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Abstract 

 

Sample surveys are generally multivariate, in the sense that they collect data on more 

than one response variable. In theory, each variable can then be assigned an optimal 

weight for estimation purposes. However, it is a distinct practical advantage to have a 

single weight for all variables collected in the survey. This paper describes how such 

multipurpose sample weights can be constructed when small area estimates of the survey 

variables are required. The approach is based on the model-based direct (MBD) method 

of small area estimation described in Chambers and Chandra (2006). Empirical results 

reported in this paper show that MBD estimators for small areas based on multipurpose 

weights perform well across a range of variables that are often of interest in business 

surveys. Furthermore, these results show that the proposed approach is robust to model 

misspecification and also efficient when used with variables that are not suited to 

standard methods of small area estimation (e.g. variables that contain a significant 

proportion of zeros). 

 

Keywords:  Multivariate surveys, Multipurpose sample weights, MBD approach, Mixed 

model, EBLUP. 
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1. Introduction 

The weights that define the best linear unbiased predictor (BLUP) for the population 

total of a variable of interest (see Royall, 1976) depend on the population level 

conditional variance/covariance matrix for that variable. Unless this matrix is always 

proportional to a known matrix, this optimality is variable specific. However, most 

surveys are multivariate, and it is often an advantage to have a common weight for all 

response variables. This is especially true where linear estimates are produced using the 

survey data. In what follows we refer to such weights as ‘multipurpose’. 

 

When a sufficiently rich set of auxiliary variables exist, and response variables can be 

assumed to be conditionally uncorrelated given these variables, multipurpose weights 

can be constructed by fitting a linear model for each response variable in terms of the 

complete set of auxiliary variables. See Chambers (1996). An essentially equivalent idea 

is to use a calibrated set of sample weights, where the calibration is with respect to these 

auxiliary variables. See Deville and Särndal (1992). 

 

Small area estimation is now widely used in sample surveys. Many of the methods 

currently in use are variable specific and based on the application of mixed models (Rao, 

2003). Weighted direct estimation for small areas based on these models is described in 

Chambers and Chandra (2006), who refer to this approach as the model-based direct 

(MBD) method of small area estimation. Since the weights used in MBD estimation are 

based on the second order properties of linear mixed models fitted to the survey 

variables, they are variable specific. However, as noted above, there are obvious 

practical advantages from having a single multipurpose weight that can be used for 

small area estimation for all the survey variables. Consequently, in section 2 of this 

paper we replace the variable specific BLUP optimality criterion that underlies the 

mixed model weights used in the MBD approach by a modified ‘total variability’ 

criterion that leads to a single set of optimal multipurpose weights for use in MBD 

estimation for small areas. Section 3 then presents empirical results on the performance 

of this approach. Finally, in section 4 we summarise our results and make suggestions 

for further research. 
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2. Optimal Multipurpose Sample Weighting 

 

2.1 Basic Concepts and Notation 

Consider a population U consisting of N units, each of which has a value of a 

characteristic of interest y  associated with it. The population vector y
U
= (y

1
,..., y

N !)  is 

treated as the realisation of a random vectorY
U
= (Y

1
,...,Y

N
!) , and our aim is estimation 

of the total T
y
= y

jj!U"  (or meanY = N
!1

y
jj"U# ) of the values defining y

U
. A sample 

s of n units is selected from U, and the y values of the sample units are observed. We 

denote the set of N – n non-sampled population units by r. We assume the availability 

of X
U

, an N × p matrix of values of p auxiliary variables that are related, in some sense, 

to the values in y
U

. In particular, y
U

and X
U

 are related by the general linear model 

E(y
U
) = X

U
!  and Var(y

U
) = V

U
    (1) 

where !  is a p !1  vector of unknown parameters and V
U

 is a positive definite 

covariance matrix. Without loss of generality, we arrange the vector y
U

 so that the first 

n elements correspond to the sample units, writing !yU = ( !ys !yr ) . We similarly partition 

X
U

 and V
U

 according to sample and non-sample units as 

X
U
=

X
s

X
r

!

"
#

$

%
&  and V

U
=
V
ss

V
sr

V
rs

V
rr

!

"
#

$

%
& . 

Here X
s
 is the n ! p  matrix of sample values of the auxiliary variable, V

ss
is the n ! n  

covariance matrix associated with the n sample units that make up the n !1  sample 

vector y
s
. Corresponding non-sample quantities are denoted by a subscript of r, while 

V
rs

 denotes the N ! n( ) " n  matrix defined byCov(yr , ys ) . It is known (see Royall, 1976) 

that among linear prediction unbiased estimators T̂y = !ws
y
s  of Ty  the variance of the 

prediction error, Var(T̂y ! Ty ) , is minimised by weights of the form 

w
s
= 1

n
+ !H !X

U
1
N
" !X

s
1
n( ) + I

n
" !H !X

s( )Vss
"1
V
sr
1
N "n

.   (2) 

Here H = !X
s
V
ss

"1
X
s( )

"1

!X
s
V
ss

"1 , 1
m

is a vectors of ones of order m and I
n

 is the identity 

matrix of order n. We refer to the weights (2) as the best linear unbiased prediction 

(BLUP) weights for y. By definition, these weights are calibrated on the variables in X
U

 

and so exactly reproduce the known population totals defined by the columns of this 

matrix, i.e. !w
s
X
s
= !1

N
X
U
= T

x
. Furthermore, under the assumption that a mixed linear 
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model can be used to specify the covariance matrix components V
ss

 and V
sr

 in (2), the 

MBD approach to small area estimation (see Chambers and Chandra, 2006) uses these 

weights, with V
ss

 and V
sr

 replaced by suitable estimates, to define direct estimates of 

small area quantities. 

