of the algorithm, both of these

areas are entirely surrounded by ‘no data’ pixels. In Figure 5.26(f) the areas around the

masked area - in this case, clouds - have become unnaturally uniform. These effects are

both caused by the use of pixel information surrounding an object to determine how much

to alter the pixels within the object. If there are a limited number of data pixels

surrounding the object - or, in the case of an island, no data pixels - then the correction

value will be skewed. This effect tends to get worse over multiple iterations of the method,

and the values become more skewed.

Although there are many advantages associated with the OBIA approach to land cover

correction, there are also disadvantages to this approach. The principal disadvantage is

the relatively arbitrary nature of the parameterisation: Thigh and Tlow have to be

estimated for each image location, and do not seem to be directly related to external

factors such as the land-cover mosaic of the image. These parameters are important as

the whole correction system is tightly-coupled - meaning that a small change in one of the

segmentation parameters (or in any of the algorithms themselves) can have a large impact
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on the resulting correction. The overall effect of this is that the algorithm and

parameterisation may require ‘tweaking’ for use with new sensors, and potentially even for

certain images from existing sensors. The approach taken in this chapter was designed to

reduce the impact of these issues - which often cause problems for object-based approaches

- by testing the algorithms on multiple LEDAPS images during the development phase,

thus ensuring that the algorithm has as broad an applicability as possible.

In summary, the object-based HOT correction procedure works well where the anomalous

HOT values form clearly-defined objects which can be segmented and then corrected.

This is often the case in urban areas, where most anomalies will be due to buildings, and

agricultural areas, where most anomalies will be due to crops in fields. The correction

performs poorly in areas where landcovers mix and merge gradually - such as in deserts.

There are also issues dealing with areas of no data, as there is less data surrounding each

object for the correction algorithm to use to determine the correct offset to apply.

5.5 Conclusion
In this chapter, three major improvements have been made to the HOT:

1. The use of partially-corrected reflectance values (corrected for all atmospheric

effects apart from aerosols), rather than raw DN values as used by Zhang et al.

(2002a). This removes residual atmospheric effects and should make the HOT values

of different images more comparable.

2. The estimation of the Clear Line using a Monte Carlo regression based upon the

proportion of land covers in the image. This removes the need to estimate the Clear

Line from a clear part of the image, which is impossible when trying to detect

aerosols rather than haze, as no part of the image will have no aerosols.

3. The application of an HOT correction procedure based upon Object-based Image

Analysis. This performs a similar correction to that used in the Advanced HOT (He

et al., 2010), but in a far more robust and effective manner.

With these improvements, the HOT is ready to be used to estimate AOT. The

relationship between HOT and AOT, and the development of methods to model this

relationship, will be examined in the next chapter.





Chapter 6

Investigating the HOT-AOT

relationship

6.1 Introduction
The previous chapter developed an improved version of the HOT, designed to be applied

to estimate AOT. In this chapter the relationship between these HOT values and AOT is

investigated, and a method is developed to estimate AOT from HOT. First, the

simulation of test images in which the AOT is known is described, followed by an

investigation of the HOT-AOT relationship, and development of a method to model this

for a given image. As this is the final stage in the development of the AOT retrieval

algorithm, the chapter finishes with an overview of the whole algorithm, including its

inputs, main processing stages and outputs.

6.2 Simulation of test images
Landsat images where the AOT is known for each pixel are needed to allow investigation

of the HOT-AOT relationship. As discussed previously, there are currently no methods

for deriving true per-pixel AOT from Landsat data, and thus there were two options: use

lower resolution data, or produce simulated images. There are significant issues with the

use of lower resolution data, as due to the scale differences the results are unlikely to be

applicable to Landsat-resolution data. Therefore, simulated data were produced by

combining the LEDAPS surface reflectance images with random AOT images to produce

an image where the AOT for each pixel is known.

In all of the following, AOT refers to AOT550: the Aerosol Optical Thickness at 550nm.

The 6S model only allows parameterisation of the AOT at 550nm, therefore all

simulations are based upon AOT550, and the HOT-AOT relationship is actually the

HOT-AOT550 relationship. Thus, the final output from the algorithm will be AOT550.

149
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6.2.1 Simulation of random AOTs

A key assumption of the HOT correction method is that the AOT varies smoothly across

an image, whereas land cover effects produce sharp boundaries. Thus the random AOTs

used in simulating the test images must be spatially-correlated. There are many methods

to produce images containing spatially-correlated values, but many implementations fail

to produce images which can cover a whole Landsat image (approximately 7,000 x 7,000

pixels, but varying between scenes) due to computational inefficiencies in the algorithms.

The fields package (Nychka et al., 2014) for the R programming language (R Core

Development Team, 2014) was used to generate a random Gaussian image using the

Wood and Chan (1994) algorithm. The Matérn covariance function (Matérn, 1986) with

θ = 0.7 and v = 0.9 was used to define the spatial correlation and data were produced on

an 8000 x 8000 pixel grid (this size was chosen so that the random image would be larger

than any potential Landsat image). This was very computationally expensive, in terms of

both CPU time and memory usage, and so only one random image was created, and this

was used for all simulations.

The values in the resulting image are distributed according to the standard normal

distribution (µ = 0 and σ = 1), an unrealistic distribution for AOT. To find a realistic

AOT distribution, the distribution of global AOT values was assessed by combining all

AERONET Level 2.0 measurements from every site ever operated. This showed a global

mean of 0.19, with 1st and 99th percentiles of 0.01 and 1.08 respectively. A key aspect of

this AOT distribution is that all values are > 0, as a negative AOT is physically

impossible. It is challenging to find a statistical distribution which can be parameterised

to have a peak at around 0.2, but with no values < 0. A log-normal distribution was

chosen as the most suitable, and the normal variates were convert to log-normal variates

by the following formula:

X ′ = exp(0.4X − 1.3) (6.1)

A comparison of the distributions of the random AOTs and all AERONET data are

shown in Figure 6.1: the peak value of the random AOTs is lower, but it was found to be

impossible to raise this value without part of the distribution becoming negative, so this

distribution was accepted. The resulting random image had a ‘cloud-like’ look, and varied

smoothly at a realistic AOT magnitude (Figure 6.2).

6.2.2 Simulation of images with AOTs

Simulated radiance images were created by combining the random AOT image with each

of the LEDAPS surface reflectance images. Py6S (Wilson, 2012) was used to simulate the

top-of-atmopshere radiance for each pixel based upon the ground reflectance (from the

LEDAPS image), the AOT (from the random AOT image), and a configurable aerosol

type. The aerosol types used are those built-in to the 6S model (Continental, Maritime,
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Figure 6.1: Comparison of the normalised distributions of all AERONET Level 2.0
data, and the generated Random AOT image.

Desert, Stratospheric and Urban), discussed in more detail in Vermote et al. (1997). All

other Py6S parameters were set to standard values for mid-latitude areas.

Running Py6S for a single parameterisation (one band, aerosol type, AOT and

reflectance) takes approximately four seconds. Running this for each of the 38 million

pixels in a Landsat scene would take almost five years, so it is essential to improve the

computational efficiency of this simulation. Lookup Tables (LUTs) were used to reduce

the time taken significantly, by pre-computing the results for a fixed set of parameters and

then performing the simulation by interpolating between these parameters as needed.

A LUT was created for each band and each aerosol type, using two dimensional linear

interpolation between values simulated at a range of AOTs (0.0–2.0 in steps of 0.1) and

reflectances (0.0–1.0 in steps of 0.1). The LUT creation takes around an hour for each

aerosol type, but this only needs to be done once, and then all 38 million pixels can be

processed in under twenty seconds.

Using these LUTs, simulations were performed using each aerosol type for all of the

LEDAPS test images. Example simulated images are shown in Figure 6.3. These

simulated images were then processed through the algorithm described in the previous

chapter, involving correction to pseudo-BOA reflectance, estimation of the Clear Line, and

then creation and correction of the HOT image.

6.3 Assessing the HOT-AOT relationship
Plotting the HOT values against the AOT values for each of the simulated images

(Figure 6.4), and examining correlations between these values (Table 6.1) shows that there
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(a) The whole Random AOTs image (b) A zoomed-in segment of the Random AOTs image
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(c) A profile across the Random AOTs image, showing the smoothly, but realistically, varying values

Figure 6.2: The Random AOT image

appears to be an approximately linear relationship for most images. Some, such as

Amazon and London, have a strong correlation and a narrow cloud of points on the graph.

Others, such as Botswana and Namibia, have a far weaker correlation with a very broad

cloud of points. The accuracy of the estimation of AOT will be significantly better for

those images with a narrow point cloud, and so it is important to understand what

controls the breadth of the point cloud. This closely related to the question investigated

in §4.4.2, where the breadth of the point cloud of clear pixels in blue-red feature-space

was investigated, and the main control on the position of the points was found to be land

cover. In the case of the HOT-AOT relationship the main control is also land cover: in

this case, issues with land cover that were not removed by the HOT correction procedure.

The purpose of the HOT correction algorithm is to move anomalous pixels to the Clear

Line, and therefore reduce the range of HOT values for a given AOT value. Thus, a high

quality correction process will produce a better HOT-AOT relationship. This is
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(a) London, Continental aerosol type

(b) Amazon, Continental aerosol type (c) SotonNewForest, Continental aerosol type

(d) SotonNewForest, Maritime aerosol type (e) SotonNewForest, Urban aerosol type

Figure 6.3: Examples of LEDAPS images simulated with AOTs
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Table 6.1: Pearson correlation coefficients between HOT and AOT for each of the
LEDAPS test images simulated with each aerosol type.

Continental Desert Maritime Stratospheric Urban Mean

Amazon 0.96 0.95 0.95 0.90 0.78 0.91
Botswana 0.31 0.30 0.32 0.22 0.04 0.24
Chilbolton 0.70 0.70 0.71 0.58 0.22 0.58
London 0.79 0.77 0.03 0.25 0.29 0.43
Midwest 0.82 0.82 0.82 0.74 0.28 0.70
Namibia 0.34 0.32 0.33 0.24 0.21 0.29
Sahara 0.65 0.52 0.58 0.38 0.48 0.52
SaudiArabia 0.54 0.43 0.58 0.41 -0.03 0.39
SotonNewForest 0.73 0.44 0.74 0.63 0.14 0.53

Mean 0.65 0.58 0.56 0.48 0.27 0.51

particularly obvious for the Amazon image, which consists almost entirely of forest and

therefore requires very little correction, but also for other images on which the correction

performs well, such as London, Midwest and SotonNewForest. Conversely, the images

with the lowest mean correlation are Botswana, Namibia and SaudiArabia – all images for

which the correction algorithm performs poorly (see §5.4.8). Botswana and Namibia have

particularly broad point clouds, and this is likely to be due to the breadth of

smoothly-varying land cover changes within these images: images such as Sahara and

SaudiArabia consist almost entirely of sand, and thus do not require much correction,

whereas Botswana and Namibia have a range of land covers which merge into one another

without sharp boundaries, and thus the correction algorithm performs poorly.

The HOT-AOT relationships for a given image with different aerosol types are very

similar (Figure 6.5), although there are slight differences in the gradient of the

relationship. The exception is the urban aerosol type, which generally has low

correlations, and an almost vertical point cloud, showing no real relationship. In 6S, the

urban aerosol type is defined as a mixture of dust-like (17%), water-soluble (61%) and

soot (22%) aerosols. Soot, composed almost entirely of black carbon, has a low Single

Scattering Albedo (SSA), meaning that it scatters very little light: instead, most of the

light is absorbed. For comparison, the SSA of the 6S Urban aerosol type is 69% compared

to 98% and 90% for the Maritime and Continental aerosol types respectively. The effect

of this can be seen in Figure 6.3(e) which shows a darkening of a high AOT area when

simulated with the urban aerosol type, as opposed to the brightening seen when the same

area is simulated with the other aerosol types. The poor HOT-AOT relationship for the

urban aerosol type raises concerns about the ability of this method to monitor urban air

pollution: this will be investigated further when the monitoring of air pollution is

investigated as a potential application in Chapter 8.2. However, recent research on aerosol

properties in Beijing during severe urban pollution episodes shows an average SSA of

0.90± 0.03 - far higher than the 6S Urban aerosol types (Che et al., 2014), suggesting

that the 6S Urban aerosol type is not representative of actual urban aerosol conditions.
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(a) Amazon
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(b) Botswana

0.05 0.00 0.05 0.10 0.15 0.20

HOT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
O

T

(c) Chilbolton
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(d) London
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(e) Midwest
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(f) Namibia
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(g) Sahara
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(h) SaudiArabia
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(i) SotonNewForest

Figure 6.4: Density plots showing the relationship between HOT and AOT for each
LEDAPS image, simulated with the Continental aerosol type
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(a) Continental
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(b) Maritime

0.05 0.00 0.05 0.10 0.15 0.20

HOT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
O

T

(c) Desert
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(d) Stratospheric
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(e) Urban

Figure 6.5: Density plots showing the relationship between HOT and AOT for the
Chilbolton LEDAPS image, for all simulated aerosol types.

6.3.1 HOT-AOT regression

Due to equal axes for all subplots within Figure 6.4, it is easy to see that both the

gradient and intercept of the linear relationship varies between images. The variation in

intercept (with a 5%–95% range of -6.2–0.4) is caused by the magnitude of the HOT

values varying significantly between images (as can be seen by examining the x-axes of

the graphs in Figure 6.4), with an AOT of 0.2 producing HOT values ranging from -0.04

(Sahara, Continental) to 0.1 (Chilbolton, Continental). The HOT magnitude variation

(with a 5%–95% range of 8.0–56.4) seems to be related to land cover, with images with

similar land covers (such as London, Midwest and SotonNewForest) having similar HOT

magnitudes. Given these differences between images, the relationship between HOT and

AOT will have to be estimated on a per-image basis. In this section regression methods

will be used to quantify the actual relationship between HOT and AOT for the test

images. However, it should be noted that another approach will be needed to estimate
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Figure 6.6: HOT-AOT relationship plot for SotonNewForest with Continental aerosols,
and AOTs ranging from 0.0 to 6.0, showing non-linearity at high AOTs.

this relationship when the AOT is unknown, as will be the case in the final application of

the algorithm.

Before using linear regression to model the relationship, the assumption of linearity must

be examined. The plots in Figure 6.4 appear linear, but examining the relationship

between HOT and AOT for a significantly larger range of AOTs (0–6) shows significant

non-linearity at higher AOTs (Figure 6.6). The relationship becomes complex above an

AOT of 2.0, with the cloud of points splitting into two sections which curve at different

angles. However, focusing on the densest areas of the plot, the AOT appears to be linear

up to an AOT of around 1.5. Examining the statistics of all AERONET Level 2.0 data

again, only 1.29% of AOTs are greater than 1.0, and only 0.3% are greater than 1.5. This

suggests that a linear HOT-AOT relationship will be valid for at least 99.7% of real-world

AOT values, and so it was decided to focus on the simpler task of developing a linear

relationship, rather than trying to parameterise the complex non-linear relationship found

with higher AOTs.

