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Abstract—This paper introduces a novel intention-aware rout-
ing system (IARS) for electric vehicles. This system enables ve-
hicles to compute a routing policy that minimizes their expected
journey time while considering the policies, or intentions, of other
vehicles. Considering such intentions is critical for electric vehi-
cles, which may need to recharge en route and face potentially sig-
nificant queueing times if other vehicles choose the same charging
stations. To address this, the computed routing policy takes into
consideration predicted queueing times at the stations, which are
derived from the current intentions of other electric vehicles. The
efficacy of IARS is demonstrated through simulations using real-
istic settings based on real data from The Netherlands, including
charging station locations, road networks, historical travel times,
and journey origin—destination pairs. In these settings, IARS is
compared with a number of state-of-the-art benchmark routing
algorithms and achieves significantly lower average journey times.
In some cases, IARS leads to an over 80 % improvement in waiting
times at charging stations and a more than 50% reduction in
overall journey times.

Index Terms—Intelligent vehicles, vehicle routing, traffic con-
trol, electric vehicles, decision making, multi-agent systems.

I. INTRODUCTION

HE expected increase in the number of electric vehicles

(EVs) necessitates novel solutions for managing the in-
frastructure required to charge these vehicles [1]. While the
increase in rapid charging stations is making en-route charging
a viable option for enabling longer journeys (e.g., according to
Tesla, its 120 kW supercharger can provide a 170 miles range in
30 minutes), even the fastest chargers to date take significantly
longer compared to refueling, potentially resulting in signifi-
cant congestion at charging stations [2], [3]. In addition, such
charging stations are expensive to build and so it is important
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to use the existing infrastructure efficiently. To this end, we
propose a novel navigation system that predicts congestion at
charging stations based on dynamic information about current
and future demand for charging. This system then suggests
the most efficient route and station, in order to minimize both
driving time and expected queueing time at stations.

For general (not necessarily electric) vehicles, optimal rout-
ing using real-time information about congestion is extensively
studied within the area of dynamic route guidance and infor-
mation systems (RGIS) [4, Ch.11]. RGIS nowadays have time-
dependent estimates of driving times on road segments and
work sufficiently well in practice for many routing problems.
However, there can be a significant discrepancy between the
estimated congestion, and the actual congestion when arriving
at a particular point. This is partly because, if many people use
the same system and follow the same advice, the bottleneck is
just shifted elsewhere. In fact, it has been shown that simply
providing real-time information can, in theory, worsen overall
traffic conditions [5].

These problems are likely to become even more significant
in the case of EV charging stations, since small discrepancies
in the number of vehicles can have a significant impact on
queueing time. For example, if a station has two charging points
and charging takes 30 minutes, then every additional vehicle
would add an average of 15 minutes to the overall journey
of vehicles arriving there later. Even if the capacity of the
stations were to increase, individual vehicles would still have
a much higher impact on delays at charging stations compared
to regular road networks.

To reduce congestion at the charging stations, we pro-
pose an Intention-Aware Routing System (IARS). In contrast
to existing state-of-the-art two-way communication systems,
where a driver’s navigation system typically only communi-
cates the vehicle’s current position, our system communicates
its intentions, i.e., relevant (probabilistic) information about
its planned arrival times at charging stations, to a central sys-
tem. Internally, each vehicle computes a routing policy, which
takes into account uncertainty about road conditions, waiting
times and which charging stations may be used. Intentions
are then derived from this policy and constitute probabilistic
information about which stations the EV could visit and when,
thereby allowing the centralized component of the system to
accurately predict congestion (and thus waiting times) at those
stations. This information is then fed back to the EV driver’s
navigation system, which can automatically adjust its routing
policy accordingly, and send updated intentions back to the
central system.

This type of exchange of intentions is related to the dynamic
traffic assignment (DTA) problem, where the goal is to compute
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dynamic user equilibria, e.g., using an iterative approach [6].
An equilibrium is reached when no user has an incentive to
deviate to a different route (see, e.g., [7], [8] for an overview).
Even though there are similarities, our approach and goals are
fundamentally different. First, unlike in DTA equilibria, we do
not assume full information about the intentions of all vehicles
at any given time. Rather, only a fraction may participate in the
system and, even of the vehicles that do participate, we may
only receive information gradually over the course of a day.
Thus, in order to predict congestion, we propose a new way
to combine known intentions with historic information. Fur-
thermore, we consider a time-dependent stochastic traffic flow
model where pure-strategy Nash equilibria may not even exist
[9], [10]. Instead of finding equilibria, we simply periodically
update routing policies (e.g., once every minute), which may
or may not converge to a steady state (typically not, since new
vehicles enter the system all the time). In doing so, our goal is to
see whether exchanging intentions increases overall efficiency,
and whether participating in the system is in the best interest of
the drivers.

Against this background, this paper makes the following
contributions to the existing state of the art:

* We formalize the EV routing problem as a stochastic time-
dependent problem. In doing so, we extend existing state-
of-the-art methods in stochastic vehicle routing to include
EV-specific parameters, such as the state of charge and
waiting times at charging stations.

