The University of Southampton
University of Southampton Institutional Repository

Reassessing the stable (?88/86Sr) and radiogenic (87Sr/86Sr) strontium isotopic composition of marine inputs

Reassessing the stable (?88/86Sr) and radiogenic (87Sr/86Sr) strontium isotopic composition of marine inputs
Reassessing the stable (?88/86Sr) and radiogenic (87Sr/86Sr) strontium isotopic composition of marine inputs
The stable strontium isotope system (?88/86Sr) has recently been suggested to be a suitable proxy for determining variations in the strength of the marine carbonate system, the principal output flux of oceanic Sr. However, in order to be able to interpret carbonate-driven variations in ?88/86Srseawater a robust understanding of ?88/86Srinput is required. Surprisingly only a limited amount of ?88/86Sr data currently exists for rivers and hydrothermal fluids, thus this study assesses the variability of ?88/86Sr and 87Sr/86Sr in global rivers, hydrothermal fluids and porewaters, as well as minor marine Sr sources such as continental dust, rainwater and glacial ice. Our analyses broadly confirm the findings of Krabbenhöft et al. (2010) [Krabbenhöft, A., Eisenhauer, A., Böhm, F., Vollstaedt, H., Fietzke, J., Liebetrau, V., Augustin, N., Peucker-Ehrenbrink, B., Müller, M.N., Horn, C., Hansen, B.T., Nolte, N., Wallmann, K., 2010. Constraining the marine strontium budget with nautral strontium isotope fractionations (87Sr/86Sr?, ?88/86Sr) of carbonates, hydrothermal solutions and river waters. Geochim. Cosmochim. Acta, 74, 4097-4109], and reveal flux-weighted ?88/86Srriverine and 87Sr/86Srriverine compositions of 0.32 ‰ and 0.71299 respectively. The hydrothermal fluids analysed in this study are consistent with an end-member ?88/86Srhydrothermal composition that is the same as the oceanic crust at ?0.24 ‰, although three samples that display ?88/86Sr compositions offset from the seawater-hydrothermal mixing trend suggest that the precipitation of alteration phases such as anhydrite may drive ?88/86Srhydrothermal to higher values. Porewater fluids obtained from sediment cores in the Atlantic and Pacific Oceans have ?88/86Sr compositions within error of seawater (0.39 ‰), implying that the diagenetic flux of Sr may not significantly affect the ?88/86Sr composition of seawater. Continental loess samples have ?88/86Sr compositions that are consistently lighter than, or equal to, terrestrial silicates, with their tendency to lower values thought to reflect the preferential removal of heavier Sr isotopes into solution during weathering. Finally, rainwater and glacial ice samples have ?88/86Sr compositions that are also isotopically lighter than their associated water sources, a factor that may be attributed to interaction with isotopically light loess and additional Sr contributions from the bedrock. Together the principal marine inputs define flux-weighted oceanic ?88/86Srinput and 87Sr/86Srinput compositions of 0.32 ‰ and 0.71161. These values are consistent with an elevated supply of riverine Sr to the oceans due to increased post-glacial weathering, but require the enhanced weathering of exposed carbonate shelves during glacial periods or significant changes in the rate of carbonate burial to match observed changes in the 87Sr/86Sr ratio of seawater. Our results confirm that, providing a diagenetically robust proxy can be found, the ?88/86Sr and 87Sr/86Sr isotope systems should provide a useful proxy for investigating changes in the marine carbonate system through time.
0016-7037
125-146
Pearce, Christopher R.
3d683112-72dc-444f-ae06-da9c571d799a
Parkinson, Ian J.
f199f02a-6c0d-429a-b3a1-144305668383
Gaillardet, Jérôme
118cc603-8281-45cd-8943-3a58a0a2d902
Charlier, Bruce L.A.
8f5b03f9-9680-444e-bdbd-d2c2d56f6fd0
Mokadem, Fatima
37dcd9f3-edc3-47ba-87a1-bea5b9cf0940
Burton, Kevin W.
b17a2651-0697-4369-bfa7-ece9a9f0a3f1
Pearce, Christopher R.
3d683112-72dc-444f-ae06-da9c571d799a
Parkinson, Ian J.
f199f02a-6c0d-429a-b3a1-144305668383
Gaillardet, Jérôme
118cc603-8281-45cd-8943-3a58a0a2d902
Charlier, Bruce L.A.
8f5b03f9-9680-444e-bdbd-d2c2d56f6fd0
Mokadem, Fatima
37dcd9f3-edc3-47ba-87a1-bea5b9cf0940
Burton, Kevin W.
b17a2651-0697-4369-bfa7-ece9a9f0a3f1

Pearce, Christopher R., Parkinson, Ian J., Gaillardet, Jérôme, Charlier, Bruce L.A., Mokadem, Fatima and Burton, Kevin W. (2015) Reassessing the stable (?88/86Sr) and radiogenic (87Sr/86Sr) strontium isotopic composition of marine inputs. Geochimica et Cosmochimica Acta, 157, 125-146. (doi:10.1016/j.gca.2015.02.029).