Orthogonal Distance Regression (ODR) was used in §5.3 to estimate the Clear Line from

the sample of LandsatAERONET points, as the line needed to fit the overall relationship

best, minimising the error in both blue and red reflectances rather than just in one of

these. The HOT-AOT situation is different: here we are trying to estimate AOT from

HOT with the lowest error. Given this, standard linear regression would appear to be the
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best approach, but Figure 6.7 shows that the lines produced by standard linear regression

do not fit the whole point cloud well. This is partially caused by the distribution of AOTs

used to create these test images: the majority of the AOTs are less than 0.6, and as the

regression attempts to minimise the sum of squared error in AOT it focuses on these lower

points, along with the outliers at the bottom of the cloud, and selects a shallower line.

Figure 6.8 shows the SotonNewForest image simulated with AOTs of different magnitudes,

with standard linear regression and ODR lines. The standard linear regression line is

different for each of these images - that is, it is dependent on AOT magnitude - whereas

with ODR the regression line is almost constant across each image, and thus unaffected by

AOT magnitude. Therefore, using ODR will significantly simplify the estimation of the

HOT-AOT relationship in the final algorithm as the AOT magnitude - which will be

unknown in real-world applications - will not influence the relationship.

Once the relationship between HOT and AOT for each of the test images was estimated

using ODR (Table 6.2), statistics were calculated to show how accurately HOT can be

used to estimate AOT (Table 6.3). These show similar results to the correlations: high

errors for images with poor corrections (often double that of well-corrected images), high

errors for the urban aerosol type (often quadruple the error for the continental aerosol

type), and medium/low errors for all other images. The error in the results of the whole

algorithm will be examined in more detail in Chapter 7, where it will also be compared to

the error from other satellite-derived measurements of AOT. However, in this context it is

useful to note that the validation of the MODIS 10km AOT product states that 67% of

values will be within ±0.05± 0.15τ , which for the global average AOT of 0.19,

corresponds to an error of ±0.08. The errors found for the well-corrected images, such as

Chilbolton, London and Midwest, are comparable to this, with the percentage within ±0.1

ranging from 59% to 79%. The majority of these images have over 90% of the values

within ±0.2. The error for the Amazon image is exceptionally low, with a median error of

0.03 and 98% of values within ±0.1, due to the uniform land cover and good LEDAPS

correction performance.

6.4 Modelling the HOT-AOT relationship
The previous section derived HOT-AOT relationships from test images where both the

HOT and AOT values were known: these relationships will be referred to as the actual

relationships. However, when applying this algorithm to real-world images, only the HOT

will be known, and the goal is to estimate the AOT. Thus, a method must be developed

to estimate the HOT-AOT relationship for a given image when the AOT is not known:

the results of this estimation process will be referred to as the modelled relationships.

From the investigations performed above, it seems that the relationship varies between

images and aerosol types but, through the use of ODR, is constant across a range of AOT

magnitudes. The primary difference between images - particularly after the pseudo-BOA

correction - is land cover, and so it is assumed that this, combined with aerosol type, has

the largest influence on the relationship.
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Figure 6.7: Examples of standard linear regression and Orthogonal Distance Regression
(ODR) on the HOT-AOT relationships for LEDAPS images simulated with Continental

aerosols
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(b) Medium (AOT range: 0.2–0.95)
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Figure 6.8: HOT-AOT relationship density plots for the SotonNewForest image simu-
lated with three different ranges of AOTs, with regression lines produced through standard

linear regression and ODR.
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Table 6.2: Parameters of the HOT-AOT relationship, defined as AOT = mHOT + c, as
estimated by Orthogonal Distance Regression.

Image Aerosol m c R2

Amazon

Continental 9.31 -0.75 0.92
Desert 9.05 -0.72 0.92
Maritime 9.27 -0.75 0.91
Stratospheric 12.93 -1.03 0.83
Urban 27.02 -2.27 0.63

Botswana

Continental 10.80 -0.93 0.09
Desert 10.60 -0.90 0.09
Maritime 9.20 -0.79 0.10
Stratospheric 13.43 -1.16 0.04
Urban 178.49 -15.34 0.01

Chilbolton

Continental 11.20 -1.13 0.49
Desert 10.96 -1.09 0.48
Maritime 10.72 -1.08 0.49
Stratospheric 14.48 -1.44 0.32
Urban 51.18 -5.18 0.04

London

Continental 11.62 -1.15 0.65
Desert 11.15 -1.09 0.65
Maritime 11.08 -1.10 0.66
Stratospheric 15.25 -1.49 0.50
Urban 52.60 -5.25 0.09

Midwest

Continental 10.54 -1.18 0.70
Desert 10.04 -1.12 0.69
Maritime 9.62 -1.08 0.70
Stratospheric 13.49 -1.50 0.09
Urban 57.30 -6.39 0.12

Namibia

Continental 7.80 -0.05 0.12
Desert 9.03 -0.07 0.08
Maritime 7.08 -0.02 0.11
Stratospheric 10.87 -0.07 0.04
Urban 18.59 -0.20 0.02

Sahara

Continental 9.82 0.25 0.36
Desert 13.04 0.34 0.23
Maritime 10.00 0.23 0.30
Stratospheric 16.82 0.39 0.11
Urban 25.35 0.73 0.10

SaudiArabia

Continental 15.37 -0.93 0.25
Desert 18.60 -1.11 0.17
Maritime 11.38 -0.71 0.34
Stratospheric 17.77 -1.08 0.15
Urban -60.06 3.20 0.01

SotonNewForest

Continental 12.47 -1.42 0.56
Desert 11.77 -1.34 0.51
Maritime 11.42 -1.31 0.57
Stratospheric 15.53 -1.73 0.40
Urban 74.31 -8.26 0.03
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Table 6.3: Errors in AOT when estimated from HOT using relationships from Orthogonal
Distance Regression, for each simulated image

Image Aerosol Median % within % within 5th 95th
±0.1 ±0.2 percentile percentile

Amazon

Continental 0.03 98 100 0.00 0.08
Desert 0.03 98 100 0.00 0.08
Maritime 0.03 98 100 0.00 0.08
Stratospheric 0.04 90 99 0.01 0.12
Urban 0.06 69 95 0.01 0.20

Botswana

Continental 0.17 29 56 0.02 0.73
Desert 0.18 28 56 0.02 0.73
Maritime 0.16 30 60 0.02 0.68
Stratospheric 0.25 20 40 0.03 1.04
Urban 2.32 2 4 0.22 9.86

Chilbolton

Continental 0.08 59 88 0.01 0.26
Desert 0.08 58 87 0.01 0.26
Maritime 0.08 58 88 0.01 0.26
Stratospheric 0.11 44 75 0.01 0.36
Urban 0.33 16 31 0.03 1.05

London

Continental 0.05 79 96 0.00 0.17
Desert 0.05 78 96 0.00 0.18
Maritime 0.05 78 96 0.00 0.17
Stratospheric 0.07 64 90 0.01 0.25
Urban 0.21 24 47 0.02 0.74

Midwest

Continental 0.05 79 97 0.00 0.17
Desert 0.05 79 97 0.00 0.17
Maritime 0.05 79 97 0.00 0.17
Stratospheric 0.07 65 92 0.01 0.22
Urban 0.25 21 40 0.02 0.77

Namibia

Continental 0.20 26 51 0.02 0.64
Desert 0.22 24 46 0.02 0.76
Maritime 0.20 26 50 0.02 0.64
Stratospheric 0.30 18 34 0.03 0.99
Urban 0.37 14 27 0.04 1.23

Sahara

Continental 0.11 47 76 0.01 0.33
Desert 0.15 36 62 0.01 0.46
Maritime 0.13 40 69 0.01 0.38
Stratospheric 0.23 24 45 0.02 0.66
Urban 0.21 26 47 0.02 0.71

SaudiArabia

Continental 0.14 37 65 0.01 0.43
Desert 0.18 29 53 0.02 0.54
Maritime 0.12 43 73 0.01 0.35
Stratospheric 0.19 27 52 0.02 0.56
Urban 0.50 10 21 0.05 1.46

SotonNewForest

Continental 0.07 65 92 0.01 0.22
Desert 0.07 65 93 0.01 0.22
Maritime 0.07 65 92 0.01 0.22
Stratospheric 0.10 51 82 0.01 0.30
Urban 0.37 14 28 0.03 1.21
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Given the success of the Monte Carlo regression approach used to estimate the Clear Line

in §5.3, a similar approach has been applied to estimate the HOT-AOT relationship. The

same method is used to select a representative sample of points from the

LandsatAERONET dataset, but rather than fitting a line immediately, the points are

simulated with randomly chosen AOT values, thus allowing the HOT to be calculated and

a HOT-AOT relationship developed. In detail, the steps of algorithm, illustrated in

Figure 6.9, are:

1. Select a sample of points from the LandsatAERONET dataset based upon land

cover proportions within the image, calculated from the GlobCover dataset (as in

§5.3)

2. Calculate the parameters of the Clear Line (as in §5.3)

3. Move all points to the closest location on the Clear Line, replicating the effect of a

‘perfect’ HOT correction algorithm

4. Generate a random AOT value for each point

5. Simulate the TOA radiance for each point given the reflectance from the

LandsatAERONET sample, its associated random AOT, and a user-provided

aerosol type

6. Correct each point to pseudo-BOA reflectance

7. Calculate the HOT for these simulated points (simply the distance from the Clear

Line to each point)

8. Estimate the HOT-AOT relationship by performing Orthogonal Distance Regression

on the set of HOT and AOT values

Several configurable extensions were made to the basic estimation process and tested to

determine whether they improved the accuracy of the resulting HOT-AOT relationship.

These were:

• Sample size: The original method sampled 5000 points from the

LandsatAERONET dataset; increasing the sample size may improve the

representativeness of the sample.

• Monte Carlo repeats: The original algorithm took a single sample of 5000 points

from the LandsatAERONET dataset; again, taking multiple sets of 5000-point

samples may improve the representative of the sample.

• Partial movement to the Clear Line: The original method moved all of the

LandsatAERONET points so that they lay exactly upon the Clear Line. This was

designed to replicate the effects of a perfect HOT correction algorithm, which would

remove all land cover effects, and thus move all clear points to lie exactly upon the

Clear Line. However, as discussed in §5.4.8, the HOT correction procedure is not

perfect, and so not all clear points will be moved to lie exactly upon the Clear Line.

Therefore, the algorithm was altered to allow the points to be moved a configurable

fraction of their distance to the line: a value of 1.0 would move the points to sit

exactly upon the line, a value of 0.5 would move the points half-way to the line, and

a value of 0.0 would leave the points in their original positions.
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(a) Sample of LandsatAERONET points with Clear
Line
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(b) Points moved to Clear Line
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(c) pseudo-BOA reflectance for points simulated with
random AOT values
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Figure 6.9: Steps of the HOT-AOT relationship estimation algorithm

• Distribution of random AOTs: The random AOTs used in the original

algorithm were taken from the same distribution used for the random AOT images

(see §6.2.1). Due to the parameterisation of this distribution, the majority of the

AOTs are less than 0.6 and there are very few high AOTs. This means that there

will be few points at the top end of the regression line, potentially leading to an

incorrect placement of the top of the line, and thus a poor estimation of the

gradient of the relationship. To test this, an extension to use a uniform distribution

over a reasonable range of AOTs (0.01–1.00) was implemented.

Error statistics were calculated for the modelled relationship created with various

configurations of the estimation process (Figure 6.10). The percentage of pixels with an

AOT value within ±0.1 of the true value is used here as this gives a good indication of the

consistency of the performance of the relationship across the whole image, and is not

skewed by very large or small errors. Results are shown for the Continental aerosol type -

as all other aerosol types had similar patterns - and some extensions are excluded as they

had very little effect. For example, altering the sample size did not change the results -

presumably because the default sample size of 5,000 is already statistically representative -
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and combining the various extensions produced only very minor differences.

Overall the accuracies found using the modelled relationship are lower than the accuracies

found with the actual relationship. This is to be expected as the estimation procedure

does not necessarily take into account all of the factors which affect the relationship. The

reduction in accuracy is most noticeable with the desert images. These had a lower

accuracy than the rest of the images when using the actual relationship, but when using

the estimated relationship the accuracy becomes very poor, with images such as Namibia,

Sahara and SaudiArabia having 0% of the points within ±0.2 and median absolute AOT

errors of over 2.0.

This is due to a complete mis-estimation of the HOT-AOT relationship which places the

modelled regression line well outside the cloud of points from the simulated image

(Figure 6.11(a)). This poor relationship estimation is caused by issues with the original

LEDAPS images from which the simulated images were produced. LEDAPS is known to

perform poorly on images with limited DDV - such as desert areas - producing erroneous

ground reflectance values (see §4.2.3 and Maiersperger et al., 2013). This can be seen in

Figure 6.11(b) where the blue and red reflectances in the LEDAPS image are very

different from those in the LandsatAERONET sample. This means that the Clear Line

estimated from the LandsatAERONET sample is not valid for the pixels in the LEDAPS

image, and the offset causes negative HOT values, even for relatively high AOTs. This is

not a problem in itself, but the HOTs calculated from the LandsatAERONET-based

modelling are positive, and thus the estimated relationship is very different to the true

relationship. These issues will only occur with the test images - as LEDAPS images will

not be used in the application of the algorithm to real-world images - and thus these

accuracies do not give a true impression of the algorithm performance over desert images.

Given this, desert scenes (Botswana, Namibia, Sahara and SaudiArabia) are left out of

the analyses that follow.

The differences between the methods are mostly small with the best method for each

image increasing the percentage within ±0.1 by around 8–10 percentage points. However,

the best method varies between images - each method is the best for at least one image -

making it difficult to choose the best method overall. One key consideration is the

reliability of the method across all of the images: the chosen method must perform

relatively well for every image. Figure 6.12 shows boxplots of two statistics (percentage

within ±0.1 and mean absolute error) across all images, for each method. Both of these

statistics show that the Uniform AOTs extension has the narrowest range in values, with

the most uniform performance across all images. Of course, this method would be a poor

choice if it performed uniformly poorly but it has a relatively good accuracy, with the

highest median percentage within ±0.1 of all methods, and the second highest median

mean absolute error. Therefore, the estimation method with the uniform AOT extension

was chosen to model the relationship between HOT and AOT.

The AOT errors for each simulated image resulting from the final modelled relationship
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Figure 6.10: Percentage of AOT values within ±0.1 for each test image for four
relationship estimation methods

are shown in Table 6.4. Ignoring desert images, as discussed above, the mean percentages

within ±0.2, ±0.1 and ±0.05 for images simulated with the Continental aerosol type are

88%, 52% and 25%. The mean median error is 0.09, and the mean 95th percentile of the

error is 0.25. Even though the errors from the modelled relationship are worse than the

errors from the actual relationship, these still compare favourably with the MODIS 10km

AOT product validation, which stated that 67% of the AOT values were within

0.05± 0.15τ , equivalent to around ±0.08 for the global mean AOT (Levy et al., 2010).