* We propose the concept of an intention-aware routing
system (IARS), which combines three sources of infor-
mation to derive probabilistic travel times (i.e., waiting
times at charging stations): known intentions (i.e., arrival
time distributions at specific charging stations), intentions
from users who have participated in the past, and users
whose intentions are not known to the system (but who
charge at EV stations).

» Using experiments based on real data from road networks,
traffic conditions, and charging station locations, we show
that an IARS leads to significantly lower average journey
times than state-of-the-art routing algorithms that rely
only on historical information about driving and waiting
times (as used by some modern navigation devices). In
some cases, our approach leads to an over 80% improve-
ment in waiting times at charging stations and a more
than 50% reduction in overall journey times. Moreover,
we demonstrate that even when only a small proportion
of EV drivers use IARS (this can be as low as 10%), they
achieve significantly lower journey times than those that
do not.

The remainder of the paper is structured as follows. First,
Section II provides a discussion of relevant related work.
Next, Section III introduces the formal EV routing and charg-
ing station model, while Section IV presents the concept of
an Intention-Aware Routing System applied to this model.
Section V discusses the data and experiments performed to
compare [ARS against a set of benchmarks, while Section VI
concludes with a discussion.
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II. RELATED WORK

In addition to RGIS and DTA mentioned above, our work
is related to a range of other areas. Specifically, this paper
builds on the state-of-the-art stochastic time-dependent network
model introduced by Gao and Chabini [11], [12]. Similar to
our work, they model the routing problem on a road network
with vertices and edges where travel times over the edges are
stochastic, and where their distributions depend on the time of
day. The solution of the routing problem to a destination node
is a so-called policy, which describes, for each vertex and at
each time, the best next vertex to travel to. This model can
also be seen as a Markov decision process [13]. We extend
this model by introducing the battery’s state of charge (SOC),
and having charging stations where the SOC is reset. The SOC
decreases when traversing regular roads, and so the routing
policy automatically includes a charging station when needed.
In addition, while we propose the communication of intentions
as a way to coordinate EVs, others have discussed different
types of coordination mechanisms. Many of these focus on
scheduling of electricity charging at home or while parked away
from home to reduce peak loads and/or satisfying constraints
of the electricity network (e.g., [14]-{16]). However, this is
different from our work, which coordinates vehicles for en-
route charging. Here, the main aim is to avoid congestion at
the charging stations (although knowing the intentions could
also be used to improve the scheduling activities in other EV
charging settings). Work that specifically considers coordina-
tion to reduce congestion includes [17], where vehicles can
communicate observations about the congestion on different
road segments to other nearby vehicles. Similarly, in [18], a
system is proposed in which vehicles report their location,
speed and driving times. More recently, the approach in [19]
allows vehicles to negotiate with other nearby vehicles about
which routes they are going to take. One key difference to
our approach is that these systems do not model stochastic
and time-dependent routing explicitly. More specifically, in
[17]-[19], the delay on each edge is encoded by a single weight,
whereas in our model the driving times on each edge are
modeled by stochastic variables, whose distributions depend on
the time of day. The advantage of our approach (and stochastic
time-dependent models in general) is that it captures realistic
situations where travel time is uncertain, and a delay on one
part of the route can affect the travel time elsewhere, possibly
making an alternative route more attractive. As a result, the
optimal solution is not a single route but a policy which depends
on the realizations of the travel times. In contrast, others have
recognized the problem of congestion specifically for charging
stations, but have studied conceptually different solutions to
ours, such as centralized reservation-based approaches [2],
[3], [20]. A largely unsolved challenge for reservation-based
approaches is dealing with uncertain driving times, as delays
could necessitate re-scheduling or even re-routing to a different
charging station, invalidating the optimal schedule and existing
reservations. Instead, other work considers more decentralized
approaches. In [21], stations broadcast their ability to accept
new vehicles, based on the length of the existing queues. In
contrast, in our system it is the EVs themselves that broadcast
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Fig. 1. Example road network from the perspective of a single EV with current
position v and destination vgegst. Vertices indicate decision points, and edges
are either roads or charging stations. Charging stations are indicated by self
loops.

their driving intentions, which allows others to consider them
before they even arrive at the stations. Yet other work, e.g.,
[22], [23], uses dynamic pricing or similar signaling to regulate
congestion through demand response. IARS complements such
approaches by planning further into the future. Price differences
between stations and/or times could be easily integrated into
such routing decisions. Finally, there are an increasing number
of papers, e.g., [24]-[26], considering the problem of optimal
deployment of the charging stations. While this problem is
beyond the scope of our current work, our framework could
be used as a model of EV decision-making to tackle such
problems, assuming some form of coordination among EVs.

III. MODEL

In this section we first introduce our model of stochastic
time-dependent routing for EVs, where roads and charging
stations are abstractly represented by probability distributions
of their waiting time. This is modeled as a Markov decision
process (MDP). Given the stochastic nature of the problem, and
that the aim is to find an optimal policy, MDPs are a natural
framework to use in this setting. We then go on to present our
queueing model of the charging stations, which will be used in
Section IV to derive their waiting time probabilities, taking into
account the intentions of other EVs.