Record type: Article

Abstract

The stable strontium isotope system (?88/86Sr) has recently been suggested to be a suitable proxy for determining variations in the strength of the marine carbonate system, the principal output flux of oceanic Sr. However, in order to be able to interpret carbonate-driven variations in ?88/86Srseawater a robust understanding of ?88/86Srinput is required. Surprisingly only a limited amount of ?88/86Sr data currently exists for rivers and hydrothermal fluids, thus this study assesses the variability of ?88/86Sr and 87Sr/86Sr in global rivers, hydrothermal fluids and porewaters, as well as minor marine Sr sources such as continental dust, rainwater and glacial ice. Our analyses broadly confirm the findings of Krabbenhöft et al. (2010) [Krabbenhöft, A., Eisenhauer, A., Böhm, F., Vollstaedt, H., Fietzke, J., Liebetrau, V., Augustin, N., Peucker-Ehrenbrink, B., Müller, M.N., Horn, C., Hansen, B.T., Nolte, N., Wallmann, K., 2010. Constraining the marine strontium budget with nautral strontium isotope fractionations (87Sr/86Sr?, ?88/86Sr) of carbonates, hydrothermal solutions and river waters. Geochim. Cosmochim. Acta, 74, 4097-4109], and reveal flux-weighted ?88/86Srriverine and 87Sr/86Srriverine compositions of 0.32 ‰ and 0.71299 respectively. The hydrothermal fluids analysed in this study are consistent with an end-member ?88/86Srhydrothermal composition that is the same as the oceanic crust at ?0.24 ‰, although three samples that display ?88/86Sr compositions offset from the seawater-hydrothermal mixing trend suggest that the precipitation of alteration phases such as anhydrite may drive ?88/86Srhydrothermal to higher values. Porewater fluids obtained from sediment cores in the Atlantic and Pacific Oceans have ?88/86Sr compositions within error of seawater (0.39 ‰), implying that the diagenetic flux of Sr may not significantly affect the ?88/86Sr composition of seawater. Continental loess samples have ?88/86Sr compositions that are consistently lighter than, or equal to, terrestrial silicates, with their tendency to lower values thought to reflect the preferential removal of heavier Sr isotopes into solution during weathering. Finally, rainwater and glacial ice samples have ?88/86Sr compositions that are also isotopically lighter than their associated water sources, a factor that may be attributed to interaction with isotopically light loess and additional Sr contributions from the bedrock. Together the principal marine inputs define flux-weighted oceanic ?88/86Srinput and 87Sr/86Srinput compositions of 0.32 ‰ and 0.71161. These values are consistent with an elevated supply of riverine Sr to the oceans due to increased post-glacial weathering, but require the enhanced weathering of exposed carbonate shelves during glacial periods or significant changes in the rate of carbonate burial to match observed changes in the 87Sr/86Sr ratio of seawater. Our results confirm that, providing a diagenetically robust proxy can be found, the ?88/86Sr and 87Sr/86Sr isotope systems should provide a useful proxy for investigating changes in the marine carbonate system through time.

This record has no associated files available for download.

More information

Accepted/In Press date: 28 February 2015
Published date: 15 May 2015
Organisations: Marine Geoscience

Identifiers

Local EPrints ID: 375004
URI: http://eprints.soton.ac.uk/id/eprint/375004
ISSN: 0016-7037
PURE UUID: 2d337685-5747-4ecf-977e-c92a4c8ac9dc

Catalogue record

Date deposited: 09 Mar 2015 10:25
Last modified: 14 Mar 2024 19:18

Export record

Altmetrics

Contributors

Author: Christopher R. Pearce
Author: Ian J. Parkinson
Author: Jérôme Gaillardet
Author: Bruce L.A. Charlier
Author: Fatima Mokadem
Author: Kevin W. Burton

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×