6.4.1 Aerosol type sensitivity analysis

An aerosol type is required by the method used to estimate the HOT-AOT relationship.

This is used to parameterise the Py6S simulations which simulate TOA reflectance for

each point in the LandsatAERONET sample under various AOTs. When the algorithm is

applied to real-world images the user will set this parameter based on their estimation of

the relevant aerosol type. This raises the question of the effect of the user choosing the

incorrect aerosol type on the AOT accuracy. This can be investigated using the test

images, by simulating an image with one aerosol type, and modelling the HOT-AOT

relationship using a different aerosol type. The issues with the test images described

above still apply, so the desert images are not discussed here.

Results for two images are shown in Figure 6.13, and the other non-desert images show

very similar patterns. The results are surprising: using the correct aerosol type does not

seem to give the highest accuracy. In fact, for images simulated with all aerosol types

excluding Urban, estimating the relationship using the Maritime aerosol type seems to

give the best result. The differences are striking: in the London image using the Maritime

aerosol type to estimate the relationship for an image simulated using the Continental
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Table 6.4: Absolute errors in AOT when estimated from HOT using the modelled
relationship derived using uniform AOTs

Image Aerosol Median % within % within 5th 95th
±0.1 ±0.2 percentile percentile

Amazon

Continental 0.09 57 98 0.01 0.18
Maritime 0.11 40 96 0.03 0.19
Desert 0.09 58 98 0.02 0.17
Stratospheric 0.15 22 76 0.04 0.26
Urban 0.36 15 29 0.03 0.94

Botswana

Continental 0.40 7 18 0.08 0.78
Maritime 0.36 8 20 0.07 0.73
Desert 0.40 7 17 0.08 0.77
Stratospheric 0.51 6 13 0.09 1.01
Urban 2.42 1 2 0.45 4.78

Chilbolton

Continental 0.10 52 84 0.01 0.29
Maritime 0.08 58 88 0.01 0.26
Desert 0.11 45 78 0.01 0.32
Stratospheric 0.12 44 74 0.01 0.37
Urban 2.00 2 5 0.21 4.63

London

Continental 0.11 46 86 0.01 0.26
Maritime 0.07 66 94 0.01 0.21
Desert 0.11 44 83 0.01 0.27
Stratospheric 0.10 51 84 0.01 0.29
Urban 1.23 2 4 0.24 2.11

Midwest

Continental 0.08 63 95 0.01 0.20
Maritime 0.06 75 97 0.01 0.17
Desert 0.08 63 94 0.01 0.21
Stratospheric 0.08 58 90 0.01 0.24
Urban 0.77 6 11 0.09 1.60

Namibia

Continental 2.75 0 1 1.13 3.76
Maritime 1.72 1 1 0.69 2.37
Desert 2.55 1 1 0.99 3.43
Stratospheric 2.57 0 1 1.13 3.46
Urban 2.15 0 1 0.91 3.05

Sahara

Continental 7.56 0 0 6.29 8.74
Maritime 3.04 0 0 2.59 3.47
Desert 11.40 0 0 9.67 13.02
Stratospheric 4.58 0 0 3.91 5.24
Urban 1.82 0 0 1.36 2.16

SaudiArabia

Continental 5.58 0 0 4.41 6.81
Maritime 1.89 0 0 1.52 2.30
Desert 7.17 0 0 5.71 8.74
Stratospheric 2.96 0 0 2.39 3.60
Urban 1.18 0 0 0.84 1.45

SotonNewForest

Continental 0.11 46 80 0.01 0.32
Maritime 0.09 56 87 0.01 0.26
Desert 0.13 40 68 0.01 1.02
Stratospheric 0.13 41 71 0.01 0.37
Urban 1.41 2 5 0.20 3.11
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aerosol type leads increases the percentage within ±0.1 from 45% to 69%. There are two

possible reasons for the Maritime aerosol type performing better for all images: either

aerosol type contamination from the LEDAPS images, or a link between aerosol Single

Scattering Albedo and the quality of the relationship.

LEDAPS uses a fixed Continental aerosol type for all AOT retrievals (Maiersperger et al.,

2013), and this may cause errors when estimating AOT over images with a different

aerosol type. Several of the test images are likely to have a Maritime aerosol type -

particularly SotonNewForest and London - and so there may be the residual effects of

Maritime aerosols left in the images, regardless of what aerosol type the test images were

simulated with. These residual effects could then be picked up best when the relationship

is estimated using the Maritime aerosol type, causing a low AOT error.

Alternatively the increased accuracy when using the Maritime aerosol type could be

caused by the high SSA of this type of aerosol. Table 6.5 shows the SSA for each of the 6S

aerosol types, excluding Stratospheric (a very unusual aerosol type as it does not reflect

dominant boundary-layer aerosol, and is therefore rarely used), in order of decreasing SSA.

Maritime has the highest SSA, and thus the effects of Maritime aerosols will be most

easily noticeable in terms of HOT values. Calculating the mean percentage within ±0.1

for each aerosol type, and sorting by decreasing accuracy (Figure 6.5), shows the same

ordering of aerosol types: there seems to be a relationship between SSA of an aerosol type

and the accuracy of a HOT-AOT relationship developed using that aerosol type.

For a given AOT, simulations with an aerosol type with a high SSA (such as Maritime)

will produce higher HOT values than those with a lower SSA (such as Continental). It is

this increase in HOT magnitude which is key here: by increasing the magnitudes of the

simulated HOT values we get a better relationship. This could be a genuine effect - due to

HOT generally being over-estimated (perhaps due to a poor correction for Rayleigh

scattering in the pseudo-BOA reflectance calculation process), or it could be another

side-effect from the LEDAPS issues. For example, if LEDAPS under-estimates the AOT

value for a pixel then the correction procedure will leave some residual atmospheric effects,

which will still be present in the simulated test images. These residual effects will increase

the HOT value for the pixel, and thus an artificially-increased HOT value produced using

the Maritime aerosol type will produce a better-fitting relationship. The only way to test

this would be to use a ‘perfectly corrected’ image which did not have the issues with the

LEDAPS, or to use a very dense network of ground data to perform a very accurate

correction over a small area of an image, over which the HOT aerosol type sensitivity

could then be tested.

6.5 Algorithm summary
The development of a method to estimate the HOT-AOT relationship for a given image

completes the development of an algorithm to estimate per-pixel AOT from Landsat

images. From this point onwards, no changes have been made to the method: future
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Table 6.5: Single Scattering Albedo (SSA) and Mean % within ±0.1 for each aerosol
type, excluding Stratospheric. Each table is sorted by the values within it, in descending

order, and both tables have the same order.

(a) Single Scattering Albedo
(SSA)

Aerosol SSA

Maritime 0.990
Desert 0.952
Continental 0.899
Urban 0.693

(b) Mean % within ±0.1

Aerosol Mean % within ±0.1

Maritime 28.7
Desert 25.2
Continental 24.7
Urban 01.9

chapters focus on validating and applying the results. The inputs, outputs and main steps

in the method are summarised below:

Inputs:

• Raw Landsat ETM+ image, with pixel values as Digital Numbers (either stacked

into a multi-band image, or each band as individual files)

• Corresponding Landsat ETM+ Metadata file

• Thigh and Tlow parameters for segmentation

Processing stages:

1. Pre-process image: Clouds, cloud shadows, water and snow are masked out of

the input image, and the image is corrected for pseudo-BOA reflectance (that is,

standard BOA reflectance but without any correction for aerosol effects). See §5.2.

2. Estimate Clear Line: The Clear Line is estimated by taking a sample of 5000

points from the LandsatAERONET dataset based on the land cover proportions

found within the input image and performing an Orthogonal Distance Regression

(ODR) on the blue and red reflectances of this sample. See §5.3.

3. Create HOT image: An image is created where each pixel contains the Haze

Optimized Transform (HOT) value of the corresponding pixel in the input image,

calculated as the distance from the pixel to the Clear Line in blue-red feature space.

See §5.3.3.

4. Correct HOT image: The HOT image is corrected to the effects of land cover,

using an Object-based Image Analysis approach which corrects sharp-bordered

anomalies. See §5.4.

5. Estimate HOT-AOT relationship: The relationship between HOT values and

AOT is estimated by taking the sample of LandsatAERONET points (as in step 2),

and simulating the pseudo-BOA reflectance that would result if pixels with these

reflectances were acquired with a range of random AOTs. The HOT value for each

of these simulated pixels is then calculated, and Orthogonal Distance Regression is

used to estimate the relationship between these HOT values and the AOTs used in

the simulation. See §6.4.
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6. Convert image to AOT: The HOT-AOT relationship developed in the previous

step is applied to each pixel in the image to produce a final image containing AOT

values.

Outputs:

• AOT image, with the same size and filetype as the input image

• Parameters file specifying all input and output files plus the parameters used for

processing (including all internal parameters which are always kept at default values)

• Log file stating the results of specific processing stages (such as the parameters of

the Clear Line) and the time taken to do the processing

• Lookup Table file, storing the lookup table used for simulating TOA radiance under

differing AOTs as part of the estimation of the HOT-AOT relationship (this file can

be automatically used in future processing of this image, removing the need to

regenerate it and thus saving significant time)

The algorithm has been implemented in the Python programming language, using the

following third-party libraries:

• numpy: provides efficient array processing for Python (Walt et al., 2011)

• scipy: provides a range of scientific programming functionality built upon numpy,

including interpolation and regression (Jones et al., 2001)

• pandas: provides a data type that can store and process multiple columns of

heterogeneously-typed data, as in a spreadsheet (McKinney, 2010)

• GDAL: provides functions to read and write almost all geospatial formats, including

TIFF files, ENVI format images and ESRI Shapefiles (GDAL Development Team,

2014)

• mahotas: provides a range of image processing functions (Coelho, 2013). Here the

functions relating to mathematical morphology are used.

• scikit-image: provides further image processing functions. Here the filtering,

labelling and Otsu thresholding functions are used (van der Walt et al., 2014).

The algorithm has been designed in a modular manner, with functions to carry out each

of the individual stages in the overall process. To execute the algorithm a class is

instantiated with the required parameters, and then run method called. A seg test

method also exists to run the segmentation process with a range of parameters, to allow

the user to easily select the parameters that produce the best segmentation. After

specification of the parameters, the processing is entirely automatic, and helper functions

exist to allow the entire process to be run automatically from a compressed Landsat

image downloaded directly from the USGS. The code runs effectively on high performance

computing clusters, and this allows multiple images to be processed in parallel.

From here on, the new algorithm will be known as HOTBAR, the Haze Optimized

Transform Based Aerosol Retrieval. As an example, HOTBAR was run using the Landsat

ETM+ image shown in Figure 6.14, with Thigh = 0.95 and Tlow = 0.20, and the output
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Figure 6.14: Example Landsat ETM+ image of New York (LE70130322002251EDC00),
shown as a true colour composite

AOT image is shown in Figure 6.15. Comparison of the HOTBAR output (at 30m

resolution) with AOT images from the MODIS MOD04 (10km resolution) and MAIAC

(1km) algorithms show the level of detail which is provided by HOTBAR (Figures 6.16

and 6.17).
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Chapter 7

Validation

7.1 Introduction
An essential part of the development of a new method to retrieve physical measurements

from satellite data is to assess the accuracy of the resulting retrievals through validation

with other data sources. In the context of a high-resolution AOT retrieval method there

are two principal considerations: the accuracy of the AOT values, and the ‘spatial

coherence’ of these values. The latter refers to the relative accuracy of adjacent pixels:

does the method show the correct spatial trend in AOT values, even if the values

themselves are offset from the true value. These two aspects of the error will be assessed

in this chapter, through comparison of HOTBAR results with AERONET ground-based

AOT and MAIAC satellite-based AOT measurements, as well as further analysis of the

AOT errors from the simulated images used in Chapter 6.

The purpose of the validation is to assess the accuracy of the AOT derived from

HOTBAR, and thus it is useful to consider the potential sources of error in the AOT

measurements. These are shown in Table 7.1, and can be split into two main categories:

errors in the HOT values, and errors in the HOT-AOT relationship. Errors in the HOT

values are likely to be the source of spatially-variable error, often caused by poor HOT

correction, whereas errors in the HOT-AOT relationship are likely to be the source of

magnitude-variable error, caused by an incorrect estimation of the slope of the HOT-AOT

relationship, causing errors at high or low AOTs.

It is likely that some of the AOTs produced by the HOTBAR algorithm will be negative.

A negative AOT is physically impossible, but this does not mean that these AOTs should

be removed from the images. If the true AOT is 0.05 and HOTBAR has an error of ±0.1

then HOTBAR could produce an AOT estimate anywhere between -0.05 and 0.15. Other

AOT retrieval algorithms have also had to deal with this issue, for example, the MOD04

Algorithm Theoretical Basis Document (Remer et al., 2006) states that negative AOT

retrievals are not just allowed, but necessary: removing all negative retrievals will, by

definition, bias the dataset. The validation of the MOD04 product states that the error is

179
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Table 7.1: Categorisation of potential error sources within the HOTBAR algorithm

Error source Examples

HOT value errors

Pre-processing Poor cloud-masking
Inaccuracies in 6S correction to pseudo-BOA

HOT calculation LandsatAERONET dataset not representative
Poor regression for Clear Line estimation

HOT correction Under-correction
Over-correction
Edge effects

HOT-AOT relationship errors

Actual HOT-AOT relationship Aerosol type (eg. urban)
Non-linearity for high AOTs

Modelling of HOT-AOT relationship LandsatAERONET dataset not representative
Inaccuracies in 6S simulation or LUTs
Poor regression

0.05± 0.15τ , and thus they treat any AOT between -0.05 and 0 as ‘high quality’,

assuming that it represents an AOT of very close to zero. Retrievals between -0.10 and

-0.05 are marked as ‘low quality’, and those below -0.10 are marked as ‘out of range’. In

this case, during the validation all negative values will be included, though extremely

negative values will be noted, and equivalent thresholds for ‘good’ and ‘bad’ negative

AOTs will be determined in the conclusion of this chapter.

Due to the Landsat 7 Scan Line Corrector (SLC) failure, images acquired since May 2003

have regularly spaced lines of missing pixels (Markham et al., 2004). This missing data

causes the segmentation stage of the object-based HOT correction to perform very poorly,

and so data acquired in ‘SLC-off’ mode cannot be used with HOTBAR. Thus all

validation must be carried out with data acquired before May 2003, which significantly

limits the volume of validation data available.

7.2 AERONET validation
AERONET data are widely used as a ‘ground truth’ in validation of satellite AOT

products due to its very low error (approximately ± 0.02 according to Eck et al., 1999)

and its high temporal resolution. All AERONET sites measure AOT at multiple

wavelengths, allowing the AOT data to be interpolated to estimate AOT at 550nm, the

wavelength at which HOTBAR estimates AOT.