A. The EV Routing Problem

We model an EV routing domain by (V,E,T,P,S,C),
with directed edges e = (v;,v;) € E and vertices v;,v; € V.
Edges represent either roads or charging stations, denoted by
FEtations C E and Ei..qs C E respectively, whereas vertices
represent decision points. An example is given in Fig. 1. In our
experiments, we represent stations as self loops to allow vehicles
to easily avoid the station, but the framework is more general
and allows any type of graph, e.g., to support even roadway-
power vehicles (contactless charging while driving) [27].

Both roads and charging stations incur a probabilistic amount
of travel or waiting time, described by a probability mass
function P (more details below). These travel and waiting

times vary depending on the time of the day, and 7' = {1, 2,

., tmax } denotes a finite set of time points (e.g., within a day,
or over a week). Roads furthermore incur a cost to EVs in terms
of power usage, whereas charging stations reset the EV battery
to its maximum capacity level (in order to somewhat reduce the
number of parameters, in this paper we assume that a battery
will always be fully charged at a station, but it is straightforward
to include partial charges in our model). The power available to
an EV is represented by a finite set of possible charging states
S ={0,1,..., sSmax}, Where a state represents the current state
of charge of the battery, and sy,,x denotes a fully charged
battery. Furthermore, we introduce function C, where C'(e) € S
are the (deterministic) charging costs for edge e € Fioads.
Since we compute the route for each vehicle separately, C' and
Smax could, potentially, be different for each type of EV. This
charging cost is deducted from the current state of charge when
the edge is traversed.

We consider time-dependent stochastic travel and waiting
times and treat them as stochastically independent. That is,
conditional on the time of day, the distributions at edges are
uncorrelated, and we do not take into account the fact that
these distributions may be updated over time. This is common
in the stochastic routing literature [28], but in principle recent
work on predicting driving times based on current observations
could be straightforwardly implemented in our model. For-
mally, P(t;, — t,|e, t,) denotes the probability mass function of
the travel/waiting time at edge ¢ = (v, vy) € E, where t, € T
denotes the arrival time at vertex v, and t, € T,t, > t, the
arrival time at vertex vp. Thus, when e is a road, then ¢, — ¢, is
the driving time, and when e is a charging station, ¢, — ¢, is the
combined waiting and charging time. Given this, the problem
for a single vehicle is to find an optimal routing policy ©* which
maximizes the driver’s expected utility without running out of
charge at any point during the journey. Formally, a routing
policy is a function 7 : V' x T' x S — V, which gives the next
vertex (and the corresponding edge to follow, which is the one
that connects the current and the next vertex) for each possible
state. Here, a vehicle’s current state is given by the current
position or vertex v. € V, the current time at the vertex (i.e.,
the arrival time) ¢, € T, and the current state of charge s. € S.
Then, given a policy 7 and the current state (v, t., S¢), the
next edge to follow is given by e. = (v, (v, te, Sc)) and the
expected utility for the policy 7 from the current state can be
computed using the following recursive formulation:

EU (ec = (ve, W), te, Se|)

—00 if 5. <0
ZAtET P(At|607 tC) : U(tC+Atﬂ S/) if W = Vdest
>ater P(Atlec, te)

-BEU ((w, m(w, tc+At, s')) , te+At, s'|m) otherwise

where s’ = SOC(e., s.) determines the new state of charge
when traversing edge e., i.e.,

-C if FEion
S0C(e,.s5,) = 4 %~ o) 1ee @ Bronie

Smax if e. € Egtations-
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In this model we assume that the state of charge is not influ-
enced by the time it takes to traverse an edge. We argue that
this is reasonable given that batteries are charged when braking,
although the formulation above can be easily extended to make
this time-dependent or even stochastic. Furthermore, U (%, s¢)
is the vehicle’s utility function for a given arrival time . and
a state of charge s, on arrival such that Ul(t., s.) = —oo if
se < 0. Consequently, a policy will always be chosen ensuring
the vehicle will not run out of charge (if such a policy exists).
Otherwise, we use U(t., s.) = —t.; then maximizing the ex-
pected utility means minimizing the expected time of arrival.
However, other functions describing the driver’s preferences
could be easily used instead.

B. Charging Stations Model

In addition to the general routing problem, we explicitly
model the queues at charging stations to compute the proba-
bilistic waiting times (discussed in detail in Section IV). We
focus on the charging stations, since individual vehicles can have
a significant effect on waiting times. Hence there is a greater
potential benefit in knowing the intentions compared to roads.

The station’s queueing model is as follows. We assume that
each station e € Egations has a fixed capacity, cap,, due to
space or electricity network constraints. This capacity is the
maximum number of vehicles that can charge simultaneously.
Furthermore, for simplicity, we assume that the time to (fully)
charge a vehicle, denoted by ¢"*¢¢ ¢ T, is fixed (although it
is straightforward to extend the model to stochastic or charge-
dependent times). We assume a first-come-first-served queue-
ing model when the station is at full capacity and that there is
no queue before time ¢ = 1. Finally, if several EVs arrive at the
same time, we assume they arrive in the order of a randomly
assigned unique identifier.

