The University of Southampton
University of Southampton Institutional Repository

Remote spectroscopic monitoring of liquids via silica optical fibres

Remote spectroscopic monitoring of liquids via silica optical fibres
Remote spectroscopic monitoring of liquids via silica optical fibres
This thesis describes advances in the modelling and characterisation of sampling techniques and extrinsic optical fibre sensors for remote or on-line emission spectroscopy of liquids, using the inelastic scattering processes of Raman and fluorescence spectroscopy.

A semiconductor laser has been used as an excitation source, coupled via an optical fibre to a measurement cell; the collected light has been analysed with a spectrograph based around a holographically-produced concave diffraction grating and a cooled CCD detector. Its design, construction, and performance are described. This equipment has been interfaced to a PC, which has been programmed to direct excitation light alternately between two measurement cells, and process the signals from them, to achieve optimum rejection of interference from the measured data.

A mathematical model of the scattered-light collection efficiency of a number of optical-fibre probes, including parallel-optical-fibre and single-fibre types has been derived, and shown to be valid within experimental error. The model variables include the optical fibre numerical aperture and core radius (both of which may be different for each fibre in the probe), axial separation of the probe fibres, and analyte refractive index and absorption. Several representative optical-fibre probe configurations are compared in the light of this new model.

The interface between optical-fibre probes and various novel light-guiding sampling arrangements has been investigated. Mathematical models of coupling between fibre probe and sample cell, and the signal enhancements achieved by using various cell configurations, have been derived. These have been compared with experimental results from Fresnel-reflection light-guiding cells, metallic-reflection light-guiding cells, and waveguiding cells based on low-refractive index polymer films and free-falling streams of analyte. The model includes sample absorption, and accounts for the reflectivity and surface quality of the cell walls, and it has been shown to be more complete and accurate than any previously published work on the topic. In particular, no previous references had been found on the use of the low-refractive index polymer Teflon-AF as a waveguide cladding, or the use of free-falling water streams for the enhancement of collected light in spectroscopic work.

The cell configurations will enhance the scattered light collection efficiency of any parallel-optical-fibre probe: by coupling a 100 mm long free-falling stream of an aqueous solution of fluorescent dye with a parallel-optical-fibre probe, the measured light collection efficiency of the fibre probe increased by 9 times in this work.
University of Southampton
Mackenzie, Steven James
8fb93a69-3218-4730-bb8e-279d24e04b70
Mackenzie, Steven James
8fb93a69-3218-4730-bb8e-279d24e04b70
Dakin, John
04891b9b-5fb5-4245-879e-9e7361adf904

Mackenzie, Steven James (1998) Remote spectroscopic monitoring of liquids via silica optical fibres. University of Southampton, Optoelectronics Research Centre, Doctoral Thesis, 194pp.

Record type: Thesis (Doctoral)

Abstract

This thesis describes advances in the modelling and characterisation of sampling techniques and extrinsic optical fibre sensors for remote or on-line emission spectroscopy of liquids, using the inelastic scattering processes of Raman and fluorescence spectroscopy.

A semiconductor laser has been used as an excitation source, coupled via an optical fibre to a measurement cell; the collected light has been analysed with a spectrograph based around a holographically-produced concave diffraction grating and a cooled CCD detector. Its design, construction, and performance are described. This equipment has been interfaced to a PC, which has been programmed to direct excitation light alternately between two measurement cells, and process the signals from them, to achieve optimum rejection of interference from the measured data.

A mathematical model of the scattered-light collection efficiency of a number of optical-fibre probes, including parallel-optical-fibre and single-fibre types has been derived, and shown to be valid within experimental error. The model variables include the optical fibre numerical aperture and core radius (both of which may be different for each fibre in the probe), axial separation of the probe fibres, and analyte refractive index and absorption. Several representative optical-fibre probe configurations are compared in the light of this new model.

The interface between optical-fibre probes and various novel light-guiding sampling arrangements has been investigated. Mathematical models of coupling between fibre probe and sample cell, and the signal enhancements achieved by using various cell configurations, have been derived. These have been compared with experimental results from Fresnel-reflection light-guiding cells, metallic-reflection light-guiding cells, and waveguiding cells based on low-refractive index polymer films and free-falling streams of analyte. The model includes sample absorption, and accounts for the reflectivity and surface quality of the cell walls, and it has been shown to be more complete and accurate than any previously published work on the topic. In particular, no previous references had been found on the use of the low-refractive index polymer Teflon-AF as a waveguide cladding, or the use of free-falling water streams for the enhancement of collected light in spectroscopic work.

The cell configurations will enhance the scattered light collection efficiency of any parallel-optical-fibre probe: by coupling a 100 mm long free-falling stream of an aqueous solution of fluorescent dye with a parallel-optical-fibre probe, the measured light collection efficiency of the fibre probe increased by 9 times in this work.

Text
MackenzieSJ_1998_thesis_1260T.pdf - Version of Record
Available under License University of Southampton Thesis Licence.
Download (7MB)
Text
MackenzieSJ_1998_appendix_1260T.pdf - Version of Record
Available under License University of Southampton Thesis Licence.
Download (9MB)

More information

Published date: December 1998
Organisations: University of Southampton, Optoelectronics Research Centre

Identifiers

Local EPrints ID: 394396
URI: http://eprints.soton.ac.uk/id/eprint/394396
PURE UUID: 7b7aa461-1e56-47b6-ba9d-0df21ddb754d

Catalogue record

Date deposited: 21 Jun 2016 13:47
Last modified: 15 Mar 2024 00:22

Export record

Contributors

Author: Steven James Mackenzie
Thesis advisor: John Dakin

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×