 

2.2 Optimal Multipurpose Weighting for Uncorrelated Variables 

Suppose we have K response variables and a common set of auxiliary variables with 

values defined by the population matrix X
U

, and that model (1) holds for each of them 

(although with different parameter values). Suppose further that these variables are 

mutually uncorrelated. We use an extra subscript ( 1,...., ) k k K=  to denote quantities 

associated with the kth response variable, for example V
kss

 and ksw  denote respectively 

the n ! n  covariance matrix and n !1  vector of sample weights that are associated with 

the n !1  vector yks  of sample values of the kth  response variable. With this notation, 

our aim is to derive an optimal set of multipurpose weights w
s
 = {wj

; j !s}  for the K 

response variables measured in the survey. Let Tk = !1N yk  denote the population total of 

yk , with estimator T̂k = !wsyks  based on these multipurpose weights. The weights w
s
 are 

then said to be ! -optimal if (a) E(T̂
k
! T

k
) = 0  for each value of k, and (b) the ! -

weighted total prediction variance !
k
Var(T̂

k
" T

k
)

k
#  is minimised at w

s
. Here !

k
 is a 

user-specified non-negative scalar quantity that reflects the relative importance attached 

to the thk  response variable, with !
kk

" = 1 . 

 

Put a
s
= w

s
!1

s
. In order to derive an explicit expression for the ! -optimal 

multipurpose weights we first note that under (a) 

 
E(T̂k ! Tk ) = E( "asyks ! "1N !n ykr ) = E( "asXs ! "1N !n Xr )#k = 0$  "asXs = "1N !n Xr . (3) 

Furthermore, the prediction variance for estimator T̂k = !wsyks  is then 

Var(T̂k ! Tk ) = E( "asyks ! "1N !n ykr )
2
= Var( "asyks ! "1N !n ykr ) + [E( "asyks ! "1N !n ykr )]

2 . 

The second term on the right hand side above vanishes under (3), so that  

Var(T̂k ! Tk ) = "asVar(yks )as ! 2 "asCov(yks , ykr )1N !n + "1N !nVar(ykr )1N !n  

= !a
s
V
kss
a
s
" 2 !a

s
V
ksr
1
N "n

+ !1
N "n

V
krr
1
N "n

.   (4) 
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We use the method of Lagrange multipliers to minimise (4) subject to (3). The 

corresponding Lagrangian loss function is 

!(1)
= "

k
#a
s
V
kss
a
s
$ 2 #a

s
V
ksr
1
N $n{ }

k=1

K

% + 2( #a
s
X
s
$ #1

N $n Xr
)&    (5) 

where !  is a vector of Lagrange multipliers. Differentiating (5) with respect to a
s
 and 

setting the result equal to zero leads to 

!"(1)

!a
s

= #
k
2V

kss
a
s
$ 2V

ksr
1
N $n{ }

k=1

K

% + 2X
s
& = 0  

!  X
s
! = "

k
V
ksr
1
N #n #k=1

K

$ "
k
V
kss
a
sk=1

K

$  

!  a
s
= !

k
V
kssk=1

K

"( )
#1

!
k
V
ksrk=1

K

" 1
N #n - Xs

${ }     (6) 

Multiplying both sides of (6) on the left by !X
s
 and using (3), we see that 

!X
s
a
s
= !X

s
"
k
V
kssk=1

K

#( )
$1

"
k
V
ksrk=1

K

# 1
N $n( ) $ !X

s
"
k
V
kssk=1

K

#( )
$1

X
s
%  

!  !X
r
1
N "n

= !X
s
U
1

"1
W
1
1
N "n

" !X
s
U
1

"1
X
s
#  

!  ! = "X
s
U
1

#1
X
s( )

#1

"X
s
U
1

#1
W
1
# "X

r{ }1N #n
     (7) 

where U
1
= !

k
V
kssk=1

K

"  and W
1
= !

k
V
ksrk=1

K

" . Substituting (7) in (6) then yields the 

optimal value of a
s
: 

a
s

(1)
=U

1

!1
W
1
1
N !n -U1

!1
X
s
" = U

1

!1
W
1
-U

1

!1
X
s

#X
s
U
1

!1
X
s( )

!1
#X
s
U
1

!1
W
1
! #X

r{ }$
%

&
'
1
N !n  

=U
1

!1
X
s

"X
s
U
1

!1
X
s( )

!1
"X 1
N
! "X

s
1
n( ) + I

n
-U

1

!1
X
s

"X
s
U
1

!1
X
s( )

!1
"X
s

#
$

%
&
U
1

!1
W
1
1
N !n . 