Most previous validations of satellite AOT against AERONET AOT have used the Ichoku

et al. (2002) method to take into account the resolution difference between a

coarse-resolution satellite measurement and a single-point ground measurement. Ichoku

et al. (2002) assumed that aerosols moved at around 50km/hr and suggested comparing a
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one hour temporal average of AERONET data with a 50x50km spatial average of satellite

data, and these parameters have been used for almost all satellite AOT validations

(including Liu et al., 2014; Benas and Chrysoulakis, 2013; Bréon et al., 2011; Wong et al.,

2013). However, when validating high-resolution data the main reason for using the

Ichoku et al. (2002) method is invalidated: instead of comparing a point measurement

with a large (many kilometer) pixel, we are comparing it with a 30m pixel. To apply the

Ichoku method with the standard parameters to this high-resolution data would require

spatially-averaging over two million pixels: an absurd idea. Given this, the Ichoku et al.

(2002) method is not used in this validation, and ground measurements are compared to

the directly-overlaying 30m pixel in the satellite AOT.

In 2003 there were 207 AERONET sites, but only 119 of these collected data over at least

six months of the year (many were temporary sites used for testing or specific campaigns)

- this compares unfavourably with 2013, in which there were 443 and 292 sites respectively.

HOTBAR requires parameterisation with the high and low thresholds (Thigh and Tlow) for

segmentation. These can be estimated by testing a range of different parameterisations for

each image location: a time-consuming activity when processing many images. Thus,

validation was only performed over selected AERONET sites: these were chosen to cover

a range of different areas of the world and types of land cover, as well as attempting to

choose places where multiple AERONET sites would be located within one Landsat

image. The Landsat path/row locations listed in Table 7.2, and shown in Figure 7.1, were

chosen, covering 12 AERONET sites - around 10% of the sites regularly collecting data

during 2003.

Table 7.2: Landsat path/row locations used for AERONET validation, along with
chosen segmentation parameters

Path Row Thigh Tlow

015 033 0.95 0.20
041 036 0.85 0.75
199 024 0.95 0.20
199 025 0.85 0.75
199 030 0.95 0.20

All images with less than 10% cloud cover acquired during the whole period of Landsat 7

SLC-on operation (May 1999 until May 2003) were downloaded from the USGS and

processed through HOTBAR. Segmentation parameters were determined by testing a

range of parameters on one image for each path/row location used (the chosen parameters

are shown in Table 7.2), and then applied to all other images at that location. AOT

values from the satellite image were extracted at all AERONET sites within the image -

regardless of whether the AERONET site was operating at the time of the image or not -

and then AERONET measurements within 30 minutes of the image acquisition time for

these sites were extracted. Error, calculated as the AERONET AOT minus the satellite

AOT, was then calculated for each site for which both measurements were found.
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Figure 7.1: Locations of the Landsat images used for AERONET validation

AERONET Level 2.0 data were used, as this is the highest quality data available. Tests

were made with Level 1.5 data but no significant increases in the data volume were found,

and the validation statistics remained similar. AOT data from HOTBAR were produced

with and without the 3x3 median smoothing described in §5.4.8, to determine whether the

smoothing improved the real-world performance of the AOT product.

7.2.1 Results

Matched AERONET and satellite observations were found for 12 sites, with a total of 27

observations. Summary statistics (Table 7.3) and a histogram (Figure 7.2) of the error

show a higher error than that found from the simulations in the previous chapter (33%

within ±0.1 compared to 40–50% for the majority of non-desert simulated images). This

could be due to the greater complexity of real-world images, poor representativeness of

the simulated images, or simply due to the limited sample of AERONET sites which did

not cover areas with particularly low error. HOTBAR generally over-estimates AOT

values, although negative AOTs contribute to the 33% of values which are underestimated.

Smoothing of the image data improved almost all of the statistics, and significantly

reduced the maximum error (from 0.75 to 0.59) as anomalously high pixels were reduced

by the smoothing process. The median error increased, but this is almost certainly an

anomaly caused by the internal distribution of the data.

Examining the results on a per-site basis (Figure 7.3) shows a very large range of errors

for Rogers Dry Lake, which includes both the largest positive and negative errors in the

dataset. This is the only desert site, and desert sites performed badly with the simulated

images (§6.4). The large range is likely due to the poor performance of the HOT

correction on desert areas: if no correction (or a very poor correction) is performed on the

images then the AOT values estimated at a single point over time will be almost entirely

due to changes in surface reflectance. For the rest of the sites, median errors range from

+0.06 to -0.33. Only two sites under-estimate the majority of their data: The Hague (for
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Table 7.3: Summary statistics of absolute AOT error according to the AERONET
validation for the raw image and the image with a 3x3 Median filter applied

Original Smoothed

Min 0.047 0.002
Mean 0.179 0.173
Median 0.138 0.152
Max 0.745 0.589
% within ± 0.1 30% 33%
% overestimated 74% 67%
RMSE 0.232 0.219

which there is only one data point, hence the narrow boxplot) and UCLA; all of the rest

over-estimate.

Examining the AOT derived from AERONET and satellite measurements over time shows

very similar trends for some sites (Figure 7.4), but differing trends for others (Figure 7.5).

Again, the desert site (Figure 7.5(b)) performs badly, with very high AOT errors around

spring and early summer. These are likely caused by seasonal changes in the surface

reflectance which have not been removed by the HOT correction procedure. It is harder

to explain the poor performance of some other sites (Figures 7.5(a) and 7.5(c)), although

the significant differences between the raw and smoothed satellite data in Figure 7.5(c)

suggest issues with correction in the pixel directly over the AERONET site (as the

smoothed data has a far closer trend to the AERONET data).

Comparing the error at different AOT magnitudes (Figure 7.6) shows no trend, suggesting

approximately constant error across the whole range of AOTs used for the validation. It

should be noted, however, that this range is limited (approximately 0.02–0.35), and there

may be significant trends in error for AOTs outside of this range.

7.3 MAIAC validation
The fundamental problem with the AERONET validation is that the spatial coverage is

poor, which makes it very difficult to assess the ‘spatial coherence’ of the HOTBAR

results: the only way to assess this using real-world data is by comparison with AOT

images derived using a different method. There are no other 30m AOT products currently

available, so the MAIAC 1km AOT product (Lyapustin et al., 2011) was used, as it is the

highest resolution AOT data currently available to researchers (results from the SYNTAM

method (Tang et al., 2005), which also produces 1km AOT data, are not currently

available for academic use).

MAIAC data were acquired for September 8th 2002, on the same date and covering the

same area as the Landsat image shown in Figure 6.14 (MAIAC tile h09v08, Landsat

image LE70130322002251EDC00). This was chosen as the image has a mix of urban and

rural land covers, and was one of the few areas where MAIAC data was available on the

same day as a Landsat 7 SLC-off acquisition. The HOTBAR algorithm was run on the
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significant trend between AOT magnitude and the error

Landsat image, and the AOT result was resampled to a 1km resolution using a median

aggregation (Figure 7.7) to allow comparison with the MAIAC data. The AOT error was

then calculated as the MAIAC AOT minus the HOTBAR AOT.

There are several issues with comparing the HOTBAR AOT with the MAIAC AOT:

1. The AOTs are measured at different wavelengths: MAIAC measures AOT at 470nm,

whereas HOTBAR measures AOT at 550nm. For the AERONET validation the

AOT was interpolated to produce an estimated value at 550nm, however this is not

possible here as MAIAC only measures AOT at one wavelength and thus there is

not enough data for the interpolation.

2. There is a time offset between the acquisition of the Landsat image at 15:21 and the

MODIS image at 17:30 (all times in UTC). During this time the AOT, and its

spatial pattern, is likely to have changed.

3. The resampling of the HOTBAR AOT to match the MAIAC resolution may

introduce artefacts into the resulting 1km images (such as anomalous pixels in areas

where HOTBAR had limited data availability due to the presence of cloud, water or

snow), and thus affect the error.

However, this is currently the only feasible method to assess spatial error across the area

of a Landsat image, so it used with these issues taken into account.



188 Chapter 7 : Validation

F
ig
u
r
e
7
.7
:

M
A

IA
C

A
O

T
(at

1k
m

resolu
tion

)
an

d
H

O
T

B
A

R
A

O
T

(origin
ally

at
30m

,
resam

p
led

to
1k

m
)

over
N

ew
Y

ork
,

u
sin

g
th

e
sam

e
im

ages
as

in
F

ig
u

re
6
.1

6
.

T
h

e
o
rig

in
a
l

3
0
m

A
O

T
im

a
g
e

is
sh

ow
n

in
F

igu
re

6.15.



Chapter 7 : Validation 189

0.4 0.2 0.0 0.2 0.4
MAIAClAOTl-lHOTBARlAOT

0

5

10

15

20

25

30

35

40

45

P
e

rc
e

n
ta

g
e

lo
fl

p
ix

e
ls

Figure 7.8: Histogram of MAIAC validation error, calculated as MAIAC AOT - HOT-
BAR AOT

7.3.1 Results

The error histogram (Figure 7.8), and summary statistics (Table 7.4) show that 42% and

87% of the HOTBAR AOT values are within ±0.1 and ±0.2, respectively, of the

corresponding MAIAC values. This is a slightly lower accuracy than that found with the

simulated images in §6.4, but better than the AERONET validation, which showed only

33% within ±0.1. As with the AERONET validation, the majority of pixels (80%) are

over-estimated, but the mean and median absolute errors are slightly better than

AERONET (Mean: 0.124 compared to 0.173, Median: 0.116 compared to 0.152). The

maximum error is significantly worse, at 1.82 compared to 0.589 for AERONET, but this

is likely to be due to resampling artefacts (visible as isolated dark purple pixels in the

error map, shown in Figure 7.9).

Table 7.4: Summary statistics of absolute AOT error according to the MAIAC validation

Min 0.000
Mean 0.124
Median 0.116
Max 1.82
% within ± 0.1 42%
% overestimated 80%
RMSE 0.147

Examining the error for different AOT magnitudes (Figure 7.10) shows a possible trend

with positive errors (under-estimation) at low AOTs, and negative errors (over-estimation)

at higher AOTs. However, this may not be a genuine trend due to the small range of

MAIAC AOTs (approximately 0.05–0.30), and the uneven distribution of AOT

magnitudes throughout the image (with far fewer high AOT pixels, and thus a narrower

distribution for higher AOTs). The magnitude dependence is confirmed by the error map,
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Figure 7.10: Relationship between error and the MAIAC AOT value

with over-estimation within the centre of New York City (where AOTs are generally high),

and under-estimation over the rest of the image (where AOTs are lower). This also affects

the histogram of errors (Figure 7.8), as there tends to be a negative error for low AOTs,

and the majority of the image consists of relatively low AOTs.

The errors from comparison with MAIAC data must be considered in light of the MAIAC

data itself. According to Emili et al. (2011), MAIAC has a RMSE of 0.05 when compared

with AERONET sites, and thus the true RMSE of the HOTBAR results could be

anywhere between 0.097 and 0.197. Similar adjustments will be needed for the other error

statistics, but, as these are not reported for the MAIAC validation, exact values cannot be

provided.

7.4 Simulated images validation
The only way to truly assess the spatial coherence of the AOT values is through the use of

the simulated images which were created and used in Chapter 6, as this is the only

situation in which we know the true AOT value for each pixel in the image. Due to the

difficulties in creating the random AOT images (see §6.2.1), the same images as used in

Chapter 6 are used here for validation. All of the validation in this section has been

performed on the Chilbolton image simulated with Continental aerosols, except where

otherwise specified, as this image covers a wide range of landcovers and all other images

produce very similar results.

Comparing the error at different AOT magnitudes (Figure 7.11(a)) appears to show a
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Table 7.5: Summary statistics of absolute AOT error according to validation against
the Chilbolton image simulated with Continental aerosols

Min 0.000
Mean 0.123
Median 0.104
Max 5.333
% within ± 0.1 48%
% overestimated 67%
RMSE 0.157

strong inverse relationship, with error reducing as AOT values increase. However, this

apparent relationship is mostly due to the distribution of AOTs within the simulated

image: there are very few pixels with high AOT values, and thus the range of error

appears to be lower at this magnitude. Taking an equally-weighted sample of 100,000

points from each AOT interval (0.0–0.1, 0.1–0.2, and so on) shows a far weaker

relationship (Figure 7.11(b)), with only a slight decrease in error as AOT increases. The

directionality of the error at varying AOT magnitudes can be seen more clearly in

Figure 7.12, which shows under- and over-estimation at lower AOTs, with some extremely

over-estimated values (caused by poor HOT correction), and general over-estimation at

higher AOT values.

7.4.1 Profile comparisons

Profiles of actual and estimated AOT (raw and smoothed) from two images are shown in

Figure 7.13. These show that the smoothed AOT replicates the trend in actual AOT

relatively well: the overall shape of the curves is very similar. On a pixel level the match

is not as good, but it is remarkable how many small-scale variations in AOT are captured

by the HOTBAR AOT for the Amazon image (Figure 7.13(a)). The results for the

SotonNewForest image (Figure 7.13(b)) are worse, and the effects of several areas of poor

correction can be easily seen: however, even with these anomalies, the overall trend

matches well. Both graphs show the importance of adding smoothing as a final step

within the HOT correction procedure, as it is very effective in removing many sharp

variations in AOT caused by individual poorly-corrected pixels.

7.4.2 Spatial variation of the error

A key aspect of the spatial variation of the error is the effect of the HOT correction

procedure: if pixels which have been modified during the correction process have a higher

error than other pixels then that would suggest that the correction process was increasing,

rather than reducing, the error. Figure 7.14 shows that pixels modified by the correction

process have a wider error range, with more outliers (2% of data outside of the range of

Figure 7.14(b), compared to 0.8% for unmodified pixels) than unmodified pixels. However,

when these outliers are removed from the dataset, the changed pixels have a very similar

error range to the unchanged pixels, with a slightly lower median. This suggests that the

correction process performs well on the majority of pixels, but around 1% of pixels (the
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Figure 7.11: Relationship between error and the actual AOT value for the Chilbolton
image simulated with Continental aerosols, shown with (a) a random sample from all
points, and with (b) an equally-weighted sample (to remove the effect of the distribution

of AOT values in the image)
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Figure 7.12: Actual AOT compared to Estimated AOT for the Chilbolton image,
simulated with Continental aerosols, with the 1:1 line shown

difference in high error rates between the two categories of pixels) are modified too much

or not enough, producing high errors.

