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Abstract

In a purchase funnel, a consumer may interact with an assortment of ad platforms ranging
from display ads, paid search and organic search to social media and email. In this study, we
consider attribution models that can be applied to assign sales credit to these and other online
channels. Using an online firm’s conversion data, we investigate the commonly used the last-
click attribution model and compare its results to a cooperative game theory based (Shapley
Value) attribution model. Our findings show that individual rewards vary significantly for
different online channels under these two models. We also compute contributions of the
various estimated factors using the Shapley Value regression approach in order to decompose
a consumer funnel by regressed sources. Our empirical research provides insights into the
complexity of attribution modeling.
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1. Introduction

Digital advertising campaigns are often launched across multiple channels, a selection of
which may include search, display ads, social media, mobile, video, and email. These
channels assist consumers to make purchase decisions, or sign up to a service being
advertised, as they are exposed to advertisement impressions. To gauge the effectiveness of
such advertising campaigns, it will be necessary to know which media channels or
advertising formats have contributed to a purchase conversion. This is a process known as
attribution. A better understanding of this process or assigning conversion credit to the
various relevant channels can serve a number of research and industry purposes. For
example, marketing managers may use such attribution models to interpret the influence of
advertisements on consumer behavior and optimize their advertising campaigns.

In this paper we first examine the last-click attribution model and then consider a
cooperative game theory (Shapley Value) based attribution approach as a statistical model for
online businesses (Osborne and Rubinstein, 1994). The Shapley Value model assesses the
contributions of a set of factors whose sum accounts for the purchase conversion. In our
context, the approach yields an exact additive decomposition of any touch points into its
contributory factors. Using an online firm’s purchase conversion data, the study sheds light
on how these attribution models can be used to better measure advertising performance. As
the effect of changing attribution models for different online channels has been largely
unstudied, an analysis of these models will allow conclusions to be made on whether an
advertising format’s revenues significantly differ between the models. To facilitate our
analysis, we compare the performance of display advertising with other online sales channels.
We first provide a brief literature survey to identify the challenges of attribution modeling in
online advertising markets. Our empirical results about the outcomes of different attribution
models are presented in the next section. The following section describes our findings on
Shapley Value regression model. The study then progresses to consider implications for
different online sale channels and attribution. These are summarized in the last section.

2. Attribution in online advertising: A literature survey

There is a small but rapidly growing body of literature that examines the entire
clickstream history of individual consumers in terms of whether visits to different ad formats
have positive effects that accumulate toward a purchase (e.g., learning about a product that
the shopper intends to buy. See Wiesel, Pauwels and Arts, 2011). This strategy of modeling
the purchases as a result of the accumulative effects of all previous interactions largely
focuses on how non-purchase activities (e.g., advertisement clicks, website visits) affect the
probability of purchasing. Their concern with the non-purchase activities means that they
cannot directly deal with the question of attributing credit for conversion to each individual
ad format. Relatedly, Xu, Duan and Whinston (2014) study the specific “exciting effects”
between advertisement clicks (i.e. how the occurrence of an earlier advertisement click
affects the probability of occurrence of subsequent advertisement clicks). Li and Kannan
(2014) use a probit-based consideration and nested logit formulation for visit and purchase to
attribute conversions. These and other predictive models have (Li et al., 2010) generally
focused on the classification accuracy and, more importantly, they do not pay enough
attention to the stability issue of the variable contribution estimate.



2.1. Shapley Value-based attribution model

In digital advertising, multi-channel attribution is one of the most important problems,
especially as a wide variety of media are involved. In recent years, researchers have made
efforts to develop a true data-driven methodology to account for the influence of each user
interaction to the final user decision. Shao and Li (2011) have developed a probabilistic
model based on a combination of first and second-order conditional probabilities. There are
two steps involved in generating the probabilistic model:

Step 1. First compute the empirical probability of the main factors,
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for i # j. A conversion event (purchase or sign-up) is denoted as y which is a binary outcome
variable, and x;,i = 1,...,p, denote p different advertising channels. Npositive(Xi) and Nnegative(Xi)
denote the number of positive or negative users exposed to channel i, respectively, and
Npositive(Xi, Xj) and Nnegative(Xi, Xj) denote the number of positive or negative users ex- posed to
both channels i and j.