That is, the optimal multipurpose sample weights are given by 

w
s

(1)
= 1

n
+ !H1 !X

U
1
N
" !X

s
1
n( ) + I

n
- !H1 !X

s[ ]U1

"1
W
1
1
N "n

    (8) 

where H
1
= !X

s
U
1

"1
X
s( )

"1

!X
s
U
1

"1
= !X

s
#
k
V
kssk=1

K

$( )
"1

X
s{ }

"1

!X
s

#
k
V
kssk=1

K

$( )
"1

. 

Observe that the analytical form of the optimal multipurpose weights (8) is similar to the 

variable specific BLUP weights (2), except that V
kss

and V
ksr

 are replaced by the 

weighted sums U
1
= !

k
V
kssk

"  and W
1
= !

k
V
ksrk

"  respectively. Clearly (8) reduces to 

(2) for K = 1 . 
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2.3 Optimal Multipurpose Weighting for Correlated Variables 

Survey variables are correlated in general. Let Ckl = Cov(yk , yl ) . The obvious 

generalization of the ! -weighted total prediction variance to this case leads to the loss 

function 

!
1
, !

2
,.... !

K( )" # !
1
, !

2
,.... !

K( )      (9) 

where elements of the matrix ! = {!
kl
}  are given by 

 

 !kl =
Var(T̂k -Tk )            if  k = l

Cov(T̂k -Tk ,T̂l -Tl )  if  k " l

#
$
%

&%
 

and we now have 

Cov(T̂
k
! T

k
,T̂

l
! T

l
) = "a

s
C
klss
a
s
! 2 "a

s
C
klsr
1
N !n

+ "1
N !n

C
klrr
1
N !n

. 

The Lagrange function to be minimized in this case is 

!(2)
= "

1
, "

2
,.... "

K( )# $ "
1
, "

2
,.... "

K( ) + 2( #a
s
X
s
% #1

N %n Xr
)&  

 = !kVar(T̂yk " Tyk )
k

# + !k !l Cov(T̂yk " Tyk ,T̂yl " Tyl )
l$ k

#
k

# + 2( %asXs " %1N "n Xr )&  

 = !
k

"a
s
V
kss
a
s
# 2 "a

s
V
ksr
1
N #n + "1

N #nVkrr1N #n{ }
k

$  

+ !
k

!
l

"a
s
C
klss
a
s
# 2 "a

s
C
klsr
1
N #n + "1

N #nCklrr
1
N #n{ }

l$ k

%
k

% + 2( "a
s
X
s
# "1

N #n Xr
)&  (10) 

Differentiating (10) with respect to a
s
and setting the result equal to zero yields 

!
k
V
kss

k

" + !
k

!
l
C
klss

l# k
"

k

"
$
%
&

'
(
)
a
s
* !

k
V
ksr

k

" + !
k

!
l
C
klsr

l# k
"

k

"
$
%
&

'
(
)
1
N *n + Xs

+ = 0  

!  U
2
a
s
!W

2
1
N !n

+ X
s
" = 0  

!  a
s
=U

2

!1
W
2
1
N !n

- X
s
"( )       (11) 

where U
2
= !

k
V
kss

k

" + !
k

!
l
C
klss

l# k

"
k

"  and W
2
= !

k
V
ksr

k

" + !
k

!
l
C
klsr

l# k

"
k

" . 

 

Proceeding as in the uncorrelated case then leads to the optimal multipurpose weights 

for correlated survey variables 

w
s

(2)
= 1

n
+ !H2 !X

U
1
N
" !X

s
1
n( ) + I

n
- !H2 !X

s[ ]U2

"1
W
2
1
N "n

   (12) 

where H
2
= !X

s
U
2

"1
X
s( )

"1

!X
s
U
2

"1 . As in the uncorrelated variables case, we note that the 

weights defined by (12) have the same analytic form as the BLUP weights (2), except 
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that in this case V
kss

 and V
ksr

 are replaced by U
2
= !

k
V
kss

k

" + !
k

!
l
C
klss

l# k

"
k

"  and 

W
2
= !

k
V
ksr

k

" + !
k

!
l
C
klsr

l# k

"
k

"  respectively. 