IV. INTENTION-AWARE ROUTING SYSTEM

In this section we provide an overview of an IARS to reduce
congestion at charging stations, and we explain how waiting
times are computed. The section is organised as follows. We
start in Section IV-A by discussing the system as a whole
and how the individual drivers’ navigation devices interact
via a central system. We then detail the steps to compute the
probabilistic waiting times of the charging stations. First, in
Section IV-B, we discuss how the optimal routing policy can be
computed. Then, in Section IV-C, we derive the arrival proba-
bilities (i.e., intentions) from a routing policy. In Section IV-D,
we discuss the computation of arrival probabilities from histor-
ical data. Finally, we combine this information in Section IV-E
to compute the probability distributions of the waiting times.

A. IARS Architecture

Fig. 2 presents an overview of the system. As can be seen, the
system consists of two types of components: several navigation
devices, henceforth called agents, who autonomously exchange
information with a central system, henceforth called the centre.
Note that the agents do not exchange intention information
directly with other agents. Instead, each agent periodically
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Fig. 2. Intention-aware routing system architecture.

receives updated probabilistic waiting times from the centre,
denoted by P(Atle,t) (see also Section III-A).! Furthermore,
using this architecture, the agents only need to communicate
their arrival probabilities for the charging stations to the centre,
and not the entire routing policy, thereby reducing communi-
cation overhead and increasing privacy.” Given the user input,
V; dest the state of the vehicle (the current position, v;, state of
charge, e;, and time t;), and the information received from the
centre, each agent first computes its optimal routing policy (as
described in Section IV-B). From this policy, the agent derives
the arrival probabilities for relevant stations (see Section IV-C
below), which are periodically sent to the centre. Note that
the set of participating agents, denoted by I in the figure,
constantly changes over time. This is because, even if IARS
is used, the user may not yet have entered the destination.
Therefore, the centre needs to combine both currently known
arrival probabilities (intentions) of individual agents, with more
generic historic information about arrivals about agents whose
intentions are not (yet) known (which also accounts for users
not using the system at all) to compute the probabilistic waiting
times (as detailed below). This information is then fed back to
the agents, completing the cycle. In our simulations we repeat
such a best-response cycle for all agents a fixed number of times
(20), but usually there are no significant changes already after
two or three iterations. The policies converge in 85% of the
cases.

'In this paper, we focus on the information related to charging stations (i.e.,
the waiting time probabilities for remaining edges remain fixed), but in practice
both roads and charging stations would be updated.

2In practice, the routing policy may have to be computed by the central
servers anyway, as is the case with Waze and Google Maps.
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1 PP (v, 1, 5) 0 for all v, 1, s, but P¥"(v;, b, 5) + 1
2 P (e,t) <~ 0 forall t € T, e € Egations

3 Q<+ {(vi,t;y8;)} // priority queue on time
4 while Q # 0 do

5 (v,t,8) < pop(Q)// remove from gqueue

6 (v,w) < 7(v,t,s)

7 if (v, w) € Egurions then

8 P ((v,w), t) 4= P2 (v, t, s)

9 if w # vg.s then

10 for At € T do

1 Py (w, At + ¢, SOC((v,w), s)) +=

12 P(At|(v,w),t) - P (v,t,s)

13 if P (w, At +t,SOC((v,w),s)) > 0 and

(w, At +t,SOC((v,w), s)) € Q then

14 add (w, At +t,S0C((v,w),s)) to @

Fig. 3. An agent’s arrival probability P"" at each station s is derived from
its policy 7 by considering all possible delays on the route towards s.

B. Computing the Optimal Policy

The optimal policy from a state (v, tc, Sc) is given by:

7" = argmax EU ((w, 7 (e, te, Sc)) s tey Se|T)
mwell

where II is the set of all valid policies. Since for every
computation of EU the policy m; is required only for times
strictly later than ¢; (we assume At > 0), the optimal policy
can be computed using dynamic programming in line with
work on Markov decision processes [13] based on the following
recursive definition: if v; = vqest Or 8; < 0, then there is no
good decision, and otherwise:

7 (v, ti,8;) = argmax EU(e, t;, s;|7").
{el(vi,w)eE}

All computations described above can be done in running
time bounded by O(|T|? - |[V| - |S| - | E]). Note that the optimal
routing problem can still become computationally expensive for
large road networks. However, the routing problem is solved
for individual agents for which we only need to consider a
subset of the entire graph since not all charging stations can be
reached. In our experiments (see Section V) we have different
road networks for each agent and, for any individual agents, we
only consider routes to and from a limited number of alternative
charging stations.

C. Computing Arrival Probabilities (Intentions)

The algorithm for deriving the arrival probabilities of an EV
at stations at particular times is given in Fig. 3.

Formally, the probability P?""(e,t) that EV 4 arrives at
station e € Fgtations at time ¢ € T' depends on ¢’s current policy
wf and current state (v;, t;, s;). Besides the probability for each
arrival time at each station, the algorithm also needs to maintain
a probability of the arrival time at all other states, denoted by
P#"" (v, t, s). The initialization sets all these probabilities to 0,
except for the probability of arriving in the current state, which
is 1. All reachable states are then considered in turn by using a
priority queue () where states are sorted on time. Initially, this
queue contains only the current state (see line 3). From any state

taken from this queue (i.e., with location v, time ¢, and state of
charge s), the policy for this state defines the next location w.
If (v,w) is a station (i.e., (v,w) = e with e € Egtations), the
computed arrival probability is added to P?"" (e, t). Then, for
each possible delay At on (v,w) (see line 10), we add the
respective arrival probability P(At|(v,w),t) - P#"(v,t, s) to
the new state (i.e., updating the state of charge, to (w, At +
t,SOC((v,w), s))). Any state reached with non-zero probabil-
ity is treated in the same way by inserting it into the queue, until
the policy reaches the destination. The algorithm computes all
possible futures and their probabilities given the policy , and
from that extracts the arrival time distribution for each charging
station.