Step 2. The contribution of channel i is then computed at each positive user level as:
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where Njz denotes the total number of j’s not equal to i. In this case it equals to N-1, or the
total number of channels minus one (the channel i itself) for a particular user. An advantage
of using this estimation is that it includes the second-order interaction terms in the probability
model. As there is significant overlap between the influences of different touch points due to
the user’s exposure to multiple media channels, the model fully estimates the empirical
probability with the second-order interactions. Another important assumption is that the net
effect of the second-order interaction goes evenly to each of the two factors involved.
Dalessandro, et al. (2012) show that, after rescaling, this probability model is equivalent to
their Shapely Value formulation under certain simplifying assumptions.



3. Data description

We utilize logs from a large-scale online sales platform to first identify where different
online channels feature in the customer journey. In total, 996,708 transactions are included in
the analysis, with total revenue of $158,519,417, at an average order value of $159.04. Our
conversion data span 104 weeks from January 1, 2012 — February 28, 2014. Currently, the
firm we investigated attributes revenue generated through online transactions to its various
paid marketing tools on a last-click basis. In our data, we have information about the
following digital channels: display ad, organic search, paid search, price comparison sites,
email, retargeting, and social media.

4. Attribution models: An empirical investigation

Our specific hypotheses relate to examining the financial importance of display
advertising channel under the current last-click model; and the effects of moving to Shapley
Value-based attribution model. We test the hypothesis that, as being a convertor, display
advertising generates more revenue under the last-click model than Shapley Value-based
attribution model. In addition, we compute contributions of the various estimated factors
using the Shapley Value regression approach so as to decompose a consumer funnel by
regressed sources. The approach has the merit of computing the weighted marginal
contributions of an estimated conversion source in various coalitions of conversion sources.
These weighted contributions exactly sum up to the considered channel impact measure.

4.1. The last-click model

Current industry practice indicates that the majority of online sales are attributed on a
“last ad” or “last-click” model. The model attributes all conversions to the last referring
impression within a customer journey, which means it is the final interaction that matters
from a marketing perspective (Li and Kannan, 2014). The contribution of display ads and the
other online marketing tools to online revenue are presented in Table 1. It can be seen that
using the current last-click method, display ads generate 18.42% of total online revenue. The
highest revenue generating online marketing tool is that of organic search, bringing 63.45%.
Social media contributes the least with the current model, at 0.02%. The mean order value for
display ads offer insight into this as it is higher than any other of the marketing tools at
$159.04. We conduct two-sample t-test comparing average order value of display ads to the
rest of online marketing tools. It examines if there is any significant difference between the
means of the average order values for display ads against the rest of the online marketing
tools. The T statistic of 21.22 is greater than the two-tail critical value of 1.96 and therefore
indicating (with a 95% confidence level) there is significant difference between the average
order values. Furthermore, the p-value of 3.13E-98 is considerably lower than 0.05.

Table 1: Different online marketing tools and revenue generated under last-click.

Tool Revenue (%) Orders (%) Average Order
Value (in dollars)

Display ads 18.42 13.41 159.04

Organic Search 63.45 68.71 106.11

Paid Search 10.92 10.83 115.80



Price Comparison 2.15 1.81 136.16

Email 0.86 0.89 111.84
Retargeting 1.22 1.28 109.93
Social Media 0.02 0.06 48.11
Other 2.95 3.01 112.65

4.2. The Shapley Value-based attribution model

The Shapley Value methodology was developed in a cooperative game setting, and
has been applied from measuring systemic risk in a macroeconomic environment to
inequality indices (Osborne and Rubinstein, 1994). In a typical Shapley Value cooperative
game, a group of players generates a shared “value” (e.g. wealth, cost) for a group as a whole.
The Shapley Value of a player in a game is calculated as his expected marginal contribution
over the set of all permutations on the set of players. The Shapley Value of an advertising
medium is its expected marginal contribution over all possible sets of the interacting
channels. We have noted these assumptions in the formulation in Section 2.1, and use it to
calculate the percentage of value allocated to each given channel.