 

2.4 Application to Small Area Estimation 

Following Chambers and Chandra (2006), we use the multipurpose weights (8) and (12) 

to construct model-based direct (MBD) estimates for small area means. In this case we 

assume that the population can be partitioned into m non-overlapping small areas or 

domains, indexed by i in what follows. Thus, for example, the population size of area i is 

denoted by N
i
 and so on. The variable-specific MBD estimate of the mean of the kth  

response variable with values ykj  in area i  is then 

ˆ
Yk ,i

MBD
= wkjykjj!si
" wkjj!si

"      (13) 

where s
i
 denotes the sample (of size n

i
) in area i  and the weights wkj  are calculated 

using (2), substituting estimated values V̂
kss

 and V̂
ksr

 for the corresponding components 

of the covariance matrix of the population values of this variable. In order to define 

these estimates, we assume that these population values follow the linear mixed model 

Y
kU

= X
U
!
k
+ Z

U
u
k
+ e

kU
      (14) 

where Y
kU

= ( !Y
k ,1
,....., !Y

k ,m !) , X
U
= ( !X1 ,......, !X

m
!) , ZU = diag(Zi;1 ! i ! m) , 

u
k
= (u

k ,1
,...,u

k ,m !)  and e
kU

= (e
k ,1
,...,e

k ,m !)  denote partitioning into area ‘components’. 

Here u
k,i

 is a random effect associated with area i, with Var(u
k,i
) = !

u ,k
I
Ni

, and e
k,i

 is 

the vector of individual random effects for area i, with Var(e
k,i
) = !

e,k
I
Ni

. It follows that 

Var(Y
k ,i
) = V

k ,i
= !

e,k
I
Ni
+ Z

i
!
u ,k "Z

i
. The variance components !

e,k
 and !

u ,k
 can be 

estimated from the sample data using standard methods (maximum likelihood, restricted 

maximum likelihood, i.e. REML, or method of moments). Substituting these estimated 

variance components back into the definition of V
k ,i

 and noting that 

Vk = diag(Vk ,i ;1 ! i ! m)  then leads to a corresponding estimate of this population level 

covariance matrix. This can be appropriately partitioned into sample and non-sample 

components to give the estimated values V̂
kss

 and V̂
ksr

. We refer to the weights (2) with 

these estimated values substituted as the (variable specific) EBLUP weights. 
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In order to use the multipurpose weights (8) and (12) in MBD estimation, we assume 

that the survey variables all follow the linear mixed model (14), with normal random 

effects. Furthermore, for any two variables of interest, say the kth  and l th , area and 

individual random effects remain uncorrelated but now 

 

u
ki

u
li

!
"#

$
%&
! MVN(0,'

u
)  with 

 

!
u
=

Var(u
ki
)

Cov(u
li
,u

ki
)

"
#$

 
Cov(u

ki
,u

li
)

Var(u
li
)

%
&'
=

!
u ,kk

!
u ,kl

"

#$
!
u ,kl

!
u ,ll

%

&'
 (15) 

and 

 

ekij

elij

!

"#
$

%&
! MVN(0,'e )  with 

 

!e =

Var(ekij )

Cov(elij ,ekij )

"

#$
 

Cov(ekij ,elij )

Var(elij )

%

&'
=

!e,kk

!e,kl

"

#$
!e,kl

!e,ll

%

&'
. (16) 

Hence 

V
k ,i
= Var(Y

k ,i
) = !

e,kk
I
Ni
+ Z

i
!
u ,kk "Z

i
 

V
l ,i
= Var(Y

l ,i
) = !

e,ll
I
Ni
+ Z

i
!
u ,ll "Z

i
 

and 

C
kl ,i

= Cov(Y
k ,i
,Y

l ,i
) = !

e,kl
I
Ni
+ Z

i
!
u ,kl "Z

i
. 

 

Given these definitions, we put U
1
= diag(U

1i;1 ! i ! m)  and W
1
= diag(W

1i;1 ! i ! m)  in 

(8) and U
2
= diag(U

2i;1 ! i ! m)  and W
2
= diag(W

2i;1 ! i ! m)  in (12). Here 

U
1i
= !

k
V
kss,i

k

" = !
k
#
e,kk
I
ni
+ Z

s,i
#
u ,kk

$Z
s,i( )

k

"  

W
1i
= !

k
V
ksr ,i

k

" = !
k
Z
s,i
#
u ,kk

$Z
r ,i( )

k

"  

and  

U
2i
= !

k
V
kss,i

k

" + !
k

!
l
C
klss,i

l# k

"
k

"  

= !
k
"
e,kk
I
ni
+ Z

s,i
"
u ,kk

#Z
s,i( )

k

$ + !
k

!
l
"
e,kl
I
ni
+ Z

s,i
"
u ,kl

#Z
s,i( )

l% k

$
k

$  

W
2i
= !

k
V
ksr ,i

k

" + !
k

!
l
C
klsr ,i

l# k

"
k

"  

= !
k
Z
s,i
"
u ,kk

#Z
r ,i( )

k

$ + !
k

!
l
Z
s,i
"
u ,kl

#Z
r ,i( )

l% k

$
k

$ . 

In practice, the bivariate variance components !
u ,kk
,!

u ,kl
,!

e,kk
 and !

e,kl
, see (15) and 

(16), are unknown and must be estimated from the survey data. For example, in the 

empirical study described in the next section, these components were estimated using 

the method of moments. In any case, substituting estimates for these components in the 
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formulae above then enables us to compute U
1
, W

1
, U

2
 and W

2
, and hence the 

multipurpose weights (8) and (12). Computation of MBD estimates for the small area 

means of the different survey variables is then straightforward using (13), with these 

multipurpose weights replacing the variable specific EBLUP weights there. 

