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ABSTRACT

Sample surveys are generally multivariate, in the sense that they measure more than one
response variable. In theory, each variable can then be assigned an optimal weight for
estimation purposes. However, it is often a distinct practical advantage to have a single
weight that is used with all variables collected in the survey. This paper describes how
such multipurpose sample weights can be constructed when small area estimates of the
survey variables are required. The approach is based on the model-based direct (MBD)
method of small area estimation described in Chambers and Chandra (2006). Empirical
results reported in this paper show that MBD estimators for small areas based on
multipurpose weights perform well across a range of variables that are often of interest in
business surveys. Furthermore, these results show that the proposed approach is robust to
model misspecification and also efficient for the variables ill-suited to standard methods

of small area estimation (e.g. variables that contain a significant proportion of zeros).
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Abstract

Sample surveys are generally multivariate, in the sense that they collect data on more
than one response variable. In theory, each variable can then be assigned an optimal
weight for estimation purposes. However, it is a distinct practical advantage to have a
single weight for all variables collected in the survey. This paper describes how such
multipurpose sample weights can be constructed when small area estimates of the survey
variables are required. The approach is based on the model-based direct (MBD) method
of small area estimation described in Chambers and Chandra (2006). Empirical results
reported in this paper show that MBD estimators for small areas based on multipurpose
weights perform well across a range of variables that are often of interest in business
surveys. Furthermore, these results show that the proposed approach is robust to model
misspecification and also efficient when used with variables that are not suited to
standard methods of small area estimation (e.g. variables that contain a significant
proportion of zeros).

Keywords: Multivariate surveys, Multipurpose sample weights, MBD approach, Mixed
model, EBLUP.



1. Introduction

The weights that define the best linear unbiased predictor (BLUP) for the population
total of a variable of interest (see Royall, 1976) depend on the population level
conditional variance/covariance matrix for that variable. Unless this matrix is always
proportional to a known matrix, this optimality is variable specific. However, most
surveys are multivariate, and it is often an advantage to have a common weight for all
response variables. This is especially true where linear estimates are produced using the

survey data. In what follows we refer to such weights as ‘multipurpose’.

When a sufficiently rich set of auxiliary variables exist, and response variables can be
assumed to be conditionally uncorrelated given these variables, multipurpose weights
can be constructed by fitting a linear model for each response variable in terms of the
complete set of auxiliary variables. See Chambers (1996). An essentially equivalent idea
IS to use a calibrated set of sample weights, where the calibration is with respect to these
auxiliary variables. See Deville and S&rndal (1992).

Small area estimation is now widely used in sample surveys. Many of the methods
currently in use are variable specific and based on the application of mixed models (Rao,
2003). Weighted direct estimation for small areas based on these models is described in
Chambers and Chandra (2006), who refer to this approach as the model-based direct
(MBD) method of small area estimation. Since the weights used in MBD estimation are
based on the second order properties of linear mixed models fitted to the survey
variables, they are variable specific. However, as noted above, there are obvious
practical advantages from having a single multipurpose weight that can be used for
small area estimation for all the survey variables. Consequently, in section 2 of this
paper we replace the variable specific BLUP optimality criterion that underlies the
mixed model weights used in the MBD approach by a modified ‘total variability’
criterion that leads to a single set of optimal multipurpose weights for use in MBD
estimation for small areas. Section 3 then presents empirical results on the performance
of this approach. Finally, in section 4 we summarise our results and make suggestions
for further research.



2. Optimal Multipurpose Sample Weighting

2.1 Basic Concepts and Notation
Consider a population U consisting of N units, each of which has a value of a
characteristic of interest y associated with it. The population vector y, = (y,,....yy) IS

treated as the realisation of a random vectorY, = (Y,,...,Y, )", and our aim is estimation
I .
of the total 7, = zjeij (or meanY = N zjeij ) of the values defining y, . A sample

s of n units is selected from U, and the y values of the sample units are observed. We
denote the set of N — n non-sampled population units by r. We assume the availability
of X,,, an N x p matrix of values of p auxiliary variables that are related, in some sense,
to the values iny,, . In particular, y,and X, are related by the general linear model
E(y,)=X,B and Var(y,) =V, 1)

where B is a px1 vector of unknown parameters and V, is a positive definite
covariance matrix. Without loss of generality, we arrange the vector y, so that the first
n elements correspond to the sample units, writingy;, = (y! ¥/). We similarly partition

