The University of Southampton
University of Southampton Institutional Repository

Chiral mirrors

Chiral mirrors
Chiral mirrors
Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media
0003-6951
Plum, Eric
50761a26-2982-40df-9153-7aecc4226eb5
Zheludev, N.I.
32fb6af7-97e4-4d11-bca6-805745e40cc6
Plum, Eric
50761a26-2982-40df-9153-7aecc4226eb5
Zheludev, N.I.
32fb6af7-97e4-4d11-bca6-805745e40cc6

Plum, Eric and Zheludev, N.I. (2015) Chiral mirrors. Applied Physics Letters, 106 (22), [221901]. (doi:10.1063/1.4921969).

Record type: Article

Abstract

Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media

Text
plum 2015 - Accepted Manuscript
Available under License Creative Commons Attribution.
Download (1MB)

More information

Accepted/In Press date: 21 May 2015
Published date: 1 June 2015
Organisations: Optoelectronics Research Centre

Identifiers

Local EPrints ID: 377672
URI: http://eprints.soton.ac.uk/id/eprint/377672
ISSN: 0003-6951
PURE UUID: 2433396a-6393-40b6-b65a-f624e7e808fd
ORCID for Eric Plum: ORCID iD orcid.org/0000-0002-1552-1840
ORCID for N.I. Zheludev: ORCID iD orcid.org/0000-0002-1013-6636

Catalogue record

Date deposited: 22 Jun 2015 10:35
Last modified: 15 Mar 2024 03:32

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×