 

As noted earlier, the multipurpose weights (8) and (12) are essentially EBLUP type 

weights based on ‘importance averaging’ of the variance and covariance components 

associated with the different survey variables. This motivates us to consider a second 

approach to deriving multipurpose weights based on corresponding ‘importance 

averaging’ of the variable specific EBLUP sample weights (2) for these variables. That 

is, we simply define our multipurpose weights as the importance-weighted average of 

the variable specific weights (2) across all K survey variables. This leads to weights 

w
s

(3)
= !

k
w
sk

k

"        (17) 

where w
sk

 denotes the value of (2) for the kth  survey variable and !
k
 denotes the 

relative importance of this variable, with !
kk

" = 1 . 

 

3. An Empirical Study 

In this section we report on a design-based simulation study that illustrates the 

performance of small area MBD estimation combined with multipurpose weights. The 

basis of this study is the same target population of N = 81982 farms, the same 1000 

independent replications of a stratified random sampling design with overall sample size 

n = 1652  and the same m = 29 small areas of interest (defined by agricultural regions) 

that underpin the simulation results reported in Chandra and Chambers (2005). Note that 

regional sample sizes in this design are fixed from simulation to simulation but vary 

between regions, ranging from a low of 6 to a high of 117, and hence allowing an 

evaluation of the performance of the different methods considered across a range of 

realistic small area sample sizes. See Chandra and Chambers (2005) for more details. 

 

Here we consider K = 8 variables of interest. These are (i) TCC = total cash costs (A$) 

of the farm business over the surveyed year, (ii) TCR = total cash receipts (A$) of the 

farm business over the surveyed year, (iii) FCI = farm cash income (A$), defined as 

TCR – TCC, (iv) Crops = area under crops (in hectares), (v) Cattle = number of Cattle 
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cattle on the farm, (vi) Sheep = number of sheep on the farm, (vii) Equity = total farm 

equity (A$), and (viii) Debt = total farm debt (A$). Our aim is to estimate the average of 

these variables in each of the 29 different regions. In doing so, we use the fact that these 

regions can be grouped into three zones (Pastoral, Mixed Farming, and Coastal), with 

farm area (hectares) known for each farm in the population. This auxiliary variable is 

referred to as Size in what follows. 

 

Although the linear relationship between the eight target variables and Size is rather 

weak in the population, this improves when separate linear models are fitted within six 

post strata. These post-strata are defined by splitting each zone into small farms (farm 

area less than zone median) and large farms (farm area greater than or equal to zone 

median). The mixed model (14) was therefore specified so that the matrix X
U

 of 

auxiliary variable values included an effect for Size, effects for the post-strata and 

effects for interactions between Size and the post strata. Two different specifications for 

Z
U

 (corresponding to whether a random slope on Size was included or not) were 

considered. We refer to these as model I and as model II respectively below. We use 

REML estimates of random effects parameters, obtained via the lme function in R (Bates 

and Pinheiro, 1998) when fitting (14) to individual survey variables. When fitting the 

multivariate mixed models defined by (15) and (16) we use the method of moments 

(Rao, 2003). 

 

The simulation study investigated the performance of five different estimators of the 29 

regional means, along with corresponding estimators of their mean squared error. These 

are the variable specific EBLUP under (14), referred to as EBLUP below; the MBD 

estimator (13) based on variable specific EBLUP weights (2), referred to as MBD0 

below; the MBD estimator (13) based on multipurpose weights (8), referred to as 

MBD1-A below; the MBD estimator (13) based on multipurpose weights (12), referred 

to as MBD1-B below; and the MBD estimator (13) based on multipurpose weights (17), 

referred to as MBD2 below. Mean squared errors for the EBLUP were estimated using 

the approach of Prasad and Rao (1990), while mean squared errors for the various MBD 

estimators were estimated using the robust method described in Chambers and Chandra 

(2006), which itself is an application of the heteroskedasticity robust method of 

prediction variance estimation described in Royall and Cumberland (1978). 
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The simulation study was carried out in five stages. In the first stage, model I was 

assumed and the performance of the three estimators MBD0, MBD1-A and MBD1-B for 

two variables (TCC and TCR) was investigated to see if there were gains to be had from 

exploiting correlations among the survey variables. As noted earlier, we used the method 

of moments (Henderson’s Method 3) to estimate model parameters in this case. Results 

from this stage are set out in Table 1. In the second stage of the study we compared the 

performance of the four estimation methods EBLUP, MBD0, MBD1-A and MBD2 

under models I and II for the 5 response variables (TCC, TCR, FCI, Cattle and Sheep) 

where both models can be fitted. Results from this stage are presented in Tables 2 and 3 

and in Figure 1. Note that the remaining three target variables in the study (Crops, 