In this context it would be appropriate to assess the error over a range of land covers to

determine if the algorithm performs particularly well or poorly over certain types of

surface (for example, very bright surfaces, which are often troublesome for aerosol

retrieval algorithms; Hsu et al., 2004). However, a land cover analysis would not provide

accurate results due to the issues with the LEDAPS images that were used to create the

simulated images. As discussed in §4.2.3, the accuracy of the LEDAPS product varies

significantly with land cover, and these errors are carried through to the simulated images,

and the HOTBAR AOTs, thus, it would be impossible to tell whether differing errors over

different land covers were due to issues in the HOTBAR algorithm or LEDAPS errors.

7.5 Conclusions
Examining the statistics from each of the three validation approaches (Table 7.6) shows

that the AERONET validation produces the lowest accuracy, and the simulated image

validation the highest accuracy. An overall range for average error (both median and

mean) is approximately ± 0.10–0.15. Ideally there needs to be a specified uncertainty that

can be taken into account for each pixel in the AOT image produced by the HOTBAR

algorithm. It is difficult to estimate one single number, but taking into account the issues

with each of the validations, an overall uncertainty of approximately ±0.12 seems

appropriate. The validation of the spatial coherence of the image showed that the method

captures the spatial variation in AOT relatively well: and thus the relative error between

adjacent pixels will normally be significantly lower than this. Given this error, negative

AOTs greater than -0.15 could be just erroneous estimations of very low (near-zero)



Chapter 7 : Validation 195

950 1000 1050 1100 1150 1200 1250 1300
X location

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
O

T

Actual AOT
Estimated AOT
Estimated AOT (smoothed)

(a) Amazon

1300 1400 1500 1600 1700
X location

0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
O

T

Actual AOT
Estimated AOT
Estimated AOT (smoothed)

(b) SotonNewForest

Figure 7.13: Comparison of actual AOT, raw estimated AOT and smoothed estimated
AOT for profiles across two images simulated with the Continental aerosol type
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Figure 7.14: Boxplots showing the differences in error between pixels where the HOT
value was changed during the HOT correction procedure, and pixels where the HOT value
was unaltered. (a) shows the whole boxplot, and (b) shows the boxplot for absolute error

in more detail, without outliers



Chapter 7 : Validation 197

AOTs, and thus AOTs greater than -0.15 will be accepted as valid, but with those

between -0.15 and -0.1 marked as potentially low quality.

Table 7.6: Summary statistics from each of the validations

Mean Median % within ± 0.1 RMSE

AERONET 0.173 0.152 33 0.219
MAIAC 0.124 0.116 42 0.147
Simulated 0.123 0.104 48 0.157

It should also be noted that some pixels will have significantly higher error than others.

The reasons for this are not fully understood, and so it is impossible to produce a

per-pixel error estimate at present. Pixels whose values have changed as part of the HOT

correction procedure do not have a significantly higher error than those which have

remained unchanged, but it is likely that poor correction still has an impact on the error.

The effect of the AOT magnitude on the error is difficult to discern: the error seems to be

higher the lower the true AOT value is, but this is most noticeable at very low AOTs.

The magnitude of the path radiance due to aerosol scattering is very low when the AOT

is very low, and thus the signal to noise ratio (SNR) is also low, as the noise (in this case

the ground reflectance) stays relatively constant. This low SNR makes retrieval difficult,

and leads to high errors.

It is difficult to compare the accuracy of AOT retrieval methods as the statistics are often

reported differently for each method. All of the methods listed in Chapter 3 Table 3.3

provide data at a significantly lower resolution, and thus their accuracy would be expected

to be higher. However, the RMSE of OMI AOT according to Ahn et al. (2008) is 0.15,

very similar to the RMSEs calculated from comparison of HOTBAR with MAIAC and

simulated data (0.147 and 0.157 respectively). The MODIS 10km AOT product validation

states that 67% of the retrievals are within ±0.05± 0.15τ , which corresponds to an error

of ±0.08 for the global average AOT (0.19) and ±0.13 for a higher AOT (0.5). The

recently-released high resolution MODIS product produces 3km data, albeit with higher

error: with 67% of the retrievals within an error of ±0.1 for the global average AOT and

±0.18 for a higher AOT. In comparison, depending on the data source used for validation,

between 33% and 48% of the retrievals from the new method are within ±0.1. This is

lower than the percentages for the MODIS products, but impressive given that HOTBAR

produces data at 10,000 times the resolution of even the high-resolution MODIS product.

As none of the high-resolution AOT retrieval methods discussed in §3.4.5 have been are

operationally deployed, the validation campaigns are often limited, and so the few

statistics that are available may not be representative of the global algorithm performance.

Liu et al. (2002) found a RMSE of 0.122 from 20m AOT data retrieved from SPOT

images, which compares well with the RMSE from the HOTBAR algorithm. However,

HOTBAR has a significantly lower accuracy than the reported accuracy for the Lyapustin

et al. (2004) method (±0.03), although the authors admit that this may not be a realistic
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assessment of the accuracy as it was performed over a very small area with stable

atmospheric conditions.

Overall, the HOTBAR algorithm produces results with a reasonable accuracy, comparable

to that of the MODIS products (particularly the new 3km ‘high-resolution’ product). The

AERONET validation produced the lowest accuracy, with the MAIAC and simulated

images validations producing better results. As discussed in the introduction to this

chapter, the current validation is significantly limited by the requirement to use Landsat 7

SLC-on data, which is only available between 1999 and 2003. Plans for a more in-depth

validation are discussed in detail in §9.4.
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Example applications

This chapter shows two example applications of the HOTBAR algorithm for estimating

AOT which was developed and validated in the previous chapters. These applications

show the fulfilment of the objectives set out earlier in the thesis: the development of a

per-pixel atmospheric correction method using the HOTBAR AOT product satisfies the

challenge at the end of Chapter 2, and the application of the HOTBAR AOT product to

monitor the distribution of PM2.5 air pollution at high resolution fulfils the challenge laid

down by Hoff and Christopher (2009).

8.1 Per-pixel atmospheric correction

8.1.1 Introduction

Chapter 2 investigated the effect of spatial variability in AOT values on the accuracy of

atmospheric correction, and found that performing a full spatially-variable atmospheric

correction, with a per-pixel AOT product, was essential to produce accurate results.

However, this was impossible for high-resolution images (such as those from Landsat) as

no methods existed to produce an AOT product at these resolutions. In this dissertation,

the development of a method for creating a per-pixel AOT product from a Landsat image

(HOTBAR) has been described, and this section applies this AOT data to atmospheric

correction of the Landsat image, performing a true per-pixel atmospheric correction of a

Landsat image (that is, a correction where each pixel uses an AOT value estimated from

that individual pixel, rather than an interpolated value as used in LEDAPS) for the first

time.

8.1.2 Methods

A per-pixel atmospheric correction method based upon Py6S was implemented in Python.

The 6S model has a built-in atmospheric correction mode, which estimates surface

reflectance from a TOA radiance value and an atmospheric parameterisation (including

AOT, PWC, aerosol type, atmospheric model) at a given wavelength. As well as

estimating the surface reflectance for the specific TOA radiance given, 6S also produces

199
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three coefficients, xa, xb and xc, which allow the surface reflectance to be estimated for

other TOA radiance values using the following formula:

ρ =
xaL− xb

1 + xc(xaL− xb)

where L is the TOA radiance and ρ is the surface reflectance. These coefficients can be

used to perform a uniform atmospheric correction (with a constant AOT value across the

image) based upon a single Py6S simulation per band. However, to perform a

spatially-variable atmospheric correction (with a per-pixel AOT value) these coefficients

must be estimated for every AOT in the image. As discussed in §6.2.2, it would be very

time-consuming to run the model for each pixel in the image, so a Look-up Table (LUT)

is used, in which the coefficients are estimated for a number of AOTs, and the results

interpolated to the AOT values required. For the implementation of this atmospheric

correction tool, LUTs were produced for each band based on AOTs from 0.1 to 1.5 in

steps of 0.1, with an additional extreme AOT added at each end (0.001 and 3.0) to allow

interpolation for any extremely low or high AOT values.

As this is a relatively short example application of the method, a simple parameterisation

for the other atmospheric constituents was used, with ozone amount estimated from the

van Heuklon (1979) model, a fixed sea-level altitude and geometry based upon the date,

time and location of the image. The aerosol model, Precipitable Water Content, and AOT

were user-configurable. Code was implemented to perform corrections based upon a

constant AOT (in which case a single AOT is used to correct each pixel of the image) or a

spatially-variable AOT (in which case each pixel of the image is corrected using the AOT

value from the corresponding pixel of a specified AOT image).

The only way to truly validate an atmospheric correction method is to compare the

atmospherically-corrected surface reflectances to the true surface reflectance, as measured

using a field spectrometer at the same time as the satellite overpass. As found when

validating the AOT product (Chapter 7), the requirement to use data collected before

May 2003 significantly limits the ground reflectance data which can be used. After

extensive searching, the best dataset to use for validation was found to be ground

reflectances collected around the Shunyi Institute of Agricultural Sciences, Beijing in

Spring 2001 (Yan et al., 2003). Many measurements were taken over twelve sampling sites,

but after matching with Landsat acquisitions it was found that the only matching data

covered five sites and one Landsat image, and there was a five hour offset between the

Landsat overpass and the ground data collection.

Three ground measurements were taken for each site, covering the canopy, soil and leaves

of the plants within the sample site. The measurements were acquired with an Analytical

Spectral Devices field spectrometer (model unknown), with a spectral resolution of

approximately 1.8nm, covering the wavelength range 420–2500nm. For comparison with

the satellite data, the spectra were convolved with the Landsat ETM+ Spectral Response
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Functions (taken from the built-in 6S data, at 2.5nm resolution) to produce reflectance

estimates for each of the Landsat ETM+ bands. Limited metadata for the measurements

was available, so it was unknown exactly what land covers were present in each Landsat

pixel. Given this, spectra for each site were produced by averaging the canopy reflectance

and the soil reflectance, based on an assumption that each pixel would consist of a

mixture of vegetation and bare soil, and these spectra were used for comparison with the

satellite data.

The matching image (LE71230322001091EDC00) was downloaded from the USGS and

converted to radiance using the parameters specified in the image metadata. The AOT

estimation algorithm was then run with Thigh = 0.85 and Tlow = 0.70 to produce the

spatially-variable AOT used for the correction. The atmospheric correction procedure was

run using a Continental aerosol model and a PWC of 0.9cm (taken from the Beijing

AERONET site measurement closest to the time of satellite image acquisition).

Two other atmospheric correction approaches were used for comparison with the

spatially-variable correction: a uniform atmospheric correction (with an AOT value

measured at the Beijing AERONET site and interpolated to AOT550 = 0.85)

implemented without the use of a LUT, and a LEDAPS-corrected version of the image

(acquired directly from the USGS).

Comparisons were made between the spectrometer data and the satellite data pixel

directly over the location of ground data collection. The location of the ground data may

not be accurate enough to locate the exact Landsat pixel in which the data were acquired,

but averaging pixels around the ground data location was ruled out due to significant

spatial variability in the data. This potential positional inaccuracy, combined with the

time difference between image and ground data acquisition and possible ground data

sampling issues means that the calculated absolute difference between the satellite and

ground data is likely to have significant error. However, this is the best pre-2003 data

available, and so it is used with these issues taken into account, and with a focus on

relative comparisons of atmospheric correction methods (as the above issues should affect

all methods equally), rather than absolute error.

8.1.3 Results & Discussion

The AOT image (Figure 8.1) shows very high AOTs (up to 0.9) in the urban area of

Beijing, with significantly lower AOTs - including some negative values - in the

mountainous areas to the north and west. Figure 8.2 shows the visual improvement in the

atmospherically-corrected image, with the blue hazy look to the radiance image having

been removed. The mountainous areas look a lot darker than expected: this is due to the

combination of areas masked due to genuine cloud, commission errors in the

cloud-masking algorithm (errors caused by shadows are a particular problem in this

mountainous region) and areas where atmospheric correction failed due to negative AOTs.

At present, the algorithm produces no result (and sets the pixel value to NaN, which is
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displayed as black) where a negative AOT is used, as negative AOTs are physically

impossible. This is acceptable for an example application like this, but would need further

work in future.

Comparing spectra from the radiance and atmospherically-corrected images (Figure 8.3)

shows that the scattering effects in the lower bands that are present in the radiance image

have been removed. The vegetation spectra, particularly, exhibits the characteristic

features of live vegetation (low blue, higher green, and very high near infra-red

reflectances) in Figure 8.3(b), features which are not present in Figure 8.3(a).

The absolute percentage error between the ground reflectance and

atmospherically-corrected reflectance for the three atmospheric correction methods (using

constant AOT, spatially-variable HOTBAR 30m AOT and LEDAPS) is shown separately

for each band in Figure 8.4. As discussed above, the absolute error is unlikely to be

accurate, but the relative differences in error between the three methods can be compared.

This relative comparison shows that the atmospheric correction using the

spatially-variable 30m AOT produces the lowest overall errors (around 5–10%) for bands 1

and 2 (blue and green), however this is not the case for the other bands. LEDAPS

performs best for band 3 (red), constant AOT performs best for band 4 (NIR), although

the errors for this band are particularly high (40–60%). Constant AOT and the

spatially-variable 30m AOT perform very similarly for band 5, but the maximum error is

higher than for bands 1 and 2.

As aerosol scattering is wavelength-dependent, the largest aerosol effects will be in the

blue and green bands, and these are the bands in which the 30m AOT product performs

best (with errors as low as 2%). As expected, this shows that the spatially-variable 30m

AOT correction produces better results than assuming a uniform AOT (as shown through

simulation in Chapter 2), but it also shows that the HOTBAR AOT produces better

atmospheric correction results than LEDAPS - at least for this image. This is due to the

ability of HOTBAR to retrieve AOT over all surfaces, as opposed to LEDAPS which can

only retrieve AOT over DDV, and thus must interpolate between - often sparse - areas of

DDV.

The high absolute error in band 4 is likely due to positional uncertainties in the

measurements, as the NIR reflectance of vegetation varies significantly over space due to

changes in plant health. The relative differences are also likely to be affected by this, as

use of a constant AOT is likely to lead to a larger correction over this area (as the AOT

was derived from an AERONET station in a more central area of Beijing), and this

significant reduction in NIR value brings the value closer to the erroneously-positioned

ground value. Another contributor to the errors in bands 3–5 are the effects of other

atmospheric constituents (such as water vapour and ozone) which have absorption

features primarily within these bands. These constituents were parameterised very simply

in the atmospheric correction algorithm, and also vary spatially, likely reducing the

accuracy of the atmospheric correction.
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Figure 8.1: AOT image derived from the Beijing Landsat 7 image
(LE71230322001091EDC00), and used for the spatially-variable atmospheric cor-

rection shown in Figure 8.2.
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Figure 8.3: Comparison of spectra for three land covers (Bare, Vegetation and Urban)
from (a) the original radiance image and (b) the spatially-variable atmospherically

corrected image
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Figure 8.4: Boxplots showing the absolute percentage error between ground reflectance
and atmospherically-corrected reflectance for bands 1–5. Error is shown for three different
atmospheric correction methods: using a constant AOT across the image, the 30m

HOTBAR AOT product and the LEDAPS method.
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8.1.4 Conclusions & Potential Extensions

This example application shows the potential for performing accurate atmospheric

correction using the per-pixel HOTBAR AOT. The validation of the atmospheric

correction is limited, due to the requirement to use pre-2003 data, but suggests that

atmospheric correction of the blue and green bands using the new AOT is more accurate

than using either a constant AOT or the LEDAPS algorithm. It is likely that the method

also performs better for other bands, but positional issues with the validation dataset hide

this, making it hard to draw firm conclusions. This provides a preliminary fulfilment of

the challenge given at the end of Chapter 2, and objective 5 of the PhD (as listed in §1.4)

although further work is required to produce an operational method.