Figure 1 shows the effects on revenue attribution for the online marketing tools using
the Shapley Value-based model. Our results show that display ads represent 14.34% of the
revenue generated, down on the 18.42% revenue accumulated under the last click model,
whereas organic search registers only a small increase from 63.45% to 64.17%. Social media
and email record the largest changes in value percentage, as reflected in their revenue
generation contributions of 2.14% and 2.58%, respectively. There is also a sizeable increase
in paid search, increasing from 10.92% under the last-click model to 12.85% under the
probability model. We conduct two-sample t-test comparing last click and probability based
display ad rewards. The T statistic of 28.43 is greater than the two-tail critical value of 1.96
and therefore indicating (with a 95% confidence level) there is significant difference between
the average display advertising return. It could therefore be concluded that the Shapley Value
based attribution model on average attributes lower revenue to display ads. This is also
supported by Table 2 that shows that display ads are allocated 24.86% lower revenue under
the Shapley Value-based attribution model.
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Figure 1. Shapley Value-based attribution modeling



Table 2: Display ads revenue from Shapley Value-based attribution compared to last-
click.

Tool Display Ads Last-click Increase/decrease
Revenue (%) Difference (%) from Last-click (%0)

Last-click 29.73 n/a n/a

Shapley Value 22.57 7.16 -24.86

5. The regression results

In the preceding section, we have examined the challenge of attributing credit in a multi-
channel online sales environment. In this section, we determine the exact contributions and
statistical significance of each explanatory variable to the variance of the dependent variable
of a regression. The Shapley Value regression method provides a systematic way of
quantifying the different contributions of the explanatory variables to the goodness of fit of a
regression. As the Shapley Value uses the marginal contributions of a variable from all
sequences, two highly correlated variables are expected to have similar Shapley contributions
because they will be low or high depending on whether the variables that this variable is
correlated with, are already included or not. One can then be confident that the approach
takes the potential correlation amongst regressors into account, where the contribution of
each attribute is measured by the improvement in R-square. In Table 3, the Shapley Value
approach is developed to derive the exact contributions of the various explanatory variables
of a linear regression to its R-Square. It shows the two decompositions (Shapley and Nested-
Shapley) along with a 95% level confidence interval for each component. As expected,
organic search makes the largest contribution to the explanation of purchase conversion: it
accounts for about 55% of the R-Square. Second in importance is display advertising, while
paid search is at number three in importance. Both retargeting and price comparison sites
explain equally well the variation in purchase conversions, although their contributions do
not significantly differ from each other. More significantly, the regression captures the
important role that email and social media now play in a purchase funnel. They explain
2.43% and 2.19% variations in the regression model, respectively.

Table 3 Contributions of the purchase funnel medial channels to the R-Square
Total (RSquare)

Shapley Nested-
Shapley
Display Ads 0.35784 17.34% 0.12593 16.89%
(0.122, 0.149) (0.121, 0.147)
Organic Search 0.23746 55.27% 0.24268 51.66%
(0.025, 0.033) (0.020, 0.034)
Paid Search 0.034765 13.44% 0.02315 11.34%
(0.027, 0.13) (0.024, 0.11)
Price 0.0276 3.56% 0.01573 6.68%
Comparison (0.15, 0.16) (0.12,0.11)
Email 0.036218 2.43% 0.02714 2.54%
(0.117,0.113) (0.112, 0.109)
Retargeting 0.01783 2.85% 0.01549 2.73%
(0.24, 0.226) (0.23,0.221)
Social Media 0.00016 2.19% 0.00016 4.89%
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(0.121, 0.137) (0.121, 0.128)
Other 0.02786 2.92% 0.01843 3.27
(0.015, 0.013) (0.016, 0.014)
Total (R- 0.1947 100% 0.1947 100%
Square)

95% confidence intervals are reported in parentheses.

6. Conclusion

We examined the hypothesis that, as being a convertor, display advertising generates
more revenue under the last-click model than Shapley Value-based attribution model. The
results showed that the last-click model generated the most revenue for display ads. The
revenue attributed to display advertising under the last-click model was 29.73% of the total
revenue - higher than the Shapley Value’s 22.57%. Shapley Value simplifies the analysis in
such a way that advertisers can assign values to individual advertising channels in accordance
with their contributions to the generation of a shared value. When multiple channels, such as
search, display, mobile, social and email are involved in a purchase conversion, Shapley
Value method allows all these channels to get their fair reward for making the sales
transaction possible. As the model is stable and relatively easy to interpret, advertisers can
develop a clear strategy to optimize their resource allocations among multiple advertising
channels. Our Shapley Value-based regression results further demonstrate the efficacy of
adopting this approach.
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