X, and V,, according to sample and non-sample units as

XS VYS VY}‘
X, = and V, = :
Xr ‘/I‘S ‘/rr

Here X isthe nx p matrix of sample values of the auxiliary variable, V_is the nxn
covariance matrix associated with the n sample units that make up the nx1 sample

vector y, . Corresponding non-sample quantities are denoted by a subscript of r, while

V.. denotes the (N —n)x n matrix defined by Cov(y,,y,). It is known (see Royall, 1976)
that among linear prediction unbiased estimators fy =w,y, of T, the variance of the
prediction error, Var(TA‘v —T,), is minimised by weights of the form

w,=1,+H (X1, - X1,)+(I,- HX)V.'V,1,_,. ()

N

Here H = (X

s ss

VX, )_1 X’v', 1 is a vectors of ones of order m and I, is the identity

matrix of order n. We refer to the weights (2) as the best linear unbiased prediction
(BLUP) weights for y. By definition, these weights are calibrated on the variables in X,
and so exactly reproduce the known population totals defined by the columns of this

matrix, i.e.w/X =1, X, =T, . Furthermore, under the assumption that a mixed linear



model can be used to specify the covariance matrix components V. and V_ in (2), the

MBD approach to small area estimation (see Chambers and Chandra, 2006) uses these

weights, with V. and V,_ replaced by suitable estimates, to define direct estimates of

small area quantities.

2.2 Optimal Multipurpose Weighting for Uncorrelated Variables
Suppose we have K response variables and a common set of auxiliary variables with

values defined by the population matrix X,,, and that model (1) holds for each of them

(although with different parameter values). Suppose further that these variables are
mutually uncorrelated. We use an extra subscript k (k =1,....,K) to denote quantities

associated with the k™ response variable, for example V, and w,, denote respectively
the nx n covariance matrix and nx 1 vector of sample weights that are associated with
the nx1 vector y, of sample values of the k" response variable. With this notation,

our aim is to derive an optimal set of multipurpose weights w, = {w;je s} for the K
response variables measured in the survey. Let 7, =1}y, denote the population total of
v, » With estimator 7, = w’y, based on these multipurpose weights. The weights w, are
then said to be ¢-optimal if (a) E(fk—Tk):O for each value of k, and (b) the ¢-
weighted total prediction variance zkd)kVar(fk —T,) is minimised at w, . Here ¢, is a

user-specified non-negative scalar quantity that reflects the relative importance attached

to the k™ response variable, with ). ¢, =1.

Put a, =w,—1 . In order to derive an explicit expression for the ¢ -optimal
multipurpose weights we first note that under (a)
E(T, ~T)=E@y, -1, ,y,)=E@X, -1, ,X)B,=0= X, =1, X,. (3
Furthermore, the prediction variance for estimator 7, = w’y,. is then
Var(T, =T,) = E@y, —1\_,y,)" = Var(@y, = 1,_,y,) +[E@y, = 1,_,y,)T -
The second term on the right hand side above vanishes under (3), so that
Var(T, - T,) = dVar(y,)a, — 24.Cov(y,..y, Ny_, + 1y_ Var(y,)l,_,

+1

=aV,a —-2aV,1 venVir Iy 4)

kss™ s ksr “N—n



We use the method of Lagrange multipliers to minimise (4) subject to (3). The

corresponding Lagrangian loss function is

(I)(l) = zlljzlq)k {a;‘/ksxas - 2’a.:‘/ksr]‘N—n } + 2(as,Xs - 1;V7n XI)A‘ (5)

where A is a vector of Lagrange multipliers. Differentiating (5) with respect to a, and

setting the result equal to zero leads to

M
851; = z;% {2v,a, -2V, 1, }+2XA=0

K K
= Xv)‘ = zkzl(pk‘/ksrlen _zkzl(pk‘/kssas
K -1 K

= as = (zkzlq)kvkss) {Zk:1¢kvksr1N—n - Xsﬂ’} (6)

Multiplying both sides of (6) on the left by X! and using (3), we see that
’ ’ K - K ’ K -

Xsas = XS (Zk:1¢kvkss) (Zk:1¢kvksr1N—n)_ Xs (Zk:1¢kvkss) Xsﬂ’

= X:lN—n = Xs,Ul_IWl 1N—n - X;UI_IXA‘Z'

S a=(xwx) xurw -, )
where U, = Zfz,%Vm and W, = Zszlq)ka . Substituting (7) in (6) then yields the
optimal value of a,:

agl) _ U1_1W11N_n _ U1_1Xs)’ — |:U1_1W1 - UI—IXS (X;UI—IXS )_1 {X;UI_IWI - X:}i|11v—n

s n

=U;'X, (XU X, )‘1 (X1, - X/1,)+ [ln -U'X,(XU7'X, )‘l X;}U;‘W1 1.