D. Historical Arrival Probabilities

As already mentioned, not all intentions of the agents are
known by the system, either because the drivers have not yet
entered their route in the system, or they are not using the
system at all. However, to compute future waiting times, agents
with unknown intentions still need to be taken into account.
We do so by using arrival probabilities based on historical
information for agents whose intentions are not known. This
facilitates the integration of known and unknown intentions
(discussed in the next part). Specifically, the system keeps track
of when and where (i.e., at what station) vehicles arrive for
charging.? These historical arrivals are then aggregated to com-
pute the probabilities P*"" (e, t) which gives, for an average
EV, the probability that it arrives at station e € Fgiations at time
t € T'. Note that this approach is anonymous in that it does not
compute different probabilities for different vehicles.

E. Computing Waiting Times Probabilities

We now discuss the main part of the system and show
how to compute the waiting times probability mass function,
P(At|e,t), by combining the historical information, P,
with known arrivals so far, and with the intentions-derived
probabilities, P"", 7 € I, where I is the set of EVs who have
(so far) reported their intentions to the system. We let n denote
the total number of unique vehicles that have charged in the
past (across stations), including both ones that use the system,
and ones that do not. For simplicity, we assume that each EV
charges en-route at most once per journey, although having
a single vehicle charge multiple times can be approximated
by considering these are different vehicles. Furthermore, let
m denote the number of vehicles which have already charged
today, and I’ C I those vehicles with known intentions which
still need to charge (i.e., they are visiting a station with non-
zero probability). Given this, there are n —m EVs that may
still choose to charge, of which we know the intentions of |I’|.

We then approximate the probability mass function by draw-
ing a number of samples from the respective probability dis-
tributions on arrival time and simulating the resulting queue.

3For an accurate account of historic information, this includes keeping track
of vehicles not using IARS but which are still using the charging stations.
This can be achieved, for example, through sensors and/or credit card payment
information at the stations.
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For each sample, we independently draw for n —m — |I|
vehicles a pair (e,t) € (Estations X T') U {_L} according to the
probabilities P*"" (e, t|not charged), i.e., the arrival conditional
on not having charged before (where the probability of charg-
ing before the current time is zero). Here, P*""(L) =1 —
Y e Baunon.ter P47 (€, t[not charged) is the probability that
the EV does not charge at all. Similarly, we draw a single pair
(e, t) from each distribution P#"" (note that we do not need
to compute the conditional distribution, since it has already
been updated). Finally, we add the EVs that have already
arrived today with probability 1. Then, starting from t =1,
we simulate the queues at each station based on the model
described in Section III-B until the end of the day, and measure
the waiting times for each future time point. This process is
repeated for a number of times and P(Atle, t) is estimated by
averaging the waiting times at each station and time slot. Such
an approach using a combination of sampling and simulation
is used quite often and is called a Monte-Carlo simulation.
In the experiments in Section V we use 5000 samples, which
altogether take, on average, around 0.2 seconds on a single core
of 2 2.93 GHz Core i7 iMac with 16 GB RAM.

V. EXPERIMENTS

In this section, we experimentally evaluate our intention-
aware routing system in a wide range of settings. The purpose
of this is to establish and quantify the potential benefits of
1) modeling station waiting times and 2) incorporating other
agents’ intentions into routing decisions. For ease of presenta-
tion, we assume that all agents wish to minimize their arrival
time at the destination, and therefore our primary measure of
performance is the average journey time of individual agents. In
the following, we first describe the benchmarks we test against.
We then discuss the simulation used for the evaluation and
provide details of the specific scenario. Finally, we present the
results.

A. Benchmarks

In order to provide a thorough experimental evaluation of
our approach, we implemented and evaluated a range of RGIS
strategies:

* MIN: A strategy that always minimizes the expected
journey time. As such, it simulates existing state-of-the-
art navigation systems.

* LOGIT(\): A randomized variant of MIN.

* TARS: Our proposed intention-aware routing system,
which is the main contribution of this paper.

* INFINITE CAPACITY: A lower bound on the social
optimum.