Equity and Debt) are not suited to linear modeling via (14) under model II because of 

the presence of large numbers of zeros. Consequently, in the third stage of the study, we 

used the multipurpose weights derived in the second phase (i.e. weights based on the K 

= 5 variables TCC, TCR, FCI, Cattle and Sheep) in MBD1-A to evaluate the 

performance of this estimator for the three variables Crops, Equity and Debt that were 

impossible to model using model II. Results from this stage are shown in Table 4 and in 

Figure 2. In the fourth stage we used the fact that model I can be fitted to all eight 

variables to define multipurpose weights that we then use in MBD1-A. Results from this 

stage are presented in Table 5 and in Figure 2. Note that in all four of these simulation 

stages, we assign equal importance to all variables included in derivation of the 

multipurpose weights. Consequently, in the final simulation (stage five) we replicated 

the stage two simulation for MBD1-A, but this time assigned weights to each variable 

proportional to its population variability. 

 

Table 1 about here 

 

For the two variables TCC and TCR, Table 1 sets out the average and median values of 

various summary measures of estimation performance for the three methods MBD0, 

MBD1-A and MBD1-B under model I. These results clearly show that all three methods 

perform equivalently for this data set (regional specific results generated by these 

methods are virtually identical as well). This is evidence that the MBD method based on 

the multipurpose weights (8) is not sensitive to correlations between the target variables. 

Although not presented here, results from model-based simulations of target variables 
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with different levels of correlation support this conclusion. Consequently the simulation 

results presented below focus on MBD1-A. 

 

Tables 2 and 3 about here 

 

In the second stage of the simulation study, we compared the two variable specific 

methods EBLUP and MBD0 with the two multipurpose methods MBD1-A and MBD2. 

Tables 2 and 3 show the summary performances generated by these four methods for the 

five variables TCC, TCR, FCI, Cattle and Sheep under Models I and II respectively. 

Under the better fitting Model II (Table 3), multipurpose method MBD1-A performs 

marginally better than multipurpose method MBD2, which in turn is slightly better than 

the variable specific MBD0. All three are often substantially better than EBLUP for 

these data. Under Model I (Table 2), the two multipurpose methods MBD1-A and 

MBD2 record substantially better bias performances than the variable specific MBD0 

and EBLUP, and better to comparable performances with respect to mean squared error. 

Overall, the multipurpose method MBD1-A seems the weighting method of choice for 

these five variables and these data. 

 

In Figure 1 we show the regional level performances of EBLUP, MBD0, MBD1-A and 

MBD2 when estimating average TCC under model I and model II. Note the relatively 

better performance of all methods under model II. A considerable reduction in relative 

biases under multipurpose weighting can also be seen in most regions. A similar pattern 

of results was observed for TCR, FCI, Cattle and Sheep. 

 

Figure 1 about here 

 

From Figure 1 we see that in two regions (3 and 21) the weighting methods (MBD0, 

MBD1-A and MBD2) fail. Inspection of the data indicates that this is because of a small 

number of outlying estimates that were generated during the simulations. In region 21 

for example these outlying estimates are due to the presence of a single massive outlier 

(TCC>A$30,000,000) in the sample data. When we discard these outlying estimates 

then the weighting methods, particularly MBD1-A and MBD2, perform well for TCC 

across all regions. Similar results were observed for the other four variables TCR, FCI, 

Cattle and Sheep. 
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The unstable performance of EBLUP for the Cattle and Sheep variables in Tables 2 and 

3 is also noteworthy. Upon investigation we found that these anomalous results were due 

to the presence of large numbers of negative estimates in some of the regions, which in 

turn were caused by zero values in the data. 

 

Table 4 about here 

 

As noted earlier, our results suggest that multipurpose estimation based on MBD1-A is 

preferable to that based on MBD2. Consequently, in Table 4 we contrast the 

performances of the variable specific estimators EBLUP and MBD0 with that of the 

multipurpose estimator MBD1-A for the three variables (Crops, Equity and Debt) that 

contain a large number of zeros, and so were not included in calculation of the 

multipurpose weights used in MBD1-A. Note that these results are based on model I, 

since model II cannot be used for these variables. We see that MBD1-A is again clearly 

the method of choice, with EBLUP performing particularly badly - as one might expect 

given the large number of zero values in the data for Crops, Equity and Debt. This is 

evident when we look at Figure 2, which shows the regional specific performances of 

the three methods for Crops. Here we see that the EBLUP method fails in regions 2, 6, 9 

and 18. These are regions where there are a large number of zero values for this variable. 

 

Figure 2 about here 

 

In the results presented so far, the multipurpose weights used in the MBD1-A method 

have been based on the K = 5 target variables that were ‘suited’ to linear mixed 

modeling with the model II specification. However, if a model I specification is used, 

we can use all K = 8 target variables to define these weights via (8). In Table 5 therefore 

we compare the performance of the MBD1-A method under this model with weights 

obtained by using both the limited (K = 5) and full (K = 8) set of target variables in (8). 