That is, the optimal multipurpose sample weights are given by

Wl =1+ HI (G = X0,)+ (1, XU ©

— -1 -1 -1
Where Hl = (X:UI_IXJ) IX;UI_I = {X;(Zf_lgbkvkss) Xs} X;(zlljzlq)kvkss) :
Observe that the analytical form of the optimal multipurpose weights (8) is similar to the
variable specific BLUP weights (2), except that V, and V,, are replaced by the
weighted sums U, =Y’ ¢,V,, and W, = ¢V, respectively. Clearly (8) reduces to

(2)for K=1.



2.3 Optimal Multipurpose Weighting for Correlated Variables

Survey variables are correlated in general. Let C,, =Cov(y,,y,). The obvious
generalization of the ¢ -weighted total prediction variance to this case leads to the loss

function

NN PN NN ©)

where elements of the matrix A= {A,,} are given by

kl

|var@, -1 if k=1
- {Cov(fk T.T,-T) if k#1
and we now have
Cov(T, -T,,T,~T)=d'Cy.a, —2d'Cy 1,  +1,y Cy 1y .

The Lagrange function to be minimized in this case is

(I)(2>:(\/E’X/E’____\/@)IA(\/(p_l,\/@,....\/ﬁ)+2(a;Xx—I;V,,lX,)/l

=Y oVar(T, =T, )+ 2, > o Jo,Cov(T, ~T, . T, =T, )+2(aX, 1\, X,)A
k

k 1#k

= Z¢k {a.:‘/kmax - 2a.:‘/er 1N—n + ]‘;an Vkrr len}
k

+22\/@\/¢71{a.§ckl&vas - 2a;Cklsr 1N—n + I;V—n CklrrlN—n } + 2(a:Xv - 1;V—n Xr )2’ (10)

k 1#k

Differentiating (10) with respect to a, and setting the result equal to zero yields

{ZQ)kaw + ZZM\M’_ICMW }a.v - {z(pkver + 22\/@\/¢_1Cklxr}an + sz’ = 0

k 1#k k 1#k

= U, -W,l,  +XA=0

=  a,=U;'(W,1,.,-XA) (11)
where U, = Y 0.V, + 3, > 0, \J9,Cors and W, =Y 0V, + 3. 0, /9,Cy. -
k k 1#k k k [#k

Proceeding as in the uncorrelated case then leads to the optimal multipurpose weights
for correlated survey variables

w® =1, +H,(X,1, - X/1)+[1,- H;X |U;'W,1,._, (12)
where H, :(X;U;‘XS)_1 X’U,". As in the uncorrelated variables case, we note that the

weights defined by (12) have the same analytic form as the BLUP weights (2), except



that in this case Vi, and V,, are replaced by U, =Y ¢V, + >, > .\/#,/9,C,,, and
k

1%k
W, = Z(pkvm + 22\/% VO, C respectively.
/<

k 1#k

2.4 Application to Small Area Estimation

Following Chambers and Chandra (2006), we use the multipurpose weights (8) and (12)
to construct model-based direct (MBD) estimates for small area means. In this case we
assume that the population can be partitioned into m non-overlapping small areas or
domains, indexed by i in what follows. Thus, for example, the population size of area i is

denoted by N, and so on. The variable-specific MBD estimate of the mean of the k"

response variable with values y,; inarea i is then

A

¥ = szS’ ijykj/zja, W (13)
where s, denotes the sample (of size »,) in area i and the weights w,; are calculated

using (2), substituting estimated values V. and V,_ for the corresponding components
of the covariance matrix of the population values of this variable. In order to define
these estimates, we assume that these population values follow the linear mixed model
Yo =X, B +Zyu, +e, (14)
where Yy = (Y e Y1) X, =(X/,.. . XY, Z, =diag(Z;1<i<m),
u, =Wy ,....u, ) and e, =(e,,...e ) denote partitioning into area ‘components’.
Here u,, is a random effect associated with area i, with Var(u,;)=%, 1, , and ¢, is

the vector of individual random effects for area i, with Var(e,;) =%, I, . It follows that

