Lazy-CSeq 1.0 *

(Competition Contribution)

Omar Inverso!, Truc L. Nguyen', Ermenegildo Tomasco®, Bernd Fischer?,
Salvatore La Torre®, and Gennaro Parlato!

! Electronics and Computer Science, University of Southampton, UK
2 Division of Computer Science, Stellenbosch University, South Africa
3 Dipartimento di Informatica, Universita degli Studi di Salerno, Italy

Abstract. Sequentialization translates concurrent programs into (under certain
assumptions) equivalent nondeterministic sequential programs and so reduces
concurrent verification to its sequential counterpart. In previous work, we have
developed and implemented in the Lazy-CSeq tool a lazy sequentialization schema
for bounded programs that introduces very small memory overheads and very few
sources of nondeterminism and is thus very effective in practice [1, 2].

The current version of Lazy-CSeq adds deadlock detection, counterexample gen-
eration, and explicit schedule control. It also implements an improved version of
the original schema, which uses an optimized representation of the context switch
points and eagerly guesses these, but retains its other characteristics. Experiments
show that these optimizations lead to some performance gains.

1 Verification Approach

Overview. Lazy-CSeq 1.0 follows the same general verification approach as before, i.e.,
the concurrent program P is bounded and unrolled so that there is only a bounded num-
ber of possible threads, that each statement is executed at most once, and that all jumps
are forward jumps, and then translated into a sequential program P’ that simulates all
computations that P can execute in round-robin schedules with K rounds. P’ consists
of a main driver function and a simulation function for each thread instance (including
the original main) identified during the unrolling phase. P’ is finally verified using a
verification backend for sequential programs.

Data Structures. P’ stores and maintains, for each thread, a flag denoting whether the
thread is active, the thread’s original arguments, and the program location at which the
previous context switch has happened. In addition, the new version also maintains, for
each thread, the length of each round. One important optimization is that all variables in
P’ that refer to program locations (i.e., the context switch locations, the round lengths,
and the current program counters) are now kept separate for each thread, which allows
us to use bitvectors with different sizes as data types, and so to reduce the memory
overhead induced by the translation.

Main Driver. The sequentialized program’s main function consists of two phases. The
first phase simply guesses all round lengths, and ensures that the guesses are smaller

* Contact author: Omar Inverso, oi2cll@ecs.soton.ac.uk.



than the corresponding thread sizes. In our experience this leads to simpler verification
conditions than the original approach, where the individual run lengths were guessed
right before the corresponding sequentialized thread function were called. The second
phase consists of a sequence of small code snippets, one for each thread and each round,
that check the thread’s active flag and, if this is set, set the next context switch point,
call the sequentialized thread function with the original arguments, and store the context
switch point for the next round.

Thread Translation. Within the simulation function for each thread instance, each
statement is guarded by a check whether its location is before the stored location or
after the guessed next context switch. In the former case, the statement has already
been executed in a previous round, and the simulation jumps ahead one hop; in the lat-
ter case, the statement will be executed in a future round, and the simulation jumps to
the thread’s exit. Each jump target (corresponding either directly to a goto label or
indirectly to a branch of an if statement) is also guarded by an additional check to
ensure that the jump does not jump over the context switch.

Deadlock Detection. Lazy-CSeq 1.0 now also supports deadlock detection (although
this property is not required by any of the benchmarks). It uses an array of thread iden-
tifiers to represent the thread dependency chain, and non-deterministically guesses the
chain on the fly while simulating the threads; see [3] for details.

Explicit Schedule Control. Lazy-CSeq 1.0 now also allows users to control the sched-
ule exploration round-by-round; in earlier versions in each round all threads were sched-
uled and always in the same order. Note that even when the schedule is fixed context
switches can still happen at any time. We can use this new feature to guide the analy-
sis when some specific facts on scheduling are known, or on complex problems where
even analyzing a single round would require too many resources. Specific schedules
can help to trim down the main driver and result in smaller verification conditions with
consequent performance improvements.