All strategies use the time-dependent stochastic model of road
travel times and include the state of charge, as discussed in
Section III. We include LOGIT, because agents employing
MIN on similar source and destination pairs will often follow
the same routes, exacerbating congestion at charging stations.
While this is an inherent problem with current routing systems,
we are interested in whether occasional randomization may
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1 initialise history P*™"
2 for each day do
3 initialise agents; and set currentTime < 0
4 while (currentT'ime < endO fDay) do
5 currentTime < moveToNextState()
6 converged < FALSE; and set iter < 0
7 while (/converged &

iter < maxNumlterations) do

8 converged <— TRUE

9 for agents with known intentions i € I do
10 compute 7

11 compute P (e, t)

12 compute P(Atle,t)

13 if 7 has changed then

14 converged = FALSE

15 iter++

16 update history P%"";
Fig. 4. Pseudocode of the main simulation loop.

alleviate this. The LOGIT algorithm is a good benchmark, as it
is often used to model the sub-optimal behavior of people [29].
As we expect this randomization to benefit the average journey
time, in our experiments we consider a best-case scenario where
this randomization has maximal benefit (by optimizing the A
parameter).

To achieve this, we use an approach where the probability
of selecting an alternative is directly related to the expected
utility of that same alternative. This is in line with work on
the logit agent quantal response equilibrium [30] and is defined
as follows. Given a parameter A € [0, o], the probability of
selecting an edge e is defined as:

e)vEU(e,tc,sc\Tr’)
P(e|ve, te, Sc)

a E{e’l(vc,w)eE} eAEU terocl) ?
The policy 7/ (ve, te, S¢) is then drawn from this distribution,
and the expected utilities are computed knowing that this dis-
tribution is used in future time steps: EU((u, v.), te, Sc|n’) =
Z{e/‘(vww)eE} P(€|ve, te, sc) - EU(€, te, sc|).

Both LOGIT and MIN assume zero waiting time at charging
stations. We also implemented enhanced versions of these
strategies, denoted by the “Learning” label, to describe that the
system models (and hence “learns”) waiting times at charging
stations using historical data. Therefore, MIN and LOGIT
model situations where current standard GPS routing systems
are used that do not model queues, while MIN-Learning and
LogGIT-Learning use historical arrivals to estimate queueing
times. Finally, we compute a lower bound on the social opti-
mum by including a benchmark with unlimited capacity at the
charging stations, allowing every vehicle to take the shortest
path (in expectation) without any queueing time. This is always
guaranteed to be better than the social optimum.

B. Simulation

The IARS architecture explained in Section IV is entirely
decentralized and asynchronous. That is, in practice, each agent
can recompute their route and submit updated arrival probabili-
ties to the system independently and at different time intervals.
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However, to allow for reproducible results, for the purpose of
our evaluation we use a discrete event simulation.

Specifically, the main simulation loop is given in Fig. 4.
To explain, a run of the simulation starts with no history
(each station/time combination is equally likely). Then, at the
start of each simulated day a set of agents is initialized with
their journey consisting of starting time, their origin and their
destination (as detailed in Section V-C), and an initial optimal
policy given the current history. Depending on the setting, a
proportion of these agents will use IARS whereas others will
use one of the benchmark strategies from Section V-A.

The day then proceeds as follows. The function move-
ToNextState() in line 5 finds the next event, where an event
is triggered by either a new agent entering the system, or
an existing agent reaching a new vertex (i.e., decision point).
At such an event, if the agent is using IARS, it may update
its policy given the new information available, which could
trigger a cascade of changes for other agents using IARS.
Therefore, for each such event, the system proceeds with a best-
response loop (lines 7-15). Specifically, each agent with known
intentions (i.e., that has started its journey and is using IARS)
in turn updates its policy and arrival probabilities if needed, and
the resulting waiting probabilities are then updated which could
trigger changes in other agents. This procedure is repeated until
the policies converge (i.e., there are no more changes), or a
maximum number of iterations is reached. In the experiments
we set maxNumliterations to 20. Finally, at the end of each
day the historic arrival probabilities are updated as described
in Section I'V-D.

We first performed an evaluation on two completely different
time-independent synthetic scenarios as described in the confer-
ence paper [31]. This showed that TARS can realize a significant
reduction in travel time if capacity is tight. To gain more insight
whether this effect also holds in more realistic settings, we
repeat a study of this effect for 100 different realistic time-
dependent scenarios, as described in the next section.

C. Realistic Scenario

Using the simulation we consider a realistic scenario to eval-
uate the performance of IARS compared to the other solutions.
Specifically, we consider the coordination of electric vehicle
charging around the city of Utrecht in the Netherlands. Utrecht,
situated in the center of the country, is the main transit hub
in the Netherlands, and hence the location where congestion
at EV charging stations is most likely to occur. To generate
realistic traffic data, we took origin—destination pairs with
departure times from a Dutch National Survey [32]. This survey
describes over 127000 moves, from which we selected those
that were more than 50 km and passed, but did not start or
end near Utrecht. To make this selection, we used a local
copy of the Open Source Routing Machine (OSRM) using data
from OpenStreetMap to create routes. This resulted in a set of
118 moves with driving times (without delays) ranging from
45 minutes to 3 hours, as displayed in Fig. 5.