Var(Y, )=V,,=Z%,,1, +ZX, ,Z]. The variance components %,  and X, , can be

estimated from the sample data using standard methods (maximum likelihood, restricted
maximum likelihood, i.e. REML, or method of moments). Substituting these estimated
variance components back into the definition of V., and noting that

V. =diag(V,;;1<i<m) then leads to a corresponding estimate of this population level
covariance matrix. This can be appropriately partitioned into sample and non-sample

components to give the estimated values V,, and V. We refer to the weights (2) with

ANy

these estimated values substituted as the (variable specific) EBLUP weights.



In order to use the multipurpose weights (8) and (12) in MBD estimation, we assume
that the survey variables all follow the linear mixed model (14), with normal random
effects. Furthermore, for any two variables of interest, say the k" and ", area and
individual random effects remain uncorrelated but now

; Var(u, Cov(u,;,u, DI
| MVN(0,%Z,) with X = (1) (it:8,) | Tl (15)
Uy Cov(u,,u,) Var(u,) ZouZon

and

e Var(e,.) Cov(e,.e,.) X2,
(k1]~MVN(0,Ee) with zez( Y e J:[ e ”"j. (16)

€ Cov(e,ij,ekij) Var(eh.j) DIJD M
Hence
Vi,=Var,,)= Ze,kkIN,- +ZZX, .2
V,=Var¥,))=%,,1, +ZZ,,Z]
and

Cy,=Cov(Y, .Y, ;)= Ee,kIIN[ +ZX, 42

Given these definitions, we put U, = diag(U,;;1<i<m) and W, =diag(W,;;1<i<m) in

(8) and U, =diag(U,;1<i<m) and W, = diag(W,;;1<i<m) in (12). Here

U, = z(pk‘/km,i = 2¢k (Ze,kkln,- + Zs,izu,kkzs",i)
k k

W, = z¢k‘/er,i = Z¢k (Zx,izu,kkzr,,i)
k k

and

U, = z¢k‘/km,i + ZZM\/ECM&V,[

k 1#k

= 2¢k (ze,kklni + Zx,izu,kkz‘:,i ) + 22\/@\/‘1)_1(24111%,. + Zx,izu,klz.:,i)
k

k 1#k

W, = z(pkvk.vr,i + ZZMMCHW,[

k 1#k

= Z¢k (Zx,izu,kkzr,,i ) + ZZMM(ZXJZM,UZ:J) .

k 1#k

In practice, the bivariate variance componrents X ,..% ,.%,, and X, see (15) and

(16), are unknown and must be estimated from the survey data. For example, in the
empirical study described in the next section, these components were estimated using

the method of moments. In any case, substituting estimates for these components in the



formulae above then enables us to compute U,, W,, U, and W,, and hence the

multipurpose weights (8) and (12). Computation of MBD estimates for the small area
means of the different survey variables is then straightforward using (13), with these
multipurpose weights replacing the variable specific EBLUP weights there.

As noted earlier, the multipurpose weights (8) and (12) are essentially EBLUP type
weights based on ‘importance averaging’ of the variance and covariance components
associated with the different survey variables. This motivates us to consider a second
approach to deriving multipurpose weights based on corresponding ‘importance
averaging’ of the variable specific EBLUP sample weights (2) for these variables. That
is, we simply define our multipurpose weights as the importance-weighted average of

the variable specific weights (2) across all K survey variables. This leads to weights

w® =Y gw, (17)
k

where w, denotes the value of (2) for the k" survey variable and ¢, denotes the

relative importance of this variable, with qu)k =1.

3. An Empirical Study

In this section we report on a design-based simulation study that illustrates the
performance of small area MBD estimation combined with multipurpose weights. The
basis of this study is the same target population of N = 81982 farms, the same 1000
independent replications of a stratified random sampling design with overall sample size
n=1652 and the same m = 29 small areas of interest (defined by agricultural regions)
that underpin the simulation results reported in Chandra and Chambers (2005). Note that
regional sample sizes in this design are fixed from simulation to simulation but vary
between regions, ranging from a low of 6 to a high of 117, and hence allowing an
evaluation of the performance of the different methods considered across a range of
realistic small area sample sizes. See Chandra and Chambers (2005) for more details.