The following potential further work is currently under consideration:

• Improve the atmospheric correction parameterisation: In this simple

example, the benefits of using a true per-pixel AOT product have been shown, but

little attention has been given to other atmospheric constituents. Improving the

parameterisation of the water vapour, ozone and aerosol model (the latter using a

modelling approach such as that developed by Segura et al., 2013) should reduce the

errors found in the red and NIR bands. A wide range of datasets (including other

satellite data and meteorological re-analysis products) can be used to perform these

parameterisations, and an semi-automated method for parameterisation should be

straightforward to implement.

• Improve the usability of the atmospheric correction: Currently the

atmospheric correction algorithm is run through various Python scripts. These are

not particularly complex to use, but they limit the usability of the algorithm to

those who have experience writing Python code. A simple command-line or

Graphical User Interface (GUI) could be created relatively easily, and this would

enable use of per-pixel atmospheric correction by end-users.

• Perform a better validation: The validation of the atmospherically-corrected

ground reflectances so far has been very limited. Once the AOT retrieval algorithm

has been extended to work with more modern sensors (such as Landsat 8) validation

can be performed using a far broader set of data. Data that have already been

collected by various groups, such as the SPectra bARrax Campaign (SPARC) data

(Moreno et al., 2004) could be used, or a specialised field campaign could be run to

collect exactly the data necessary for validating the atmospheric correction.
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8.2 Estimating PM2.5 air pollution

8.2.1 Introduction

As discussed in §3.7.1, particulate matter pollution (principally PM2.5, but also PM10)is a

significant health issue worldwide. Ground-based monitoring networks exist in many

countries, but these are expensive to maintain and provide relatively poor spatial

coverage. Furthermore, many countries with severe pollution problems - such as China

and India - have very limited monitoring networks. Satellite data could provide an

effective way to perform this monitoring with a far lower cost, but the low resolution of

satellite data is a significant problem. Hoff and Christopher (2009) stated that health

monitoring requires data on a scale of 1–100m, which neither surface monitoring or

satellite measurements could provide. However, a 30m AOT product has been developed

in this thesis, and this has the potential to be used to fulfil the requirements of Hoff and

Christopher (2009) and assess particulate pollution at its natural scale.

From a detailed search of the literature, it seems that this will be the first time in which

PM2.5 pollution will have been monitored at a very high resolution, and this enables a

broad range of potential analyses including detailed investigation of spatial patterns,

mapping of sources and high-resolution population-weighted exposures. This section will

estimate PM2.5 from the 30m HOTBAR AOT product developed earlier in this thesis,

validate the resulting estimates against ground measurements, and provide simple

examples of the analyses that can be performed on the resulting data.

8.2.2 Methods

Ground-based air quality measurements are acquired in the UK by the Automatic

Urban-Rural Network (AURN), which currently consists of over 109 sites. Very few sites

measured PM2.5 during the period of Landsat 7 SLC-on operation (1999–2003), but three

such sites were found within one Landsat image area (path 202, row 024): two located

within the London urban area (Bloomsbury and Marylebone) and one in a rural area near

Oxford (Harwell). These three sites (shown in Figure 8.6) measure PM2.5 with Tapered

Element Oscillating Microbalance (TEOM) instruments (Air Quality Expert Group,

2005). These draw air through a filter on the end of a glass tube, then the tube is made to

oscillate, and the resonant frequency of oscillation is proportional to the square root of the

mass of particles on the filter. For comparison, traditional methods for PM2.5

measurement involve drawing a known volume of air through a filter that only traps

particles less than 2.5 µm in diameter, and then manually weighing the filter at regular

intervals to determine the mass of particles per unit volume (referred to as the gravimetric

method). This approach is very labour intensive, and in the past decade automated

TEOM instruments have come into widespread use. These automated instruments allow

near-real-time monitoring, and measurements from the AURN are provided as hourly or

daily averages; the hourly averages are used here to allow the closest comparison with

satellite data.

However, TEOM instruments tend to produce different measurements than the reference
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gravimetric method, and so correction factors are normally applied to TEOM results

(Page, 2013; Fu et al., 2014; Allen et al., 1997; Ayers et al., 1999). European Union

Standard EN14907:2005 defines requirements for PM2.5 measurement instruments, but

focuses entirely on gravimetric methods. However, the UK Government Department for

Environment Food and Rural Affairs have demonstrated the equivalence of data from a

range of automated measurement devices, including the TEOM instruments used in the

AURN, to this standard (Harrison et al., 2006; Harrison, 2010).

Four cloud-free Landsat ETM+ images were available for this location during the period

of SLC-on operation, and these were acquired and processed through the HOTBAR

algorithm using the parameters Thigh = 0.8 and Tlow = 0.2. The resulting AOT estimates

were then converted to estimates of PM2.5 concentrations by multiplying the AOT values

by the van Donkelaar et al. (2010) conversion factors (described further in §3.7.1). Rather

than using a single conversion factor for an image, these conversion factors are provided

as a series of twelve global images (one for each month) at 0.1◦ resolution, and exhibit

significant spatial variation over the UK (Figure 8.5). The conversion factor images were

resampled to 30m resolution and multiplied with the HOTBAR AOT data to produce the

PM2.5 estimates.

As in previous sections, validation was performed between ground measurements and

directly coincident pixels, with the ground measurement closest to the time of Landsat

overpass used. Inaccuracies in the georeferencing of either the ground-based pixels or the

Landsat image itself could cause issues with this approach, but using pixel averages over a

window centred on the measurement site was not appropriate due to the significant

spatial variability in PM2.5, particularly in urban areas (the so-called ‘urban-canyon’

effect; Vardoulakis et al., 2003).

8.2.3 Results & Discussion

Example maps showing PM2.5 distributions over the whole image (Figure 8.6) and

London (Figure 8.7) show the level of detail which this new method provides. For

comparison, the 10km pixel grid used for the MOD04 AOT product is overlain in blue,

showing that there would only be one MOD04 measurement over the whole of central

London. The spatial pattern of PM2.5 across the whole image shows the expected pattern

of higher values over built-up areas, and lower values in rural areas. The so-called ‘M4

corridor’ is visible as a line of moderately-high pollution stretching East-West across the

lower part of the image - and within this the town of Reading has particularly

concentrated areas of high pollution. Interestingly, the western and north-western parts of

the image - around Oxford and surrounding settlements such as Bicester - appear to have

the highest levels of pollution. This is likely due to transport of particulate pollution

rather than local sources - in this case the prevailing south-westerly wind bringing

pollution from the industrial areas surrounding Bristol towards Oxford.

The spatial distribution of PM2.5 across London (Figure 8.7) shows a significant difference
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Figure 8.5: Map showing the spatial variation in the van Donkelaar et al. (2010)
conversion factor used to estimate PM2.5 from AOT for dates in March

in pollution north and south of the River Thames, with significantly higher pollution in

the north. Particularly high concentrations are found in Kensington, Euston Rd,

Westminster and the industrial area near Bromley-by-Bow. All except the last of these

are likely to be caused by traffic: for example, the A4 passing through Kensington and

Euston Road are two of the major routes into London. Green space in Central London

(such as Hyde Park and Regent’s Park) still have significant amounts of PM2.5 pollution,

but generally less than the surrounding areas - this is particularly noticeable for the

western part of Hyde Park.

Time series of ground measurements and coincident (with a time difference of less than

thirty minutes) satellite estimates of PM2.5 are shown in Figure 8.8, and absolute error

statistics in Table 8.1. The rural site (Harwell) has the lowest average error, potentially

reflecting the effect of positional accuracy in these error calculations: the concentrations
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Table 8.1: Absolute error statistics, in µg m−3, for each of the three AURN sites used
for validation, plus the overall error

Bloomsbury Harwell Marylebone All

Min 5 2 4 2
Mean 13 11 14 12
Median 10 5 13 6
Max 26 31 26 31

around Harwell are very uniform in comparison to those around the London sites, and the

land cover is far less variable. The overall mean and median errors of 12µg m−3 and

6µg m−3 respectively compare favourably with the results from a global analysis

performed by van Donkelaar et al. (2010) at a far lower resolution (10km), which

produced a global population-weighted mean uncertainty of 6.7µg m−3. Examining the

time-series plots shows a significant variation in error over time, with particularly high

error in all images for the image collected in December 1999 (ranging from 20–30µg m−3).

The reason for this high error is not fully understood at this time, but as it was acquired

very early in the satellite’s period of operation, it could be due to instrument calibration

issues. Removing the data from the December 1999 image from the analysis reduces the

mean absolute error to 8µg m−3.

The overall estimate of HOTBAR AOT error found in Chapter 7 was ±0.12, and this is

consistent with these PM2.5 errors, as over the validations sites the van Donkelaar et al.

(2010) conversion factors have an approximate range of 65–90, and thus a PM2.5 error of

between 7.8µg m−3 and 10.8µg m−3 would be expected. In this context the errors inherent

in the van Donkelaar et al. (2010) AOT-PM2.5 conversion are ignored, and these would be

expected to increase the error, so the mean PM2.5 error found in this validation is very

good. Little information is available on the accuracy of ground-based measurements of

PM2.5 as, unlike with trace gas measuring instruments, it is very difficult to perform

reference measurements in a laboratory (Air Quality Expert Group, 2005). However, the

manufacturer of one of the instruments used in the AURN states an estimated accuracy of

±2.5µg m−3 (Thermo Scientific, 2009), around a third of the average error found from the

satellite estimates.

It is difficult to compare the PM2.5 values from these images to the National Air Quality

objectives (Defra, 2010), as the objectives are stated in terms of the annual mean.

However, analysis has been carried out based upon an average of the images used in this

study (excluding the December 1999 image with high error) to allow a indicative

comparison to be carried out, albeit with high uncertainty. Figure 8.9 highlights the

pixels in London in which the mean estimated PM2.5 concentration exceeded the National

Air Quality objective of 25µg m−3, and Figure 8.10 shows the percentage of the area of

each London borough which exceeded the objective. As expected, the boroughs in the

middle of central London (Westminster, City of London and Kensington and Chelsea)

perform worst, with each exceeding the objective over more than 20% of their area.
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Figure 8.8: Time series comparisons of PM2.5 measured by the Automatic Urban-Rural
Network monitoring stations and estimated from AOT
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8.2.4 Conclusions & Potential Extensions

This example application shows the potential for monitoring particulate matter pollution

(principally PM2.5, but potentially also PM10) using the new high-resolution AOT

product (HOTBAR) developed in this thesis. The estimates have an uncertainty of

around ±8 µg m−3, which compares favourably with lower-resolution methods of

estimating PM2.5, and is around three times the estimated error of ground instruments.

To the author’s knowledge, this method provides the highest resolution data on

particulate matter ever produced (fulfilling the requirement of Hoff and Christopher,

2009), and this high resolution allows the effective use of satellite data for local-scale

particulate matter pollution monitoring for the first time. From a regulatory perspective,

Local Authorities within the UK have a statutory duty to monitor air pollution, but have

been discouraged from using satellite data due to the low resolution: previously available

data provided no more detail than the limited network of ground measurement stations

already in operation. However, the availability of high-resolution data changes this, and

preliminary discussions with Local Authorities about the application of this method in

their monitoring work have led to significant interest.

The following potential further work is currently under consideration:

• Integrate ground and satellite measurements: Integrating ground-based

measurements (with high accuracy) and satellite-based measurements (with high

spatial resolution) through a data assimilation approach would allow the production

of detailed measurements with high accuracy.

• Improve temporal resolution: Landsat images are acquired over the same

location every 16 days, but cloud cover means that the practical temporal resolution

is far lower. Extending the method to work with a broader range of sensors (see

§9.4.1) would allow a far higher temporal resolution either by use of sensors with

shorter revisit periods (such as SPOT-5 or the soon-to-be-launched Sentinel-2) or by

combining data from a range of sensors into one time-series.

• Investigate a wider range of applications: There are many previously

impossible applications which are made possible by the use of high-resolution PM2.5

data. These should be investigated in collaboration with air quality experts and

spatial epidemiologists, and may include detailed population-weighted exposures,

links between air quality and health, and validation of high-resolution air quality

models.

• Extend to estimate PM10 : There is also a significant relationship between

AOT and PM10 (Hoff and Christopher, 2009; Péré et al., 2009), and similar

methods to van Donkelaar et al. (2010) could be developed and used to allow

estimation of both PM10 and PM2.5 at high resolution.

• Perform a better validation: The present validation has been limited by the

need to use data collected before 2003 - a period in which relatively few PM2.5

measurement stations were operating. Once the AOT retrieval algorithm has been
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extended to work with more modern sensors (such as Landsat 8, see §9.4.1), a

validation can be performed with a far broader set of data.



Chapter 9

Conclusions & Further Work

9.1 Summary & Novel Contributions
This dissertation has described the development of a novel method to retrieve high spatial

resolution AOT from satellite data. The overall aim of developing a method to produce a

per-pixel AOT product from Landsat images has been achieved through the development

of the HOTBAR algorithm, which is summarised in §6.5. The PhD objectives (originally

listed in §1.4) have been achieved:

1. To assess the validity of the assumptions behind the Haze Optimized

Transform: Achieved in Chapter 4, in which the assumptions were found to be

valid.

2. To develop an improved version of the Haze Optimized Transform,

focusing particularly on the correction procedure: Achieved in Chapter 5,

in which the HOT was improved by pre-processing the data, developing a new

method to model the Clear Line and implementing a significantly improved

correction procedure based on Object-based Image Analysis.

3. To develop a method to estimate AOT from the Haze Optimized

Transform: Achieved in Chapter 6, where the inherent relationship between HOT

and AOT was assessed, and then a method to model this relationship for an

arbitrary image was developed.

4. To assess the accuracy of the resulting AOT values both in terms of

absolute accuracy and ‘spatial coherence’ (the relative accuracy

between adjacent pixels): Achieved in Chapter 7, where the algorithm results

were compared to AERONET ground measurements, the MAIAC 1km satellite

product and simulated images.