This shows that these weights are quite insensitive to this choice. The almost 

imperceptible regional differences between the Crops estimates defined by these two 

sets of weights (see Figure 2) reinforces this observation. Similar region-specific 

performances were observed for Equity and Debt as well. 

 

Table 5 about here 
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So far, when computing the multipurpose weights, we have assigned equal importance 

to all K target variables that are used to define them. However, a reasonable alternative 

approach would be to assign importance factors based on the intrinsic variability of 

these variables. Two natural options in this regard are !
k
= 1 /"

e,k

2  and !
k
= 1 /V

k
, where 

!
e,k

2  and V
k
 are the individual and total variability of the kth target variable. Table 6 

provides summary details of the performance of the MBD1-A method when the 

multipurpose weights (based on TCC, TCR, FCI, Cattle and Sheep) are computed using 

these alternative importance weighting factors. These results show that, for the 

population considered in the simulation study, there is little to choose between these 

different importance weighting factors. 

 

Table 6 about here 

 

4. Summary and Further Research  

In this paper we develop two loss functions that can be used to compute optimal 

multipurpose weights suitable for use in small area estimation using MBD estimators. 

The first (8) ignores the correlations between the survey variables, while the second (12) 

takes these into account. For the population considered in our simulation studies the 

performance of the corresponding multipurpose weighting based MBD1-A and MBD1-

B estimators are almost identical, i.e. there are no real gains from taking account of the 

correlations between the survey variables when constructing the multipurpose weights. 

We also investigated an alternative approach to constructing multipurpose weights for 

use in MBD small area estimation by suitably averaging the variable specific EBLUP 

weights. Here again, our empirical results demonstrate that this method is somewhat less 

efficient than the loss function based MBD1-A method. We also show that these 

multipurpose weights remain efficient across a wide range of variables, even variables 

that have not been used in the definition of the multipurpose weights. This can be 

important in some situations (e.g. where variables have many zero values) where 

standard mixed models cannot be fitted and the usual EBLUP methods do not work. An 

alternative in such cases is extend the EBLUP approach to mixtures of linear mixed 

models. The authors are currently working on this issue, and results obtained so far are 

encouraging. 
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Table 1 Average relative bias (ARB), median relative bias (MRB), average relative root 

mean squared error (ARRMSE), median relative root mean squared error (MRRMSE) 

and average coverage rate (ACR) generated by MBD0, MBD1-A and MBD1-B for TCC 

and TCR under model I. All averages and medians are expressed as percentages and are 

over the 29 regions of interest. 

 

Variable Criterion MBD0 MBD1-A MBD1-B 

TCC ARB -2.99 -2.67 -2.71 

 ARRMSE 20.32 20.39 20.39 

 ACR 92 92 92 

 MRB -0.92 -0.85 -0.86 

 MRRMSE 14.29 14.36 14.35 

TCR ARB -2.38 -2.62 -2.67 

 ARRMSE 21.21 21.13 21.12 

 ACR 92 92 92 

 MRB -0.52 -0.56 -0.57 

 MRRMSE 13.28 13.27 13.27 
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Table 2 Average relative bias (ARB), median relative bias (MRB), average relative root 

mean squared error (ARRMSE), median relative root mean squared error (MRRMSE) 

and average coverage rate (ACR) for the five variables best suited to linear mixed 

modelling. All averages and medians are expressed as percentages and are over the 29 

regions of interest. Model I is assumed. 

 

Criterion Method TCC TCR FCI Cattle Sheep 

ARB EBLUP 4.24 5.48 6.93 138.48 304.24 

 MBD0 -2.49 -9.25 -13.80 -15.05 -7.33 

 MBD1-A -1.54 -1.30 -0.50 -1.78 0.69 

 MBD2 -1.29 -1.02 -0.04 -1.35 0.98 

MRB EBLUP 1.55 0.55 -2.08 0.95 -0.23 

 MBD0 -0.82 -3.87 -2.83 -4.79 -4.48 

 MBD1-A -0.61 -0.42 -0.56 -0.97 -0.35 

 MBD2 -0.52 -0.39 -0.54 -0.75 -0.30 

ARRMSE EBLUP 19.92 21.76 63.93 304.74 906.18 

 MBD0 20.56 23.34 54.42 37.45 24.88 

 MBD1-A 20.86 21.77 59.72 33.29 30.24 

 MBD2 20.85 21.77 60.07 33.36 30.64 

MRRMSE EBLUP 15.74 14.83 40.41 25.97 13.00 

 MBD0 14.45 16.20 35.85 30.34 15.50 

 MBD1-A 14.69 13.41 42.09 30.55 14.67 

 MBD2 14.74 13.46 42.45 30.56 14.67 

ACR EBLUP 90 88 87 86 91 

 MBD0 92 91 94 93 94 

 MBD1-A 92 92 94 95 96 

 MBD2 92 92 94 95 96 
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Table 3 Average relative bias (ARB), median relative bias (MRB), average relative root 

mean squared error (ARRMSE), median relative root mean squared error (MRRMSE) 

and average coverage rate (ACR) for the five variables best suited to linear mixed 

modelling. All averages and medians are expressed as percentages and are over the 29 

regions of interest. Model II is assumed. 