Here we consider K = 8 variables of interest. These are (i) TCC = total cash costs (A$)
of the farm business over the surveyed year, (ii) TCR = total cash receipts (A$) of the
farm business over the surveyed year, (iii) FCI = farm cash income (A$), defined as
TCR - TCC, (iv) Crops = area under crops (in hectares), (v) Cattle = number of Cattle



cattle on the farm, (vi) Sheep = number of sheep on the farm, (vii) Equity = total farm
equity (A9$), and (viii) Debt = total farm debt (A$). Our aim is to estimate the average of
these variables in each of the 29 different regions. In doing so, we use the fact that these
regions can be grouped into three zones (Pastoral, Mixed Farming, and Coastal), with
farm area (hectares) known for each farm in the population. This auxiliary variable is
referred to as Size in what follows.

Although the linear relationship between the eight target variables and Size is rather
weak in the population, this improves when separate linear models are fitted within six
post strata. These post-strata are defined by splitting each zone into small farms (farm
area less than zone median) and large farms (farm area greater than or equal to zone

median). The mixed model (14) was therefore specified so that the matrix X, of

auxiliary variable values included an effect for Size, effects for the post-strata and
effects for interactions between Size and the post strata. Two different specifications for
Z, (corresponding to whether a random slope on Size was included or not) were

considered. We refer to these as model | and as model Il respectively below. We use
REML estimates of random effects parameters, obtained via the Ime function in R (Bates
and Pinheiro, 1998) when fitting (14) to individual survey variables. When fitting the
multivariate mixed models defined by (15) and (16) we use the method of moments
(Rao, 2003).

The simulation study investigated the performance of five different estimators of the 29
regional means, along with corresponding estimators of their mean squared error. These
are the variable specific EBLUP under (14), referred to as EBLUP below; the MBD
estimator (13) based on variable specific EBLUP weights (2), referred to as MBDO
below; the MBD estimator (13) based on multipurpose weights (8), referred to as
MBD1-A below; the MBD estimator (13) based on multipurpose weights (12), referred
to as MBD1-B below; and the MBD estimator (13) based on multipurpose weights (17),
referred to as MBD2 below. Mean squared errors for the EBLUP were estimated using
the approach of Prasad and Rao (1990), while mean squared errors for the various MBD
estimators were estimated using the robust method described in Chambers and Chandra
(2006), which itself is an application of the heteroskedasticity robust method of
prediction variance estimation described in Royall and Cumberland (1978).
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The simulation study was carried out in five stages. In the first stage, model | was
assumed and the performance of the three estimators MBDO, MBD1-A and MBD1-B for
two variables (TCC and TCR) was investigated to see if there were gains to be had from
exploiting correlations among the survey variables. As noted earlier, we used the method
of moments (Henderson’s Method 3) to estimate model parameters in this case. Results
from this stage are set out in Table 1. In the second stage of the study we compared the
performance of the four estimation methods EBLUP, MBDO, MBD1-A and MBD2
under models I and Il for the 5 response variables (TCC, TCR, FCI, Cattle and Sheep)
where both models can be fitted. Results from this stage are presented in Tables 2 and 3
and in Figure 1. Note that the remaining three target variables in the study (Crops,
Equity and Debt) are not suited to linear modeling via (14) under model 1l because of
the presence of large numbers of zeros. Consequently, in the third stage of the study, we
used the multipurpose weights derived in the second phase (i.e. weights based on the K
= 5 variables TCC, TCR, FCI, Cattle and Sheep) in MBD1-A to evaluate the
performance of this estimator for the three variables Crops, Equity and Debt that were
impossible to model using model 11. Results from this stage are shown in Table 4 and in
Figure 2. In the fourth stage we used the fact that model | can be fitted to all eight
variables to define multipurpose weights that we then use in MBD1-A. Results from this
stage are presented in Table 5 and in Figure 2. Note that in all four of these simulation
stages, we assign equal importance to all variables included in derivation of the
multipurpose weights. Consequently, in the final simulation (stage five) we replicated
the stage two simulation for MBD1-A, but this time assigned weights to each variable
proportional to its population variability.