5. To apply the new method to some potential application areas where

high-resolution AOT data are needed: Achieved in Chapter 8 through the

application of the new data to PM2.5 air quality monitoring and per-pixel

atmospheric correction.
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The significant novel contribution of this research is the development of a new algorithm

to estimate high-resolution AOT from a single optical satellite image (in this case, a

Landsat image, producing AOT data at 30m resolution). The method requires only two

visible bands (blue and red), allowing it to be easily extended to work with a wide range

of other sensors, and is known as the Haze Optimized Transform Based Aerosol Retrieval

(HOTBAR) algorithm.

As part of the development of this algorithm a number of separate novel contributions

have been made:

• An assessment of the error involved in performing a uniform atmospheric correction

across a satellite image acquired over southern England. Even when images were

acquired on clear days, the variation in atmospheric conditions was found to be

significant, and the resulting error high. Full details are in Chapter 2.

• The development of a Python interface to the 6S atmospheric radiative transfer

model, allowing multiple simulations to be performed easily and

computationally-efficiently. This has been released as open-source software, and is

now in use by a broad range of research groups at universities across the world. Full

details are in Appendix A.

• The development of a method to create an ‘as close to perfect as possible’ dataset of

atmospherically-corrected satellite image pixel reflectances. This dataset is referred

to in this thesis as LandsatAERONET but can be easily created from other data,

and will be useful for a broad range of remote sensing research. Full details are in

§4.2.4.

• The development of a method to define the Clear Line without requiring a clear

part of the image, using a land-cover-based Monte Carlo approach to orthogonal

distance regression. The original Clear Line estimation technique is impossible when

using the HOT to estimate AOT, but the same approach may be useful within the

standard HOT procedure as it removes the need to manually find a clear part of the

image from which the Clear Line can be derived. Full details are in §5.3.

• The development of a significantly improved HOT correction procedure to remove

land cover effects from HOT images. This method uses Object-based Image

Analysis to take into account local context when removing anomalies, and could be

applied separately to the rest of the algorithm in place of the correction procedure

used in the Advanced HOT (He et al., 2010). Full details are in §5.4.

• The application of the new high-resolution AOT data to perform a true per-pixel

atmospheric correction of a Landsat image for the first time. Full details are §8.1.

• The application of the new high-resolution AOT data to produce high-resolution

maps of PM2.5 concentrations for the first time. Full details are in §8.2.

The literature review (Chapter 3) categorised AOT estimation methods by the manner in

which they split the at-sensor radiance in to the ground radiance and path radiance.

HOTBAR doesn’t explicitly estimate the path radiance, so the method doesn’t easily fit

into one of the categories. However, the HOT is a proxy for the path radiance, and thus
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the new algorithm could be categorised as using a combination of Estimate the ground

reflectance from another band (as the HOT uses deviation from the correlation between

blue and red reflectance to estimate a proxy for path radiance; see §3.4.2.2), and a new

category Use spatial context (as the removal of land cover effects is performed using

spatial context in the object-based image analysis HOT correction procedure).

9.2 Strengths & weaknesses
HOTBAR uses a novel approach to retrieving AOT from satellite images, and thus the

strengths and weaknesses of the overall approach should be examined. It should be noted

that these are not the strengths and weaknesses of this particular implementation, many

of which are dealt with in the list of potential future work in §9.4.

The strengths of this approach are that:

• It produces high-resolution AOT data with reasonable accuracy

• It has very lenient requirements for input data, and requires only a blue and red

band, making it applicable to a range of sensors

• It only requires one image of the area to be processed (as opposed to a time-series of

images, or a reference image with very low AOT)

• It uses context to take into account the perturbing effects of land cover, thus

reducing the signal-to-noise ratio issues experienced by other high-resolution AOT

retrieval methods

The weaknesses of this approach are that:

• It performs very poorly over some areas where land covers with significantly

different reflectances merge without sharp boundaries (such as deserts), as the

segmentation procedure cannot extract objects to be corrected from these areas

• It requires a reasonable historical archive of images (lasting around six months to a

year, depending on the sensor temporal resolution) to produce a

LandsatAERONET-equivalent dataset which is representative of a range of land

covers

• It performs poorly over areas where the LandsatAERONET database is not

representative (for example, due to limited sampling from desert areas)

9.3 Broader implications
The development of HOTBAR has implications for two groups: those involved in the

development of AOT retrieval methods, and those who are end-users of AOT retrievals.

The broader implications for the development of AOT retrieval methods generally are

based upon the effectiveness of certain parts of the methodology which will be relevant in

the development of future algorithms. Specifically:

1. The OBIA-based HOT correction (§5.4), which applies spatial context in the
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process of removing land cover effects for the first time, providing an effective way

to deal with the signal-to-noise ratio issues caused by land cover anomalies.

2. The development and use of the LandsatAERONET dataset (§4.2.4) as a

representative sample of ‘perfectly’ atmospherically-corrected Landsat surface

reflectance, which has broad applications across a range of remote sensing research.

3. The success of using the HOT to estimate AOT shows the benefits of ‘re-imagining’

work performed in the early days of remote sensing (the HOT is closely linked to

work from the 1970s and 1980s) in a modern context.

There are also broader implications for end-users. The results of the self-contained study

in Chapter 2 have important practical implications for remote sensing researchers: the

conclusions show the importance of performing a spatially-variable atmospheric correction,

as opposed to a uniform correction. Similarly, the development of HOTBAR has

significant implications for end-users of AOT data: the method could be operationally

applied to produce high-resolution AOT data for a range of applications including the

assessment of PM2.5 air pollution, atmospheric correction of satellite imagery, monitoring

of smoke from fires, and monitoring of dust transport. The current legislative framework

in the UK and EU requires PM2.5 measurements used for monitoring adherence to air

quality regulations to be acquired from ground monitoring sites (Defra, 2010), thus

limiting the official application of satellite-based measurements. However, it is likely that,

once high-resolution satellite measurements have been applied more broadly in health

research projects, the legislation will be changed to allow a combination of satellite and

ground measurements to be used for official monitoring.

9.4 Further Work
The work described in this thesis is the early stage of the development of HOTBAR:

further work could be carried out to both improve both the algorithm itself, and the

validation and application work described in the later chapters of this thesis. Most other

aerosol retrieval algorithms took many years to develop fully: for example, MAIAC took

over five years (Lyapustin et al., 2011) and work started on the MOD04 product in 1992,

seven years before the MODIS sensor was first launched (King et al., 1992), and so the

need for further work is to be expected.

9.4.1 Extending to other sensors

One of the major issues with the algorithm implemented in this research is that it requires

Landsat ETM+ SLC-on data, which was only acquired between May 1999 and May 2003.

As well as removing the ability of the algorithm to measure AOT from current imagery,

this also significantly reduces the volume of data available for validation. The algorithm

was originally developed using Landsat TM and ETM+ images, but it was found that high

noise levels in the Landsat TM data caused the HOT correction to perform poorly (see

§5.4.7), and SLC-off data caused major problems with the segmentation algorithm, leaving

only Landsat ETM+ SLC-on data for use by the algorithm. Thus the highest priority
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further work is to extend the method to work with Landsat 8 data, as detailed in §5.4.7.

9.4.2 Improved validation

The validation so far has been limited by the requirement to use Landsat ETM+ SLC-on

data, which significantly reduced the potential data (both from AERONET and other

satellite products) which could be used for comparison. After the algorithm has been

extended to work with Landsat 8 data it will be possible to perform a far more

comprehensive validation, consisting of:

• Broad AERONET validation: A key aspect of any validation is to ensure that

it is as representative as possible of the real-world conditions in which the method

will be used. With the far broader availability of AERONET data during the period

of Landsat 8 data acquisition, it should be possible to perform validation over most -

if not all - of the AERONET sites worldwide.

• Validation against dense ground measurement networks: As discussed in

the validation (Chapter 7) the ‘spatial coherence’ of the resulting AOT data is

important, and this is very difficult to assess as ground networks are not dense

enough and other satellite data are of low resolution. There are two possibilities to

extend this part of the validation: the use of DRAGON data (§3.3.1.2) and the

development of a new high-resolution ground-based dataset through the SkySci

project (§3.3.1.3)).

9.4.3 Algorithm improvements

Although the algorithm produces relatively good results, there are a number of potential

areas for improvement. These are detailed below:

• HOT Correction: The HOT correction algorithm is a significant improvement on

previous methods, but does not perform well in all situations. Improvements could

be made by:

– Developing a method to automatically choose segmentation parameters, thus

allowing the entire algorithm to be automated, either through standard OBIA

parameter selection approaches (for example Dragut et al., 2010), or by

redeveloping the edge detection and linking stages so that a single

parameterisation provides good results for all images

– Improving the removal of edge effects by developing an adaptive thresholding

method

– Solving issues with background values and No Data areas, to remove the issues

with poor correction over islands

– Improving the iteration termination conditions so that over- and

under-correction issues do not occur

• HOT-AOT Relationship: Similarly, the algorithm used to estimate the

HOT-AOT relationship performs well most of the time, but poorly in certain

situations. Improvements could be made by:
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– Using different parameterisations for different images, which should lead to

final accuracies closer to those found from the actual relationships (§6.3) rather

than the modelled relationship (§6.4)

– Implementing more complex aerosol type parameterisation, to allow different

areas of the image to have different aerosol types, for example: urban aerosols

over a city and maritime aerosols near the coast

• Computational efficiency: Currently the algorithm takes approximately 2 hours

to process a Landsat image (on a 3.2Ghz PC with 16Gb of RAM), depending on the

complexity of the image (as this influences the time taken to perform the HOT

correction procedure). This delay increases the time taken to iteratively develop and

improve the algorithm, as well as making large-scale production of AOT data

challenging. Speed improvements could be made by storing HOT values as integers

rather than floating point values, following the guidance in Gorelick and Ozsvald

(2014) regarding efficient use of numpy and implementing parallelisation where

appropriate.

• Outputs: Currently the algorithm produces the resulting AOT image, along with a

log file and a list of parameters used. Several other outputs which would be very

useful to end-users could be produced including a Quality Assurance image

(providing quality and error information for each pixel) and an ‘atmospheric

correction ready’ AOT image with negative AOTs either masked out or set to a

near-zero value (depending on the magnitude, as discussed in §7.5) and an option to

interpolate small no data areas.

9.5 Conclusion
This dissertation has described the development of Haze Optimized Transform Based

Aerosol Retrieval (HOTBAR), a new algorithm to estimate high-resolution AOT. The

development of this method, including the development of several novel stages in the

processing methodology, is the major novel contribution of this PhD. The method is

currently implemented on Landsat images, providing AOT with a spatial resolution of

30m at a comparable accuracy to the operational MODIS 10km and 3km AOT products.

Example applications have shown how this high-resolution data can be applied for

monitoring of PM2.5 air pollution at an unprecedented resolution, and for per-pixel

atmospheric correction of satellite imagery.



Appendix A

Py6S

The 6S Radiative Transfer Model (Vermote et al., 1997) is used extensively in this thesis

to simulate atmospheric radiative transfer. The standard 6S interface is very difficult to

use, and manual modifications must be made to the input file to run the same simulation

for multiple wavelengths, angles or other parameters. To deal with this issue, and to

provide a good foundation for future work, a modern interface to 6S was developed during

the early stages of the PhD research. This interface was developed through the Python

programming language, and is called Py6S.

A paper describing Py6S was published in Computers and Geosciences (Wilson, 2012),

and the post-peer-review text of this paper is presented in this appendix.
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A.1 Introduction
Radiative Transfer Models (RTMs) are widely used to simulate the passage of solar

radiation through atmospheres on Earth and other planets. They have a range of uses

including atmospheric research and solar energy system design, and are widely used

within remote sensing and Earth observation, but they are often seen as difficult to use

with respect to the numerous input and outputs parameters. This paper outlines Py6S, a

Python interface to the 6S RTM (Vermote et al., 1997) designed to address these issues.

Py6S allows the user to write simple Python scripts which can set 6S input variables, run

simulations and access the outputs. Methods are also provided to perform common tasks,

such as running a simulation for a range of wavelengths. It is envisaged that Py6S will

provide a useful framework in which research on atmospheric radiative transfer can be

conducted using 6S, as well as opening the use of 6S to a wider audience including

students.

A.2 6S
Second Simulation of the Satellite Signal in the Solar Spectrum (6S; Vermote et al., 1997)

is a radiative transfer model which has established itself as one of the standard RTMs

used for both remote sensing research and the creation of operational products. The

model is intermediate in complexity, between simple RTMs such as SPCTRAL2 (Bird and

Riordan, 1993) and FAR (Seidel et al., 2010), which do not produce results of the required

accuracy for many applications, and very complex and computationally-intensive models

such as SCIATRAN (Rozanov et al., 2005), libRADTRAN (Mayer and Kylling, 2005) and

LIDORT/VLIDORT (Spurr, 2008). It has been used in the development of new

algorithms and spectral indices (for example Ceccato et al., 2002) and is often combined

with other models to produce fully-integrated models - for example it was used in the

Kuusk and Nilson (2000) integrated forest reflectance model.

The current version is 6SV1.1, a vector version of the original 6S code which can simulate

the atmospheric radiative transfer of polarised and non-polarised visible and infra-red

radiation under different atmospheric conditions. Parameters include the atmospheric

conditions, altitude of the sensor and target, wavelength and ground reflectance (with the

ability to use a number of built-in BRDF models). An atmospheric correction mode

allows the calculation of a ground reflectance, given an at-sensor radiance or reflectance

value and a set of atmospheric parameters.

The primary simulation outputs are at-sensor reflectance and radiance, broken down into

their individual components, as well as a number of other calculated atmospheric

parameters. Validation has shown differences of less than 0.1% when compared with

MODTRAN4 (Kotchenova et al., 2006; Kotchenova and Vermote, 2007), and Kotchenova

et al. (2008) studied a number of standard RTMs and found that 6S demonstrated the

best agreement with a Monte Carlo benchmark (within 1%). The ability of the latest

version of 6S to take into account polarisation of light is thought to be behind its
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0 (User defined)

40.0 100.0 45.0 50.0 7 23 (geometrical conditions)

8 option for Water Vapor and Ozone

3.0 3.5 Water Vapor and Ozone

4 User ’s Components

0.25 0.25 0.25 0.25

0

0.5 value

-0.2 (target level , negative value)

-3.3 (sensor level)

-1.5 -3.5 (water vapor and ozone)

0.25 (aot)

11 (chosen band)

1 (Non homogeneous surface)

2 1 0.5 (ro1 ro2 radius)

1 BRDF

-0.1 radiance (positive value)

Listing A.1: Sample 6S input file

increased accuracy in many situations (Kotchenova et al., 2008).

6S is used operationally as part of the atmospheric correction procedure for Landsat TM

(Ouaidrari and Vermote, 1999), and for generating lookup tables in the MODIS

atmospheric correction procedure (Vermote and Vermeulen, 1999). 6S is also frequently

used for atmospheric correction of images from a number of sensors by end-users (for

example Alencar et al., 2011; Steven et al., 2003).