In our experiments we fix the number of EVs to 50 (which
gives reasonable waiting times at stations for the road network
we consider), and we vary the congestion at the charging

Fig. 5. All 118 selected routes longer than 50 km passing Utrecht (satellite
image by Google Earth and Data SIO, NOAA, U.S. Navy, NGA, GEBCO).

stations by changing their capacity (i.e., the number of EVs
that can be charged simultaneously). We force each EV to visit
exactly one charging station for a full charge by initializing
the state of charge by 1 and requiring a charge of 3 (which
is the maximum level in this simulation) for all edges incident
to the final destination, and O for all other edges. For each run of
the experiment we sample the 50 agents by selecting a random
journey (with replacement) out of the above set of moves
for each agent. For the sequence of weekdays* in a single
experimental run, these agents depart with some Gaussian noise
(o0 = 10 minutes) around the respective departure time from
the survey. This simulates the same people making the same
journeys on weekdays, but at slightly different times.

For each of the selected moves we find the 6 charging stations
out of the set of 906 as of June 2014 from Open Charge Map
with the smallest detour (again using OSRM), resulting in a
total of 36 relevant charging stations in or around Utrecht. At the
moment five of which are fast charging stations (about 40 kW).
We set the capacities to be the same for all stations, and we vary
these from 1 to 5 per station.

We obtained speed measurement data along these routes
(including going via the charging stations) for the morning rush
hour. For this we collected the average speed for every 5 minute
interval from 2800 measurement points along the selected
routes on weekdays from 5:00 to 11:00 from 3rd February 2014
to 7th June 2014 (ignoring two days and 100 measurement
points that had missing data). The speed measurements were
obtained from the Nationale Databank Wegverkeersgegevens
(NDW), a cooperation of several governmental organizations,
who together aim to collect all traffic measurements in the
Netherlands. First, for each day and for each 5 minute interval
on every day, these speed measurements are used to derive
driving times for longer road segments by assuming the ob-
served speeds are maintained until the next measurement point.
Then, for each time of day the derived driving times from all
88 weekdays are combined into a time-dependent road driving

4Most experiments are run over 20 weekdays, to allow the agents to collect
and use historical data. Those involving IARS agents are run over 5 weekdays,
due to the more computationally expensive best-response mechanism. How-
ever, the performance of all strategies typically converges within 3—4 days, and
we only record journey times on the last simulated day.
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time distribution, which has five driving times and associated
probabilities (as evenly distributed as possible) such that it has
the same mean as the driving times of the 88 days.

Each route connecting an origin or destination to a charg-
ing station initially consists of about 2000 edges. Whenever
prefixes of these routes coincide, they are combined. Each
sequence of edges and nodes with degree 2 is then com-
pressed into a single edge with the respective aggregated time-
dependent stochastic travel time distribution. This results in
a graph for each of the agents with 13 nodes and 17 such
edges. The charging station queues at their respective nodes are
shared among these agents. The experiments are then run with
a time step size of 30 seconds and charging times are fixed to
30 minutes.

D. Hypotheses

Our experiments are guided by the following hypotheses.
The first (H1) examines the overall benefit of modeling his-
torical station queueing times, the next two (H2 and H3)
describe expected differences in average journey time between
the different routing strategies, and H4 describes the uncertainty
regarding these journey times. Then, hypothesis H5 sets our
expectation on the effect of capacity and thus congestion at
charging stations. Finally, hypotheses H6 and H7 describe our
expectations regarding vehicles that decide to deviate from the
advised routing strategy.

HI1: Explicitly modeling historic information on station
queues leads to a higher utility for individual agents as
well as to a lower average journey time.

The average journey time for IARS is lower than for any
of the other approaches.

The average journey time for LOGIT is lower than the
average journey time for MIN.

The uncertainty regarding the journey time is lower for
IARS than for any of the other approaches.

With increasing congestion (less charging capacity at
the stations), the effect of coordination through IARS
and randomization through LOGIT becomes more pro-
nounced.

When all agents use LOGIT, a single agent can increase
its utility by switching to MIN.

When all agents use IARS, a single agent cannot in-
crease its utility by switching to MIN or LOGIT.

H2:
H3:
H4:

H5:

Ho:

H7:

The next section describes the results of our experiments and
relates them to these hypotheses.

E. Results

In order to obtain a fair comparison for the LOGIT strategy,
we first establish the value for the randomization parameter \
that gives the best results. Given that the expected utilities
(EU) for the different routes are the negation of the journey
time, and that journey times are in the region of 100 to
300 minutes, rather small values for A in Equation (2) give
the most sensible values for e**V. We run an experiment for
A € {0,0.001,0.01,0.1, 1} on a set of representative problem
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Fig. 7. TARS results in the lowest overall journey time and performs quite

close to the lower bound with unlimited capacity at the charging stations.
LoGIT performs better than MIN.

instances where stations have a capacity of 2, and measure
the average journey time of all 50 vehicles using LOGIT())-
Learning (we focus on the Learning variant here, but the trends
for LOGIT(\) are similar). The results of this experiment can
be found in Fig. 6, where the green bars show the average
journey time of LOGIT(\)-Learning and the red bars show the
average journey time of a single deviating agent that adopts
the MIN-Learning strategy (which we will discuss later). In all
results, a 95% confidence interval over 100 different runs with
50 vehicles each is shown by the (vertical) length of an error bar
around the mean. We observe that LOGIT-Learning performs
best with the randomization parameter value around A = 0.1.
In further experiments, we thus show only results for this value.