2 Software Architecture

Lazy-CSeq 1.0 is implemented as a source-to-source transformation tool in Python
(v2.7.9) within the CSeq framework. However, while this year’s version implements
the same schema as last year’s version, the implementation itself has changed substan-
tially, due to a complete framework refactoring [3]. The framework now consists of
independent modules that can be configured and composed easily. Lazy-CSeq is imple-
mented as CSeq configuration of eighteen modules, which include (i) the frontend pro-
cessing module, which is based on the pycparser (v2.14, github.com/eliben/
pycparser); (if) eight simple transformation modules to rewrite the input program in
steps into a progressively simplified syntax; (ii7) four translators for program flattening
to produce a bounded program (see [2]); (iv) two modules implementing the sequential-
ization algorithm that produces a backend-independent sequentialized file (see [2]); (V)
a standard program instrumentation to instrument the sequentialized file for a specific
backend; and (vi) two wrappers for backend invocation and user report generation or
counterexample translation. The new framework also provides a line and variable map-



ping between the original program and its sequentialized counterpart, which we used to
implement a counterexample generation that was missing from previous versions.

The new framework simplifies the integration of new sequential backends (e.g.,
P. Gonzalez de Aledo’s integration with the Forest tool [4]), but Lazy-CSeq 1.0 remains
tightly integrated with CBMC and uses its non-standard bitvector data type. However,
due an internal error in CBMC we had to regress to CBMC v4.6.

3 Tool Setup and Configuration

Availability and Installation. Lazy-CSeq can be downloaded from http://users.
ecs.soton.ac.uk/gpd4/cseq/lazy-cseq-1.0-svcompl6.tar.gz; it also re-
quires installation of the pycparser. It can be installed as global Python script. In
the competition we only used CBMC as a sequential verification backend; this must be
installed in the same directory as Lazy-CSeq. The wrapper script for the tool on the
BenchExec repository is lazycseq.py.

Call. Lazy-CSeq only participates in the concurrency category. It should be called in the
installation directory as follows: lazy-cseq.py -i<file> —--spec<specfile>
--witness<logfile>. This small wrapper script bundles up translation and verifi-
cation and repeatedly calls Lazy-CSeq, with the following parameters:

——unwind-for=1 -—unwind-for-max=50 ——unwind-while=1 —-rounds=2 --depth=800,
——unwind-for=2 --unwind-while=2 --rounds=2 —--depth=300,

——unwind-for=4 --unwind-while=4 --rounds=1 —-depth=150,

——unwind-for=16 —-unwind-while=1 --rounds=1 --depth=350, and

——unwind-for=1 --unwind-for-max=11 -—unwind-while=1 --rounds=11 --depth=400.

Here unwind-for and unwind-for-max are soft and hard unwind bounds for bounded
(i.e., for) loops, unwind-while the unwind bound for potentially unbounded (i.e., while)
loops, respectively, rounds is the number of rounds, and depth is the depth option for the
backend. The script starts by invoking Lazy-CSeq with the first set of parameters. As soon as the
tool detects a reachable error condition within the given bounds, the script reports FALSE and
terminates; the analysis restarts with the next set of parameters otherwise. If the last invocation
reports no reachable error conditions, the script returns TRUE.

Strengths and Weaknesses. Since Lazy-CSeq is not a full verification tool but only a concur-
rency pre-processor, we only competed in the Concurrency category. Here we achieved a
perfect score. Compared to Lazy-CSeq 0.6c, we achieved a speedup of approx. 60% over all un-
safe benchmarks, but this is skewed by two instances that time out using v0.6c but are solved
very quickly using v1.0; discounting these two instances we achieved a speedup of approx. 14%.

References

1. O. Inverso, E. Tomasco, B. Fischer, S. La Torre, G. Parlato. Lazy-CSeq: A Lazy Sequential-
ization tool for C (Competition Contribution). TACAS, LNCS 8413, pp. 398-401, 2014.

2. O. Inverso, E. Tomasco, B. Fischer, S. La Torre, G. Parlato. Bounded Model Checking of
Multi-Threaded C Programs via Sequentialization. CAV, LNCS 8559, pp. 585-602, 2014.

3. O. Inverso, T.L. Nguyen, B. Fischer, S. La Torre, G. Parlato. Lazy-CSeq: A Context-Bounded
Model Checking Tool for Multi-Threaded C-Programs. ASE Tool Demonstration, 2015.

4. P. Gonzalez de Aledo, P. Sanchez Espeso. FramewORk for Embedded System verification
(Competition Contribution). TACAS, LNCS 9035, pp. 429-431, 2015.