A.2.1 Limitations in the interface

The user interface to 6S is provided through text input and output files (see Listings A.1

and A.2) which have a number of issues:

• Every parameter in the input file is specified using a number, even categorical

parameters, making the file difficult to read and edit.

• The input file must have exactly the correct format (including whitespace) if it is to

be read correctly by 6S, thus any small errors can lead to problems ranging from

software crashes to subtly incorrect outputs.

• It is only possible to specify one parameter set in the 6S input file, thus running 6S

for a range of parameter values (for example multiple wavelengths, or multiple

atmospheric conditions) requires manually editing the input file between each

simulation.

• The format of the 6S output file is easy for humans to read, but hard to extract

values from automatically.

A.3 Py6S
Py6S is a Python interface to the 6S model which has been developed to address the

limitations described above. By not re-implementing the model itself, we can ensure that

results produced using Py6S will be exactly the same as results produced using 6S by

itself, thus significantly reducing the amount of testing and validation required of the

Py6S code.



228 Appendix A : Py6S

*******************************************************************************

* *

* integrated values of : *

* -------------------- *

* *

* apparent reflectance 0.0330894 appar. rad.(w/m2/sr/mic) 12.749 *

* total gaseous transmittance 0.675 *

* *

*******************************************************************************

* *

* coupling aerosol -wv : *

* -------------------- *

* wv above aerosol : 0.033 wv mixed with aerosol : 0.033 *

* wv under aerosol : 0.033 *

*******************************************************************************

* *

* integrated values of : *

* -------------------- *

* *

* app. polarized refl. 0.0014 app. pol. rad. (w/m2/sr/mic) 0.065 *

* direction of the plane of polarization -27.40 *

* total polarization ratio 0.043 *

* *

*******************************************************************************

* *

* int. normalized values of : *

* --------------------------- *

* % of irradiance at ground level *

* % of direct irr. % of diffuse irr. % of enviro. irr *

* 0.773 0.221 0.005 *

* reflectance at satellite level *

* atm. intrin. ref. environment ref. target reflectance *

* 0.015 0.004 0.014 *

* *

* int. absolute values of *

* ----------------------- *

* irr. at ground level (w/m2/mic) *

* direct solar irr. atm. diffuse irr. environment irr *

* 453.572 127.136 3.157 *

* rad at satel. level (w/m2/sr/mic) *

* atm. intrin. rad. environment rad. target radiance *

* 5.649 1.633 5.468 *

* *

* *

* int. funct filter (in mic) int. sol. spect (in w/m2) *

* 0.1174545 185.589 *

* *

*******************************************************************************

*******************************************************************************

* *

* integrated values of : *

* -------------------- *

* *

* downward upward total *

* global gas. trans. : 0.68965 0.97248 0.67513 *

* water " " : 0.98573 0.98623 0.97592 *

* ozone " " : 0.70609 0.99079 0.70008 *

* co2 " " : 1.00000 1.00000 1.00000 *

* oxyg " " : 0.99344 0.99533 0.99179 *

* no2 " " : 1.00000 1.00000 1.00000 *

* ch4 " " : 1.00000 1.00000 1.00000 *

* co " " : 1.00000 1.00000 1.00000 *

* *

* *

* rayl. sca. trans. : 0.96494 0.93809 0.90520 *

* aeros. sca. " : 0.72090 0.82111 0.59194 *

* total sca. " : 0.69208 0.81074 0.56110 *

* *

* *

* *

* rayleigh aerosols total *

* *

* spherical albedo : 0.04939 0.04918 0.06820 *

* optical depth total: 0.05550 0.42021 0.47570 *

* optical depth plane: 0.01848 0.23606 0.25454 *

* reflectance I : 0.01098 0.01327 0.02175 *

* reflectance Q : 0.00118 0.00037 0.00122 *

* reflectance U : -0.00156 0.00000 -0.00173 *

* polarized reflect. : 0.00195 0.00037 0.00212 *

* degree of polar. : 17.77 2.76 9.75 *

* dir. plane polar. : -26.48 0.00 -27.43 *

* phase function I : 1.26026 0.27565 0.39051 *

* phase function Q : -0.21911 -0.00611 -0.03096 *

* phase function U : -1.19913 -0.15957 -0.28084 *

* primary deg. of pol: -0.17386 -0.02215 -0.07927 *

* sing. scat. albedo : 1.00000 0.52284 0.57850 *

* *

* *

*******************************************************************************

Listing A.2: Extract from a sample 6S output file
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A.3.1 Features

Py6S provides a superset of the 6S features: any parameter that can be set manually in a

standard 6S input file can also be set through Py6S. Thus, the description of features here

will not focus on the scientific features of the standard 6S model, but will focus on the

improvements that Py6S provides.

• User-friendly parameter setting, with easily-accessible documentation:

6S parameters can be set using a simple Python interface rather than a cryptic

input file. For example, to set the wavelength for the simulation to that of Landsat

TM band 1, you simply run s.wavelength =

Wavelength(PredefinedWavelengths.Landsat TM B1). Extensive documentation

is provided regarding the parameters which can be set, and this documentation can

be accessed interactively through the Python interpreter.

• Helper functions making common operations simple: Manually running 6S

simulations for many wavelengths across a certain wavelength range is a common

need, but it is normally very time-consuming as it requires much manual editing of

the 6S input files. In Py6S this can be accomplished with a single call to run vnir,

or run landsat tm. Similarly, running a simulation with many solar or view angles

to produce a polar plot showing directional reflectance effects can be accomplished

with a single call to plot and run 360.

• Plotting capabilities: Py6S links with the Matplotlib plotting library (Hunter,

2007), allowing the results from 6S simulations to be easily plotted using functions

such as plot wavelengths and plot 360.

• Access to all other Python functionality: Py6S does not provide a Graphical

User Interface (GUI) to 6S, as MODO (Schläpfer, 2001) does for MODTRAN4, but

instead provides an API for the Python language, which allows a lot more flexibility.

GUIs are easy to use for simple tasks, but can make it very difficult to perform more

complicated tasks which the author may not have anticipated. By providing a

Python API, code using Py6S can do anything that is possible within the Python

language. For example, it can use all of the built-in functionality of the Python

Standard Library, as well as access other Python modules commonly used in

scientific computing (for example, numpy, scipy, matplotlib and

python-statslib), allowing analysis of 6S outputs to be performed within the

Python environment.

• Ability to import parameters from external data sources: Py6S allows

detailed 6S parameterisation from real-world measurements. Currently supported

sources are radiosonde data from the University of Wyoming Atmospheric Sciences

department (available at http://weather.uwyo.edu/upperair/sounding.html)

and sun photometry data from the AERONET network (Holben et al., 1998).

Importing this data manually would require interpolation, unit conversion and

date/time subsetting, all of which is done automatically by the Py6S functions.

• Reproducibility: There has been a increased emphasis recently on improving the

reproducibility of research conducted using computational approaches in many fields

http://weather.uwyo.edu/upperair/sounding.html
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(for example Baiocchi, 2007; Vandewalle et al., 2009). By allowing a whole series of

6S simulations to be run from a single script, and linking with other Python

modules for further analysis, Py6S allows entire research projects using 6S to be

reproducible from a single Python script.

A.3.2 Usage

A.3.2.1 Installation

As Py6S is purely an interface to 6S, the original 6S executable is required to run Py6S.

Full instructions for 6S compilation on Windows, Mac OS X and Linux are included in

the Py6S documentation. Py6S and its dependencies can be installed from the Python

Package Index with a single call to the pip utility.

A.3.2.2 Example Py6S scripts

This section provides a number of examples to introduce Py6S functionality; the first

example shows how to set a number of parameters through Py6S, run the simulation, and

extract some outputs:

from Py6S import *

# Create an object to hold the 6S parameters

s = SixS()

# Set the atmospheric profile to Tropical

s.atmos_profile = AtmosProfile.PredefinedType(AtmosProfile.Tropical)

# Set the wavelength to 0.357 um

s.wavelength = Wavelength (0.357)

# Run the model and print some outputs

s.run()

print s.outputs.pixel_radiance

print s.outputs.background_radiance

print s.outputs.single_scattering_albedo

print s.outputs.transmittance_water.downward

This may not seem significantly easier than writing 6S input files manually – although it

is less error-prone – but another example shows the power of Py6S when running a

number of simulations for many wavelengths and plotting the results, shown in Figure 1.

from Py6S import *

s = SixS()

# Run the 6S simulation defined by this SixS object across the

# whole VNIR wavelength range , extracting the pixel reflectance

# from the model output

wavelengths , results = SixSHelpers.Wavelengths.run_vnir(s,

output_name="pixel_radiance")

# Plot these results , with the y axis label set to "Pixel Radiance"

SixSHelpers.Wavelengths.plot_wavelengths(wavelengths , results ,

r"At -sensor Spectral Radiance ($W/m^2\!/\ mu m$)")
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Figure A.1: An example output from the Py6S commands run vnir and
plot wavelengths.

Similarly, simulations can be run for many angles, with the results plotted as a polar

contour plot (shown in Figure 2), a time-consuming task which would require much

editing of input files using the standard 6S interface, but which is far simpler in Py6S.

from Py6S import *

s = SixS()

# Set solar azimuth and zenith angles and wavelength

s.geometry.solar_a = 0

s.geometry.solar_z = 30

s.wavelength = Wavelength (0.550)

# Set the directional ground reflectance to be modeled

# by the Roujean BRDF model , using parameters for a pine forest

# (parameters taken from Roujean et al., 1992)

s.ground_reflectance = GroundReflectance.HomogeneousRoujean (0.037 , 0.0, 0.133)

# Run the model and plot the results , varying the view angle (the other

# option is to vary the solar angle) and plotting the pixel radiance.

SixSHelpers.Angles.run_and_plot_360(s, ’view’, ’pixel_radiance ’,

colorbarlabel=r"At -sensor Spectral Radiance ($W/m^2\!/\ mu m$)")

Further examples including importing of real-world data and more detailed

parameterisations are provided in the documentation.

A.3.3 Design and Implementation

Py6S is a set of Python classes combined into the module Py6S. The main class is SixS

which has attributes for setting parameters, and a run method to run the model and

parse the outputs. When this method is called, the parameters are written to a temporary
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Figure A.2: An example output from the Py6S command run and plot 360. This
shows the radiance of a surface parameterised with the Roujean Bidirectional Reflectance
Distribution Function model for a pine forest (k0 = 0.037, k1 = 0, k2 = 0.133), at 500nm.
Simulations were performed every 10 deg for both azimuth and zenith, and the yellow star

denotes the location of the sun.

input file and the standard 6S executable is then called on the input file. The full text

output from 6S is captured and parsed to extract the numerical values of each output

parameter which are then stored in the values dictionary.

Python’s flexibility as a dynamically-typed language, allows functions to respond to a

number of different types of input parameters. This has been used to provide a simple

interface to the user, for example the Wavelength function can be called in any of the

following manners:

# Wavelength of 0.43um

Wavelength (0.43)

# Band from 0.43 -0.50um, with a flat response function of 1.0

Wavelength (0.43 , 0.50)

# Band from 0.4 -0.41um, with a custom response function

Wavelength (0.400 , 0.410 , [0.7, 0.9, 1.0, 0.3])

# A pre -defined sensor band wavelength

Wavelength(PredefinedWavelengths.LANDSAT_TM_B1)

This is far simpler to understand than a number of separate functions for setting different

types of wavelength ranges. Similarly, although the output values are stored in a Python

dictionary, they can be accessed as if they were attributes of the output class. For

example:

# The standard way to access an item from a dictionary
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s.outputs.values[’pixel_reflectance ’]

# A cleaner and simpler way to access the output

s.outputs.pixel_reflectance

A.4 Conclusions
In conclusion, Py6S provides a modern environment for the scripting of 6S, a respected

radiative transfer model in the remote-sensing community. Its features allow easy setting

and modification of input variables and parameters and running of 6S simulations, it

provide methods to import real-world measurements to 6S parameters, and it makes

common operations such as running a simulation for all bands of a particular sensor easy.

Py6S is released under the Lesser GNU Public License, and is available from

www.rtwilson.com/academic/py6s.

www.rtwilson.com/academic/py6s
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Example of noise effects on

correction algorithm

The effect of the noise in Landsat TM data on the quality of the correction is discussed in

§5.4.7. In this Appendix, an example on a very small image will be shown, so the effect of

the noise on the calculations can be seen.

A small original HOT image was created by hand, with a single negative HOT anomaly

present within the image. Noise was then added to this image, in a similar way to the

Landsat TM noise: some random noise, plus two bands of increased and decreased values.

All image values were integers in the range 0–10. The original image, with and without

noise, are shown in Figure B.1. The noise is almost impossible to see in Figure B.1(d), but

still has an effect on the correction.

The segmentation was manually performed and the image object is outlined in red, with

the border and offset border shown in blue and green respectively.

The algorithm was applied manually, and the results are shown in Figure B.2. The edge

effect is clearly visible in Figure B.2(d), particularly when compared to Figure B.2(c).

This edge effect is caused by the noise affecting both the average pixel value of the object

(hence why the noise effects were reduced significantly when using the median as opposed

to the mean - as the median is less sensitive to noise) and the Otsu threshold choice,

meaning that more edge pixels are included in the group of pixels which are modified.

The net result of this is an increase in edge effects - in this case positive edge effects (that

is, increases in pixel value), although the same would occur as negative edge effects for

positive anomalous areas.
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lighted in red

(c) No noise
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annotations)

(d) With noise
(without
annotations)

Figure B.1: Original images, with the segmentation shown as a red line around the
main object, a blue line around the immediate border, and a green line around the offset

border.
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Figure B.2: Corrected images, with altered pixels shown in red. The edge effect is
particularly visible within the blue border area.
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Schafer, D. Tanré, B. Chatenet, and F. Lavenu (2001). An emerging ground-based

aerosol climatology - Aerosol optical depth from AERONET. Journal of Geophysical

Research 106 (D11), 12067–12097.

Horvath, H. (1971). On the applicability of the Koschmieder visibility formula. Atmospheric

Environment 5 (3), 177–184.

Horvath, H. (1981). Atmospheric visibility. Atmospheric Environment 15 (10), 1785–1796.

Hsu, N., S. Tsay, M. King, and J. Herman (2004). Aerosol properties over bright-reflecting

source regions. IEEE Transactions on Geoscience and Remote Sensing 42 (3), 557–569.

Hsu, N. C., J. R. Herman, P. K. Bhartia, C. J. Seftor, O. Torres, A. M. Thompson, J. F.

Gleason, T. F. Eck, and B. N. Holben (1996). Detection of biomass burning smoke from

TOMS measurements. Geophysical Research Letters 23 (7), 745–748.

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science &

Engineering 9 (3), 90–95.

Ichoku, C., D. A. Chu, S. Mattoo, Y. J. Kaufman, L. A. Remer, D. Tanré, I. Slutsker, and
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