Table 1 about here

For the two variables TCC and TCR, Table 1 sets out the average and median values of
various summary measures of estimation performance for the three methods MBDO,
MBD1-A and MBD1-B under model I. These results clearly show that all three methods
perform equivalently for this data set (regional specific results generated by these
methods are virtually identical as well). This is evidence that the MBD method based on
the multipurpose weights (8) is not sensitive to correlations between the target variables.
Although not presented here, results from model-based simulations of target variables

11



with different levels of correlation support this conclusion. Consequently the simulation
results presented below focus on MBD1-A.

Tables 2 and 3 about here

In the second stage of the simulation study, we compared the two variable specific
methods EBLUP and MBDO with the two multipurpose methods MBD1-A and MBD2.
Tables 2 and 3 show the summary performances generated by these four methods for the
five variables TCC, TCR, FCI, Cattle and Sheep under Models | and Il respectively.
Under the better fitting Model 11 (Table 3), multipurpose method MBD1-A performs
marginally better than multipurpose method MBD2, which in turn is slightly better than
the variable specific MBDO. All three are often substantially better than EBLUP for
these data. Under Model | (Table 2), the two multipurpose methods MBD1-A and
MBD?2 record substantially better bias performances than the variable specific MBDO
and EBLUP, and better to comparable performances with respect to mean squared error.
Overall, the multipurpose method MBD1-A seems the weighting method of choice for

these five variables and these data.

In Figure 1 we show the regional level performances of EBLUP, MBDO, MBD1-A and
MBD2 when estimating average TCC under model | and model I1. Note the relatively
better performance of all methods under model 11. A considerable reduction in relative
biases under multipurpose weighting can also be seen in most regions. A similar pattern

of results was observed for TCR, FCI, Cattle and Sheep.

Figure 1 about here

From Figure 1 we see that in two regions (3 and 21) the weighting methods (MBDO,
MBD1-A and MBD?2) fail. Inspection of the data indicates that this is because of a small
number of outlying estimates that were generated during the simulations. In region 21
for example these outlying estimates are due to the presence of a single massive outlier
(TCC>A%$30,000,000) in the sample data. When we discard these outlying estimates
then the weighting methods, particularly MBD1-A and MBD2, perform well for TCC
across all regions. Similar results were observed for the other four variables TCR, FCI,
Cattle and Sheep.

12



The unstable performance of EBLUP for the Cattle and Sheep variables in Tables 2 and
3 is also noteworthy. Upon investigation we found that these anomalous results were due
to the presence of large numbers of negative estimates in some of the regions, which in

turn were caused by zero values in the data.

Table 4 about here

As noted earlier, our results suggest that multipurpose estimation based on MBD1-A is
preferable to that based on MBD2. Consequently, in Table 4 we contrast the
performances of the variable specific estimators EBLUP and MBDO with that of the
multipurpose estimator MBD1-A for the three variables (Crops, Equity and Debt) that
contain a large number of zeros, and so were not included in calculation of the
multipurpose weights used in MBD1-A. Note that these results are based on model I,
since model 11 cannot be used for these variables. We see that MBD1-A is again clearly
the method of choice, with EBLUP performing particularly badly - as one might expect
given the large number of zero values in the data for Crops, Equity and Debt. This is
evident when we look at Figure 2, which shows the regional specific performances of
the three methods for Crops. Here we see that the EBLUP method fails in regions 2, 6, 9
and 18. These are regions where there are a large number of zero values for this variable.

Figure 2 about here

In the results presented so far, the multipurpose weights used in the MBD1-A method
have been based on the K = 5 target variables that were ‘suited’ to linear mixed
modeling with the model 11 specification. However, if a model | specification is used,
we can use all K = 8 target variables to define these weights via (8). In Table 5 therefore
we compare the performance of the MBD1-A method under this model with weights
obtained by using both the limited (K = 5) and full (K = 8) set of target variables in (8).
This shows that these weights are quite insensitive to this choice. The almost
imperceptible regional differences between the Crops estimates defined by these two
sets of weights (see Figure 2) reinforces this observation. Similar region-specific

performances were observed for Equity and Debt as well.

Table 5 about here
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So far, when computing the multipurpose weights, we have assigned equal importance
to all K target variables that are used to define them. However, a reasonable alternative
approach would be to assign importance factors based on the intrinsic variability of
these variables. Two natural options in this regard are ¢, =1/0., and ¢, =1/V,, where

o, and V, are the individual and total variability of the k™ target variable. Table 6

provides summary details of the performance of the MBD1-A method when the
multipurpose weights (based on TCC, TCR, FCI, Cattle and Sheep) are computed using
these alternative importance weighting factors. These results show that, for the
population considered in the simulation study, there is little to choose between these
different importance weighting factors.