 

Criterion Method TCC TCR FCI Cattle Sheep 

ARB EBLUP 2.98 2.85 16.70 131.66 2.63 

 MBD0 -2.13 -1.25 0.50 -0.29 3.66 

 MBD1-A -1.67 -1.29 0.74 -1.95 1.10 

 MBD2 -1.30 -0.72 3.17 -1.29 0.93 

MRB EBLUP 0.61 1.37 3.98 0.62 0.00 

 MBD0 -0.47 -0.51 0.35 -0.31 0.00 

 MBD1-A -0.65 -0.50 0.24 -0.30 -0.15 

 MBD2 -0.52 0.01 0.53 -0.22 -0.09 

ARRMSE EBLUP 19.87 20.28 68.85 231.08 630.01 

 MBD0 20.15 21.46 65.43 30.80 37.82 

 MBD1-A 19.06 21.03 64.03 30.09 32.04 

 MBD2 27.13 34.84 129.29 45.16 34.99 

MRRMSE EBLUP 16.40 15.61 33.89 22.64 11.73 

 MBD0 13.16 12.39 37.64 28.79 14.68 

 MBD1-A 12.84 12.18 37.92 24.84 14.77 

 MBD2 12.84 12.71 37.62 24.93 14.72 

ACR EBLUP 85 86 84 86 89 

 MBD0 93 93 90 95 96 

 MBD1-A 93 93 94 95 96 

 MBD2 93 93 94 95 96 
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Table 4 Average relative bias (ARB), median relative bias (MRB), average relative root 

mean squared error (ARRMSE), median relative root mean squared error (MRRMSE) 

and average coverage rate (ACR) for EBLUP, MBD0 and MBD1-A for Crops, Equity 

and Debt under model I. All averages are expressed as percentages and are over the 29 

regions of interest. 

 

Criterion Methods Crops Equity Debt 

ARB EBLUP 90.31 4.36 8.39 

  MBD0 0.00 -9.32 -4.94 

  MBD1-A -0.21 -1.20 -0.96 

MRB EBLUP 0.00 -0.28 1.16 

  MBD0 -0.84 -3.51 -2.36 

  MBD1-A 0.00 -0.32 -0.61 

ARRMSE EBLUP 123.96 18.51 29.02 

  MBD0 23.53 19.14 27.71 

  MBD1-A 22.92 17.05 28.57 

MRRMSE EBLUP 15.10 12.32 21.49 

  MBD0 15.76 16.18 23.70 

  MBD1-A 15.80 13.52 24.88 

ACR EBLUP 95 88 91 

  MBD0 96 92 93 

  MBD1-A 96 94 93 
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Table 5 Average relative bias (ARB), average relative root mean squared error 

(ARRMSE) and average coverage rate (ACR) for multi-purpose weighting (MBD1-A) 

based on original K = 5 and extended K = 8 variable sets under model I. 

 

Variable K = 5 K = 8 

 ARB ARRMSE ACR ARB ARRMSE ACR 

TCC -1.54 20.86 92 -1.08 20.91 92 

TCR -1.30 21.77 92 -0.80 21.83 92 

FCI -0.50 59.72 94 0.21 60.22 94 

Cattle -1.78 33.29 95 -1.05 33.49 95 

Sheep  0.69 30.24 96 1.24 31.06 96 

Crops -0.21 22.92 96 -0.20 22.97 96 

Equity -1.20 17.05 94 -0.72 17.14 94 

Debt -0.96 28.57 93 -0.68 28.74 93 
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Table 6 Average relative bias (ARB), average relative root mean squared error 

(ARRMSE) and average coverage rate (ACR) for multi-purpose weighting (MBD1-A) 

under !
k
= 1 / K , !

k
= 1 /"

e,k

2  and !
k
= 1 /V

k
 for K = 5 target variables (TCC, TCR, FCI, 

Cattle, Sheep) under model I. 

 

Criterion !
k

"1  TCC TCR FCI Cattle Sheep 

ARB K  -1.54 -1.30 -0.50 -1.78 0.69 

  !
e,k

2  -1.69 -1.48 -0.82 -2.03 0.52 

  V
k
 -1.64 -1.42 -0.70 -1.95 0.57 

ARMSE K  20.86 21.77 59.72 33.29 30.24 

  !
e,k

2  20.83 21.71 58.00 33.19 29.99 

  V
k
 20.85 21.75 58.15 33.25 30.11 

ACR K  92 92 94 95 96 

  !
e,k

2  92 92 94 95 96 

  V
k
 92 92 94 95 96 
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Figure 1 Regional performance of EBLUP (dashed line), MBD0 (thin line), MBD1-A 

(thick line) and MBD2 (dotted line) for TCC under model I (left) and model II (right). 
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Figure 2 Regional performances of EBLUP (dashed line), MBD0 (thin line), MBD1-A 

under K = 5 (thick line) and MBD1-A under K = 8 (dotted line) for Crops under model I. 
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