Having established a good value for A\, we are set to compare
all strategies on a series of instances. To this end, Fig. 7 shows
the average journey times for all RGIS strategies tested in the
same setting as before. Here, all approaches that use historic
information about station queues clearly outperform those that
do not, confirming H1. IARS outperforms all other strategies by
significantly reducing queueing times, confirming H2 and both
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TARS significantly reduces the average journey time (by almost 50% in some
occasions), but when there is an overcapacity (e.g. for capacity 3, there are
108 places to charge around Utrecht for only 50 vehicles), the gain is relatively
small (~10%).

LOGIT approaches lead to consistently lower journey times than
their MIN counterparts, confirming H3.

In terms of run-time, IARS is significantly more expensive
than the other strategies, taking about 3.5 minutes of computa-
tion time per vehicle per day on a 2.6 GHz Intel Sandybridge
running on a single core with 4 GB of RAM.’> All other
strategies take a few seconds or less.

Next, Fig. 8 displays the average journey times of the
50 vehicles for each of the strategies for different charging
station capacities: ranging from 1 to 5 charging bays at a station.
From this figure we can make several observations. First, the
strategies using historic information (i.e., MIN-Learning, and
LoGIiT-Learning) perform significantly better than their non-
learning counterparts, again confirming hypothesis H1. Second,
TIARS performs better than LOGIT, which in its turn is better
than MIN. This is significant until a capacity of four (confirm-
ing H2 and H3). Third, this experiment simulates increasing
congestion by decreasing capacity at the charging stations. Here
we see that average journey times significantly increase for in-
creasing congestion (smaller capacities) and that this makes the
differences between the different strategies more pronounced,
confirming HS. The figure also shows that IARS is very close
to the lower bound for capacities above two, proving that IARS
is very close to optimal.

Next, to investigate H4, for each run of the simulation
we record the standard deviation of the journey times for all
50 agents. This indicates how much the journey times vary
between agents and, when comparing between different strate-
gies, a higher standard deviation indicates higher uncertainty
about the journey time of a randomly chosen agent. The average
standard deviation is shown in Fig. 9 with 95% confidence
intervals. Here, we see that this is significantly lower for [ARS
than for the other approaches. This means that the uncertainty

SNote that this includes all best-response iterations whenever new informa-
tion becomes available. In practice, these could be performed less frequently to
save computation time.
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Fig. 9. The standard deviation is significantly lower for IARS than for any of
the other approaches.
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Fig. 10. In a scenario with station capacity of two, the more agents use IARS,

the lower the average journey time (if other agents use MIN).

for drivers regarding the journey time is typically smaller,
confirming H4.

An important issue when introducing a new strategy for
navigation systems is that there must be an incentive for drivers
to use it. We therefore compare average journey times also
when only a part of the drivers use a particular system. In our
experiments we study IARS versus MIN (results in Fig. 10),
IARS versus LOGIT (results in Fig. 11), and we have already
seen some results on LOGIT versus MIN (in Fig. 6). Figs. 10 and
11 clearly show that no matter what strategy the current popula-
tion of drivers use, any driver is better off using IARS, and such
a switch further reduces the average journey time, confirming
hypothesis H7. However, the opposite is the case for LOGIT:
Fig. 6 shows that any individual driver is better off not using
LOGIT (confirming H6).

VI. CONCLUSION AND FUTURE WORK

The main contribution of this paper is the concept of an
intention-aware routing system (IARS) to coordinate the en-
route charging of electric vehicles, together with a realistic eval-
uation of this system. The evaluation considers actual charging
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station locations, time-dependent road travel time distributions
based on historic traffic information, and an origin-destination
pair distribution for the vehicles created from a country-wide
survey. The experiments show that individual drivers are better
off using the navigation advice from IARS than with classic
route guidance systems, even when these learn time-dependent
waiting times at charging stations, and even when an optimal
perturbation is mixed in according to the Logit model. Overall,
IARS leads to significantly shorter journey times (up to 50%
with high congestion), and also has significantly less uncer-
tainty than existing benchmarks, which is a highly desirable
property. The observed trends are in line with the results of our
previous experiments on artificially constructed road networks
where all vehicles depart simultaneously (reported in a confer-
ence paper [31]). However, given the extensive experiments in
this paper based on real data, we are now able to show the effect
of an intention-aware routing system in practice.

There are several directions for future work. First, while
the focus of this paper is on the use of an IARS to reduce
congestion at charging stations, it would be interesting to in-
vestigate whether the approach could be extended to coordinate
general road usage. Second, while we have compared IARS to
adaptive route guidance systems that use historic information,
these benchmarks could be extended to additionally use real-
time queueing information. Third, it is interesting to investigate
whether there are (significant) incentives to misreport inten-
tions, and study potential ways to discourage such behavior.
Fourth, future work could consider a principled comparison
between IARS and reservation-based systems. Our hypothesis
is that, in settings where driving time (and therefore arrival
time at the station) is uncertain, reservation systems are less
efficient than IARS due to the frequently required changes
and/or cancellations of reservations.

Another possible extension of this work is to consider the
dynamics and efficiency of settings with multiple competing
IARS providers, and where agents can choose to participate in
one or more of such systems. Finally, as the uptake of electric
vehicles increases, we would like to explore a real deployment
of IARS.
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