Table 6 about here

4. Summary and Further Research

In this paper we develop two loss functions that can be used to compute optimal
multipurpose weights suitable for use in small area estimation using MBD estimators.
The first (8) ignores the correlations between the survey variables, while the second (12)
takes these into account. For the population considered in our simulation studies the
performance of the corresponding multipurpose weighting based MBD1-A and MBD1-
B estimators are almost identical, i.e. there are no real gains from taking account of the
correlations between the survey variables when constructing the multipurpose weights.
We also investigated an alternative approach to constructing multipurpose weights for
use in MBD small area estimation by suitably averaging the variable specific EBLUP
weights. Here again, our empirical results demonstrate that this method is somewhat less
efficient than the loss function based MBD1-A method. We also show that these
multipurpose weights remain efficient across a wide range of variables, even variables
that have not been used in the definition of the multipurpose weights. This can be
important in some situations (e.g. where variables have many zero values) where
standard mixed models cannot be fitted and the usual EBLUP methods do not work. An
alternative in such cases is extend the EBLUP approach to mixtures of linear mixed
models. The authors are currently working on this issue, and results obtained so far are

encouraging.
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Table 1 Average relative bias (ARB), median relative bias (MRB), average relative root
mean squared error (ARRMSE), median relative root mean squared error (MRRMSE)
and average coverage rate (ACR) generated by MBDO, MBD1-A and MBD1-B for TCC
and TCR under model I. All averages and medians are expressed as percentages and are
over the 29 regions of interest.

Variable Criterion MBDO MBD1-A MBD1-B
TCC ARB -2.99 -2.67 -2.71
ARRMSE 20.32 20.39 20.39
ACR 92 92 92
MRB -0.92 -0.85 -0.86
MRRMSE 14.29 14.36 14.35
TCR ARB -2.38 -2.62 -2.67
ARRMSE 21.21 21.13 21.12
ACR 92 92 92
MRB -0.52 -0.56 -0.57
MRRMSE 13.28 13.27 13.27
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Table 2 Average relative bias (ARB), median relative bias (MRB), average relative root
mean squared error (ARRMSE), median relative root mean squared error (MRRMSE)
and average coverage rate (ACR) for the five variables best suited to linear mixed
modelling. All averages and medians are expressed as percentages and are over the 29
regions of interest. Model I is assumed.

Criterion Method TCC TCR FCI Cattle Sheep
ARB EBLUP 4.24 5.48 6.93 138.48 304.24
MBDO -2.49 -9.25 -13.80 -15.05 -7.33
MBD1-A -1.54 -1.30 -0.50 -1.78 0.69
MBD2 -1.29 -1.02 -0.04 -1.35 0.98
MRB EBLUP 1.55 0.55 -2.08 0.95 -0.23
MBDO -0.82 -3.87 -2.83 -4.79 -4.48
MBD1-A -0.61 -0.42 -0.56 -0.97 -0.35
MBD2 -0.52 -0.39 -0.54 -0.75 -0.30
ARRMSE EBLUP 19.92 21.76 63.93 304.74  906.18
MBDO 20.56 23.34 54.42 37.45 24.88
MBD1-A 20.86 21.77 59.72 33.29 30.24
MBD2 20.85 21.77 60.07 33.36 30.64
MRRMSE EBLUP 15.74 14.83 40.41 25.97 13.00
MBDO 14.45 16.20 35.85 30.34 15.50
MBD1-A 14.69 13.41 42.09 30.55 14.67
MBD2 14.74 13.46 42.45 30.56 14.67
ACR EBLUP 90 88 87 86 91
MBDO 92 91 94 93 94
MBD1-A 92 92 94 95 96
MBD2 92 92 94 95 96
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Table 3 Average relative bias (ARB), median relative bias (MRB), average relative root
mean squared error (ARRMSE), median relative root mean squared error (MRRMSE)
and average coverage rate (ACR) for the five variables best suited to linear mixed
modelling. All averages and medians are expressed as percentages and are over the 29
regions of interest. Model Il is assumed.

Criterion Method TCC TCR FCI Cattle Sheep
ARB EBLUP 2.98 2.85 16.70 131.66 2.63
MBDO -2.13 -1.25 0.50 -0.29 3.66
MBD1-A -1.67 -1.29 0.74 -1.95 1.10
MBD2 -1.30 -0.72 3.17 -1.29 0.93
MRB EBLUP 0.61 1.37 3.98 0.62 0.00
MBDO -0.47 -0.51 0.35 -0.31 0.00
MBD1-A -0.65 -0.50 0.24 -0.30 -0.15
MBD2 -0.52 0.01 0.53 -0.22 -0.09
ARRMSE EBLUP 19.87 20.28 68.85 231.08 630.01
MBDO 20.15 21.46 65.43 30.80 37.82
MBD1-A  19.06 21.03 64.03 30.09 32.04
MBD2 27.13 34.84 129.29 45.16 34.99
MRRMSE  EBLUP 16.40 15.61 33.89 22.64 11.73
MBDO 13.16 12.39 37.64 28.79 14.68
MBD1-A 12.84 12.18 37.92 24.84 14.77
MBD2 12.84 12.71 37.62 24.93 14.72
ACR EBLUP 85 86 84 86 89
MBDO 93 93 90 95 96
MBD1-A 93 93 94 95 96
MBD2 93 93 94 95 96
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Table 4 Average relative bias (ARB), median relative bias (MRB), average relative root
mean squared error (ARRMSE), median relative root mean squared error (MRRMSE)
and average coverage rate (ACR) for EBLUP, MBDO0 and MBD1-A for Crops, Equity
and Debt under model 1. All averages are expressed as percentages and are over the 29
regions of interest.

Criterion Methods Crops  Equity Debt
ARB EBLUP 90.31 4.36 8.39
MBDO 0.00 -9.32 -4.94
MBD1-A -0.21 -1.20 -0.96
MRB EBLUP 0.00 -0.28 1.16
MBDO -0.84 -3.51 -2.36
MBD1-A 0.00 -0.32 -0.61
ARRMSE EBLUP 123.96 18.51 29.02
MBDO 23.53 19.14 27.71
MBD1-A 22.92 17.05 28.57
MRRMSE EBLUP 15.10 12.32 21.49
MBDO 15.76 16.18 23.70
MBD1-A 15.80 13.52 24.88
ACR EBLUP 95 88 91
MBDO 96 92 93
MBD1-A 96 94 93
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Table 5 Average relative bias (ARB), average relative root mean squared error
(ARRMSE) and average coverage rate (ACR) for multi-purpose weighting (MBD1-A)
based on original K =5 and extended K = 8 variable sets under model 1.

Variable K=5 K=8

ARB ARRMSE ACR ARB ARRMSE ACR
TCC -1.54 20.86 92 -1.08 20.91 92
TCR -1.30 21.77 92 -0.80 21.83 92
FCI -0.50 59.72 94 0.21 60.22 94
Cattle -1.78 33.29 95 -1.05 33.49 95
Sheep 0.69 30.24 96 1.24 31.06 96
Crops -0.21 22.92 96 -0.20 22.97 96
Equity -1.20 17.05 94 -0.72 17.14 94
Debt -0.96 28.57 93 -0.68 28.74 93
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Table 6 Average relative bias (ARB), average relative root mean squared error
(ARRMSE) and average coverage rate (ACR) for multi-purpose weighting (MBD1-A)
under ¢, =1/K, ¢, =1/0., and ¢, =1/V, for K =5 target variables (TCC, TCR, FClI,

Cattle, Sheep) under model I.

Criterion ;' TCC TCR FCI  Cattle  Sheep
ARB K -1.54 -1.30 -0.50 -1.78 0.69
o -1.69 -1.48 -0.82 -2.03 0.52

v, -1.64 -1.42 -0.70 -1.95 0.57

ARMSE K 2086 2177  59.72 3329  30.24
o 2083 2171 5800 3319  29.99

Vi 20.85 21.75 58.15 33.25 30.11

ACR K 92 92 94 95 96
o 92 92 94 95 96

v, 92 92 94 95 96
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Figure 1 Regional performance of EBLUP (dashed line), MBDO (thin line), MBD1-A
(thick line) and MBD2 (dotted line) for TCC under model | (left) and model 11 (right).
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Figure 2 Regional performances of EBLUP (dashed line), MBDO (thin line), MBD1-A
under K =5 (thick line) and MBD1-A under K = 8 (dotted line) for Crops under model I.
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